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Abstract. We initiate the study of incentive-compatible forecasting competitions in which
multiple forecasters make predictions about one or more events and compete for a single
prize. We have two objectives: (1) to incentivize forecasters to report truthfully and (2) to
award the prize to the most accurate forecaster. Proper scoring rules incentivize truthful
reporting if all forecasters are paid according to their scores. However, incentives become
distorted if only the best-scoring forecaster wins a prize, since forecasters can often increase
their probability of having the highest score by reporting more extreme beliefs. In this
paper, we introduce two novel forecasting competition mechanisms. Our first mechanism
is incentive compatible and guaranteed to select the most accurate forecaster with probability
higher than any other forecaster. Moreover, we show that in the standard single-event, two-
forecaster setting and under mild technical conditions, no other incentive-compatible mecha-
nism selects the most accurate forecaster with higher probability. Our second mechanism is
incentive compatible when forecasters’ beliefs are such that information about one event does
not lead to belief updates on other events, and it selects the best forecaster with probability
approaching one as the number of events grows. Our notion of incentive compatibility is more
general than previous definitions of dominant strategy incentive compatibility in that it allows
for reports to be correlated with the event outcomes. Moreover, our mechanisms are easy to
implement and can be generalized to the related problems of outputting a ranking over fore-
casters and hiring a forecaster with high accuracy on future events.
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1. Introduction
The study of probabilistic predictions dates back to at
least the 1950s when meteorologists developed proper
scoring rules as a way to both incentivize truthful fore-
casts about future events and compare the relative accu-
racy of different forecasters (Brier 1950, Good 1952).
Proper scoring rules are still widely used today to moti-
vate and measure forecasting accuracy (e.g., Atanasov
et al. 2017) and an active area of research in decision
analysis (e.g., Grushka-Cockayne et al. 2017, Jose 2017).

When forecasters are paid their proper scores, they
maximize expected payment by truthfully reporting
their beliefs. However, it is rare to see proper scoring
rule payments outside of experimental labs. Instead,
most real-world forecasting settings are competitions,

where forecasters are ranked according to their score
and where prizes are given only to the highest-ranked
forecasters. Hence, forecasters do not care about maxi-
mizing their expected score but about whether their
forecasts are judged to be better than others’ forecasts.
For example, in the Good Judgment Project, a recent
geopolitical forecasting tournament, the top 2% of
forecasters were awarded so-called “superforecaster”
status (Tetlock and Gardner 2015), which (on top of
bragging rights) gave them full travel reimbursement
to a superforecaster conference. In play-money predic-
tion markets, forecasters often compete for a place at
the top of a leaderboard (e.g., Servan-Schreiber et al.
2004). The same phenomenon holds for algorithmic
forecasters; Netflix offered $1,000,000 to the team
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whose machine learning algorithm could best predict
how users would rate movies based on their past pref-
erences,1 and the machine learning competitions run
by Kaggle2 rank submitted models based on how well
they predict the labels of data points from an un-
disclosed test set. One of Kaggle’s main uses today is
for recruiters to hire the developers of the best-
performing algorithms (Harris 2013, Chakraborty
2016).

There are good reasons for organizations to run
forecasting competitions as opposed to directly pay-
ing each forecaster her proper score. First, from a mar-
keting perspective, awarding a single, large prize to
the winner is more enticing than offering small pay-
ments to everyone. For example, it is unlikely that the
Netflix Prize would have created the same media
buzz without offering participants the prospect of
winning $1,000,000. Second, organizations signifi-
cantly reduce transaction costs when only a single or
small number of prizes are awarded. In addition to
the literal transaction costs involved in transferring
payments from the organization to the forecasters,
there are sometimes legal reasons that are facilitated
by having only a single transaction.

However, unless they are designed with care, these
winner-take-all competitions can distort incentives,
encouraging forecasters to take big risks as opposed
to truthfully reporting their beliefs. Lichtendahl and
Winkler (2007) study a strategic game between two
forecasters reporting on a single event. In their model,
each forecaster wishes to maximize her utility, which
is assumed to be a mixture of a proper scoring rule
payment and an (explicit or implicit) bonus for being
the best forecaster, with a parameter trading off these
two components. They show that when forecasters
optimize for their relative rank, they typically want to
report more extreme probabilities than those corre-
sponding to their true beliefs.

This kind of misreporting is not a purely academic
possibility but is also observed in real-world fore-
casting competitions. An example is Kaggle’s annual
machine learning competition to predict the game
outcomes of the NCAA March Madness college bas-
ketball tournament, where every participant submits
up to two statistical models predicting the outcomes
of each possible team pairing. At the end of the 2017
competition, Andrew Landgraf, the creator of that
year’s winning model, was interviewed by the Kaggle
team about his approach, saying (Kaggle 2017) “My
idea was to model not only the probability of each
team winning each game, but also the competitors’
submissions. Combining these models, I searched for
the submission with the highest chance of finishing
with a prize (top 5 on the leaderboard).[… ] The three
main processes are[… ]: (1) A model of the probability
of winning each game, (2) a model of what the

competitors are likely to submit, and (3) an optimiza-
tion of my submission based on these two models.”
While rational from a forecaster’s point of view, this
strategic behavior creates two problems for organiza-
tions that run forecasting competitions to obtain
accurate forecasts: first, the reported forecasts are not
truthful and hence not optimized for accuracy but for
“winning the game.” Second, each forecaster respond-
ing to the gaming incentives spends significant effort
on strategizing and predicting other forecasters’
behavior instead of investing full effort into acquiring
the most accurate prediction for the event in question.

In this paper, we initiate the study of incentive-
compatible forecasting competitions. After showing
that the failure to provide strict truthfulness incentives
is inherent to any deterministic forecasting competi-
tion mechanism, we present the Event Lotteries Fore-
casting Competition Mechanism (ELF). ELF borrows a
trick from the competitive scoring rule of Kilgour and
Gerchak (2004), which truthfully elicits probabilistic
forecasts for single events. Under the mechanism of
Kilgour and Gerchak, a forecaster’s payment depends
on her relative performance (measured by a proper
scoring rule) compared with other forecasters. Specifi-
cally, her total payment is the difference between her
own score and the average score of all other forecast-
ers. For a single event, ELF uses a similar idea to com-
pute scores for all forecasters that are nonnegative
and sum up to one. Treating these scores as a proba-
bility distribution over forecasters, ELF then runs a
lottery to determine the winner of the prize. For the
prominent single-event, two-forecaster setting, as also
studied by Lichtendahl and Winkler (2007), we prove
that, under mild technical conditions, there exists no
other incentive-compatible mechanism that selects the
more accurate forecaster with higher probability.

Our second mechanism is the Independent-Event
Lotteries Forecasting Competition Mechanism (I-ELF),
which is specifically designed for multiple, independ-
ent events and strictly incentive compatible when
forecasters’ beliefs are such that information about
one event does not lead to a belief update on the other
events. I-ELF runs one ELF lottery for each individual
event, eventually awarding the prize to the forecaster
who has won the most event lotteries. As the number
of events grows, I-ELF selects the most accurate fore-
caster with probability approaching one. Moreover,
both ELF and I-ELF are robust toward unknown risk
preferences and our techniques generalize to other nat-
ural settings, such as the incentive-compatible ranking
of forecasters and hiring a forecaster with high accu-
racy on future events.

Forecasting competitions are different from the usual
contest settings studied in the literature, such as innova-
tion contests modeled as all-pay auctions (e.g., Konrad
2009). In those models, although there is also a prize to
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be awarded, a participant’s strategic choice is the effort
they invest, determining the quality of their provided
solution. In contrast, participants in forecasting com-
petitions strategize about what they should report
given their private information. Moreover, the me-
chanism designer’s objective is different in the two set-
tings. Whereas classical contest models seek to maxi-
mize the quality of the provided solutions, the
primary objective of forecasting competitions such as
the Good Judgment Project is to truthfully elicit accu-
rate information from participants.

The question of how to aggregate forecasts has been
studied extensively in the decision analysis commun-
ity (e.g., Satopää et al. 2014, Palley and Soll 2019). We
emphasize that using ELF or I-ELF as incentive
schemes does not restrict the choice of whether and
how to aggregate forecasts once they have been eli-
cited. Indeed, a forecasting competition mechanism is
not a substitute for a forecast aggregation algorithm
but a complement. Lichtendahl et al. (2013) show that
under a commonly known public-private signal
model, a simple average of “gamed” forecasts is more
accurate than a simple average of truthful forecasts.
However, state-of-the-art aggregation algorithms,
such as the extremized mean (Atanasov et al. 2017)
and the logit aggregator (Satopää et al. 2014), consis-
tently outperform simple averaging in practice and
can take advantage of truthful reports.

2. Model
We consider a group of n ≥ 2 forecasters, indexed by
i ∈ [n] � {1, : : : ,n}, and m events, indexed by k ∈ [m] �
{1, : : : ,m}. We model these as m random variables Xk

that take values in {0,1}, and we say that “event k
occurred” if Xk� 1 and that “event k did not occur” if
Xk � 0. Independent of the event’s outcome, we say
that “event k materialized.” Let X denote the vector-
valued random variable of event outcomes and x �
(x1, : : : ,xk, : : : ,xm) its realization. Every forecaster i has
a subjective belief pi,k ∈ [0, 1] of the probability that
event k will occur. We denote the vector of forecaster
i’s subjective beliefs over all m events as pi � (pi, 1, : : : ,
pi,k, : : : ,pi,m) ∈ [0, 1]m: All forecasters report their proba-
bilistic forecasts for all events at the same time, before
the first event materializes. (In Section 6.5, we discuss
how this assumption can be relaxed for practical pur-
poses.) The reported forecast of forecaster i for event k
is denoted by yi,k ∈ [0, 1]. A forecaster’s report can be
equal to her true belief (i.e., yi,k � pi,k) but does not
have to be, and we denote the vector of i’s reported
forecasts as yi � (yi, 1, : : : , yi,k, : : : ,yi,m) ∈ [0,1]m: In set-
tings with only a single event, that is, m � 1, we drop
the subscript k denoting the event from the event out-
comes and from the forecasters’ reports and beliefs.
Once all m events have materialized, the mechanism

selects one of the n forecasters as the “winner.” The
selection is based on the event outcomes and all fore-
casters’ reports on all events. We allow this selection
to be randomized.

Definition 1. A forecasting competition mechanism M
takes all forecasters’ reports on all events y1, : : : ,yn ∈[0,1]m × : : : × [0,1]m and the materialized outcomes of
all events x ∈ {0,1}m, and selects a forecaster M(y1, : : : ,
yn,x) ∈ [n].

In contrast to standard proper scoring rules, forecast-
ers only care about being selected. Every forecaster thus
seeks to maximize the probability of being selected. The
primary objective is to incentivize forecasters to report
their true beliefs about the expectation of X. Incor-
porating forecaster i’s subjective beliefs, the uncertainty
about other forecasters’ reports, and the mechanism’s
randomization (if any), we obtain the following defini-
tion for strict incentive compatibility of a mechanism.3

Definition 2. Forecasting competition mechanism M is
(robust) strictly incentive compatible if and only if for all
forecasters i ∈ [n], all belief vectors pi, all joint distri-
butions D over outcomes X and reports Y−i such that
the marginal distribution of X is EX~D[X] � pi, and all
alternative report vectors y′i ≠ pi,

Pr
X,Y−i~D

(M(Y1, : : : ,pi, : : : ,Yn,X) � i)
> Pr

X,Y−i~D
(M(Y1, : : : ,y′i , : : : ,Yn,X) � i):

Observe that this definition of incentive compatibility
is very general, allowing us to capture, for instance,
that forecaster i believes that j≠ i perfectly forecasts
the correct outcome while i herself does not. More
generally, it allows for settings in which forecaster i
would update her belief upon learning forecaster j’s
report. In particular, our definition of incentive com-
patibility applies to standard Bayesian models, where
the participants’ beliefs stem from noisy observations
of some ground truth (e.g., Lichtendahl and Winkler
2007). This is in contrast to previous work that defined
immutable-belief incentive compatibility (Kilgour and Ger-
chak 2004, Lambert et al. 2008), which only requires
truthful reporting to be optimal when the reports of
other forecasters are constant (i.e., with no dependence
on each other or the event outcomes). We refer the
reader to Appendix A for an extensive discussion of
this distinction, which also includes a concrete numeri-
cal example showing that immutable-belief incentive
compatible mechanisms suggested in the literature tend
to incentivize misreports in Bayesian contexts. In con-
trast to previously studied competitive forecasting set-
tings, most notably those by Lichtendahl and Winkler
(2007) and Lichtendahl et al. (2013), we do not require
pi to come from any particular parametric belief model.
Moreover, and crucially, we do not restrict our analysis
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to Bayes’ Nash equilibrium play. Instead, and in line
with the literature on (single-forecaster) proper scoring
rules (e.g., Gneiting and Raftery 2007), the mechanisms
we design obtain strict incentive compatibility in dom-
inant strategies. That is, our objective is to provide
strict incentives for truthful reports independent of the
reports of other forecasters.

Also observe that we do not require the typical
assumption that forecasters are risk neutral: every
forecaster strictly prefers being selected over not being
selected, so that the higher the probability of being
selected, the better. This idea is not new; previous
work used lotteries to address unknown risk preferen-
ces of forecasters (Karni 2009, Lambert 2018, Hossain
and Okui 2013). Although we also reward forecasters
probabilistically (and obtain robustness to unknown
risk preferences as a bonus4), the primary reason we
use lotteries is because we have many forecasters but
only a single prize to award. To the best of our knowl-
edge, we are the first to study lotteries in this context
of competitive forecasters.

3. Forecasting Competitions Using
Standard Proper Scoring Rules

Consider a single forecaster and a single event X. A
scoring rule R computes a payment that depends on
the materialized event outcome x and the forecaster’s
report y ∈ [0, 1] regarding the probability that X � 1,
paying the forecaster some amount R(y, x).

Definition 3 (Scoring Rules). A scoring rule R is a map-
ping from reports y ∈ [0, 1] and outcomes x ∈ {0, 1} to
scores R(y,x) ∈ R

⋃ {−∞}. A scoring rule R is (strictly)
proper if, for all y,p ∈ [0, 1] with y≠ p, it holds that
EX~p[R(p,X)] > EX~p[R(y,X)]. R is bounded if there
exist R,R ∈ R such that R(y,x) ∈ [R,R] for all
y ∈ [0, 1], x ∈ {0, 1}. Proper scoring rule R is normalized
if it is bounded between zero and one, and if R(0, 0) �
R(1, 1) � 1 and R(y,x) � 0 for some y ∈ [0, 1] and
x ∈ {0, 1}.

When clear from context, we will write R ∈ [0, 1] to
refer to a scoring rule bounded between zero and one.
There exist infinitely many proper scoring rules because
any (strictly) convex function yields a (strictly) proper
scoring rule (Gneiting and Raftery 2007, theorem 1). A
widely used bounded scoring rule is the quadratic scor-
ing rule (Brier 1950), which we will regularly refer to
throughout the paper and give here in its standard,
normalized form.

Proposition 1 (Brier 1950). The quadratic scoring rule
Rq(y,x) � 1− (y− x)2 is strictly proper.

Bounded proper scoring rules used in practice are
often already normalized. For example, both the
quadratic scoring rule and the spherical rule (e.g., Jose

2009) already are. We note that any bounded strictly
proper scoring rule R can be transformed into a nor-
malized proper scoring rule R̃ and refer the reader to
Appendix B for details.

3.1. Mechanism
A natural way to extend a strictly proper scoring rule
R to a forecasting competition mechanism is to output
the forecaster with highest score according to R,
summed across all m events. This mechanism is com-
monly used in practice to select top forecasters,
including by the Good Judgment Project (Tetlock and
Gardner 2015) and FiveThirtyEight’s NFL Forecasting
Game.5 Let MPSRR denote the mechanism derived in
this way from proper scoring rule R. That is, MPSRR

selects the forecasters with highest score,

MPSRR(y1, : : : ,yn,x) ∈ arg max
i∈[n]

∑m
k�1

R(yi,k,xk),

with ties broken by forecaster index.6

3.2. Incentive Analysis
It is well known that selecting a forecaster according
to highest proper scoring rule score may produce per-
verse incentives. In general, forecasters are incentiv-
ized to make overconfident reports to increase their
chance of being judged the best forecaster ex post for
at least some outcomes. To see this, consider an event
X and two forecasters who believe that X occurs with
probability 0.8 and 0.9, respectively. If both report
their beliefs truthfully, the forecaster who reports 0.8
achieves the highest score—and is therefore selected
by the mechanism—whenever X � 0, which she
believes to occur with probability 0.2. However, if she
instead reports some y > 0.9, she is selected by the
mechanism whenever X �1, which she believes to
occur with probability 0.8. We present a more general
example illustrating the failure of incentive compati-
bility of proper scoring rule selection for any n ≥ 2
and m ≥ 1 in Appendix C. For a thorough analysis of
the (nontruthful) strategic behavior of competitive
forecasters when ranked by standard proper scoring
rules, we defer to Lichtendahl and Winkler (2007).
Moreover, as shown by Theorem 1, failure to provide
strict incentive compatibility is inherent to any determin-
istic forecasting competition mechanism. For intuition,
the proof proceeds by showing that any deterministic
mechanism only has finitely many possible outputs,
whereas each agent has an infinite reporting space, and
hence, forecasters cannot always strictly prefer truthful
reporting.

Theorem 1. No deterministic forecasting competition
mechanism is strictly incentive compatible.
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4. Incentive-Compatible Forecasting
Competitions

Theorem 1 motivates the study of randomized fore-
casting competition mechanisms. In Section 4.1, to
build intuition, we begin by considering the single-
event setting (m � 1) and introduce ELF, a strictly
incentive-compatible forecasting competition mecha-
nism. In Section 4.2, we then show how to extend ELF
to handle multiple, arbitrarily correlated events.

What needs to hold for a forecasting competition to
be strictly incentive compatible? First note that strict
incentive compatibility requires that, for any beliefs
over outcomes X and reports Y−i, the probability fi of
selecting forecaster imust behave like a strictly proper
scoring rule for i. If this is not the case, then i could
increase her probability of being selected by misre-
porting. Thus, we need strictly proper scoring rules
for each forecaster that are nonnegative and always
sum to one so that they form a valid probability distri-
bution. A natural first attempt to achieve this would
be to use any strictly proper scoring rule, such as the
quadratic scoring rule Rq, and “normalize” by divid-
ing by the sum of all forecasters’ scores. However,
such a multiplicative normalization violates incentive
compatibility because the factor by which scores are
normalized is 1/(sum of forecasters’ scores), which
may differ between outcomes, causing forecasters to
bias their predictions toward less likely outcomes. For
an example illustrating this phenomenon, see Appen-
dix E.

To get around this, we borrow a trick from the
competitive scoring rule mechanism of Kilgour and
Gerchak (2004), which takes advantage of the fact that
incentive compatibility is preserved when adding or
subtracting a function of other reports and the out-
come. Using their mechanism, each forecaster’s pay-
ment is her score according to a proper scoring rule
minus the average score of all other forecasters. ELF
uses a similar idea to normalize all forecasters’ scores
additively, so that they are nonnegative and sum up to
one. ELF then runs a lottery based on these scores to
determine the winner of the prize.

4.1. Single-Event Mechanism
For a single event, ELF, more formally MELFR(y1, : : : ,yn,x) selects forecaster i ∈ [n]with probability

fi(y1, : : : ,yn,x) � 1
n
+ 1
n

R(yi,x) − 1
n− 1

∑
j≠i

R(yj,x)
( )

, (1)

where R ∈ [0, 1] is a bounded strictly proper scoring
rule.7

One can think of ELF as giving each forecaster a 1=n
probability to start with, adjusting this up or down
depending on how their performance compares to
that of other forecasters. It is easy to see that the

vector8 ( f1, : : : , fn) is a valid probability distribution:
that each fi is nonnegative follows immediately from
R being bounded in [0, 1], and ∑n

i�1 fi � 1 because

∑n
i�1

fi � 1+ 1
n

∑n
i�1

R(yi,x) − 1
n− 1

∑
j≠i

R(yj,x)
( )

� 1+ 1
n

∑n
i�1

R(yi,x) − n− 1
n− 1

∑n
i�1

R(yi,x)
( )

� 1:

Generalizing the result of Kilgour and Gerchak
(2004) to incorporate Bayesian reasoning about
other forecasters, we can show that ELF is incentive
compatible.

Theorem 2. ELF is strictly incentive compatible for m� 1.

4.2. Multiple-Event Mechanism
We now consider a natural generalization of single-
event ELF to multiple events. For multiple events,
ELF proceeds as follows after all events have material-
ized. MELFR (y1, : : : ,yn,x) selects forecaster i ∈ [n] with
probability

gi(y1, : : : ,yn,x) �
1
m

∑m
k�1

fi,k,

where fi,k � 1
n
+ 1
n

R(yi,k,xk) − 1
n− 1

∑
j≠i

R(yj,k,xk)
( )

, (2)

and where R ∈ [0, 1] is a bounded strictly proper scor-
ing rule.

This corresponds to running single-event ELF for
every event and selecting each forecaster with probabil-
ity equal to the average probability assigned to her across
all events. Note that this procedure can equivalently be
interpreted as sampling a single event uniformly at ran-
dom, and awarding the prize to the forecaster selected
by single-event ELF on that event. Strict incentive com-
patibility of ELF then follows directly from strict incen-
tive compatibility of single-event ELF.

Theorem 3. ELF is strictly incentive compatible for m ≥ 1
events.

5. Incentive-Compatible and Accurate
Forecasting Competitions

The ELF mechanism from Section 4.2 is strictly incen-
tive compatible for arbitrarily correlated events. If
(strict) incentive compatibility is the only objective,
ELF provides a definitive solution. In many settings,
however, the system designer strives for an additional
objective, namely that the prize is awarded to the
most accurate forecaster. In the Good Judgment Proj-
ect, for example, the 2% of forecasters with highest
quadratic scores were awarded “superforecaster” sta-
tus (Tetlock and Gardner 2015). It is implicit in the
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term that these individuals should be the most accurate
forecasters. Similarly, recruiters on Kaggle seek to make
job offers to the data scientists who create the most accu-
rate models (Harris 2013). Hence, in addition to incentive
compatibility, the objective in this work is to select the
forecaster with the highest accuracy with as high a prob-
ability as possible, and ideally with probability tending
to one as the number of events grows. Of course, one
could imagine other objectives, such as maximizing the
expected accuracy of the selected forecaster or minimiz-
ing the accuracy gap between the selected and the best
forecaster. We briefly discuss alternatives in Section 6.

In judging accuracy, one needs to have a model for
ground truth. Here, we borrow from statistical learn-
ing theory and assume that event outcomes are drawn
from an unknown joint probability distribution θ over
X1, : : : ,Xm. We emphasize that θ is latent and hence
never observed by either the forecasters or the mecha-
nism. The marginal probability that event k will occur
is denoted by θk ∈ [0, 1]. This is strictly more general
than defining outcomes as ground truth since, in par-
ticular, it allows for θk � xk. In Definition 3, proper
scoring rules are defined in an incentive spirit, as a
tool for the incentive-compatible elicitation of subjec-
tive beliefs. In particular, the expectation is taken with
respect to a forecaster’s subjective belief p. Proper
scoring rules also have an accuracy interpretation. If
the expectation is taken with respect to the true proba-
bility θk of event k occurring, then (strict) properness
implies that reporting the true probability obtains a
higher expected score than any other report. Reports
that do not coincide with the true probability lead to
lower expected scores, and different proper scoring
rules correspond to different accuracy measures in
that they punish reports diverging from the true prob-
ability differently. For example, with true probability
θk, the quadratic scoring rule (Proposition 1) punishes
a report y by EXk~θk[Rq(θk,Xk) −Rq(y,Xk)] � (y−θk)2.

Importantly, the choice of proper scoring rule has
implications for the relative rank of forecasters. For
example, let θk � 0:7 and let two forecasters report
y1,k � 0:9 and y2,k � 0:51, respectively. Then, under the
quadratic scoring rule, forecaster 2 obtains a higher
expected score than forecaster 1 (less punishment),
whereas under the spherical scoring rule,9 forecaster 1
obtains a higher expected score than forecaster 2. That
is, the system designer’s choice of proper scoring rule
in a forecasting competition determines the (relative)
accuracy measure that forecasters are judged by.10 For
the incentive-compatible mechanisms in this paper,
the proper scoring rules need to be bounded. In partic-
ular, the accuracy measure implied by the unbounded
logarithmic scoring rule (Good 1952) cannot be used.
Note that this restriction to bounded scoring rules
(such as the quadratic or spherical scoring rule) is
also present outside of competition settings when

forecasters are simply paid their score as one cannot
ensure nonnegative payments for unbounded scoring
rules. Moreover, we will later show in Theorem 5 that
no other incentive-compatible forecasting competition
mechanism can implement accuracy measures corre-
sponding to unbounded scoring rules under mild techni-
cal assumptions. Hence, for the remainder of the paper
(with the exception of Theorem 5), the accuracy measure
that is used will be given by a particular bounded proper
scoring rule. The objective will be to select the forecaster
with highest expected score according to that scoring rule
while ensuring that the mechanism is strictly incentive
compatible even in the competition setting. For this, it is
helpful to overload notation of proper scoring rule R and
define

R(yi,θ) :� E
X~θ

1
m

∑m
k�1

R(yi,k,Xk)

as the expected score of report yi using R and given joint
probability θ. This allows us to make statements about the
relative accuracy of forecasters with respect to R and θ. In
particular, forecaster i is more accurate than forecaster j on
them ≥ 1 events if and only if R(yi,θ) > R(yj,θ).

5.1. Accuracy of ELF
We first observe that ELF selects forecasters with higher
accuracy more often than those with lower accuracy.

Definition 4. Forecasting competition mechanism M is
rank accurate with respect to proper scoring rule R if
and only if it holds that R(yi,θ) > R(yj,θ)⇐⇒
PrX~θ(M(y1, : : : ,yn,X) � i) > PrX~θ(M(y1, : : : ,yn,X) � j)
for all joint distributions θ over X1, : : : ,Xm, all y1,
: : : ,yn ∈ [0,1]m, and all i, j ∈ [n].

The next statement follows immediately from tak-
ing expectation over X in Equation (2).

Proposition 2. The probability that ELF selects forecaster
i given joint probability θ is PrX~θ(MELFR(y1, : : : ,
yn,X) � i) � 1

n+ 1
n

(
R(yi,θ) − 1

n−1
∑

j≠iR(yj,θ)
)
.

Corollary 1. ELF is rank accurate with respect to scoring
rule R used in its definition. In particular, it selects the
most accurate forecaster with higher probability than any
other forecaster.

One may wonder if there exist incentive-compatible
forecasting competition mechanisms that select the
most accurate forecaster with higher probability than
ELF. In Theorem 4, we rule out this possibility for the
standard two-forecaster, single-event setting (e.g., Lich-
tendahl and Winkler 2007), subject to mild conditions
on the form of the forecasting competition mechanism.

Definition 5. Forecasting competition mechanism M is
anonymous if the selected forecaster does not depend
on the identities of the forecasters. That is,M is anony-
mous if for any permutation σ of [n], any forecaster i,
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any reports y1, : : : ,yn, and any outcome vector x, it
holds that Pr

(
M(y1, : : : ,yn,x) � i

)
� Pr

(
M(yσ−1(1), : : : ,

yσ−1(n),x) � σ(i)
)
.

To exploit existing characterization theorems of
competitive scoring rules (Lambert et al. 2008), we
restrict attention to smooth forecasting competition
mechanisms in Theorem 4.

Definition 6. A forecasting competition mechanism M
is smooth if the corresponding function that outputs a
probability distribution over forecasters, Pr(M(y1, : : : ,
yn,x)), is twice continuously differentiable with
respect to each yi.

Theorem 4 shows that if a strictly incentive-
compatible mechanism M ever selects the more accu-
rate forecaster from a single-event, two-forecaster
competition with higher probability than ELF with
normalized R, then M is not rank accurate with
respect to R, i.e., there must exist another instance in
which M selects the less accurate forecaster with higher
probability than the more accurate one. Recall that we
denote by R̃ the proper scoring rule that results from
normalizing R as described in Appendix B.

Theorem 4. Let M be a smooth and anonymous forecast-
ing competition mechanism that is rank accurate with
respect to R and for which there exist y1,y2 ∈ [0, 1]
and distribution θ such that R(y1,θ) > R(y2,θ) and
PrX~θ(M(y1,y2,X) � 1) > PrX~θ(MELFR̃ (y1,y2,X) � 1).
Then M is not strictly incentive compatible.

By adapting elements of the proof of Theorem 4, we
obtain an impossibility result for unbounded scoring rules.

Theorem 5. Let R be an unbounded scoring rule. No smooth,
anonymous, and strictly incentive compatible forecasting compe-
tition mechanism is rank accurate with respect to R.

A notable consequence of Theorem 5 concerns the
logarithmic scoring rule, which is the proper scoring
rule most grounded in classical information theory
(e.g., Gneiting and Raftery 2007, section 2.2). In partic-
ular, the theorem implies that no incentive compatible
forecasting competition mechanism is rank accurate
with respect to the logarithmic rule.

5.2. Accuracy in the Limit
Theorem 4 shows that we cannot do better than ELF
for the standard single-event, two-forecaster setting in
terms of maximizing the probability of selecting the
most accurate forecaster. However, what if there is
more than just a single event? Let Δ :�minj≠i(maxi
R(yi,θ) −R(yj,θ)) denote the difference between the
expected scores of the most accurate forecaster and
the second-most accurate forecaster. Ideally, one
would like to guarantee that for any “accuracy gap” Δ
and any probability π arbitrarily close to one, there
exists some minimal number of events after which it

is guaranteed that the forecasting competition mecha-
nism selects the most accurate forecaster with proba-
bility at least π. This intuition is formally captured in
the definition of limit accuracy.

Definition 7. Forecasting competition mechanism M is
limit accuratewith respect to proper scoring rule R and
set of joint distributionsΘ if and only if, for any n, any
Δ > 0, and any π ∈ [0, 1), there exists a finite number
of events m ∈ N such that for all joint distributions θ ∈Θ
and all y1, : : : ,yn ∈ [0,1]m withm ≥m and Δ > Δ, it holds
that PrX~θ

(
M(y1, : : : ,yn,X) � argmaxiR(yi,θ)

)
> π.

Proposition 3 shows that some restriction on θ is
necessary as limit accuracy cannot be achieved for all
joint distributions. In particular, consider the extreme
case in which events are “identical copies” of one
another, such that whenever X1 � 1, it holds that Xk� 1
for all k ∈ {2, : : : ,m} and whenever X1 � 0, we have
Xk � 0 with k ∈ {2, : : : ,m}. In that case, all information
contained in events 2, : : : ,m is already contained in the
first event, and so increasing m is not helpful for identi-
fying the most accurate forecaster.

Proposition 3. No forecasting competition mechanism is
limit accurate for all distributions θ over X1, : : : ,Xm.

In the remainder of this section, we design a forecast-
ing competition mechanism that is limit accurate when
the events are independent and strictly incentive com-
patible when this independence is also reflected in the
uncertainty about others’ reports. The restriction on
forecasters’ beliefs is referred to as belief independence.

Definition 8. For joint distribution D over outcomes X
and reports Y−i, let Dk be the corresponding joint
distribution over outcome Xk and reports Y−i,k. D is
belief independent if and only if all Dk for k ∈ [m] are
independent.

Note that under belief independence, forecaster i
can still believe that other forecasters are more accu-
rate than herself and also that others’ reports are more
accurate on some events than others.

Definition 9. Forecasting competition mechanism M is
strictly incentive compatible under belief independence if
and only if for all forecasters i ∈ [n], all belief vectors
pi, all belief independent joint distributions D over
outcomes X and reports Y−i such that EX~D[X] � pi,
and all alternative report vectors y′i ≠ pi,

Pr
X,Y−i~D

(
M(Y1, : : : ,pi, : : : ,Yn,X) � i

)
> Pr

X,Y−i~D

(
M(Y1, : : : ,y′i , : : : ,Yn,X) � i

)
:

5.3. Incentive-Compatible and Limit-Accurate
Mechanism for Independent Events

The Independent-Event Lotteries Forecasting Competition
Mechanism (I-ELF), more formally MI-ELFR(y1, : : : ,yn,x)
is defined as follows:
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1. For each event k, pick forecaster i to be the event
winner wk ∈ [n]with probability

fi,k(y1,k, : : : ,yn,k,xk)

� 1
n
+ 1
n

(
R(yi,k,xk) − 1

n− 1

∑
j≠i

R(yj,k,xk)
)
,

where R ∈ [0, 1] if m � 1 and R ∈ [0, 1) if m ≥ 2 is a
bounded strictly proper scoring rule.11

2. Select the forecaster who won the most events,
arg maxi

∑m
k�11(wk � i), breaking ties uniformly at ran-

dom. Here, 1 denotes the 0/1 indicator function.
In essence, I-ELF runs a single ELF lottery for each

event and awards the prize to the forecaster who won
the most lotteries.

Theorem 6. I-ELF is strictly incentive compatible under
belief independence for m ≥ 1 events.

Take the perspective of any forecaster i ∈ [n] seek-
ing to maximize the probability of being selected. The
proof proceeds by showing that she can reason about
each event independently because of belief independ-
ence and, in a second step, that increasing her probabil-
ity of winning event k strictly increases her probability
of winning overall.

To conclude this section, we show that I-ELF is limit
accurate when events are independent.

Theorem 7. For all θ such that event outcomes X1, : : : ,Xm
are independent, I-ELF is limit accurate with respect to
scoring rule R used in its definition.

For intuition, note that more accurate forecasters
have a higher probability of winning each event (by
Proposition 2). Hence, by standard concentration
inequality arguments, the most accurate forecaster
wins the most events with high probability when
events are independent and the number of events is
large.

As an alternative to I-ELF, one could collapse the m
binary random variables into a single categorical ran-
dom variable with 2m outcomes and apply ELF to the
joint distribution implied by the forecasters’ (mar-
ginal) reports. (As we discuss in Section 6.1, ELF read-
ily extends to the categorical case.) The problem with
this mechanism is that it is not limit accurate. In par-
ticular, it will not select the most accurate forecaster
with probability higher than 2=n. To see this, observe
that, in Equation (1), the first term in the parentheses
is at most one and the second term at least zero,
resulting in at most 2=n.

6. Discussion
In this section, we describe extensions to our model and
discuss the practical implementation of our methods.

6.1. Categorical Outcomes
Thus far, we have restricted our analysis to events
with binary outcomes. In practice, we are also inter-
ested in events with nonbinary (categorical) outcomes.
Unsurprisingly, selecting the forecaster with highest
average proper score (e.g., using the categorical gener-
alization of the quadratic scoring rule of (Brier (1950))
inherits the violation of incentive compatibility exhib-
ited in Section 3.

ELF readily extends to categorical outcomes. The com-
petitive scoring rule of Kilgour and Gerchak (2004) is
incentive compatible for categorical outcomes when used
in conjunction with any proper multioutcome scoring
rule, and ELF inherits this incentive compatibility for all
such rules that are bounded. Under belief independence,
incentive compatibility of I-ELF follows from the same
arguments used in the proof of Theorem 6. Moreover, it
still holds that more accurate forecasters obtain higher
scores in expectation, so the most accurate forecaster still
wins the most events in expectation. Hence, we can
prove limit accuracy by a qualitatively identical argu-
ment to the one in the proof of Theorem 7.

6.2. Real-Valued Outcomes and Reports
In many business contexts, we are interested in fore-
casting events that take real-valued outcomes instead
of categorical values. For instance, events could be the
monthly demand of particular items, the cost of infra-
structure projects, or the annual inflation rate. Both
ELF and I-ELF readily extend to handle these cases. In
contrast to events with categorical outcomes, where
one typically seeks to elicit the forecaster’s entire sub-
jective probability distribution over the outcomes, this
is cumbersome with infinitely many outcomes on the
real line. Instead, practitioners typically choose to
only elicit properties of the underlying distribution,
such as the mean or the median, which summarize
the underlying distribution in ways meaningful for
the application at hand. There exist many proper scor-
ing rules for the elicitation of these properties. For
example, it is well known that the quadratic scoring
rule Rq(y,x) � 1− (y− x)2, which was introduced in
Section 3, generalizes to real valued outcomes
x ∈ [0, 1]. More precisely, if random variable X
denotes the real-valued outcome, the forecaster maxi-
mizes her expected score by reporting y � E[X], that
is, her subjective estimate of the mean of X. Mean-
while, the absolute scoring rule Ra(y,x) � 1 − |y− x | is
strictly proper when used to elicit subjective estimates
of the median of X (e.g., Jose 2017). Note that these
scoring rules can be scaled to incorporate any
bounded interval [a,b] with b> a. Moreover, although
it is easy to obtain upper and lower bounds on the
variable of interest for almost any conceivable applica-
tion, tighter bounds yield better discrimination in
score between more and less accurate reports.
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Although the quadratic and absolute scoring rules
are strictly proper when used as payments to elicit
subjective estimates of the mean and median, respec-
tively, misreporting remains an issue when they are
naively applied to forecasting competitions. Consider
random variable X commonly known to be uniformly
distributed on [0, 1]. If n� 3 forecasters all report a sub-
jective estimate of the mean, that is, yi � 0:5 for all i, and
the forecaster with highest quadratic score is selected as
the prize winner, then each forecaster wins with proba-
bility 1/3 (assuming ties are broken uniformly at ran-
dom). However, if forecaster 1 instead reports y1 �
0:5− ε for some small ε, then she achieves the highest
score whenever X < 0:5− ε, which occurs with proba-
bility 0:5− ε > 1=3.12 The same example continues to
break incentive compatibility when the absolute scoring
rule is used to elicit estimates of the median.

To overcome the issue of misreporting, we can
define ELF and I-ELF as in Sections 4 and 5, just with
an appropriately chosen scoring rule R that is strictly
proper for the property being elicited. Strict incentive
compatibility of ELF and I-ELF (under the belief inde-
pendence restriction) follows by reasoning analogous
to the binary case. The accuracy guarantee provided
by I-ELF carries over as well, with the accuracy
implied by the scoring rule R used to define the mech-
anism. As for the binary-outcome setting, both ELF
and I-ELF work in conjunction with any bounded R.
Observe that this is analogous to using proper scoring
rules as payments, where R needs to be bounded to
guarantee nonnegative payments.

6.3. Outputting a Forecaster Ranking
In some practical applications, it may bemore appropriate
to output a ranking rather than a single forecaster. For
example, most play-money prediction markets maintain a
ranking of contestants. Similarly, many Kaggle competi-
tions award prizes to the highest-ranked forecasters with
prizes decreasing in value as the forecasters’ ranks
increase. Ranking forecasters in order of any proper score
again inherits all of the problems described in Section 3.

I-ELF can be adapted to produce a ranking by sim-
ply ordering forecasters according to the number of
events that the forecasters win. As long as forecasters
strictly prefer higher positions in the ranking (e.g.,
because higher rankings correspond to higher-valued
prizes), I-ELF remains strictly incentive compatible,
because forecasters maximize their probability of win-
ning an event (and potentially moving up in the ranking)
by reporting truthfully. Moreover, the same style of accu-
racy results from Section 5.3 hold, at least qualitatively,
when the objective is to maximize the probability of out-
putting the correct ranking. In expectation, more accurate
forecasters achieve higher proper scores, leading to
higher expected values of fi,k. Thus, more accurate

forecasters win more events in the long run, and the true
ranking is faithfully revealed.

6.4. Forecaster Hiring and Connections
to Learning

Forecasting competitions are often used as a method
of selecting a forecaster to hire when future predic-
tions are needed. In this setting, the goal of the compe-
tition mechanism is to select the forecaster who will
be (approximately) the most accurate on future
events. There is an implicit assumption here that good
performance on the observed events translates into
good performance in the future, a well-established
fact in practice (e.g., Mellers et al. 2014).

Our methods and results can be extended to this set-
ting. Instead of determining accuracy through the m
events being predicted, we could instead assume a joint
distribution Dθ over event probabilities θ and the
beliefs pi of each forecaster i. We could then define the
accuracy of forecaster i in terms of the expected proper
score of her truthful forecasts with respect to Dθ, that is,
Epi,θ~Dθ

[R(pi,θ)].
Under this model, mechanism MPSRR discussed in Sec-

tion 3 can be viewed as performing an analog of empirical
risk minimization. Similar to how basic empirical risk
minimization bounds are proved for PAC learning
(Kearns and Vazirani 1994), we could then argue that,
with high probability, the forecaster with the highest score
on any observed sample of events has expected accuracy
close to that of the best forecaster in the set. Therefore, as
the number of events grows large, the forecaster selected
by MPSRR would be guaranteed to have accuracy arbitra-
rily close to that of the most accurate forecaster. However,
the incentive issues remain. The advantage of I-ELF is that
it obtains truthful reports for any m while achieving simi-
lar accuracy guarantees as m grows large. In this sense,
I-ELF can be viewed as a mechanism for learning in the
presence of strategic agents, where the objective is to select
a forecaster that will performwell on future events.

6.5. Practical Implementation
In Section 2, we require that all forecasters report their
predictions for all events before the first event materi-
alizes. With an appropriate generalization of the defi-
nition of incentive compatibility, this requirement can
be relaxed without sacrificing the properties of ELF.
In particular, when reporting on event k, we can allow
forecasters to update joint distribution D conditioned
on the outcomes of past events and the reports on
these events. Our results continue to hold if incentive
compatibility requires that forecasters truthfully
report their updated beliefs.

For I-ELF, suppose that a forecaster reports on
event k after some subset of the other events have
materialized. Given belief independence, the reports
of other forecasters on any other event, as well as the
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corresponding outcomes for any events already mate-
rialized, do not lead to a belief update. Therefore, the
competition organizer does not need to protect or
withhold any information from the forecasters as long
as the randomness involved in selecting event win-
ners wk from probabilities fi,k is not realized until all
predictions have been reported.

More speculatively, one could imagine applying our
techniques to other elicitation methods. In particular,
prediction markets are often implemented using play
money, with monetary prizes for top-ranked traders or
simply high positions on public leaderboards used as
incentive (e.g., Jia et al. 2017). Directly awarding prizes
to participants with the highest play money account
balances, however, leads to incentive problems analo-
gous to those in the forecasting competition model we
consider in this paper: maximizing the probability of
having the highest account balance is not the same as
maximizing expected account balance. Variations on
this idea induce similar gaming incentives; for example,
Chakraborty et al. (2013) award prizes uniformly at ran-
dom among participants placed sufficiently high on the
leaderboard. Although it is not clear how to directly
translate (I-)ELF to this setting, it is easy to see that
awarding a single prize randomly with probability pro-
portional to account balance does lead to forecasters
maximizing their expected account balance13 (e.g., Cow-
gill and Zitzewitz 2015, section 1.2.2). Further exploring
applications to prediction markets and other elicitation
methods is a compelling direction for future work.

Note that both ELF and I-ELF are easy to implement.
Indeed, even for very large competitions, both mecha-
nisms can be implemented in standard spreadsheet
software. Each value fi,k is computed by a simple for-
mula, after which the only remaining step is to imple-
ment 1 orm lotteries for ELF and I-ELF, respectively.

7. Conclusion
In real-world forecasting settings, forecasters typically
compete for a single prize. Motivated by the preva-
lence of these forecasting competitions and their poor
incentive properties, we initiate the study of incentive-
compatible forecasting competitions. Despite a rich lit-
erature on incentive-compatible forecast elicitation in
the noncompetitive setting, the mechanisms in this
work are the first to solve the incentive challenge in
the competition setting. The forecasting competition
mechanism most widely used in practice is to simply
select the forecaster with highest score according to
some proper scoring rule. Not only does this particular
mechanism fail to elicit truthful forecasts, but, as we
show, any deterministic forecasting competition mech-
anism must violate incentive compatibility. We there-
fore turn to randomized forecasting competitions,
which can be thought of as rewarding forecasters with

a lottery ticket that has a higher chance of winning the
more accurate the forecaster was relative to the other
forecasters in the competition. This intuitive principle
is behind both mechanisms we design.

We first define the Event Lotteries Forecasting Com-
petition Mechanism (ELF). Because of its randomized
nature, ELF may not always select the most accurate
forecaster, but it does select more accurate forecasters
with higher probability than less accurate ones. For the
special case of one event and two forecasters, we show
that, under mild technical conditions, no incentive-
compatible mechanism can select the most accurate
forecaster with higher probability than ELF does.

Our second mechanism, I-ELF, is strictly incentive
compatible when forecasters’ beliefs satisfy belief inde-
pendence, which, intuitively, requires that information
about one event does not inform forecasters’ beliefs about
other events. I-ELF uses ELF as a building block, first
selecting a winner for each event using ELF, and then
selecting the competition winner as the forecaster who
won the most individual events. In addition to being
incentive compatible under belief independence, I-ELF
also selects the most accurate forecaster with a probability
that tends to one as the number of events grows.

Our results have significant implications for organi-
zations that use groups of forecasters to inform mana-
gerial decision making under uncertainty. Previous
studies on forecasters’ competitive incentives encour-
aged the fostering of collaboration and cooperation to
mitigate the distorted incentives at play (Lichtendahl
and Winkler 2007). Our work yields a different per-
spective. By cleverly exploiting randomization, the
decision maker can embrace competitive stakes when
eliciting predictions without having to sacrifice the
quality of the information received.
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Appendix A. Generalizing Immutable-Belief
Incentive Compatibility to Robust
Incentive Compatibility

In this section, we are going to unpack how the (standard)
immutable-belief model—while appropriate for the wager-
ing setting, where different forecasters, by definition,
agree to disagree and seek to bet on their individual con-
victions (Lambert et al. 2008)—is too limited for forecasting
settings, where forecasters believe that other forecasters’
reports contain information that they themselves do not
already have. This includes but is not limited to the compe-
tition setting that is the focus of this paper. The section is
organized as follows. First, we provide the definition of
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immutable-belief incentive compatibility from Kilgour and
Gerchak (2004) and Lambert et al. (2008) and show that it
is a special case of the definition used in the main text of
this paper. Second, we provide an example of a Bayesian
belief model along the lines of standard models in the liter-
ature, which is incompatible with the assumption of
immutable beliefs because forecasters update their beliefs
about the outcome when learning the beliefs of other fore-
casters. Finally, using a particular numerical example, we
demonstrate that an immutable-belief incentive compatible
mechanism that has been suggested in the literature incen-
tivizes misreports under this Bayesian model.

We emphasize here that neither ELF nor I-ELF assume that
beliefs are formed using this particular model. We also
emphasize that our robust incentive compatibility generalizes
both Bayesian and immutable-belief models. In particular,
truthful reporting is a dominant strategy in both ELF and
I-ELF, regardless of whether agents would update their
beliefs knowing the reports of other agents or not. Hence,
this Bayesian model is given here for illustrative purposes
only, showing that mechanisms that are incentive compatible
only for immutable beliefs are not sufficient when forecasters
believe that other forecasters’ reports contain information that
they themselves do not already have. We now state the
incentive compatibility definition, applied to the competition
setting, that was used in the work of Kilgour and Gerchak
(2004) and Lambert et al. (2008).

Definition A.1. Forecasting competition mechanism M is
strictly incentive compatible for immutable beliefs if and only
if for all forecasters i ∈ [n], all belief vectors pi, all others’
reports y−i, and all alternative report vectors y′i ≠ pi,
PrX~pi (M(y1, : : : ,pi, : : : ,yn,X) � i) > PrX~pi (M(y1, : : : ,y′i , : : : ,yn,X) � i).

Observe that Definition A.1 coincides with the (robust)
incentive compatibility definition used in this work (Defi-
nition 2) when joint distribution D is restricted such that
y−i only takes a single value, regardless of the realization
of X. Hence, every mechanism that is robust incentive
compatible (Definition 2) is also incentive compatible for
immutable beliefs (Definition A.1). However, the reverse
is not true. For intuition as to how robust incentive com-
patibility is different from immutable-belief incentive com-
patibility and to understand why one wants forecasting
competition mechanisms to satisfy the stronger robust
incentive compatibility, ignore for a moment that, in com-
petitions, “payments” (selection probabilities) need to add
up to one. Consider then a forecaster i who is paid
yj ·Rq(yi,x), where yj is the report of another forecaster
j≠ i. In the immutable-belief model, yj is assumed to be a
constant from forecaster i’s perspective, so that she should
report truthfully because linear transformations of proper
scoring rules preserve properness. However, if forecaster i
believes j’s report to be correlated with outcome X, then
j’s report Yj is in fact a random variable and not a con-
stant. This typically leads to misreports. In the extreme
case, if forecaster i believes that forecaster j reports all
probability mass on the eventually materialized outcome,
that is, Yj � X, then, if X � 0, she receives payment 0, and
if X � 1, she receives Rq(yi, 1). Thus, forecaster i strategizes
by conditioning on X � 1, maximizing her payment by

reporting yi � 1 regardless of her true belief. As we will
see later in this section, this intuition also applies to compe-
tition settings, including settings where forecaster i believes
that she is more accurate than all other forecasters.
In contrast to immutable-belief incentive compatibility,

robust incentive compatibility does guarantee truthful
reporting incentives even in settings in which forecaster i
would update her belief on learning forecaster j’s report.
Note that such conditional belief updating is implied by
standard Bayesian models in the forecasting literature where
individual forecasters’ beliefs stem from noisy observations
of some ground truth (e.g., Lichtendahl and Winkler 2007,
Lichtendahl et al. 2013, Palley and Soll 2019). To make this
concrete, consider the following simple Bayesian model
along those lines. (An example of this model is depicted in
Figure A.1; multiple-event models can be defined analo-
gously.) The event outcome is given by random variable X,
which takes values in {0, 1}. All n forecasters share a com-
mon prior Pr(X � 1) that the event outcome is 1 (e.g., a
commonly known base rate). Before the event outcome
materializes, each forecaster i ∈ [n] observes a binary, noisy
signal Si, taking values in {l, h}. Each forecaster is of one of
two types: “expert” types have a noise level (error rate) of
εe and forecasters of “rookie” types have a noise level of εr
with 0:5 > εr > εe > 0. If X � 1, the probability of observing
h is 1− ε, and if X � 0, the probability of observing l is
1− ε, where the ε value depends on the forecaster type.
The belief model as well as which forecaster is of which
type is common knowledge. After observing her signal Si �
si, forecaster i updates her belief about X. Moreover, she
also updates her (meta) beliefs about the beliefs of the
other forecasters conditional on that X. The updated belief
on the outcome is given by

Pr(X � 1 | S � s) � Pr(S � s | X � 1) ·Pr(X � 1)
Pr(S � s) , (A.1)

where Pr(S � s | X � 1) depends on the forecaster’s noise
level as determined by her type and

Pr(S � s) � Pr(S � s | X � 1) ·Pr(X � 1)
+ Pr(S � s | X � 0) ·Pr(X � 0):

For the meta beliefs of forecaster i about the belief of fore-
caster j given X, first observe that forecaster j can only
hold one of two possible beliefs, namely Pr(X � 1 | Sj) for
Sj � h and Sj � l, respectively. Which of these two beliefs
forecaster j holds is thus determined by her signal, which
itself is influenced by X. In particular, the expected value
of forecaster j’s belief given each possible instantiation of
X is calculated by

E[Pj | X � x] � Pr(X � 1 | Sj � h) ·Pr(Sj � h | X � x)
+ Pr(X � 1 | Sj � l) ·Pr(Sj � l | X � x), (A.3)

where Pj denotes the random variable for forecaster j’s
belief pj.
To see that immutable-belief incentive compatibility

(Definition A.1) is inappropriate for this kind of Bayesian
model from a technical perspective, it is sufficient to
observe that truthful reports of the other forecasters (i.e.,
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beliefs) do indeed depend on the realization of X. In par-
ticular, the forecasters’ beliefs are correlated with the
outcome. Unfortunately, this observation is not just a
technical nuisance but has immediate implications on
mechanisms suggested in the literature. In the remainder of
this section, we will show that immutable-belief incentive
compatible mechanisms suggested in the literature do
indeed lead to misreports in Bayesian models such as the
one exemplified here.

More precisely, we consider a member of the adaptive
weighted score mechanism family suggested in section 6.1
of Lambert et al. (2008), which we present here applied to
the forecasting competition setting. This family of mecha-
nisms is parameterized by a choice of scoring rule R. We
emphasize that the particular choice we make is not an edge
case. For simplicity, we present the example mechanism for n
� 4. Intuitively, the mechanism repeatedly partitions the four
forecasters into two groups A and A of two forecasters each
and scores the forecasters in the first group “against” each
other using a scheme similar to that of Kilgour and Gerchak
(2004). The interesting part is that the proper scoring rule that
is used to score forecasters in the first group is defined by the
reports of the second group. As we will see, this mechanism is
immutable-belief incentive compatible but leads to misreports
in the Bayesian model we just introduced.

The mechanism proceeds as follows:
1. Given the set of four players {1,2, 3, 4}, we consider the

set of forecaster groups of size 2, which we denote by A. Fur-
thermore, let Ai ⊂A denote the set of forecaster groups that
contain forecaster i.

2. Let Rz,z′ (y,x) � z+z′+ε
2+ε ·Rq(y,x) with ε > 0 be a strictly

proper scoring rule, whose form is parameterized by
z,z′ ∈ [0, 1]. For any constants z,z′, Rz,z′ is a (weakly) scaled-
down version of the (normalized) quadratic scoring rule Rq.
Further note that the role of ε is to ensure that the scaling fac-
tor is positive even if z,z′ � 0, so that Rz,z′ remains strictly
proper in that case. Observe that Rz,z′ is bounded between
zero and one.

3. For a single event and n�4, theAdaptive-Score Forecasting
Competition Mechanism M

ASFR
z,z′ (y1, : : : ,yn,x) selects forecaster

i ∈ [n]with probability

fi(y1, : : : ,yn,x) � 1
4
+ ∑

A∈Ai

1
12

(
Rz,z′ (yi,x) −Rz,z′ (yj,x)

)
,

where j ∈ A refers to the other forecaster j≠ i in each
A ∈Ai, and z, z′ are the two reports from forecaster group
A not containing i, that is, A :� [n]\A.
It is easy to see that M

ASFR
z,z′ is strictly incentive com-

patible for immutable beliefs (Lambert et al. 2008): if fore-
caster i believes that the other forecasters’ reports yj, z, z′ are
constants, which are uninformative about X, then, for each
A ∈Ai, forecaster i believes that she is scored by a scaled-
down Rq, and hence should report truthfully. Alternatively,
one can think of the immutable-belief setup as though the
reports of all forecasters are known beforehand, which is
explicit in a wagering setting, where, by definition, forecast-
ers agree to disagree. That is, there is no uncertainty about
the reports of the other forecasters and hence also no uncer-
tainty about the scoring rule that will be used. The only
uncertainty that remains is about the outcome.
In the remainder of this section, we will show that

despite M
ASFR

z,z′ being strictly incentive compatible for
immutable beliefs, forecasters can have incentives to misre-
port in the Bayesian model described earlier in this section.
It is important to emphasize that none of this is an edge case:
other families of immutable-belief incentive compatible mecha-
nisms, other choices of scoring rules for this family, and other
numbers for this particular choice of scoring rule would also
lead to misreporting incentives in a Bayesian context.
The numerical example setting we consider has n � 4

forecasters and a uniform prior of Pr(X � 1) � Pr(X � 0) �
0:5. Furthermore, forecaster 1 is of the expert type with
εe � 0:2, and forecasters 2, 3, and 4 are of the rookie type
with εr � 0:3. For scoring rule Rz,z′ , we use ε � 0:1.
We now consider the situation of forecaster 1 and show

that she has an incentive to misreport in the special case of
all other forecasters reporting truthfully, that is, yj � pj for all
j≠ 1. (Remember that both definitions of incentive com-
patibility are with respect to dominant strategies, which
require that truthful reporting is maximizing forecaster
1’s selection probability for any reports of the other fore-
casters.) Forecaster 1’s (expected) selection probability is

E[ fi(Y1, : : : ,yi, : : : ,Yn,X)] � 1
4
+ ∑

A∈Ai

1
12

E
[
RZ,Z′ (yi,X) −RZ,Z′ (Yj,X)

]
,

(A.4)

Figure A.1. Example of a Bayesian ForecasterModel with n � 2
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where the expectation is taken over the randomness of the
Bayesian model. A1 contains forecaster groups {1, 2}, {1, 3},
and {1, 4}. Since forecasters 2, 3, and 4 are of the rookie
type, forecaster j from A ∈A1 is always a rookie and
reports z and z′ from A are also from rookies. Hence, fore-
caster i’s expected score for forecaster groups {1, 2}, {1, 3},
and {1, 4} are the same, and so we first consider only fore-
caster group A � {1, 2} and later multiply the expected
score for that group by three.

Rookie types have one of two possible beliefs about the
outcome, depending on which signal they observed
(Equation (A.1)). For forecaster 2, this is either Pr(X � 1 |
S2 � h) � Pr(S2�h|X�1)·Pr(X�1)

Pr(S2�h) � 0:7·0:5
0:5 � 0:7 or Pr(X � 1 | S2 � l)

� 0:3. Since A � {3, 4} also contains only rookies, their pos-
sible beliefs are the same as for forecaster 2. Thus, scoring
rule Rz,z′ has three possible scaling factors z+z′+ε

2+ε for Rq,
which depend on the reports of the forecasters
in A � {3, 4}, namely 0:7+0:7+0:1

2+0:1 � 5
7,

0:7+0:3+0:1
2+0:1 � 11

21, and
0:3+0:3+0:1

2+0:1 � 1
3. Using notation SA to denote the signals obser-

ved by the forecasters in A, the probabilities for the first
and second scaling given X � x can, because of conditional
independence of S3 and S4, be calculated by (the third is
calculated analogously to the first)

Pr(SA � {h,h} | X � x) � Pr(S3 � h | X � x) ·Pr(S4 � h | X � x)
and

Pr(SA � {l,h} | X � x) � Pr(S3 � h | X � x) ·Pr(S4 � l | X � x)
+ Pr(S3 � l | X � x) ·Pr(S4 � h | X � x):

This results in Pr(SA � {h,h} | X � 1) � Pr(SA � {l, l} | X � 0) �
0:49, Pr(SA � {l,h} | X � 1) � Pr(SA � {l,h} | X � 0) � 0:42, and
Pr(SA � {l, l} | X � 1) � Pr(SA � {h,h} | X � 0) � 0:09. With
this, forecaster 1 can now reason about the scoring
rule she expects for each event outcome. If X � 1, for-
ecaster 1 expects to be scored by scoring rule
(0:49 · 57+ 0:42 · 1121+ 0:09 · 13) Rq(y1, 1) � 0:6 ·Rq(y1, 1). Anal-
ogously, if X � 0, she expects scoring rule (0:09 · 57+
0:42 · 1121+ 0:49 · 13) Rq(y1, 0) � 47

105 ·Rq(y1, 0) � 0:448 ·Rq(y1, 0).
Forecaster 1’s belief about forecaster 2’s report given X

is calculated by Equation (A.3) and results in E[Y2 | X � 1] �
0:7 · 0:7+ 0:3 · 0:3 � 0:58 and E[Y2 | X � 0] � 0:7 · 0:3+ 0:3 ·
0:7 � 0:42: If X � 1, the expectation in the right-hand side of
Equation (A.4) for A � {1, 2} is then

E
[
RY3,Y4 (y1, 1) −RY3,Y4 (Y2, 1) | X � 1

]
� 0:6 ·

(
1− (y1 − 1)2 − (1− (0:58− 1)2)

)
� 0:106− 0:6 (y1 − 1)2,

where the expectation is again taken over the randomness
of the Bayesian model. Analogously, if X � 0, her expecta-
tion for that part is

E
[
RY3,Y4 (y1, 0) −RY3,Y4 (Y2, 0) | X � 0

]

� 0:448 · (1− y21 − (1− 0:422)) � 0:079− 0:448y21:

Observe that in each outcome, forecaster 1 is scored using a
positive-affine transformed Rq. Crucially however, the scaling

factor is higher for X � 1 than for X � 0. As we will see, this
has the effect that forecaster 1 has an incentive to shift her
report toward the X � 1 outcome as it carries more weight. To
obtain forecaster 1’s overall expected scores for each X, we
multiply the expected scores for A � {1, 2} by three (to account
for the symmetric cases of A � {1, 3} and A � {1, 4}), divide
the result by 12 (resulting in a division by four), and add 1

4.
To complete the example, suppose that forecaster 1

observes S1 � h. Using Equation (A.1), she updates her belief
about the outcome to Pr(X � 1 | S1 � h) � 0:8. Putting this all
together, forecaster 1’s expected score reporting y1 is

E[ fi(Y1, : : : ,yi, : : : ,Yn,X)] � 1
4
+ 1
4

(
0:8 · (0:106− 0:6 (y1 − 1)2)

+ 0:2 · (0:079− 0:448y21)
)
,

which is uniquely maximized for y1 � 75
89 � 0:843. Forecaster

1 thus has an incentive to misreport her true belief of 0.8.
It is important to note here that, although the exact calcu-
lations are rather extensive, forecasters in this Bayesian set-
ting faced with this mechanism do not need to compute
their conditional beliefs precisely but can simply make a
report that is slightly higher than their belief.
We emphasize that this example also shows that even if

a forecaster believes that she is the most accurate fore-
caster, she may still have an incentive to misreport under
immutable-belief incentive compatibility. The key advant-
age of robust incentive compatibility over immutable-belief
incentive compatibility is that it allows for the possibility
that forecasters may believe that other forecasters’ reports
contain some information they do not already have. Or,
phrased differently, in contrast to immutable-belief incen-
tive compatibility, robust incentive compatibility allows for
the possibility that forecasters would update their beliefs
upon learning the reports of other forecasters.

Appendix B. Procedure to Normalize a Bounded
Strictly Proper Scoring Rule

Let R be a bounded strictly proper scoring rule with R �
miny,x R(y,x) and R �maxy,x R(y,x) for y ∈ [0, 1], x ∈ {0, 1}.
Then R can be transformed into a normalized proper scor-
ing rule R̃ as follows. As an intermediate step, define
R′(y,x) � R(y,x) + β′(x) with β′(0) � −R(0,0) and β′(1) �
−R(1, 1). Since R is strictly proper, so is R′, and both the
maximum and the minimum must be taken for y ∈ {0, 1}.
In particular, it must hold that both 0 � R′(0, 0) > R′(1, 0)
and 0 � R′(1, 1) > R′(0, 1). Let r0 :� R′(0,0) −R′(1, 0) and r1 :
� R′(1, 1) −R′(0, 1) be the intervals (“ranges”) of R′ for X �
0 and X � 1, respectively. Then R̃(y,x) :� 1

max(r0, r1) R
′(y,x) +

1 is a normalized scoring rule.

Appendix C. Proper Scoring Rule Selection
Violates Incentive Compatibility

Let R be any strictly proper scoring rule. Consider an
instance with m ≥ 1, and n ≥ 2. Suppose that pi � (0:5, : : : ,
0:5, 0:8)14 and consider joint distribution D over X and Y−i
defined as follows.

• With probability 0.4, X � (0, : : : , 0, 1) and Yj � (0:5, : : : ,
0:5, 0:8+ j

10n) for all j≠ i.
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• With probability 0.4, X � (1, : : : , 1, 1) and Yj � (0:5, : : : ,
0:5, 0:8+ j

10n) for all j≠ i.

• With probability 0.1, X � (0, : : : , 0, 0) and Yj � (0:5, : : : ,
0:5, 0:8+ j

10n) for all j≠ i.

• With probability 0.1, X � (1, : : : , 1, 0) and Yj � (0:5, : : : ,
0:5, 0:8+ j

10n) for all j≠ i.

Note in particular that EX~D[X] � pi, and that 0:8 <
Yj,m ≤ 0:9 with probability one for all j≠ i.

If forecaster i reports pi, then all forecasters receive the
same score on all events except event m. Forecaster i
receives the highest score, and is therefore selected by
MPSRR , whenever Xm � 0, which occurs with probability
0.2. That is, PrX,Y−i~D(MPSRR (Y1, : : : ,pi, : : : ,Yn,X) � i) � 0:2.
However, if forecaster i reports y′i � (0:5, : : : , 0:5, 1), then
she is selected by MPSRR whenever Xm � 1, which occurs
with probability 0.8. That is, PrX,Y−i~D (MPSRR (Y1, : : : ,y

′
i

, : : : ,Yn,X) � i) � 0:8 > 0:2 � PrX,Y−i~D (MPSRR (Y1, : : : ,pi, : : : ,
Yn,X) � i), violating incentive compatibility.

Appendix D. Proof of Theorem 1

Proof. Let M be a deterministic and strictly incentive com-
patible forecasting competition mechanism. Furthermore,
let m ≥ 1 and n ≥ 2, and observe that there are |P([m])| � 2m

possible values of the outcome vector x. Consider forecaster i,
and suppose that every forecaster j≠ i reports a probability
yj,k � 0:5 for every event k. We first use these fixed reports of
agents j≠ i to derive candidate misreports for agent i, and
then again to define an appropriate joint distribution D that
yields a violation of strict incentive compatibility.

For any report yi, forecaster i is selected as the winner
for some subset of possible event outcomes X ⊆ {0,1}m.
Since there are 2m possible values of x, there are
|P({0,1}m)| � 22

m
possible subsets X . Consider then 22

m + 1
different possible reports of forecaster i, denoted y0i ,y

1
i ,

: : : ,y2
2m

i , and the corresponding subsets X 0,X 1, : : : ,X22
m

of
event outcomes for which she is selected given these
reports. By the pigeonhole principle, there must exist r, s ∈
{0, : : : , 22m} with r≠ s such that X r � X s. That is, forecaster
i is selected for exactly the same set of possible event out-
comes regardless of whether she reports yri or y

s
i .

We use this fact to illustrate a violation of strict incen-
tive compatibility. Define D as follows: each event k
occurs with probability equal to yri,k independent of other
events, and every forecaster j≠ i reports a probability
of 0.5 for every event. Note that pi � yri . Then we have
that PrX,Y−i~D(M(Y1, : : : ,pi, : : : ,Yn,X) � i) � PrX~D(X ∈ X r) �
PrX~D(X ∈ X s) � PrX,Y−i~D(M(Y1, : : : ,ysi , : : : ,Yn,X) � i), violat-
ing strict incentive compatibility. w

Appendix E. Multiplicatively Normalizing Scores
from Proper Scoring Rules Violates
Truthfulness

Let n � 2 and m � 1, and suppose p1 � 0:5. Let distribution
D over X and Y2 be defined as follows. With probability
0.5, Y2 � 1 and X � 0, and with probability 0.5, Y2 � 1 and
X � 1. Observe that EX~D[X] � p1. If forecaster 1 reports p1,

then she is selected with probability Rq(0:5, 1)= (Rq(0:5, 1)+
Rq(1, 1)) � 0:75=1:75 � 3=7 when X � 1, and Rq(0:5, 0)=
(Rq(0:5, 0) +Rq(1, 0)) � 1 when X�0. That is, PrX,Y2~D(M(p1,
Y2,X) � 1) � 5=7 ≈ 0:71. If forecaster 1 instead reports
y′1 � 0:8, then she is selected with probability Rq

(0:8, 1)=(Rq(0:8, 1) +Rq(1, 1)) � 0:96=1:96 � 24=49 when
X � 1, and Rq(0:8,0)=(Rq(0:8, 0) +Rq(1,0)) � 1 when X � 0.
Her probability of being selected has increased to
PrX,Y2~D(M(y′1,Y2,X) � 1) � 73=98 ≈ 0:74, violating truthfulness.

Appendix F. Proof of Theorem 2

Proof. To show strict truthfulness of MELFR for m � 1, we
show that reporting yi � pi maximizes forecaster i’s proba-
bility of being selected for any joint distribution over out-
comes X and reports Y−i:

arg max
yi

Pr
X,Y−i~D

(
MELFR (Y1, : : : ,yi, : : : ,Yn,X) � i

)
� arg max

yi
E

X,Y−i~D
[ fi(Y1, : : : ,yi, : : : ,Yn,X)]

� arg max
yi

E
X,Y−i~D

1
n
+ 1
n

(
R(yi,X) − 1

n− 1

∑
j≠i

R(Yj,X)
)[ ]

� arg max
yi

E
X,Y−i~D

[R(yi,X)] � pi:

The last line follows from linearity of expectation and
from R being a strictly proper scoring rule. w

Appendix G. Proof of Theorem 3

Proof. To show strict truthfulness of MELFR for m ≠ 1, we
show that reporting yi � pi maximizes forecaster i’s proba-
bility of being selected for any joint distribution over out-
comes X and reports Y−i:

argmax
yi

Pr
X,Y−i~D

(
MELFR (Y1,:::,yi,:::,Yn,X)� i

)
�argmax

yi
E

X,Y−i~D
[gi(Y1,:::,yi,:::,Yn,X)]

�argmax
yi

E
X,Y−i~D

1
m

∑m
k�1

1
n
+1
n

(
R(yi,k,Xk)− 1

n−1

∑
j≠i

R(Yj,k,Xk)
)( )[ ]

�argmax
yi

E
X,Y−i~D

∑m
k�1

(
R(yi,k,Xk)− 1

n−1

∑
j≠i

R(Yj,k,Xk)
)[ ]

�argmax
yi

E
X,Y−i~D

[∑m
k�1

R(yi,k,Xk)
]
�pi w

Appendix H. Proof of Proposition 2

Proof. The statement follows directly from the definition of
MELFR .

Pr
X~θ

(MELFR (y1,:::,yn,X)� i)

� E
X~θ

1
m

∑m
k�1

1
n
+1
n

R(yi,k,Xk)− 1
n−1

∑
j≠i

R(yj,k,Xk)
( )( )[ ]

�1
n
+1
n

E
X~θ

1
m

∑m
k�1

[R(yi,k,Xk)]− E
X~θ

1
m

∑m
k�1

1
n−1

∑
j≠i

R(yj,k,Xk)
[ ]( )

�1
n
+1
n

R(yi,θ)−
1

n−1

∑
j≠i

R(yj,θ)
( )

w
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Appendix I. Proof of Theorem 4
Our proof of Theorem 4 proceeds in two parts. In the
first part, we exploit the connection between wagering mecha-
nisms and forecasting competition mechanisms to narrow
down the particular form that any smooth, anonymous, strictly
truthful forecasting competition mechanism must take. This
form is parameterized by the choice of strictly proper scoring
rule R. In the second part of the proof, we show that using
any normalized proper scoring rule different from the one
used to define accuracy must violate rank accuracy. Since we
are considering only a single event X, for this proof we will
slightly abuse notation and use θ to denote a single probability
rather than a joint distribution.

Part 1. We begin by formally introducing wagering
mechanisms. A wagering mechanism Π � (Πi)i∈[n] is a set
of functions Πi, each of which takes as input the forecast-
ers’ reports y � (y1, : : : ,yn) ∈ [0,1]n, a vector of wagers
v � (ω1, : : : ,ωn) ∈ R

n
≥0, and the event outcome x ∈ {0, 1},

and outputs a payment to forecaster i, Πi(y,v,x) ≥ 0. For our
analysis, it will be sufficient to restrict ourselves to wagering
mechanisms that only accept the vector of wagers v �
(1=n, : : : , 1=n). We refer to the resulting mechanisms as
equal-wager wagering mechanisms15 and denote the payments
Πi(y1, : : : ,yn,x), omitting the (non-)dependence on v.

The following definitions are standard in the wagering
mechanism literature.

Definition I.1. An equal-wager wagering mechanism Π is
budget balanced if, for all reports y1, : : : ,yn ∈ [0, 1] and out-
comes x ∈ {0, 1}, it holds that ∑n

i�1Πi(y1, : : : ,yn,x) � 1. That
is, the sum of payments from the mechanism equals the
sum of agents’ wagers.

Definition I.2. An equal-wager wagering mechanism Π is
strictly incentive compatible under immutable beliefs if, for all
pi, all reports yi ≠ pi, and all yj ∈ [0, 1] for j≠ i, it holds that
EX~piΠi(y1, : : : ,yi, : : : ,yn,X) < EX~piΠi(y1, : : : ,pi, : : : ,yn,X).
That is, truthfully reporting their subjective probability maxi-
mizes a forecaster’s expected payment, given the reports of the
other forecasters.

Definition I.3. An equal-wager wagering mechanism Π is
normal if, for all probabilities θ ∈ [0, 1], all reports y1, : : : ,
yn ∈ [0, 1] and all y′i ∈ [0, 1], if EX~θΠi(y1, : : : ,yi, : : : ,
yn,X) < EX~θΠi(y1, : : : ,y′i , : : : ,yn,X), then EX~θΠj(y1, : : : ,
yi, : : : ,yn,X) ≥ EX~θΠj(y1, : : : ,y′i , : : : ,yn,X) for all j≠ i. That
is, if a forecaster i changes her report yielding a change εi in
her expected payment, the change in expected payments of all
other forecasters εj is null or has the opposite sign of εi.

Definition I.4. An equal-wager wagering mechanism Π
is anonymous if for any permutation σ of [n], any fore-
caster i, and any outcome x, it holds that Πi(y1, : : : ,
yn,x) �Πσ(i)(yσ−1(1), : : : ,yσ−1(n),x). That is, the payouts do
not depend on the identities of the agents.

It will be useful to define smoothness for wagering
mechanisms and proper scoring rules.

Definition I.5. An equal-wager wagering mechanism is
smooth if, for all i ∈ [n], Πi is twice continuously differentiable
with respect to each report yj, j ∈ [n]. A proper scoring rule R
is smooth if it is twice continuously differentiable with
respect to the report y.

Our first lemma provides a formal relationship between
budget-balanced equal-wager wagering mechanisms and
forecasting competition mechanisms.

Definition I.6. Given a forecasting competition mechanism
M, define the corresponding equal-wager wagering mecha-
nism by ΠM

i (y1, : : : ,yn,x) � Pr(M(y1, : : : ,yn,x) � i) ≥ 0 for all
i ∈ [n].
Lemma I.1. If a forecasting competition mechanism M is
strictly incentive compatible, anonymous, and smooth, then the
corresponding equal-wager wagering mechanism ΠM is budget-
balanced, strictly incentive compatible for immutable beliefs,
anonymous, and smooth.

Proof. Consider a strictly incentive compatible and anony-
mous forecasting competition mechanism M and the cor-
responding equal-wager wagering mechanism ΠM.
For budget balance, note that ∑n

i�1Π
M
i (y1, : : : ,yn,x) �∑n

i�1Pr(M(y1, : : : ,yn,x) � i) � 1, where the latter equality fol-
lows from the fact that M outputs a probability distribution
over forecasters.
For anonymity, we have ΠM

i (y1, : : : ,yn,x) � Pr(M(y1, : : : ,
yn,x) � i) � Pr(M(yσ−1(1), : : : ,yσ−1(n),x) � σ(i)) �ΠM

σ(i)(yσ−1(1),
: : : ,yσ−1(n),x).
For strict incentive compatibility under immutable beliefs,

for any pi, reports yi ≠ pi, and any yj ∈ [0, 1] for j≠ i, we have

E
X~pi

ΠM
i (y1, : : : ,yi, : : : ,yn,X) � PrX~pi (M(y1, : : : ,yi, : : : ,yn,X) � i)

< PrX~pi (M(y1, : : : ,pi, : : : ,yn,X) � i)
� E

X~pi
ΠM

i (y1, : : : ,pi, : : : ,yn,X),
where the inequality follows from strict incentive com-
patibility of M, taking joint distribution D to be such that
Yj � yj with probability one, and EX~D[X] � pi.
Finally, smoothness of ΠM follows directly from smoothness

of M and Definition I.6. w

Lambert et al. (2008) show that any smooth equal-wager
wagering mechanism that is budget balanced, strictly incentive
compatible for immutable beliefs, normal, and anonymous
must have a particular form. We note that the versions of
normality and incentive compatibility for immutable beliefs
that Lambert et al. (2008) define are slightly weaker than the
ones we use. In particular, Lambert et al. do not require that
incentive compatibility holds for forecasters with belief pi � 0
or pi � 1 and normality is required only to hold for
θ ∈ (0, 1). The following statement still holds for our ver-
sions of these properties since the mechanisms that satisfy
our conditions are a subset of the mechanisms that satisfy
theirs.

Lemma I.2 (Lambert et al. 2008, lemma 4 (Restated)). For
any n ≥ 2, if a smooth16 equal-wager wagering mechanism Π is
budget balanced, strictly incentive compatible for immutable
beliefs, anonymous and normal then there exists a smooth
strictly proper scoring rule R such that

Πi(y1, : : : ,yn,x) � 1
n
+R(yi,x) − 1

n− 1

∑
j≠i

R(yj,x): (I.1)

The following lemma incorporates two observations about
Lemma I.2. First, R must be bounded to guarantee
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nonnegative payouts as required by the definition of a
wagering mechanism. Second, when restricted to n � 2,
normality is implied by budget balance.

Lemma I.3. For n � 2, if an equal-wager wagering mechanism
is budget balanced, strictly incentive compatible for immutable
beliefs, anonymous, and smooth, then there exists a smooth
strictly proper scoring rule R ∈ [0, 1] such that

Πi(y1,y2,x) � 1
2
+ 1
2

(
R(yi,x) −R(y3−i,x)

)
: (I.2)

Proof. When n � 2, budget balance implies that Π1(y1,
y2,x) � 1−Π2(y1,y2,x) for all y1,y2 ∈ [0, 1] and all x ∈ {0, 1}.
Taking the expectation over possible outcomes yields
EX~θΠ1(y1,y2,X) � 1−EX~θΠ2(y1,y2,X). In particular, any
change in the expected payment to forecaster i is exactly
offset by the change in expected payment to forecaster
3− i. Therefore, normality is implied by budget balance.

Boundedness of R follows from Lemma I.2 and the defi-
nition of a wagering mechanism. By the constraint that
0 ≤Πi(y1,y2,x) ≤ 1, where Πi is defined as in Lemma I.2, it
must be the case that |R(yi,x) −R(y3−i,x)| ≤ 0:5 for all
y1,y2,x. We can therefore define R′(y,x) by R′(y,x) �
2(R(y,x) + β(x)), where β(0) � −R(1,0) and β(1) � −R(0, 1).
Scoring rule R′ is derived from R by a positive affine
transformation and therefore inherits strict properness
from R. Note that the minimum value of R′ is R′(0, 1) �
R′(1, 0) � 0 and the maximum value is either R′(0,0) �
2(R(0,0) −R(1, 0)) ≤ 1 or R′(1, 1) � 2(R(1, 1) −R(0, 1)) ≤ 1,
and so R′ is bounded in [0, 1]. Furthermore, plugging R′
into Equation (I.2) yields exactly Equation (I.1). w

We can now characterize the form that any strictly
incentive-compatible, anonymous, and smooth forecasting
competition mechanism must have.

Lemma I.4. For n � 2, if a forecasting competition mechanism
M is strictly incentive compatible, anonymous, and smooth,
then there exists a smooth strictly proper scoring rule R(y,x) ∈
[0, 1] such that for all i ∈ {1,2}

Pr(M(y1,y2,x) � i) � 1
2
+ 1
2

(
R(yi,x) −R(y3−i,x)

)
:

Proof. Let M be a strictly incentive compatible, anony-
mous, and smooth forecasting competition mechanism.
Then, by Lemma I.1, the corresponding equal-wager wagering
mechanism ΠM is budget balanced, strictly incentive compati-
ble for immutable beliefs, anonymous, and smooth. Therefore,
by Lemma I.3, there must exist a smooth strictly proper scor-
ing rule R ∈ [0, 1] such that for all i ∈ {1,2}

ΠM
i (y1,y2,x) � 1

2
+ 1
2

(
R(yi,x) −R(y3−i,x)

)
:

By Definition I.6, this implies that for all i ∈ {1, 2}
Pr
(
M(y1,y2,x) � i

)
� 1
2
+ 1
2

(
R(yi,x) −R(y3−i,x)

)
,

which is the desired result. w

We have now established the form that any strictly
incentive compatible, smooth, and anonymous forecasting
competition mechanism M must have for n � 2. In

particular, M is equivalent to MELFR for some smooth,
bounded, strictly proper scoring rule R. Next, we show
that R can always be represented by a differentiable
strictly convex function G.

Lemma I.5. Let R be a smooth strictly proper scoring
rule. There exists a strictly convex, differentiable function
G : [0, 1] → R with

R(y,θ) � G(y) + dG(y) · (θ− y),
where θ ∈ [0, 1] and dG(y) is the derivative of G at y. Further-
more, G(y) is the expected score for reporting y � θ. Every R
defines a unique G and every G defines a unique R.

Proof. It is well known that every strictly proper scoring
rule can be expressed as R(y,θ) � G(y) + dG(y) · (θ− y) for
some strictly convex function G, where dG(y) is a subgra-
dient of G at y (McCarthy 1956, Savage 1971, Schervish
1989, Gneiting and Raftery 2007). Observe that setting y �
θ yields expected score G(y), and it immediately follows
that every R defines a unique G.
Let R be smooth (and, in particular, continuous). Sup-

pose for the sake of contradiction that the convex function
G associated with R is not differentiable at some
y′ ∈ [0, 1]. That is, the left and right derivatives of G at y′
(d−G(y′) and d+G(y′), respectively) are not equal. Note
that convexity implies that d−G(y′) ≤ d+G(y′), so the fact
that the left and right derivatives are not equal yields
d−G(y′) < d+G(y′). We therefore have limε→0+R(y′ − ε, 1) �
G(y′) + d−G(y′) · (1
− y′) < G(y′) + d+G(y′) · (1− y′) � limε→0+R(y′ + ε, 1), violat-
ing continuity of R at y′ for θ � 1, a contradiction to
smoothness of R. Furthermore, note that differentiability
of G implies a unique scoring rule R. w

Part 2. The remainder of the proof is devoted to com-
paring the behavior of MELFR for different choices of
smooth proper scoring rule R. We will require the notion
of equivalent scoring rules. A proper scoring rule R is
equivalent to another proper scoring rule R′ if R can be
obtained from R′ by a positive affine transformation.

Definition I.7. Proper scoring rules R and R′ are equivalent
if and only if R′(y,x) � αR(y,x) + β(x) for some α > 0 and
β(x) ∈ R for x ∈ {0, 1}.
This definition partitions the space of proper scoring

rules into equivalence classes. It will be useful to define
the canonical form of a scoring rule R as a convenient rep-
resentative of each class. In particular, the canonical form
ensures that every perfect forecast of a sure event obtains
a score of one and that the minimum expected score of a
perfect forecast is zero.

Definition I.8. Let R and R′ be strictly proper scoring rules.
We say that R′ is the canonical form of R if R′ and R are equiv-
alent, and R′(0,0) � R′(1, 1) � 1 and minθR′(θ,θ) � 0 for
some θ ∈ (0, 1).
Lemma I.6. For any strictly proper scoring rule R, there exists
a canonical form R′.

Proof. It is sufficient to show that any strictly proper scor-
ing rule R can be brought into canonical form through
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one particular positive-affine transformation. To transform
any strictly proper scoring rule R into its canonical form,
we first define linear function f(x) for x ∈ {0, 1} such that,
when added to R(y, x), every perfect forecast of a sure
event obtains a score of zero. That is, f (0) :� −R(0, 0) and
f (1) :� −R(1, 1). In a second step, we are multiplying
R(y,x) + f (x) by α :� 1

−minθEX~θ[R(θ,X)+f (X)] such that its mini-
mum expected score of a perfect forecast is −1. Note that
α > 0 since minθEX~θ[R(θ,X) + f (X)] < 0 because R(0, 0) +
f (0) � 0 and R(1, 1) + f (1) � 0, and because of strict convex-
ity of the expected score function. Finally, we add a con-
stant 1 to R, resulting in R′(y,x) :� α(R(y,x) + f (x)) + 1. w

It immediately follows from Definition I.8 and Lemma
I.6 that if two strictly proper scoring rules have the same
canonical form, then they are equivalent. In order to
prove our key result, we require a technical lemma.

Lemma I.7. Let f ,g : [0, 1] → R be differentiable, strictly con-
vex functions. Additionally, suppose that f is strictly decreas-
ing, f (0) � g(0) � 1 and that there exists a t ∈ (0, 1] for which
f (t) < g(t). Then there must exist a t′ ∈ (0, t] for which f (t′) <
g(t′) and d( f (t′)) < d(g(t′)).
Proof. Let t∗ � sup{t ∈ [0, t] : f (t) ≥ g(t)}. We are guaranteed
that t∗ is well defined because f (0) � g(0) so we are taking
a supremum over a nonempty set. Furthermore, it is easy
to see that f (t∗) � g(t∗) and that f (t) < g(t) for all t ∈ (t∗, t].
Suppose for contradiction that d( f (t)) ≥ d(g(t)) for all
t ∈ (t∗, t]. This would imply that f (t) ≥ g(t), contradicting
the assumption of the lemma. Therefore, there must exist
a t′ ∈ (t∗, t] with d( f (t′)) < d(g(t′)). w

Finally, we show that two smooth strictly proper scor-
ing rules R and R′ are equivalent if and only if they
always agree on the relative accuracy of forecasters.

Lemma I.8. Smooth strictly proper scoring rules R and R′ are
equivalent if and only if R′(y1,θ) > R′(y2,θ)⇐⇒ R(y1,θ) >
R(y2,θ) for all y1,y2,θ ∈ [0, 1].
Proof. We first prove the forward direction. Suppose that
R and R′ are equivalent, that is, R′(y,x) � αR(y,x) + β(x)
for some α > 0 and β(x) ∈ R. Then, R′(y1,θ) > R′(y2,θ)⇐⇒
EX~θ[αR(y1,X) + β(x)] > EX~θ[αR(y2,X) + β(X)] ⇐⇒EX~θ[αR(y1,
X)] +EX~θ[β(X)] > EX~θ[αR(y2,X)] +EX~θ[β(X)]⇐⇒ EX~θ[αR(y1,
X)] > EX~θ[αR(y2,X)]⇐⇒ R(y1,θ) > R(y2,θ).

For the backward direction, suppose that R and R′ are
not equivalent. Assume that R and R′ are in their res-
pective canonical forms (if not, we can convert them to
canonical form without changing the way they rank fore-
casters). Note that smoothness of R and R′ implies the
existence of associated differentiable convex functions G
and G′, as per Lemma I.5. Since R and R′ are in canonical
form, minθG(θ) �minθG′(θ) � 0, and G(0) � G(1) � G′(0) �
G′(1) � 1. Furthermore, since R and R′ are not equivalent,
we know that G≠ G′. We treat two cases.

Case 1: Suppose that argminθG(θ) � argminθG′(θ). How-
ever, since G≠ G′, there must exist a y at which G(y)≠ G′(y).
Without loss of generality, suppose G(y) < G′(y). For math-
ematical convenience, suppose that y < argminθG(θ); the
case in which y > argminθG(θ) follows similarly.

By Lemma I.7, taking f � G and g � G′, there must exist
a point y1 < y for which 0 < G(y1) < G′(y1) and d(G(y1)) <
d(G′(y1)) < 0. Set y2 � argminθG(θ) equal to the point
at which G(y2) � G′(y2) � 0. Since G and G′ are both dif-
ferentiable, d(G(y2)) � d(G′(y2)) � 0. Finally, set θ so that
R(y1,θ) � 0. That is,

G(y1) + d(G(y1))(θ− y1) � 0:

Note that, since G(y1) > 0 and d(G(y1)) < 0, we have
θ > y1. Then,

R(y1,θ) � G(y1) + d(G(y1)) · (θ− y1)
� 0

� G(y2) + d(G(y2)) · (θ− y2)
� R(y2,θ):

However,

R′(y1,θ) � G′(y1) + d(G′(y1)) · (θ − y1)
> G(y1) + d(G(y1)) · (θ − y1)
� 0

� G′(y2) + d(G′(y2)) · (θ − y2)
� R′(y2,θ),

so that forecasters 1 and 2 obtain the same expected score
according to R, but forecaster 1 obtains higher expected
score according to R′. In particular, R and R′ disagree on
the relative accuracy.
Case 2: Suppose that, without loss of generality,

θmin :� argminθG(θ) < arg minθG′(θ) :� θ′
min. In particular,

G(θmin) � 0 < G′(θmin), and G(θ′
min) > 0 � G′(θ′

min). By
Lemma I.7, there must exist a y1 < θmin for which G(y1) <
G′(y1) and d(G(y1)) < d(G′(y1)) < 0. Similarly, there must
exist a y2 > θ′

min for which G(y2) > G′(y2) and 0 <
d(G(y2)) < d(G′(y2)). Let θ be such that R gives the same
expected score to both reports. That is,

R(y1,θ) � G(y1) + d(G(y1)) · (θ− y1)
� G(y2) + d(G(y2)) · (θ− y2) � R(y2,θ):

Note that, by strict convexity of G, it needs to hold that
θ ∈ (y1,y2). For R′, we have

R′(y1,θ) � G′(y1) + d(G′(y1)) · (θ− y1)
> G(y1) + d(G(y1)) · (θ− y1)
� G(y2) + d(G(y2)) · (θ− y2)
> G′(y2) + d(G′(y2)) · (θ− y2)
� R′(y2,θ),

where the first and last equalities follow from Lemma I.5,
the inequalities hold because θ ∈ (y1,y2), and the second
equality follows from the definition of θ. Again, forecast-
ers 1 and 2 obtain the same expected score according to R,
but forecaster 1 obtains higher expected score according to
R′. This completes the backward direction. w

We can now complete the proof of Theorem 4.

Proof of Theorem 4. By Lemmas I.4 and I.5, when n � 2,
any smooth, anonymous, strictly incentive-compatible
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forecasting competition mechanism M must take the form
of MELFR

′ for some smooth, bounded, strictly proper scor-
ing rule R′ ∈ [0, 1] with associated differentiable convex
function G′. We complete the proof by showing that every
forecasting competition mechanism of this form either
fails to be rank accurate with respect to R, or has
PrX~θ(M(y1,y2,X) � 1) ≤ PrX~θ(MELFR̃ (y1,y2,X) � 1)for every
y1, y2,θ ∈ [0, 1] for which R(y1,θ) > R(y2,θ).

If R′ is not equivalent to R, then MELFR
′ is not rank accu-

rate with respect to R by Corollary 1 and Lemma I.8. If R′
is equivalent to R, then we have that R′(y,x) �
αR(y,x) + β(x). We also know that R̃(y,x) � α̃R(y,x) + β̃(x),
where α̃ ≥ α (if α̃ < α then R′ is not bounded in [0, 1]). Let
y1,y2,θ ∈ [0, 1] such that R(y1,θ) > R(y2,θ). Then

Pr
X~θ

(
M

ELFR̃
(y1,y2,X) � 1

)
� 1
2
+ 1
2

(
R̃(y1,θ) − R̃(y2,θ)

)
� 1
2
+ 1
2

(
α̃R(y1,θ) + E

X~θ
[β̃(X)] − α̃R(y2,θ) − E

X~θ
[β̃(X)]

)
� 1
2
+ 1
2

(
α̃R(y1,θ) − α̃R(y2,θ)

)
≥ 1
2
+ 1
2

(
αR(y1,θ) −αR(y2,θ)

)
� 1
2
+ 1
2

(
αR(y1,θ) + E

X~θ
[β(X)] −αR(y2,θ) − E

X~θ
[β(X)]

)
� Pr

X~θ

(
MELFR

′ (y1,y2,X) � 1
)
,

where the inequality follows from α̃ ≥ α and R(y1,θ) >
R(y2,θ). w

Appendix J. Proof of Theorem 5

Proof. We first make a basic observation about unbounded
proper scoring rules. The proof then proceeds by leveraging
Lemma I.4, which characterizes the form that any strictly
incentive-compatible, anonymous, and smooth forecasting
competition mechanism must take. Finally, it shows that no
mechanism of that form can be rank accurate with respect
to an unbounded proper scoring rule.

Let R be an unbounded strictly proper scoring rule.
First note that since R is strictly proper, it must be the
case that R(0, 1) < R(y, 1) for any y > 0 and, analogously,
R(1, 0) < R(y, 0) for any y < 1. Therefore, since R is
unbounded (i.e., R(y,x) � −∞ for some y ∈ [0, 1] and
x ∈ {0, 1}), it must be the case that R(0, 1) � −∞ and/or
R(1, 0) � −∞, and R(y,x) ∈ R for all y ∈ (0, 1) and x ∈ {0, 1}.
Suppose now that R(0, 1) � −∞. (The case with R(1,0) �
−∞ can be proven identically.)

Let M be a strictly incentive-compatible, anonymous,
and smooth forecasting competition mechanism. By
Lemma I.4, we know the form that M must take for n � 2.
In particular, there must exist a smooth, bounded strictly
proper scoring rule R′ ∈ [0, 1] such that M �MELFR

′ . We
now show that MELFR

′ is not rank accurate with respect to
R. Fix y ∈ (0, 1) and let θ be such that R′ gives the same
expected score to reports zero and y. That is,

R′(0,θ) � G(0) + d(G(0)) ·θ � G(y) + d(G(y)) · (θ− y)
� R′(y,θ),

where G is the convex function associated with R′ (Savage
1971). Note that θ ∈ (0,y) by strict convexity of G and the
fact that d(G(0)) ∈ R and d(G(y)) ∈ R (which is implied by
boundedness of R′). Furthermore, since R′ gives the same
expected score to reports 0 and y, if forecaster 1 reports
y1 � 0 and forecaster 2 reports y2 � y, we have

Pr
X~θ

(
MELFR

′ (y1,y2,X) � 1
)
� Pr

X~θ

(
MELFR

′ (y1,y2,X) � 2
)
:

However, R(y1,θ) � R(0,θ) � θ ·R(0, 1) + (1−θ) ·R(0, 0) � θ ·
(−∞) + (1−θ) ·R(0,0) � −∞ and R(y2,θ) � R(y,θ) ∈ R. There-
fore, MELFR

′ is not rank accurate with respect to R. w

Appendix K. Proof of Proposition 3

Proof. Let n � 2 with y1 � (0:4, : : : , 0:4) and y2 � (0:6, : : : ,
0:6). Let R be the strictly proper scoring rule that defines
accuracy. Now suppose M is a limit accurate forecasting
competition mechanism and consider the following two
cases with two different “perfectly correlated” joint distri-
butions θ for which all m outcomes are the same, that is,
either Xk � 0 for all k or Xk � 1 for all k:

1. Suppose θk � 0:4 for all k. Since y1,k � θk and y2,k ≠ θk for
all k, strict properness of R implies that forecaster 1 is strictly
more accurate. Hence, limit accuracy implies that there exists
an m1 such that for all m ≥m1, M selects forecaster 1 with
probability at least π � 0:7.

2. Suppose θk � 0:6 for all k. Since y2,k � θk and y1,k ≠ θk for
all k, strict properness of R implies that forecaster 2 is strictly
more accurate. Hence, limit accuracy implies that there exists
an m2 such that for all m ≥m2, M selects forecaster 2 with
probability at least π � 0:7.
Now let m �max(m1 ,m2 ) be the number of events. Since

both θ are “perfectly correlated,” the outcome vector is
either x � (0, : : : , 0) or x � (1, : : : , 1), and so it is sufficient to
consider whom M selects given each of these. Let q1|0 and
q1|1 be the probabilities that M selects forecaster 1 given
x � (0, : : : , 0) and x � (1, : : : , 1), respectively. From Case 1, it
needs to hold that 0:4 · q1|1 + 0:6 · q1|0 > 0:7 and from Case 2,
it needs to hold that 0:6 · (1− q1|1) + 0:4 · (1− q1|0) > 0:7.
However, this is impossible because the former implies
that q1|1 > 7

4− 3
2q1|0 and the latter implies that q1|1 < 1

2− 2
3q1|0,

with no q1|0,q1|1 ∈ [0, 1] satisfying both, a contradiction that
M is limit accurate. w

Appendix L. Proof of Theorem 6

Proof. Without loss of generality, take the perspective of
any forecaster i ∈ [n] seeking to maximize the probability
of being selected. In reasoning about forecaster i’s proba-
bility of winning, she needs to reason about the joint
probability of the event winners vector (w1, : : : ,wm), which
is given by the vector of probability distributions ( f 1, : : : ,
fm), where each f k is the distribution over forecasters for
event k. From forecaster i’s perspective, each f k is an
instantiation of a random variable Fk, depending on her
belief about Y−i and X. Without any restrictions on Y−i and
X, these Fk can be dependent even if—given instantiated
( f 1, : : : , fm)—the draws of the event winners themselves are
independent by definition of the mechanism. For belief
independent joint distributions D over outcomes X and
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reports Y−i, however, all random vectors (Y1,k, : : : ,Yi−1,k,
Yi+1,k, : : : ,Yn,k,Xk) indexed by k are independent, so that all
Fk are independent as well. Consider now event k and let
K′ ∈ P([m]) be any subset of event indices with k ∉ K′. By
independence of Fk for all k, changing forecaster i’s report
on event k does not affect the (joint) distribution of FK′ .

It is easy to see that increasing forecaster i’s expected
(subjective) winning probability for event k, E[Fi,k], simul-
taneously decreases the expected winning probability
E[Fj,k] of every j≠ i. To see this, first observe that, if E[Fi,k]
increases, the sum of all other forecasters’ event winning
probabilities needs to decrease by the same amount because
E[Fi,k] +∑

j≠iE[Fj,k] � 1 for all k. Second, by definition of fi,k,
any increase of ε > 0 in E[Fi,k] leads to a uniform decrease
of ε

n−1 in each E[Fj,k] with j≠ i. This means that, since the Fk

are independent, increasing E[Fi,k] on event k cannot
decrease your probability of winning overall.

It remains to be shown that increasing E[Fi,k] strictly
increases forecaster i’s probability of winning overall. To
show this, we need to show that there are situations,
where event k is pivotal for winning overall and that these
situations occur with positive probability. First, there exist
event win outcomes w1, : : : ,wk−1,wk+1, : : : ,wm on the other
m – 1 events such that k is pivotal; that is, winning or los-
ing event k changes the probability of winning the prize.
This is the case if and only if, without event k, (1) some
forecaster j ≠ i won most events with forecaster i winning
one fewer, or (2) forecaster i won most events with at
least one other forecaster j≠ i having won exactly the
same number, or one event less than forecaster i. For
example, with m odd, m – 1 is even, and forecasters i and
j≠ i can each win half of those events. Similarly, with m
even, m – 1 is odd, and it can be the case that forecaster i
wins �m−1

2 � and j wins �m−1
2 �. Second, these cases occur

with positive probability because we know that every
E[Fj,k] for all j and all k is strictly in between zero and one
by definition of fi,k and R ∈ [0, 1). Hence, event k is pivotal
for forecaster i with positive probability and reporting
truthfully on event k strictly increases the probability of
winning the prize. w

Appendix M. Proof of Theorem 7
The proof uses the one-sided version of Hoeffding’s inequality
(Hoeffding 1963), which we state here for convenience.

Theorem M.1. (Hoeffding’s Inequality). Let X1, : : : ,Xm be
independent random variables bounded by the interval [0, 1].
Define Sm � X1 + : : : +Xm. Then

Pr
(
Sm −E[Sm] ≥ t

)
≤ e−

2t2
m ,

and

Pr
(
E[Sm] − Sm ≥ t

)
≤ e−

2t2
m :

Proof of Theorem 7. Let wi,k :� 1(wk � i) indicate whether
forecaster i is the event winner for event k, and let Wi,k be
the corresponding random variable. Note that the reports
y1, : : : ,yn are fixed, so that the uncertainty is only about
the event outcomes X. In particular, with X1, : : : ,Xm inde-
pendent, Wi, 1, : : : , Wi,m are independent conditional on
y1, : : : ,yn.

Let zi � ∑m
k�1wi,k be the number of events won by fore-

caster i. Furthermore, let Zi be the corresponding random
variable, so that

E
X~θ

[Zi] � E
X~θ

[∑m
k�1

fi,k

]
,

where the latter expectation is taken over the outcomes,
and the former is taken over the outcomes and the ran-
domness of the lotteries.
To show limit accuracy, let i be the most accurate fore-

caster with Δ :�minj≠i(R(yi,θ) −R(yj,θ)) > 0 denoting the
difference between the expected scores of i and the
second-most accurate forecaster. We first bound the differ-
ence between the expected number of events won by i
and the expected number of events won by some other
forecaster j≠ i:

E
X~θ

[Zi] − E
X~θ

[Zj] � E
X~θ

[∑m
k�1

(fi,k − fj,k)
]

�
E

X~θ

[∑m
k�1

(
R(yi,k,Xk) −R(yj,k,Xk)

)]
n− 1

�
m
(
R(yi,θ) −R(yj,θ)

)
n− 1

≥ mΔ

n− 1
: (M.1)

The second equality follows from substituting the defini-
tion of fi,k and simplifying, the third equality follows from
rewriting in terms of expected average score, and the
inequality follows from the definition of Δ.
We now upper bound the probability that forecaster j wins

more events than forecaster i. From Equation (M.1), if zj ≥ zi,
then it holds that E[Zi] − zi ≥ mΔ

2(n−1) or zj −E[Zj] ≥ mΔ
2(n−1) (both

may apply simultaneously). By Hoeffding’s inequality,

Pr
(
E[Zi] − zi ≥ mΔ

2(n− 1)
)
≤ e

− mΔ2

2(n − 1)2 ,

and

Pr
(
zj −E[Zj] ≥ mΔ

2(n− 1)
)
≤ e

− mΔ2

2(n− 1)2 :

Putting these together, we have

Pr(zj ≥ zi)
≤ Pr

((
E[Zi] − zi ≥ mΔ

2(n − 1)
)⋃

zj − E[Zj] ≥ mΔ

2(n − 1)
( ))

≤ Pr E[Zi] − zi ≥ mΔ

2(n − 1)
( )

+ Pr zj − E[Zj] ≥ mΔ

2(n − 1)
( )

≤ 2e
− mΔ2

2(n− 1)2 :

Finally, we lower bound the probability that ELF selects
forecaster i:

Pr
X~θ

(MELFR (y1, : : : , yn,X) � i)

� 1 −∑
j≠i

Pr
X~θ

(
MELFR (y1, : : : ,yn,X) � j

)

≥ 1 −∑
j≠i

Pr
X~θ

(
zj ≥ zi

)

≥ 1 − 2(n − 1)e− mΔ2

2(n− 1)2 ,
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where the first transition holds because exactly one forecaster
is selected, and the second because zj ≥ zi is a necessary condi-
tion for forecaster j to be selected by ELF. The final transition
holds by plugging in the earlier inequality. In particular, for
fixed n and “accuracy gap” Δ, for any π ∈ [0, 1), I-ELF selects
the best forecaster with probability at least π if

m ≥ 2(n− 1)2
Δ2 ln

2(n− 1)
1−π

( )
,

which yields limit accuracy. w

Endnotes
1 See www.netflixprize.com.
2 See www.kaggle.com.
3 In Section 5, we will introduce a restricted definition that assumes
that the events X are known to be independent and that this inde-
pendence of events is reflected in the uncertainty about others’
reports.
4 In fact, we do not even require that forecasters are expected utility
maximizers but only require that they are “probabilistically sophis-
ticated” (Machina and Schmeidler 1992). We thank an anonymous
reviewer for this observation.
5 See https://projects.fivethirtyeight.com/2019-nfl-forecasting-game.
6 Other tie-breaking procedures are possible, and our results do not
rely on any particular one.
7 Although our definition allows for any bounded R, we will see in
Section 5 that the optimal accuracy guarantees are achieved for nor-
malized R.
8 We drop the dependencies of each fi for clarity.
9 The spherical scoring rule (Jose 2009) is defined as

Rs(y,x) :� yx+(1−y)(1−x)����������
y2+(1−y)2

√ . Forecaster 1 obtains an expected score of 0.73

and forecaster 2 obtains an expected score of only 0.71.
10 We emphasize here that this choice needs to be made in any appli-
cation of proper scoring rules, including but not limited to forecasting
competitions. If, for example, one considers two reports to be of the
same accuracy when they are “equally far away” from θk, then this
implies that one would want to use the quadratic scoring rule since it
is known to be the only proper scoring rule that punishes forecasters
according to their Euclidean distance from θk (Selten 1998). Similarly,
the spherical scoring rule is the only proper scoring rule to satisfy pro-
portionality (Jose 2009). We allow the designer to choose other proper
scoring rules that satisfy different properties.
11 If used in conjunction with a normalized R for m ≥ 2, MI-ELFR
may fail to be strictly incentive compatible (it is still weakly incen-
tive compatible) when there exists an event for which a forecaster
believes that she is a perfect forecaster reporting 100% for the even-
tually materialized outcome and every other forecaster is doing the
opposite, that is, reporting 0% for the eventually materialized out-
come. We do not expect this to be an issue in practical application.
12 Observe that this misreport is somewhat different from those in the
categorical setting, where rational forecasters will generally “extremize”
their reports toward an outcome. In contrast, in the previous example, a
forecaster who unilaterally deviates to reporting an extreme value of 0
or 1 would only be selected with probability 1/4.
13 This assumes that no money leaves the system in the form of fees
or withdrawals, a reasonable assumption for play money markets.
14 We instantiate a particular pi, but the example is not sensitive to
this choice.
15 Equal-wager wagering mechanisms can be equivalently expressed
as Competitive Scoring Rules (Kilgour and Gerchak 2004).

16 Lambert et al. (2008) restrict attention to smooth wagering mech-
anisms, so this condition does not explicitly appear in their lemma
statement.
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