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We study contextual stochastic optimization problems, where we leverage rich auxiliary observations (e.g.,

product characteristics) to improve decision making with uncertain variables (e.g., demand). We show how

to train forest decision policies for this problem by growing trees that choose splits to directly optimize the

downstream decision quality, rather than split to improve prediction accuracy as in the standard random

forest algorithm. We realize this seemingly computationally intractable problem by developing approximate

splitting criteria that utilize optimization perturbation analysis to eschew burdensome re-optimization for

every candidate split, so that our method scales to large-scale problems. We prove that our splitting criteria

consistently approximate the true risk and that our method achieves asymptotic optimality. We extensively

validate our method empirically, demonstrating the value of optimization-aware construction of forests and

the success of our efficient approximations. We show that our approximate splitting criteria can reduce

running time hundredfold, while achieving performance close to forest algorithms that exactly re-optimize

for every candidate split.
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1. Introduction

In this paper we consider the contextual stochastic optimization (CSO) problem,

z∗(x)∈ arg min
z∈Z

E [c(z;Y ) |X = x] , (1)

Z =

{
z ∈Rd :

hk(z) = 0, k= 1, . . . , s,
hk(z)≤ 0, k= s+ 1, . . . ,m

}
, (2)

wherein, having observed contextual features X = x∈X ⊆Rp, we seek a decision z ∈Z to minimize

average costs, which are impacted by a yet-unrealized uncertain variable Y ∈ Y. Equation (1) is

essentially a stochastic optimization problem (Shapiro et al. 2014) where the distribution of the

uncertain variable is given by the conditional distribution of Y |X = x. Crucially, this corresponds

to using the observations of features X = x to best possibly control total average costs over new

realizations of pairs (X,Y ); that is,

E[c(z∗(X);Y )] = minz(x):Rp→Z E[c(z(X);Y )].

* Alphabetical order.
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(a) A depth-3 tree. When the
condition in a branching node
holds, we take the left branch.
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(b) Each tree gives a partition
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(c) Darker regions fall into
the same region as x = (0,0)
for more trees in a forest.

Figure 1 A forest of trees, F = {τ1, . . . , τT }, parameterizes a forest policy ẑ(x) for CSO as in Eq. (3).

Stochastic optimization can model many managerial decision-making problems in inventory man-

agement (Simchi-Levi et al. 2005), revenue management (Talluri and Van Ryzin 2006), finance

(Cornuejols and Tütüncü 2006), and other application domains (Kleywegt and Shapiro 2001,

Shapiro et al. 2014). And, CSO in particular captures the interplay of such decision models with the

availability of rich side observations of other variables (i.e., covariates X) often present in modern

datasets, which can help significantly reduce uncertainty and improve performance compared to

unconditional stochastic optimization (Bertsimas and Kallus 2014).

Since the exact joint distribution of (X,Y ), which specifies the CSO in Eq. (1), is generally

unavailable, we are in particular interested in learning a well-performing policy ẑ(x) based on n

independent and identically distributed (i.i.d.) draws from the joint distribution of (X,Y ):

Data : D= {(X1, Y1), . . . , (Xn, Yn)}, (Xi, Yi)∼ (X,Y ) i.i.d.

The covariates X may be any that can help predict the value of the uncertain variable Y affecting

costs so that we can reduce uncertainty and improve performance. A common approach is to

first make predictions using models that are trained without consideration of the downstream

decision-making problem and then solve optimization given their plugged-in predictions. However,

this approach completely separates prediction and optimization. Since all predictive models make

errors, especially when learning a complex object such as the conditional distribution of Y given

X, the error trade-offs of this approach may be undesirable for the end task of decision-making.

In this paper we aim to

learn effective forest-based CSO policies that integrate prediction and optimization.

To make a decision at a new query point x, a forest policy uses a forest F = {τ1, . . . , τT} of trees

τj to reweight the sample to emphasize data points i with covariates Xi “close” to x. Each tree,
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τj :Rp→{1, . . . ,Lj}, is a partition of Rp into Lj regions, where the function τj takes the form of a

binary tree with internal nodes splitting on the value of a component of x (see Figs. 1a and 1b).

We then reweight each data point i in the sample by the frequency wi(x) with which Xi ends up

in the same region (tree leaf) as x, over trees in the forest (see Fig. 1c). Using these weights, we

solve a weighted sample analogue of Eq. (1). That is, a forest policy has the following form, where

the forest F constitutes the parameters of the policy ẑ(x):

ẑ(x)∈ arg min
z∈Z

n∑
i=1

wi(x)c(z;Yi), wi(x) :=
1

T

T∑
j=1

I [τj(Xi) = τj(x)]∑n

i′=1 I [τj(Xi′) = τj(x)]
. (3)

Bertsimas and Kallus (2014) considered using a forest policy where the forest F is given by running

the random forest (RandForest) algorithm (Breiman 2001). The RandForest algorithm, however,

builds trees that target the prediction problem of learning E [Y |X = x], rather than the CSO prob-

lem in Eq. (1). Namely, it builds each tree τj by, starting with all of Rp, recursively subpartitioning

each region R0 ⊆Rp into the two subregions R0 =R1∪R2 that minimize the sum of squared distance

to the mean of data in each subregion (i.e.,
∑

j=1,2 minz∈Rd
∑

i:Xi∈Rj
‖z−Yi‖22). For prediction, ran-

dom forests are notable for adeptly handling high-dimensional feature data non-parametrically as

they only split on variables relevant to prediction, especially compared to other methods for gen-

erating localized weights wi(x) like k-nearest neighbors and Nadaraya–Watson kernel regression.

However, for CSO they might miss signals more relevant to the particular optimization structure

in Eq. (1), deteriorating downstream policy performance in the actual decision-making problem.

Athey et al. (2019) proposed a Generalized Random Forest (GenRandForest) algorithm to esti-

mate roots of conditional estimating equations, which can be repurposed for unconstrained CSO

problems by solving their first order optimality conditions. Their splitting criteria are based on

approximating the mean squared errors of equation root estimates, which again may fail to capture

signals more important for the particular cost function in Eq. (1) when optimization is one’s aim.

In this paper, we design new algorithms to construct decision trees and forests that directly

target the CSO problem in Eq. (1). Specifically, we choose tree splits to optimize the cost of

resulting decisions instead of standard impurity measures (e.g., sum of squared errors), thereby

incorporating the general cost function c(z;Y ) and constraints Z into the tree construction. A

similar idea was suggested in endnote 2 of Bertsimas and Kallus (2014) but is dismissed because it

would be too computationally cumbersome to use this to evaluate many candidate splits in each

node of each tree in a forest. In this paper, we solve this task in a computationally efficient manner

by leveraging a second-order perturbation analysis of stochastic optimization, resulting in efficient

and effective large-scale forests tailored to the decision-making problem of interest that lead to

strong performance gains in practice.
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Our contributions are as follows. We formalize the oracle splitting criterion for recursively parti-

tioning trees to target the CSO problem and then use second-order perturbation analysis to show

how to approximate the intractable oracle splitting criterion by extrapolating from the given region,

R0, to the candidate subregions, R1,R2, provided that the CSO problem is sufficiently smooth.

We do this in Section 2 for the unconstrained setting and in Section 3 for the constrained setting.

Specifically, we consider both an approach that extrapolates the optimal value and an approach

that extrapolates the optimal solution. Crucially, our perturbation approach means that we only

have to solve a stochastic optimization problem at the root region, R0, and then we can efficiently

extrapolate to what will happen to average costs for any candidate subpartition of the root, allow-

ing us to efficiently consider many candidate splits. Using these new efficient approximate splitting

criteria, we develop the stochastic optimization tree (StochOptTree) algorithm, which we then use

to develop the stochastic optimization forest (StochOptForest) algorithm by running the former

many times. The StochOptForest algorithm fits forests to directly target the downstream decision-

making problem of interest, and then uses these forests to construct effective forest policies for

CSO. In Section 4, we empirically demonstrate the success of our StochOptForest algorithm and

the value of forests constructed to directly consider the downstream decision-making problem. In

Section 5 we provide asymptotic optimality results for StochOptForest. In Section 6 we offer a dis-

cussion of and comparison to related literature and in Section 7 we offer some concluding remarks.

We extend our results to stochastically-constrained CSO problems in Appendix A, develop variable-

importance measures in Appendix B, and provide additional empirical results in Appendix C. We

defer all proofs to Appendix H.

1.1. Running Examples of CSOs

We will have a few running examples of CSOs.

Example 1 (Multi-Item Newsvendor). In the multi-item newsvendor problem we must

choose the order quantities for d products, z = (z1, . . . , zd), before we observe the random demand

for each of these, Y = (Y1, . . . , Yd), in order to control holding and backorder costs. Whenever the

order quantity for product l exceeds the demand for the product we pay a holding cost of αl per

unit. And, whenever the demand exceeds the order quantity, we pay a backorder cost of βl per

unit. The total cost is

c(z;y) =
∑d

l=1 max{αl(zl− yl), βl(yl− zl)}. (4)

Negating and adding a constant we can also consider this equivalently as the sale revenue up to

the smaller of zl and yl, minus ordering costs for zl units. The order quantities may be unrestricted

(in which case the d problems decouple). They may be restricted by a capacity constraint,

Z =

{
z ∈Rd :

d∑
l=1

zl ≤C, zl ≥ 0, l= 1, . . . , d

}
,
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where C is a constant that stands for the inventory capacity limit.

Covariates X in this problem may be any that can help predict future demand. For example, for

predicting demand for home video products, Bertsimas and Kallus (2014) use data from Google

search trends, data from online ratings, and past sales data.

Example 2 (Variance-based Portfolio Optimization). Consider d assets with random

future returns Y = (Y1, . . . , Yd), and decision variables z = (z1, . . . , zd) that represent the fraction of

investment in each asset in a portfolio of investments, constrained to be in the simplex ∆d = {z ∈

Rd :
∑d

l=1 zl = 1, zl ≥ 0, l= 1, . . . , d}. Then the return of the portfolio is Y >z. We want the portfolio

z(x) to minimize the variance of the return given X = x. This can be formulated as a CSO by

introducing an additional unconstrained auxiliary optimization variable zd+1 ∈R and letting

c(z;y) =
(
y>z1:d− zd+1

)2
. (5)

We can either let Z = ∆d×R or relax nonnegativity constraints to allow short selling.

More generally we may consider optimizing a linear combination of the conditional mean and

variance of the return, which corresponds to a CSO with the following cost function:

c(z;y) =
(
y>z1:d− zd+1

)2− ρy>z1:d, ρ > 0. (6)

Covariates X in this problem may be any that can help predict future returns. Examples include

past returns, stock fundamentals, economic fundamentals, news stories, etc.

Example 3 (CVaR-based Portfolio Optimization). When the asset return distributions

are not elliptically symmetric, Conditional Value-at-Risk (CVaR) may be a more suitable risk

measure than variance (Rockafellar et al. 2000). We may therefore prefer to consider minimizing

the CVaR at level α given X = x, defined as

CVaRα(Y >z |X = x) = min
w∈R

E
[

1

α
max

{
w−Y >z,0

}
−w |X = x

]
.

This again can be formulated as a CSO by introducing an additional unconstrained auxiliary

optimization variable zd+1 ∈R and letting

c(z;y) =
1

α
max

{
zd+1− y>z1:d, 0

}
− zd+1. (7)

We can analogously incorporate the simplex constraint or relax the nonnegativity constraint as in

Example 2. We can also optimize a weighted combination of the different criteria (mean, variance,

CVaR at any level); we need only introduce a separate auxiliary variable for variance and for CVaR

at each level considered.
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Example 4 (Prediction of Conditional Expectation). While the above provides exam-

ples of actual decision-making problems, the problem of prediction also fits into the CSO framework

as a special case. Namely, if Y ∈ Rd, c(z;y) = 1
2
‖z− y‖22, and Z = Rd is unconstrained, then we

can see that z∗(x) = E [Y |X = x]. This can be understood as the best-possible (in squared error)

prediction of Y in a draw of (X,Y ) where only X is revealed. Fitting forest models to predict

E [Y |X = x] is precisely the target task of random forests, which use squared error as a splitting

criterion. We further compare to other literature on estimation using random forests in Section 6.1.

A key aspect of handling general CSOs, as we do, is dealing with general cost functions and con-

straints and targeting the expected cost of our decision rather than the error in estimating z∗(x).

2. The Unconstrained Case

We begin by studying the unconstrained case as it is simpler and therefore more instructive.

Throughout this section, we let Z = Rd. We extend to the more general constrained case in Sec-

tion 3. To develop our StochOptForest algorithm, we start by considering the StochOptTree algo-

rithm, which we will then run many times to create our forest. To motivate our StochOptTree

algorithm, we will first consider an idealized splitting rule for an idealized policy, then consider

approximating it using perturbation analysis, and then consider estimating the approximation

using data. Each of these steps constitutes one of the next subsections.

2.1. The Oracle Splitting Rule

Given a partition, τ : Rp → {1, . . . ,L}, of Rp into L regions, consider the policy zτ (x) ∈

arg minz∈Z E [c(z;Y )I [τ(X) = τ(x)]] that, for each x, optimizes costs only for (X,Y ) where X falls

in the same region as x. Note that this policy is hypothetical and not implementable in practice

given just the data as it involves the true joint distribution of (X,Y ). We wish to learn a partition

τ described by a binary decision tree with nodes of the form “xj ≤ θ?” such that it leads to a

well-performing policy zτ (x), that is, has small risk E [c(zτ (X);Y )]. Finding the best τ over all

trees of a given depth is generally a very hard problem, even if we knew the distributions involved.

To simplify it, suppose we fix a partition τ and we wish only to refine it slightly by taking one of

its regions, say R0 = τ−1(L), and choosing some j ∈ {1, . . . , p}, θ ∈R to construct a new partition

τ ′ with τ ′(x) = τ(x) for x /∈ R0, τ
′(x) = L for x ∈ R1 = R0 ∩ {x ∈ Rp : xj ≤ θ}, and τ ′(x) = L+ 1

for x ∈R2 =R0 ∩ {x ∈Rp : xj > θ}. That is, we further subpartition the region R0 into the subre-

gions R1,R2. We would then be interested in finding the choice of (j, θ) leading to minimal risk,

E [c(zτ ′(X);Y )] =E [c(zτ ′(X);Y )I [X /∈R0]]+E [c(zτ ′(X);Y )I [X ∈R1]]+E [c(zτ ′(X);Y )I [X ∈R2]].

Notice that the first term is constant in the choice of the subpartition and only the second and



Kallus and Mao: Stochastic Optimization Forests 7

third terms matter in choosing the subpartition. We should therefore seek the subpartition that

leads to the minimal value of

Coracle(R1,R2) =
∑

j=1,2E [c(zτ ′(X);Y )I [X ∈Rj]] =
∑

j=1,2 minz∈Z E [c(z;Y )I [X ∈Rj]] , (8)

where the last equality holds because the tree policy zτ ′ makes the best decision within each region

of the new partition. We call this the oracle splitting criterion. Searching over choices of (j, θ)

in some given set of possible options, the best refinement of τ is given by the choice minimizing

this criterion. If we start with the trivial partition, τ(x) = 1 ∀x, then we can recursively refine it

using this procedure in order to grow a tree of any desired depth. When c(z;y) = 1
2
‖z− y‖22 and

the criterion is estimated by replacing expectations with empirical averages, this is precisely the

regression tree algorithm of Breiman et al. (1984), in which case the estimated criterion is easy to

compute as it is simply given by rescaled within-region variances of Yi. For general c(z;y), however,

computing the criterion involves solving a general stochastic optimization problem that may have

no easy analytical solution (even if we approximate expectations with empirical averages) and it

is therefore hard to do quickly for many, many possible candidates for (j, θ), and correspondingly

it would be hard to grow large forests of many of these trees.

2.2. Perturbation Analysis of the Oracle Splitting Criterion

Consider a region R0 ⊆Rp and its candidate subpartition R0 =R1 ∪R2, R1 ∩R2 =∅. Let

vj(t) = min
z∈Z

f0(z) + t (fj(z)− f0(z)) , zj(t)∈ arg min
z∈Z

f0(z) + t (fj(z)− f0(z)), (9)

where fj(z) =E [c(z;Y ) |X ∈Rj] , j = 0,1,2, t∈ [0,1].

The optimization objective function in Eq. (9) is obtained from perturbing the objective function

f0 (z) in the region R0 towards the objective function fj (z) in a subregion Rj for j = 1,2. The

perturbation magnitude is quantified by the parameter t ∈ [0,1]. Note that the optimal values of

fully perturbed problems (i.e., t= 1) in two subregions determine the oracle splitting criterion:

Coracle(R1,R2) = p1v1(1) + p2v2(1), where pj = P (X ∈Rj) , (10)

and ideally we would use these values to evaluate the quality of the subpartition. But we would

rather not have to solve the stochastic optimization problem involved in Eq. (9) at t= 1 repeatedly

for every candidate subpartition. Instead, we would rather solve the single problem v1(0) = v2(0),

i.e., the problem corresponding to the region R0, and try to extrapolate from there what happens

as we take t→ 1, i.e., the limiting problem corresponding to each subregion Rj for each candidate

split. To solve this, we consider the perturbation of the problem vj(t) at t = 0 as we increase it
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infinitesimally and use this to approximate vj(1). As long as the distribution of Y |X ∈R0 is not

too different from that of Y |X ∈Rj, this would be a reasonable approximation.

First, we note that a first-order perturbation analysis would be insufficient. We can show that

under appropriate continuity conditions and if arg minz∈Z f0(z) = {z0} is a singleton, we would have

vj(t) = (1− t)f0(z0) + tfj(z0) + o(t). 1 We could use this to approximate vj(1)≈ fj(z0) by plugging

in t= 1 and ignoring the higher-order terms, which makes intuitive sense: if we only perturb the

objective slightly, the optimal solution is approximately unchanged and we only need to evaluate

its new objective value. This would lead to the approximate splitting criterion p1v1(1) + p2v2(1)≈

p1f1(z0) + p2f2(z0). However, since p1f1(z0) + p2f2(z0) = p0f0(z0), this is ultimately unhelpful as it

does not at all depend on the choice of subpartition.

Instead, we must conduct a finer, second-order perturbation analysis in order to understand the

effect of the choice of subpartition on risk. The next result does this for the unconstrained case.

Theorem 1 (Second-Order Perturbation Analysis: Unconstrained). Fix j = 1,2. Sup-

pose the following conditions hold:

1. f0(z) and fj(z) are twice continuously differentiable;

2. The inf-compactness condition: there exist constants α and t0 ∈ (0,1] such that the sublevel

sets
{
z ∈Rd : f0(z) + t (fj(z)− f0 (z))≤ α

}
are nonempty and uniformly bounded for t∈ [0, t0);

3. f0(z) has a unique minimizer z0 over Rd, and ∇2f0(z0) is positive definite;

Then

vj(t) = (1− t)f0(z0) + tfj(z0)−
1

2
t2∇fj(z0)>

(
∇2f0(z0)

)−1∇fj(z0) + o(t2), (11)

zj(t) = z0− t
(
∇2f0(z0)

)−1∇fj(z0) + o(t). (12)

Theorem 1 gives the second order expansion of the optimal value vj(t) and the first order expan-

sion of any choice of zj(t) that attains vj(t) around t= 0. These expansions quantify the impact

on the optimal value and optimal solution when infinitesimally perturbing the objective function

in region R0 towards that in a subregion Rj. One crucial condition of Theorem 1 is that the objec-

tive functions are sufficiently smooth (condition 1). This condition holds for any subpartition if

we assume that E [c(z;Y ) |X] is almost surely twice continuously differentiable, which is trivially

satisfied if the cost function c(z;Y ) is a almost surely twice continuously differentiable function

of z. However, even if c(z;Y ) is nonsmooth (e.g., Examples 1 and 3), E [c(z;Y ) |X] may still be

sufficiently smooth if the distribution of Y |X is continuous (see examples in Section 2.3 below).

In particular, one reason we defined the oracle splitting criterion using the population expectation

1 This is, for example, a corollary of Theorem 1, although weaker continuity conditions would be needed for this
first-order statement. We omit the details as the first-order analysis is ultimately not useful.
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rather than empirical averages is that for many relevant examples such as newsvendor and CVaR

only the population objective may be smooth while the sample objective may be nonsmooth and

therefore not amenable to perturbation analysis.

Condition 2 ensures that if we only slightly perturb the objective function f0, optimal solutions of

the resulting perturbed problem are always bounded, and never escape to infinity. This means that

without loss of generality we can restrict our attention to a compact subset of Rd. This compactness

condition and the smoothness condition (condition 1) together ensure the existence of optimal

solutions for any optimization problem corresponding to t ∈ [0, t0). In addition, this condition is

crucial for ensuring z(t)→ z0 as t→ 0 (Bonnans and Shapiro 2000, Proposition 4.4). One sufficient

condition for this is that any optimal solution z∗(X) in Eq. (1) is almost surely bounded, e.g., when

conditional quantiles of all item demands in Example 1 are almost surely bounded. Finally, the

regularity condition (condition 3) is obviously satisfied if f0(z) is strictly convex, which is implied

if either E [c(z;Y ) |X] or c(z;Y ) is almost surely strictly convex. Condition 3 may be satisfied

even if the cost function c(z;Y ) is not strictly convex: e.g., it holds for the newsvendor problem

(Example 1) when the density of Yl |X ∈R0 is positive at z0 for all l= 1, . . . , d.

2.3. Approximate Splitting Criteria

Theorem 1 suggests two possible approximations of the oracle splitting criterion.

Approximate Risk Criterion. If we use Eq. (11) to extrapolate to t= 1, ignoring the higher-

order terms, we arrive at

vj(1)≈ fj(z0)−
1

2
∇fj(z0)>

(
∇2f0(z0)

)−1∇fj(z0).
Taking a weighted average of this over j = 1,2, we arrive at an approximation of the oracle splitting

criterion Coracle in Eq. (8). Since p1f1(z0) + p2f2(z0) = p0f0(z0) is constant in the subpartition, we

may ignore these terms, leading to the following criterion:

Capx-risk(R1,R2) =− 1
2

∑
j=1,2 pj∇fj(z0)

>
(∇2f0(z0))

−1∇fj(z0). (13)

By strengthening the conditions in Theorem 1, we can in fact show that this approximation

becomes arbitrarily accurate as the partition becomes finer.

Theorem 2. Suppose the following conditions hold for both j = 1,2:

1. Condition 1 of Theorem 1.

2. Condition 2 of Theorem 1 holds for all t∈ [0,1].

3. f0(z)+t (fj(z)− f0 (z)) has a unique minimizer z0 and ∇2 (f0(z) + t (fj(z)− f0 (z))) is positive

definite at this unique minimizer for all t∈ [0,1].
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4. E [c(z;Y ) |X = x] is twice Lipschitz-continuously differentiable in x.

Then ∣∣Coracle(R1,R2)− p0f0(z0)−Capx-risk(R1,R2)
∣∣= o(D2

0),

where D0 = supx,x′∈R0
‖x−x′‖2 is the diameter of R0.

Again, note that p0f0(z0) is constant in the choice of subpartition.

Approximate Solution Criterion. Since vj(1) = fj(zj(1)), we can also approximate vj(1) by

approximating zj(1) and plugging it in. Using Eq. (12) to extrapolate zj(t) to t= 1 and ignoring

the higher-order terms, we arrive at the following approximate criterion:

Capx-soln(R1,R2) =
∑

j=1,2 pjfj

(
z0− (∇2f0(z0))

−1∇fj(z0)
)
. (14)

Notice this almost looks like applying a Newton update to z0 in the minz fj(z) problem, namely,

the solution that optimizes the second order expansion of fj(z) at z0. However, a naive Newton

update will require to invert the Hessian for fj, which varies across different candidate splits. In

contrast, the criterion Capx-soln requires the Hessian for f0, meaning we only have to invert a Hessian

once for all candidate subpartitions.

For unconstrained CSO problems in this section, we may also apply the GenRandForest algo-

rithm in Athey et al. (2019) to solve their first order optimality condition. The GenRandForest

algorithm uses a similar way to approximate optimal solutions in split subregions. It chooses splits

to maximize the difference between approximate solutions in two subregions induced by each can-

didate split, as their proposition 1 shows that this approximately minimizes the total mean squared

errors of the resulting estimated optimal solutions. In contrast, by using Capx-soln, we choose splits

to minimize the expected cost of the approximate optimal solutions, thereby directly targeting the

ultimate objective in CSO problems. More importantly, we tackle the constrained case (Section 3)

while the GenRandForest algorithm cannot. In Section 4 and Appendix C.1, we show the impact

of both of these differences can be significant in practice when optimization is the aim.

In the following theorem, we show that the approximate solution criterion also becomes arbi-

trarily accurate as the partition becomes finer.

Theorem 3. Suppose the assumptions of Theorem 2 hold. Then

∣∣Coracle(R1,R2)−Capx-soln(R1,R2)
∣∣= o(D2

0).
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Revisiting the Running Examples. The approximate criteria above crucially depend on

the gradients ∇f1(z0),∇f2(z0) and Hessian ∇2f0(z0). We next study these quantities for some

examples.

Example 5 (Derivatives with Smooth cost). If c(z;y) is itself twice continuously differ-

entiable for every y, then under regularity conditions that enable the exchange of derivative and

expectation (e.g., |(∇c (z;Y ))`| ≤W for all z in a neighborhood of z0 with E [W |Xi ∈Rj]<∞),

we have ∇fj(z0) =E [∇c (z0;Y ) |Xi ∈Rj] and ∇2f0(z0) =E [∇2c (z0;Y ) |Xi ∈R0].

Example 1, Cont’d (Derivatives in Multi-Item Newsvendor). In many cases, c(z;y) is

not smooth, as in the example of the multi-item newsvendor cost in Eq. (4). In this case, it suffices

that the distribution of Y | X ∈ Rj is continuous for gradients and Hessians to exist. Then, we

can show that (∇fj(z0))l = (αl+βl)P (Yl ≤ z0,l |X ∈Rj)−βl and (∇2f0(z0))ll = (αl+βl)µ0,l(z0) for

l= 1, . . . , d, j = 1,2, and (∇2f0(z0))ll′ = 0 for l 6= l′, where µ0,l is the density function of Yl |X ∈R0.

So, ∇2f0(z0) is invertible as long as µ0,l(z0)> 0 for l= 1, . . . , d.

Example 2, Cont’d (Derivatives in Variance-based Portfolio Optimization). The

cost function in Eq. (5) is an instance of Example 5 (smooth costs). Using block notation to separate

the first d decision variables from the final single auxiliary variable, we verify in Proposition 10

that

∇fj(z0) = 2

[
E [Y Y > |X ∈Rj]z0,1:d−E [Y |X ∈Rj]z0,d+1

z>0,1:d (E [Y |X ∈R0]−E [Y |X ∈Rj])

]
, (15)

∇2f0(z0) = 2

[
E [Y Y > |X ∈R0] −E [Y |X ∈R0]
−E [Y > |X ∈R0] 1

]
. (16)

Notice ∇2f0(z0) is invertible if and only if the covariance matrix Var (Y |X ∈R0) is invertible.

Example 3, Cont’d (Derivatives in CVaR-based Portfolio Optimization). Like the

newsvendor cost in Eq. (4), the CVaR cost in Eq. (7) is not smooth either. Again we assume that

the distribution of Y |X ∈Rj is continuous. Then, when z0 6= 0 (Proposition 11 in Appendix G),

∇fj(z0) =
1

α

[
−E
[
Y I
[
Y 0 ≤ qα0 (Y 0)

]
|X ∈Rj

]
P
(
qα0 (Y 0)−Y 0 ≥ 0 |X ∈Rj

)
−α

]
, Y 0 := Y >z0,1:d (17)

∇2f0(z0) =
µ0

(
qα0 (Y 0)

)
α

[
E
[
Y Y > | Y 0 = qα0 (Y 0),X ∈R0

]
−E
[
Y | Y 0 = qα0 (Y 0),X ∈R0

]
−E
[
Y > | Y 0 = qα0 (Y 0),X ∈R0

]
1

]
. (18)

where µ0 is the density function of Y 0 given X ∈R0, and qα0 (Y 0) as the α-level quantile of Y 0 given

X ∈R0. Notice that the Hessian matrix ∇2f0(z0) may not necessarily be invertible. This arises due

to the homogeneity of returns in scaling the portfolio, so that second derivatives in this direction

may vanish. This issue is corrected when we consider the constrained case where we fix the scale

of the portfolio (see Section 3).2

2 Indeed the unconstrained case for the portfolio problem is in fact uninteresting: the zero portfolio gives minimal
variance, and CVaR may be sent to infinity in either direction by infinite scaling.



12 Kallus and Mao: Stochastic Optimization Forests

Re-optimizing auxiliary variables. In Examples 2 and 3, z contains both auxiliary variables

and decision variables, and we construct the approximate criteria based on gradients and Hessian

matrix with respect to both sets of variables. A natural alternative is to re-optimize the auxil-

iary variables first so that the objective only depends on decision variables, and then evaluate the

corresponding gradients and Hessian matrix. That is, if we partition z = (zdec, zaux), then we can

re-define fj(z
dec) = minzaux E [c((zdec, zaux);Y ) |X ∈Rj] and zdec0 = arg minzdec f0(z

dec). The pertur-

bation analysis remains largely the same by simply using the gradients and Hessian matrix for the

redefined fj(z
dec) at zdec0 . This leads to an alternative approximate splitting criterion. However,

evaluating the gradients ∇fj(zdec0 ) for j = 1,2 would now involve repeatedly finding the optimal

solution arg minzaux E [c((zdec0 , zaux);Y ) |X ∈Rj] for all candidate splits. See Appendix E for details.

Since the point of our approximate criteria is to avoid re-optimization for every candidate

split, this alternative is practically relevant only when re-optimizing the auxiliary variables is very

computationally easy. For example, in Example 2, zdec corresponds to the first d variables and

re-optimizing the auxiliary (d+ 1)th variable amounts to computing the mean of Y >zdec0 in each

subregion, which can be done quite efficiently as we vary the candidate splits.

2.4. Estimating the Approximate Splitting Criteria

The benefit of our approximate splitting criteria, Capx-soln(R1,R2), Capx-risk(R1,R2) in Eqs. (13)

and (14), is that they only involve the solution of z0. Thus, if we want to evaluate many different

subpartitions of R0, we need only solve for z0 once, compute (∇2f0(z0))
−1 once, and then only

re-compute ∇fj(z0) for each new subpartition. Still, this involves quantities we do not actually

know since all of these depend on the joint distribution of (X,Y ). We therefore next consider the

estimation of these approximate splitting criteria from data.

Given estimators Ĥ0, ĥ1, ĥ0 of ∇2f0(z0), ∇f1(z0), ∇f2(z0), respectively (see examples below), we

can construct the estimated approximate splitting criteria as

Ĉapx-risk(R1,R2) =−
∑

j=1,2

nj
n
ĥ>j Ĥ

−1
0 ĥj, (19)

Ĉapx-soln(R1,R2) =
∑

j=1,2
1
n

∑n

i=1 I [Xi ∈Rj] c
(
ẑ0− Ĥ−10 ĥj; Yi

)
, (20)

where nj =
∑n

i=1 I [Xi ∈Rj].
Under appropriate convergence of Ĥ0, ĥ1, ĥ2, these estimated criteria respectively converge to the

population approximate criteria Capx-risk(R1,R2) and Capx-soln(R1,R2) in Section 2.3, as summarized

by the following self-evident proposition.

Proposition 1. If ‖Ĥ−10 − (∇2f0(z0))
−1 ‖F = op(1), ‖ĥj −∇fj(z0)‖2 = Op(n

−1/2) for j = 1,2,

then

Ĉapx-risk(R1,R2) = Capx-risk(R1,R2) +Op(n
−1/2).
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If also
∣∣∣ 1n∑n

i=1 I [Xi ∈Rj] c
(
ẑ0− Ĥ−10 ĥj;Yi

)
− pjfj

(
z0− (∇2f0(z0))

−1∇fj(z0)
)∣∣∣ = Op(n

−1/2) for

j = 1,2, then

Ĉapx-soln(R1,R2) = Capx-soln(R1,R2) +Op(n
−1/2).

If we can find estimators that satisfy the conditions of Proposition 1, then together with Theorems 2

and 3, we will have shown that the estimated approximate splitting criteria can well approximate

the oracle splitting criterion when samples are large and the partition is fine. It remains to find

appropriate estimators.

General Estimation Strategy. Since the gradients and Hessian to be estimated are evaluated

at a point z0 that is itself unknown, a general strategy is to first estimate z0 and then estimate the

gradients and Hessian at this estimate. This is the strategy we follow in the examples below.

Specifically, we can first estimate z0 by its sample analogue:

ẑ0 ∈ arg min
z∈Z

p̂0f0(z), where p̂0f0(z) :=
1

n

n∑
i=1

I [Xi ∈R0] c(z;Yi). (21)

Under standard regularity conditions, the estimated optimal solution ẑ0 above is consistent (see

Lemma 1 in Appendix G). Then, given generic estimators Ĥ0(z) of ∇2f0(z) at any one z and

similarly estimators ĥj(z) of ∇fj(z) for j = 1,2, we let Ĥ0 = Ĥ0(ẑ0) and ĥj = ĥj(ẑ0). Examples of

this follow.

Revisiting the Running Examples. We next discuss examples of possible estimates Ĥ0, ĥj

that can be proved to satisfy the conditions in Proposition 1 (see Propositions 12 to 15 in

Appendix G for details). All of our examples use the general estimation strategy above.

Example 5, Cont’d (Estimation with Smooth Cost). If c(z;y) is itself twice continu-

ously differentiable in z for every y, we can simply use Ĥ0(ẑ0) = 1
n0

∑n

i=1 I [Xi ∈R0]∇2c (ẑ0;Yi) and

ĥj(ẑ0) = 1
nj

∑n

i=1 I [Xi ∈Rj]∇c (ẑ0;Yi). In Proposition 15 in Appendix G, we show that these satisfy

the conditions of Proposition 1 thanks to the smoothness of c(z;y). Example 2 is one example of

this case, which we discuss below. Example 4 is another example.

In particular for the squared error cost function in Example 4 (c(z;y) = 1
2
‖z− y‖22), we show in

Proposition 9 in Appendix G that, using the above Ĥ0, ĥj, we have

1

n

n∑
i=1

I [Xi ∈R0] c(ẑ0;Yi) + Ĉapx-risk(R1,R2) = Ĉapx-soln(R1,R2) =
∑
j=1,2

nj
2n

d∑
l=1

Var({Yi,l :Xi ∈Rj}),

which is exactly the splitting criterion used for regression by random forests, namely the sum of

squared errors to the mean within each subregion. Notice the very first term is constant in R1,R2.
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Example 1, Cont’d (Estimation in Multi-Item Newsvendor). In the previous

section we saw that the gradient and Hessian depend on the cumulative distribution

and density functions, respectively. We can therefore estimate the gradients by ĥj,`(ẑ0) =

αl+βl
nj

∑n

i=1 I [Xi ∈Rj, Yl ≤ ẑ0,l]−βl, and the Hessian using, for example, kernel density estimation:

Ĥ0,ll(ẑ0) = αl+βl
njb

∑n

i=1 I [Xi ∈R0]K((Yi,l − ẑ0,l)/b), where K is a kernel such as K(u) = I
[
|u| ≤ 1

2

]
and b is the bandwidth, and Ĥ0,ll′(ẑ0) = 0 for l 6= l′. We show the validity of these estimates in

Proposition 12 in Appendix G.

Example 2, Cont’d (Estimation in Variance-based Portfolio Optimization). With

ẑ0 = {ẑ0,1, . . . , ẑ0,d, ẑ0,d+1} given by solving the problem Eq. (21), the gradient and Hessian in

Eqs. (15) and (16) can be estimated by their sample analogues:

ĥj(ẑ0) = 2

[ 1
nj

∑n

i=1 I [Xi ∈Rj]YiY >i ẑ0,1:d− 1
nj

∑n

i=1 I [Xi ∈Rj]Yiẑ0,d+1

ẑ>0,1:d

(
1
n0

∑n

i=1 I [Xi ∈R0]Yi− 1
nj

∑n

i=1 I [Xi ∈Rj]Yi
) ]

,

Ĥ0(ẑ0) = 2

[ 1
n0

∑n

i=1 I [Xi ∈R0]YiY
>
i − 1

n0

∑n

i=1 I [Xi ∈R0]Yi
− 1
n0

∑n

i=1 I [Xi ∈R0]Y
>
i 1

]
.

These estimators are in fact specific examples of the general smooth case in Example 5, so they

too can be analyzed by Proposition 15 in Appendix G.

Example 3, Cont’d (Estimation in CVaR-based Portfolio Optimization). It is

straightforward to estimate the gradient in Eq. (17):

ĥj(ẑ0) =
1

α

[
− 1
nj

∑n

i=1 I [Y >i ẑ0,1:d ≤ q̂α0 (Y >ẑ0,1:d),Xi ∈Rj]Yi
1
nj

∑n

i=1 I [Y >i ẑ0,1:d ≤ q̂α0 (Y >ẑ0,1:d),Xi ∈Rj]−α

]
(22)

where q̂α0 (Y >ẑ0,1:d) is the empirical α-level quantile of Y >ẑ0,1:d based on data in R0. The Hessian

matrix in Eq. (18) is more challenging to estimate, since it involves many conditional expectations

given the event Y >z0,1:d = qα0 (Y >z0,1:d). In principle, we could estimate these nonparametrically by,

for example, kernel smoothing estimators (e.g., Chen and Leng 2015, Fan and Yao 1998, Loubes

et al. 2019, Yin et al. 2010). For simplicity and since this is only used as an approximate splitting

criterion anyway, in our empirics we can consider a parametric approach instead, which we will use

in our empirics in Section 4.1: if Y |X ∈R0 has a Gaussian distribution N (m0,Σ0), then

E
[
Y | Y >z0,1:d = qα0 (Y >z0,1:d),X ∈R0

]
=m0 + Σ0z0,1:d

(
z>0,1:dΣ0z0,1:d

)−1
(qα0 (Y >z0,1:d)−m>0 z0,1:d),

(23)

Var
(
Y | Y >z0,1:d = qα0 (Y >z0,1:d),X ∈R0

)
= Σ0−Σ0z0,1:d

(
z>0,1:dΣ0z0,1:d

)−1
z>0,1:dΣ0, (24)

and E [Y Y > | Y >z0,1:d = qα0 (Y >z0,1:d),X ∈R0] can be directly derived from these two quantities. We

can then estimate these quantities by plugging in ẑ0 for z0, the empirical mean estimator of Y for

m0, the empirical variance estimator of Y for Σ0, and the empirical α-level quantile of Y >ẑ0,1:d
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Algorithm 1 Recursive procedure to grow a StochOptTree (unconstrained case)

1: procedure StochOptTree.Fit(region R0, data D, depth, id)

2: ẑ0← Minimize(
∑

(Xi,Yi)∈D
I [Xi ∈R0] c(z;Yi), z ∈Z) . Solve Eq. (21)

3: Ĥ0← Estimate ∇2f0(z) at z = ẑ0

4: CandSplit← GenerateCandidateSplits(R0, D) . Create the set of possible splits

5: Ĉ←∞

6: for (j, θ)∈ CandSplit do . Optimize the estimated approximate criterion

7: (R1, R2)← (R0 ∩{x∈Rp : xj ≤ θ}, R0 ∩{x∈Rp : xj > θ})

8: (ĥ1, ĥ2)← Estimate ∇f1(z), ∇f2(z) at z = ẑ0

9: C← Ĉapx-risk/apx-soln(R1, R2) . Compute the criterion using Ĥ0, ĥ1, ĥ2,D

10: if C < Ĉ then (Ĉ, ĵ, θ̂)← (C, j, θ)

11: if Stop?((ĵ, θ̂), R0, D, depth) then

12: return (x 7→ id)

13: else

14: LeftSubtree ← StochOptTree.Fit(R0 ∩{x∈Rp : xj ≤ θ}, D, depth+ 1, 2id)

15: RightSubtree ← StochOptTree.Fit(R0 ∩{x∈Rp : xj > θ}, D, depth+ 1, 2id+ 1)

16: return (x 7→ xj ≤ θ ? LeftSubtree(x) : RightSubtree(x))

for qα0 (Y >z0,1:d), all based only on the data in R0. Finally, we can estimate µ0 (qα0 (Y >z0,1:d)) by

a kernel density estimator 1
n0b

∑n

i=1 I [Xi ∈R0]K ((Y >i ẑ0,1:d− q̂α0 (Y >ẑ0,1:d))/b). Although the Gaus-

sian distribution may be misspecified, the resulting estimator is more stable than and easier to

implement than nonparametric estimators (especially considering that it will be used repeatedly

in tree construction) and it can still approximate the relative scale of entries in the Hessian matrix

reasonably well. In Section 4.1, we empirically show that our method based on these approximate

estimates works well even if the Gaussian model is misspecified. If it happens to be correctly spec-

ified, we can also theoretically validate that the estimator satisfies the conditions of Proposition 1

(see Proposition 14 in Appendix G).

2.5. The Stochastic Optimization Tree and Forest Algorithms

With the estimated approximate splitting criteria in hand, we can now describe our StochOptTree

and StochOptForest algorithms. Specifically, we will first describe how we use our estimate approx-

imate splitting criteria to build trees, which we will then combine to make a forest that leads to a

CSO decision policy ẑ(x) as in Eq. (3).

StochOptTree Algorithm. We summarize the tree construction procedure in Algorithm 1.

We will extend Algorithm 1 to the constrained case in Section 3. This procedure partitions a
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generic region, R0, into two children subregions, R1,R2, by an axis-aligned cut along a certain

coordinate of covariates. It starts with solving the optimization problem within R0 according to

Eq. (21), and then finds the best split coordinate ĵ and cutoff value θ̂ over a set of candidate splits

by minimizing3 the estimated approximate risk criterion in Eq. (19) or the estimated approximate

solution criterion in Eq. (20). Once the best split (ĵ, θ̂) is found, R0 is partitioned into the two

subregions accordingly, and the whole procedure continues on recursively until a stopping criterion.

There are a few subroutines to be specified. First, there is the optimization of ẑ0. Depending on

the structure of the problem, different algorithms may be appropriate. For example, if c(z;y) is the

maximum of several linear functions, a linear programming solver may be used. More generally,

since the objective has the form of a sum of functions, methods such as stochastic gradient descent

(aka stochastic approximation; Nemirovski et al. 2009) may be used. Second, there is the estimation

of Ĥ0, ĥ1, ĥ2, which was discussed in Section 2.4. Third, we need to generate a set of candidate splits,

which can be done in different ways. The original RandForest algorithm (Breiman 2001) randomly

selects a pre-specified number of distinct coordinates j from {1, . . . , p} without replacement, and

considers θ to be all midpoints in the Xi,j data, which exhausts all possible subpartitions along

each selected coordinate. Another option is to consider a random subset of cutoff values, possibly

enforcing that the sample sizes of the corresponding two children nodes are balanced, as in Denil

et al. (2014). This approach not only enforces balanced splits, which is important for statistical

guarantees (see Theorem 5), but it also reduces the computation time. Finally, we need to decide

when to stop the tree construction. A typical stopping criterion is when each child region reaches a

pre-specified number of data points (e.g., Breiman 2001). Depth may also additionally be restricted.

Note that in an actual implementation if the stopping criterion would have stopped regardless of

the split chosen, we can short circuit the call and skip the split optimization.

Notice that ẑ0 and Ĥ0 need only be computed once for each recursive call to StochOpt-

Tree.Fit, while ĥ1, ĥ2 need to be computed for each candidate split. All estimators ĥj discussed

in Section 2.4 take the form of a sample average over i ∈ Rj, for j = 1,2, and therefore can be

easily and quickly computed for each candidate split. Moreover, when candidate cutoff values

consist of all midpoints of the sample values in the jth coordinate, such sample averages can be

efficiently updated by proceeding in sorted order, where only one datapoint changes from one side

of the split to the other at a time, similarly to how the original random forest algorithm maintains

within-subpartition averages of outcomes and their squares for each candidate split.

Notably, the tree construction computation is typically dominated by the step of searching

best splits. This step can be implemented very efficiently with our approximate criteria, since

3 Ties can be broken arbitrarily.
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Algorithm 2 Procedure to fit a StochOptForest

1: procedure StochOptForest.Fit(data D, number of trees T )

2: for j = 1 to T do

3: Itreej , Idecj ← Subsample({1, . . . , |D|})

4: τj← StochOptTree.Fit(X , {(Xi, Yi)∈D : i∈ Itreej }, 1, 1) . Fit tree using the

sub-dataset Itreej

5: return {(τj, Idecj ) : j = 1, . . . , T}

Algorithm 3 Procedure to make a decision using StochOptForest

1: procedure StochOptForest.Decide(data D, forest {(τj, Idecj ) : j = 1, . . . , T}, target x)

2: w(x)← Zeros(|D|) . Create an all-zero vector of length |D|

3: for j = 1, . . . , T do

4: N (x)←{i∈ Idecj : τj(Xi) = τj(x)} . Find the τj-neighbors of x among the data in Idecj

5: for i∈N (x) do wi(x)←wi(x) + 1
|N (x)|T . Update the sample weights

6: return Minimize(
∑

(Xi,Yi)∈D
wi(x)c(z;Yi), z ∈Z) . Compute the forest policy Eq. (3)

they only involve estimation of gradients and simple linear algebra operations (Section 2.3). Only

one optimization and Hessian computation is needed at the beginning of each recursive call. In

particular, we do not need to solve optimization problems repeatedly for each candidate split, which

is the central aspect of our approach and which enables the construction of large-scale forests.

StochOptForest Algorithm. In Algorithm 2, we summarize the algorithm of building forests

using trees constructed by Algorithm 1. It involves an unspecified subsampling subroutine. For

each j = 1, . . . , T , we consider possibly subsampling the data on which we will fit the jth tree

(Itree) as well as the data which we will later use to generate localized weights for decision-making

(Idec). There are different possible ways to construct these subsamples. Following the original

random forest algorithm, we may set Itreej = Idecj equal to a bootstrap sample (a sample of size

n with replacement). Alternatively, we may set Itreej = Idecj to be sampled as a fraction of n

without replacement, which is an approach adopted in more recent random forest literature as it

is more amenable to theoretical analysis and has similar empirical performance (eg., Mentch and

Hooker 2016, Scornet et al. 2015). Alternatively, we may also sequentially sample Itreej , Idecj without

replacement so the two are disjoint (e.g., take a random half of the data, then further split it at

random into two). The property that the two sets are disjoint, Itreej ∩Idecj =∅, is known as honesty
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and it is helpful in proving statistical consistency of random forests (Athey et al. 2019, Denil et al.

2014, Wager and Athey 2018).4

Final Decision. In Algorithm 3, we summarize the algorithm of making a decision at new query

points x once we have fit a forest, that is, compute the forest policy, Eq. (3). Although the tree

algorithm we developed so far, Algorithm 1, is for the unconstrained case, we present Algorithm 3

in the general constrained case. In a slight generalization of Eq. (3), we actually allow the data

weighted by each tree to be a subset of the whole dataset (i.e., Idecj ), as described above. Namely,

the weights wi(x) computed by Algorithm 3 are given by

wi(x) =
1

T

T∑
j=1

I
[
i∈ Idecj , τj(Xi) = τj(x)

]∑n

i′=1 I
[
i∈ Idecj , τj(Xi′) = τj(x)

] , (25)

which is slightly more general than Eq. (3). Algorithm 3 then optimizes the average cost over the

data with sample weights given by wi(x). Note that under honest splitting, for each single tree,

each data point is used in either placing splits or constructing weights, but not both. However,

since each tree uses an independent random subsample, every data point will participate in the

construction of some trees and also the computation of weights by other trees. Therefore, all

observations contribute to both forest construction and the weights in the final decision making.

In this sense, despite appearances, honest splitting is not “wasting” data.

The weights {wi(x)}ni=1 generated by Algorithm 3 represent the average frequency with which

each data point falls into the same terminal node as x. The measure given by the sum over i of wi(x)

times the Dirac measure at Yi can be understood as an estimate for the conditional distribution

of Y |X = x. However, in contrast to non-adaptive weights such as given by k-nearest neighbors

or Nadaraya–Watson kernel regression (Bertsimas and Kallus 2014), which non-parametrically

estimate this conditional distributional generically, our weights directly target the optimization

problem of interest, focusing on the aspect of the data that is relevant to the optimization problem,

which makes our weights much more efficient. Moreover, in contrast to using weights given by

standard random forests, which targets prediction with minimal squared error, our weights target

the right downstream optimization problem.

3. The Constrained Case

In this section, we develop approximate splitting criteria for training forests for general CSO

problems with constraints as described at the onset in Eq. (1). Namely, in this section we let Z ={
z ∈Rd : hk(z) = 0, k= 1, . . . , s, hk(z)≤ 0, k= s+ 1, . . . ,m

}
be as in Eq. (2). The oracle criterion

4 We may similarly use the ≈ 1/e fraction of the data not selected by the bootstrap sample to construct Idec
j to

achieve honesty, but this is again uncommon as it is difficult to analyze.
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we target remains Coracle(R1,R2) as in Eq. (8) with the crucial difference that now Z need not

be Rd and may be constrained as above. We then proceed as in Section 2: we approximate the

oracle criterion in two ways, then we estimate the approximations, and then we use these estimated

splitting criteria to construct trees. Since the perturbation analysis in the presence of constraints

is somewhat more cumbersome, this section will be more technical. But the high level idea remains

the same as the simpler unconstrained case in Section 2.

3.1. Perturbation Analysis of the Oracle Splitting Criterion

Again, consider a region R0 ⊆ Rd and its candidate subpartition R0 =R1 ∪R2, R1 ∩R2 = ∅. We

define vj(t), zj(t), fj(t) as in Eq. (9) with the crucial difference that now Z is constrained. The

oracle criterion is given by Coracle(R1,R2) = p1v1(1) + p2v2(1), as before. We again approximate

v1(1), v2(1) by computing v1(t), v2(t) at t = 0 (where they are equal and do not depend on the

subpartition) and then extrapolating from there by leveraging second order perturbation analysis.

We present our key perturbation result for this below.

Theorem 4 (Second-Order Perturbation Analysis: Constrained). Fix j = 1,2. Suppose

the following conditions hold:

1. f0(z), fj(z) are twice continuously differentiable.

2. The problem corresponding to f0(z) has a unique minimizer z0 over Z.

3. The inf-compactness condition: there exist constants α and t0 ∈ (0,1] such that the sublevel

set {z ∈Z : f0(z) + t (fj(z)− f0 (z))≤ α} is nonempty and uniformly bounded over t∈ [0, t0).

4. z0 is associated with a unique Lagrangian multiplier ν0 that also satisfies the strict comple-

mentarity condition: ν0,k > 0 if k ∈Kh(z0), where Kh(z0) = {k : hk(z0) = 0, k= s+ 1, · · · ,m} is the

index set of active at z0 inequality constraints.

5. The Mangasarian-Fromovitz constraint qualification condition at z0:

∇h1(z0), . . . , ∇hs(z0) are linearly independent, and

∃dz s.t. ∇hk(z0)dz = 0, k= 1, . . . , s, ∇hk(z0)dz < 0, k ∈Kh(z0).

6. Second order sufficient condition:

d>z

(
∇2f0(z0) +

m∑
k=1

ν0,k∇2hk(z0)

)
dz > 0 ∀dz ∈C(z0) \ {0},

where C(z0) is the critical cone defined as follows:

C(z0) =
{
dz : d>z ∇hk(z0) = 0, for k ∈ {1, . . . , s}∪Kh(z0)

}
.
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Let dj∗z be the first part of the (unique) solution of the following linear system of equations:[
(∇2f0(z0) +

∑m

k=1 ν0,k∇2hk(z0)) ∇HKh
>

(z0)
∇>HKh(z0) 0

][
djz
ξ

]
=

[
−(∇fj(z0)−∇f0(z0))

0

]
, (26)

where ∇>H(z0) ∈ Rm×d is the matrix whose kth row is (∇hk(z0))>, and ∇>HKh(z0) ∈ Rs+|Kh(z0)|

consists only of the rows corresponding to equality and active inequality constraints.

Then

vj(t) = (1− t)f0(z0) + tfj(z0) (27)

+
1

2
t2

{
dj∗>z

(
∇2f0(z0) +

m∑
k=1

ν0,k∇2hk(z0)

)
dj∗z + 2dj∗>z (∇fj(z0)−∇f0(z0))

}
+ o(t2),

zj(t) = z0 + tdj∗z + o(t). (28)

Due to the presence of constraints, the approximations of optimal value vj(t) and optimal solu-

tion zj(t) in Theorem 4 require more complicated conditions than those in Theorem 1. In particular,

we need to incorporate constraints in the inf-compactness conditions (condition 3) and second

order sufficient condition (condition 6), impose uniquenss and strict complementarity regularity

conditions for the Lagrangian multiplier (condition 4), and assume a constraint qualification con-

dition (condition 5). The coefficient matrix on the left hand side of the linear system of equations

in Eq. (26) is invertible due to the second order sufficient condition in condition 6 (see Bertsekas

1995, Proposition 4.2.2), which ensures that dj∗z uniquely exists. These regularity conditions guar-

antee that the optimal value vj(t) and optimal solution zj(t) vary smoothly with perturbations

to the optimization objective, and they rule out problems whose optimal solution may change

non-smoothly. For example, optimal solutions to linear programming problems may change to

completely different vertices under even tiny perturbations to linear objectives. 5 Nevertheless,

Theorem 4 may still apply to some problems with linear costs and nonlinear constraints such as

the quadratically constrained problems in Section 6.2 of Elmachtoub and Grigas (2017).

Concretely, the constraints in Examples 1 to 3 all ensure that the decision variables are bounded.

So the inf-compactness condition (condition 3) is satisfied when there is no additional auxiliary

variable (e.g., the newsvendor problem), or when the auxiliary variables at CSO optimal solutions

are almost surely bounded. (e.g., conditional expectation or conditional quantiles of optimal port-

folio returns in Example 2 or 3, respectively) Moreover, since these constraints are all simple affine

constraints, in Appendix G Proposition 16, we verify that they satisfy a stronger linear indepen-

dence constraint qualification condition than condition 5, which ensures the unique existence of

5 In the context of such linear problems, Elmachtoub et al. (2020) propose to optimize the oracle criterion by exhaustive
search. As noted before, this is computationally burdensome, and indeed their focus is on smaller-scale models,
with particular benefits to interpretability. In Proposition 17 in Appendix G, we formally argue that their criterion
coincides with what we called the oracle criterion in Eq. (8) in the case of linear costs.
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Lagrangian multiplier v0 for the solution z0 (condition 4). Since our problems in Examples 1 to 3

are all convex, the second order sufficient condition (condition 6) can ensure z0 to be the unique

optimal solution (condition 2). This second order sufficient condition trivially holds when the Hes-

sian matrix is positive definite and the constraints are affine, e.g., under the conditions we discuss

in Section 2.3 for Examples 1 and 2. In contrast to these conditions, the strict complementary

slackness in condition 4 is generally more difficult to verify exactly. However, even if it does not

hold exactly, splitting criteria based on the approximations in Eqs. (27) and (28) may still capture

signals relevant to CSO problems, especially compared to RandForest, which completely ignores

the optimization problem structure.

Note that Theorem 1 is a special case of Theorem 4 without constraints (m= 0). Indeed, without

the constraints, the regularity conditions for the Lagrangian multiplier and constraint qualification

condition are vacuous, and conditions 3 and 6 reduce to the inf-compactness and positive definite

Hessian matrix conditions in Theorem 1 respectively. And, without constraints, the linear equation

system in Eq. (26) consists only of the part corresponding to djz and the solution exactly coincides

with the linear term in Eq. (14). Theorem 4 can itself be viewed as a special case of our Theorem 6

in Appendix A, where we tackle CSO problems with both deterministic and stochastic constraints.

3.2. Approximate Splitting Criteria

Analogous to Theorem 1 for unconstrained problems, Theorem 4 for constrained problems also

motivates two different approximations of the oracle splitting criterion Coracle(R1,R2) = p1v1(1) +

p2v2(1). Extrapolating Eq. (27) and Eq. (28) to t= 1 and ignoring the high order terms gives an

approximate risk and approximate solution criterion, respectively:

Capx-risk(R1,R2) =
1

2

∑
j=1,2

pjd
j∗>
z

(
∇2f0(z0) +

m∑
k=1

ν0,k∇2hk(z0)

)
dj∗z +

∑
j=1,2

pjd
j∗>
z (∇fj(z0)−∇f0(z0)) ,

(29)

Capx-soln(R1,R2) =
∑
j=1,2

pjfj
(
z0 + dj∗z

)
, (30)

where in the approximate risk criterion, Capx-risk(R1,R2), we again omit from the extrapolation the

constant term
∑

j=1,2 pj (fj(z0)) = p0f0(z0), as it does not depend on the choice of subpartition.

Estimating the Approximate Splitting Criteria. We next discuss a general strategy to

estimate our more general approximate splitting criteria in Eqs. (29) and (30) that handle con-

straints. First, we start by estimating z0 by its sample analogue as in Eq. (21), where crucially now

Z is constrained. Then we can estimate the gradients of fj at z0 for j = 0,1,2 and the Hessians of

f0 at z0 in the very same way that gradients of fj and Hessians of f0 were estimated in Section 2.3,

namely, estimating them at ẑ0, which is now simply solved with constraints. Gradients and Hessians
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of hk at z0 can be estimated by simply plugging in ẑ0, since the functions hk are known determin-

istic functions. We can estimate Kh(z0) by Kh(ẑ0), i.e., the index set of the inequality constraints

that are active at ẑ0. Next, we can estimate ν0 by solving ∇̂f0(ẑ0) +
∑m

k=1 νk∇hk(ẑ0) = 0 subject

to νk ≥ 0 for k ∈ Kh(ẑ0) and νk = 0 for k ∈ {s + 1, . . . ,m} \Kh(ẑ0), or alternatively by using a

solver for Eq. (21) that provides associated dual solutions. Finally, we can estimate dj∗z by solving

Eq. (26) with estimates plugged in for unknowns. With all of these pieces in hand, we can estimate

our approximate criteria in Eqs. (29) and (30).

Revisiting the Running Examples. In Section 2.4, we discussed how to estimate gradients

and Hessians of the objectives of our running examples. Now we revisit the examples and discuss

their constraints. The nonnegativity and capacity constraints in Example 1 can be written as

h1(z
′) =

∑d

l=1 zl ≤ C, hl+1(z
′) = −zl ≤ 0, l = 1, . . . , d, and the simplex constraint in Examples 2

and 3 as h1(z) =
∑d

l=1 zl = 1, hl+1(z) = −zl ≤ 0, l = 1, . . . , d. These are all deterministic linear

constraints: their gradients are known constants and their Hessians are zero.

3.3. Construction of Trees and Forests

It is straightforward to now extend the tree fitting algorithm, Algorithm 1, to the constrained

case. First, we note that in line 2 that solves for ẑ0, we use a constrained feasible set Z. Then,

we update line 3 to estimate ∇f0(z0),∇2f0(z0),∇hk(z0),∇2hk(z0),Kh(z0), ν0. Next, we update line

8 to estimate ∇fj(z0), dj∗z . And, finally, we update line 9 to use the general splitting criteria in

Eqs. (29) and (30) where we plug in these estimates for the unknowns.

A crucial point that is key to the tractability of our method even in the presence of constraints

is that the only step that requires any re-computation for each candidate split is the estimation

of ∇fj(z0), dj∗z . As in the unconstrained case, estimators for ∇fj(z0) usually consist of very simple

sample averages over the data in the region Rj so they can also be very quickly computed. Moreover,

only the right-hand side defining dj∗z in Eq. (26) varies with each candidate split, so the equation

can be presolved using an LU decomposition or a similar approach. Therefore, we can easily and

quickly consider many candidate splits, and correspondingly grow large-scale forests.

Algorithm 2 for fitting the forest remains the same, since the only change in fitting is in the

consideration of tree splits. And, Algorithm 3 was already written in the general constrained setting

and so also remains the same. In particular, after growing a forest where tree splits take the

constraints into consideration and given this forest, we impose the constraints in Z when computing

the final forest-policy decision, ẑ(x).

4. Empirical Study

In this section we study our algorithm and baselines empirically to investigate the value of

optimization-aware construction of forest policies and the success of our algorithm in doing so.
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Figure 2 Results for the CVaR portfolio optimization problem.

Method n= 100 n= 200 n= 400

StochOptTree (oracle) 41.41 (5.43) 165.03 (15.77) 695.88 (83.91)

StochOptTree (apx-risk) 0.26 (0.08) 0.68 (0.36) 1.68 (0.54)

StochOptTree (apx-soln) 0.22 (0.05) 0.70 (0.20) 2.24 (0.33)

Table 1 Average running time in seconds over 10 repetitions (and standard deviations) of constructing one tree
for different algorithms in the CVaR optimization problem.

We focus on constrained CSO problems with CVaR objectives, including one simulated portfolio

optimization problem and one real-data shortest path problem. In Appendices C.1, C.4 and C.5, we

show additional experimental results for unconstrained multi-item newsvendor problems (Exam-

ple 1) and constrained variance-based portfolio optimization problems (Example 2).

4.1. CVaR Portfolio Optimization

We first apply our method to the CVaR portfolio optimization problem (see Example 3).

We consider d = 3 assets and p = 10 covariates. The covariates X are drawn from a stan-

dard Gaussian distribution, and the asset returns are independent and are drawn from

the conditional distributions Y1 | X ∼ 1 + 0.2exp(X1) − LogNormal (0,1− 0.5I [−3≤X2 ≤−1]),

Y2 | X ∼ 1 − 0.2X1 − LogNormal (0,1− 0.5I [−1≤X2 ≤ 1]), and Y3 | X ∼ 1 + 0.2|X1| −

LogNormal (0,1− 0.5I [1≤X2 ≤ 3]). We seek an investment policy z(·)∈Rd that for each x aims to

achieve smallest risk CVaR0.2 (Y >z(x) |X = x), or equivalently the 0.8-CVaR of the portfolio loss

−Y >z (x), while satisfying the simplex constraint, i.e., Z =
{
z ∈Rd :

∑d

l=1 zl = 1, zl ≥ 0
}

.
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We compare our StochOptForest algorithm using either the apx-risk or apx-soln approximate

criterion for constrained problems (Eqs. (29) and (30)) to five benchmarks, where all algorithms

are identical except for their splitting criterion. The first two benchmarks are our StochOptFor-

est algorithm using apx-risk and apx-soln criteria that (mistakenly) ignore the constraints (i.e.,

Eqs. (13) and (14)). The third benchmark is a modified6 GenRandForest algorithm (Athey et al.

2019) applied to the first order optimality condition for the CVaR optimization problem with-

out the simplex constraint, as GenRandForest is designed for unconstrained problems. The fourth

benchmark is the regular RandForest, which uses the squared error splitting criterion in Example 4

and targets the predictions of asset mean returns, and the fifth is the RandSplitForest algorithm,

which chooses splits uniformly at random (without using the portfolio return data). For our approx-

imate criteria (both constrained and unconstrained) and the GenRanForest criterion, we use the

parametric Hessian estimator in Eqs. (23) and (24) (which is misspecified in this example). We do

not compare to StochOptForest with the oracle splitting criterion since it is too computationally

intensive as we investigate further below (see Table 1). In all forest algorithms, we use an ensemble

of 500 trees. To compute ẑ0 in our StochOptTree algorithm (Algorithm 1 line 2) as well as to

compute the final forest policy for any forest, we formulate the constrained CVaR optimization

problem as a linear programming problem (Rockafellar et al. 2000) and solve it using Gurobi 9.0.2.

We evaluate each forest policy ẑ(·) by its relative risk compared to the optimal z∗(·), namely the

raio of E [CVaR0.2 (Y >ẑ(x) |X) | D] over E [CVaR0.2 (Y >z∗(x) |X)], which we approximate using a

very large testing dataset. See Appendix C.2 for more details.

Figure 2a shows the distribution of the relative risk over 50 replications for each forest algo-

rithm across different training set size n ∈ {100,200,400,800}. The dashed boxes corresponding

to “Constraint = no” indicate that the associated method does not take constraints into account

when choosing the splits, which applies to all four benchmarks. (Note that all methods consider

constraints in computing a the final forest-policy decision, ẑ(x).) We can observe that our Sto-

chOptForest algorithms with approximate criteria that incorporate constraints achieve the best

relative risk over all sample sizes, and their relative risks decrease considerably when the training

set size n increases. In contrast, the relative risks of all benchmark methods decrease much more

slowly. Therefore, both failing to target the cost function structure (GenRandForest,7 RandForest,

6 Note we cannot apply the original GenRandForest algorithm to solve unconstrained CVaR optimization: every step
of tree construction requires computing the optimal unconstrained solution in the region R0 to be partitioned, which
however does not exist because without constraints the CVaR objectives can be made arbitrarily small. We thus have
to slightly modify the GenRandForest algorithm to compute the optimal constrained solution in every region to be
partitioned, from which we then compute the GenRandForest splitting criterion for the first order optimality condition
of unconstrained CVaR optimization. We furthermore regularize the Hessian matrix as it is not generally invertible,
as discussed after Eq. (18), which would make the GenRandForest splitting criterion undefined. See Appendix C.2.

7 GenRandForest criterion partly captures the cost function structure as it incorporates the corresponding first order
optimality condition information, but it chooses splits to maximize the discrepancy of approximate solutions in the
induced subregions, rather than optimize their decision costs directly.
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and RandSplitForest) and failing to take constraints into account (all five benchmark methods)

can significantly undermine the ultimate decision-making quality. In contrast, our StochOptForest

algorithms based on the approximate criteria effectively account for both so they perform much

better. Moreover, our results show that even though the normal distribution assumption used to

derive our Hessian estimator (Eqs. (23) and (24)) is wrong in our experiment, our proposed forest

policies still achieve superior performance, which illustrates the robustness of our methods.

To further understand these results, we also consider feature importance measures based on

each forest algorithm. In Appendix B, we extend the impurity-based feature importance measures

(Hastie et al. 2001) to our StochOptForest method. Recall there are p= 10 covariates, and the first

two determine the distributions of asset returns. The first covariate influences the conditional mean

of return distributions more, while the second one influences more the distribution tails. In Fig. 2b,

we visualize the feature importance measures for our proposed method and RandForest when

n = 800. The importance measures are normalized for each method so that the most important

feature has an importance value equal to 1. We can observe that our StochOptForest methods

(incorporating constraints) value the second covariate more than the first one, which shows the

importance of signals in the return distribution tails for CVaR optimization. In contrast, the

RandForest algorithm puts more importance on the first covariate, validating that it is designed to

target the prediction of asset mean returns. There do not exist feature importance measures for the

GenRandForest algorithm. Instead, we show its average frequency of splitting on each covariate

in Appendix C.2 Fig. 7. We observe that the GenRandForest method splits on noise covariates

(i.e., the 3rd to 10th covariate) more frequently than our proposals, which may partly explain its

inferior performance.

We also consider the average running time of our proposed algorithm in Table 1. We compare our

StochOptTree algorithm with approximate criteria incorporating constraints to the oracle splitting

criterion (using empirical expectations). We consider 10 repetitions, in each of which we apply

each tree algorithm with the same specifications to construct a single tree on the same training

data with varying size n ∈ {100,200,400}. We run this experiment on a MacBook with 2.7 GHz

Intel Core i5 processor. We can see that the running time of our StochOptTree algorithm with

apx-risk criterion is hundreds of times faster than the StochOptTree algorithm with the oracle

criterion that must solve the constrained CVaR optimization problems for each candidate split.

The computational gains of our approximate criteria relative to the oracle criterion also grow with

larger sample size n (from around 200 times faster at n = 100 to more than 400 times faster at

n= 400), as the CVaR optimization problem becomes slower to solve.

Since the StochOptForest algorithm with the oracle criterion is extremely slow, we can only

evaluate its performance in a small-scale experiment in Fig. 8 in Appendix C.2. Focusing on
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(a) The downtown
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Figure 3 Set up and results for the CVaR shortest path problem using Uber Movement data.

constructing small forests of only 50 trees with n up to 400, we find the performance of the oracle

criterion is marginally better than our approximate criteria. However, our approximate criteria

are much more computationally efficient, which enables us to leverage larger datasets for better

performance. In Appendix C.2, we also show that similar results hold for portfolio optimization with

a linear combination of CVaR and mean return as the objective (Fig. 9) and for CVaR optimization

with asset returns drawn from normal distributions (Fig. 10). We include additional empirical

results on minimizing the variance of investment portfolios (see Example 2) in Appendix C.4, and

show that the performance of our approximate criteria is close to the oracle criterion.

4.2. CVaR Shortest Path Problem Using Uber Movement Data

We next demonstrate our methods in a shortest path problem, using traveling times data in Los

Angeles (LA) collected from Uber Movement (https://movement.uber.com). We focus on 45

census tracts in downtown LA (see Fig. 3a), collecting historical data of average traveling times

from each of these census tracts to its neighbors during five periods in each day (AM Peak, Midday,

PM Peak, Evening, Early Morning) in 2018 and 2019. This results in 3650 observations of traveling

times Yj for j = 1, . . . ,93 edges on a graph with 45 nodes. We consider p = 197 covariates X

including weather, period of day and other calendar features, and lagged traveling times. We aim

to go from an eastmost census tract (Aliso Village) to a westmost census tract (MacArthur Park)

in this region (green and and red marks in Fig. 3a, receptively), through a path between them,

encoded by z ∈ {0,1}d with d= 93, where zj indicates whether we travel on edge j. In particular,

we consider the CSO problem z∗(x) ∈ arg minz(·)∈Z CVaR0.8 (Y >z (x) |X = x) where Z is given

by standard flow preservations constraints, with a source of +1 at Aliso Village and a sink of

https://movement.uber.com
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−1 at MacArthur Park. See Appendix C.3 for more details about data collection, optimization

formulation, and other experiment specifications.

We again compare different forest algorithms as we do in Section 4.1, but to reduce computation

we only train them up to 100 trees. We consider four different sample sizes ranging from 0.5-year to

the whole 2-year data. For each sample size, we randomly split the corresponding dataset into two

halves as training data Dtrain and testing data Dtest respectively. Note that the distribution of Y |X

is unknown, so we can no longer benchmark the performance of each forest policy ẑ (·) trained on

Dtrain against the CSO optimal policy z∗(·) as in Section 4.1. Instead, we compare their percentages

of realized improvement, termed the coefficient of prescriptiveness in Bertsimas and Kallus (2014).

Namely, we consider the ratio between each method’s improvement over the context-free sample

average approximation (SAA), which finds a single solution ẑSAA to optimize the average cost on

the whole training data, over the improvement over SAA of the (infeasible) perfect-information

shortest path, which in each test sample computes the shortest path for the observed travel time

Y . Notice that more effective forest policies have higher percentages of realized improvement, but

even known-distributions optimal policy z∗(·) to Eq. (1) cannot generally achieve 100% realized

improvement as the covariates do not perfectly predict travel times.

In Fig. 3b, we show the results across 50 realizations of random train-test splits. We observe that

as the sample sizes increase, all methods tend to perform better. In particular, our StochOptForest

algorithm with either the apx-risk or apx-soln criterion (incorporating constraints) outperforms all

benchmarks across all sample sizes, with the clearest improvement seen using the apx-risk criterion

and in smaller datasets. Overall the results show that incorporating the optimization problem

structure in the tree construction can lead to improvements, when optimization is the aim.

5. Asymptotic Optimality

In this section, we prove that under some regularity conditions, our forest policy asymp-

totically attains the optimal risk, namely, E [c(ẑn(x);Y ) |X = x] converges in probability to

minz∈Z E [c(z;Y ) |X = x] as n→∞ for any x∈X .

It is well known that forests algorithms with adaptively constructed trees are extremely difficult

to analyze, so some simplifying regularity conditions are often needed to make the theoretical

analysis tractable (Biau and Scornet 2016). In this section, we assume the tree regularity conditions

introduced by Athey et al. (2019), Wager and Athey (2018).

Assumption 1 (Regular Trees). The trees constructed satisfy the following regularity condi-

tions for constants ω ∈ (0,0.2], π ∈ [0,1), and an integer kn > 0:

1. Every tree split puts at least a fraction ω of observations in the parent node into each child

node. Every leaf node in every tree contains between kn and 2kn− 1 observations.
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2. For an index set J ⊆ {1, . . . , p} such that E [c(z;Y ) |X] = E [c(z;Y ) |XJ ] for all z ∈ Z, for

each leaf of each tree and for each j ∈ J , the average probability of splitting along feature xj is

bounded below by π/p, averaging over nodes on the path from the root to the leaf and marginalizing

over any randomization of candidate splits (and conditioning on the data).

3. Each tree grows on a subsample of size sn drawn randomly without replacement from the whole

training data, and it is honest, i.e., Itreej ∩Idecj 6= ∅ with |Itreej |+ |Idecj |= sn for j = 1, . . . , T .

Condition 1 in Assumption 1 specifies that the stopping criterion must ensure a minimal leaf size

and that all candidate splits be balanced in that they put at least a constant fraction of observations

in each child node. Without this condition, even when sample size n is large, some imbalanced

splits may run out of data so quickly that some leaves are not sufficiently partitioned and thus

too large. As a result, the estimation bias of the objective function may fail to vanish even when

n→∞. Condition 2 requires the trees to split along every relevant direction at sufficient frequency,

which ensures that the leaves of the trees become small in all relevant dimensions of the feature

space as n gets large. Relevant features are described by those such that the random cost of any

decision is mean-independent of X given only these relevant features, which is trivially satisfied

for J = {1, . . . , p}. Condition 3 specifies that we use subsample splitting, i.e., the data used to

construct each tree (Itreej ) and the data used to construct localized weights from this tree for final

decision-making (Idecj ) are disjoint. This so-called honesty property plays a critical role in the

theoretical analysis of forest algorithms but it may be largely technical. In Section 4, we empirically

show that our forest policies appear to achieve asymptotic optimality even without using honest

subsample splitting. In Appendix C.6, we further illustrate in Fig. 14 that StochOptForest with

no subsample splitting (i.e., Idecj = Itreej ) performs better than the honest version with splitting,

which can be explained as honest trees using fewer data for tree construction and decision-making.

In the following assumption, we further impose some regularity conditions on the cost function

c(z;y) and the distribution of Y |X.

Assumption 2 (Distribution Regularity). Fix x∈X and assume the following conditions:

1. The marginal distribution of X has a density, its support X is compact, and the density is

bounded away from 0 and ∞ on X .

2. There exist a constant α and a compact set C ⊆ Z such that, {z ∈ Z : E [c(z;Y ) |X = x] ≤

α} ⊆ C and {z ∈Z :
∑n

i=1wi(x)c(z;Yi)≤ α} ⊆ C for wi(x) in Eq. (25) almost surely eventually.

3. There exists a function b(y) such that for any z, z′ ∈ C, y ∈Y, |c(z;y)− c(z′;y)| ≤ b(y)‖z− z′‖2.

Moreover, there exists a positive constant C̃ such that E [b(Y ) |X = x]≤ C̃ <∞.

4. There exist constants Lc,Lb such that supz∈C supx′∈X
∣∣E [c(z;Y ) |XJ = xJ ]−E

[
c(z;Y ) |XJ = x′J

]∣∣≤
Lc
∥∥xJ −x′J∥∥2 and supx′∈X

∣∣E [b(Y ) |XJ = xJ ]−E
[
b(Y ) |XJ = x′J

]∣∣≤Lb∥∥xJ −x′J∥∥2.
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5. There exist positive constants η, η′,C such that

sup
z∈C

E
[
eη|c(z;Y )−E[c(z;Y )|X=x]| |X = x

]
≤C <∞, E

[
eη
′|b(Y )−E[b(Y )|X=x]| |X = x

]
≤C <∞.

One important condition in Assumption 2 is that the cost function c(z;y) is Lipschitz-continuous

in z on the compact set C. In the following proposition, we validate that Examples 1 to 3 all satisfy

this condition.

Proposition 2. For any z, z′ ∈ C:

1. The cost function c(z;y) =
∑d

l=1 max{αl(zl − yl), βl(yl − zl)} for the newsvendor problem in

Example 1 satisfies that |c(z;y)− c(z′;y)| ≤
√
dmax{αl, βl}‖z− z′‖2.

2. The cost function c(z;y) = (y>z1:d− zd+1)
2

for the variance-based portfolio optimization prob-

lem in Example 2 satisfies that |c(z;y)− c(z′;y)| ≤ 4
√

2(supz̃∈C ‖z̃‖2)max{1,‖y‖22}‖z− z′‖2.

3. The cost function c(z;y) = 1
α

max
{
zd+1− y>z1:d, 0

}
−zd+1 for the CVaR optimization problem

in Example 3 satisfies that |c(z;y)− c(z′;y)| ≤
(
‖y‖2 + 1 + 1

α

)
‖z− z′‖2.

Under the assumptions above, we can prove that the forest policy is asymptotically optimal.

Theorem 5. Let x ∈ X be fixed. If Assumptions 1 and 2 hold at the given x and if kn→∞,

sn/kn→∞, logT/kn→ 0, and Tkn/sn→ 0, then

sup
z∈C

∣∣∣∣∣
n∑
i=1

wi(x)c(z;Yi)−E [c(z;Y ) |X = x]

∣∣∣∣∣ p→ 0. (31)

It follows that any choice ẑn(x)∈ arg minz∈Z
∑n

i=1wi(x)c(z;Yi) satisfies that as n→∞,

∣∣∣E [c(ẑn(x);Y ) |X = x]−min
z∈Z

E [c(z;Y ) |X = x]
∣∣∣ p→ 0. (32)

Theorem 5 provides asymptotic optimality of ẑn(x) point-wise in x. The result can straightfor-

wardly be extended to be uniform in x if we simply assume the conditions in Assumption 2 hold

for all x∈X with common constants.

6. Discussion

In this section we offer some discussions. First, we discuss how our work is related to and differs

from work on estimation using localized weights and forests in particular. Then we discuss other

related work on CSO and on integrating prediction and optimization. We discuss additional related

literature about tree models and perturbation analysis in Appendix F.
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6.1. Comparison to Estimation

The idea of using localized weights to estimate parameters given covariate values has a long his-

tory in statistics and econometrics, including applications in local maximum likelihood (Fan et al.

1998, Tibshirani and Hastie 1987), local generalized method of moments (Lewbel 2007), local esti-

mating equation (Carroll et al. 1998) and so on. These early works typically use non-adaptive

localized weights like nearest-neighbor weights or Nadaraya-Watson kernel weights, which only

use the information of covariates. Recently, some literature propose to use forest-based weights

for local parameter estimation (e.g., Athey et al. 2019, Meinshausen 2006, Oprescu et al. 2019,

Scornet 2015), which generalizes the original random forest algorithm for regression and classifica-

tion problems (Breiman 2001) to other estimation problems where the estimand depends on the

X-conditional distribution. These forest-based weights are derived from the proportion of trees in

which each observation falls in the same terminal node as the target covariate value. Since those

trees are adaptively constructed using label data as well, random forest weights are shown to be

more effective in modeling complex heterogeneity in high dimensions than non-adaptive weights.

Recent literature has studied the statistical guarantees of random forests in estimating conditional

expectation functions (see reviews in Biau and Scornet 2016, Wager and Athey 2018), or more

general parameters defined by local estimating equations (Athey et al. 2019, Oprescu et al. 2019).

Among the statistical estimation literature above, closest to our work is Athey et al. (2019), who

propose the GenRandForest algorithm to estimate roots of conditional estimating equations. This

is closely related to our decision making problem, because the optimal solution of unconstrained

CSO is also the root of a conditional estimating equation given by the first order optimality

condition. For example, the optimal solutions of conditional newsvendor problem in Example 1

without constraints are conditional quantiles, which are also considered by Athey et al. (2019) under

the conditional estimating equation framework. For computational efficiency, Athey et al. (2019)

also propose a gradient-based approximation for roots in candidate subpartitions (see discussions

below Eq. (14)), and then find the best split that maximizes the discrepancy of the approximate

roots in the subregions, thereby approximately minimizing the total mean squared error of the

estimated roots (Athey et al. 2019, Proposition 1).

In contrast, our paper has a fundamentally different goal: we target decision-making risk

(expected cost) rather than estimation risk (accuracy). In our apx-risk and apx-soln criteria, we

directly approximate the optimal average cost itself and use this to choose a split, rather than esti-

mation error of the solution. In Appendix C.1, we provide one empirical example of unconstrained

newsvendor problem where the heterogeneity of optimal solution estimation is drastically different

from the heterogeneity of the optimal decision-making, which illustrates the benefit of targeting

decision quality when the decision problem, rather than the estimation problem, is of interest.



Kallus and Mao: Stochastic Optimization Forests 31

Moreover, our methods uniquely accommodate constraints, which are prevalent in decision-making

problems but rare in statistical estimation problems. For constrained CSO, the optimal solution

cannot be characterized by local estimating equations so the GenRandForest algorithm is not appli-

cable. In Section 4, we provided empirical examples of constrained CVaR optimization problems

where the taking into account constraints is key to constructing good trees.

6.2. CSO and Integrating Prediction and Optimization

Our paper builds on the CSO framework, and the general local learning approach, i.e., estimating

the objective (and stochastic constraints in Appendix A) by weighted averages with weights reflect-

ing the proximity of each covariate observation to the target value. Bertsimas and Kallus (2014),

Hanasusanto and Kuhn (2013), Hannah et al. (2010) propose the use of nonparametric weights

that use only the covariate observations X and do not depend on observations of the uncertain

variable Y , such as Nadaraya-Watson weights. Bertsimas and Kallus (2014) formally set up the

CSO framework, propose a wide variety of machine learning methods for local weights construction,

and provide rigorous asymptotic optimality guarantees. In particular, they additionally propose

weights based on decision trees and random forests that incorporate the uncertain variable infor-

mation, and show their superiority when the covariate dimension is high. However, their tree and

forest weights are constructed from standard regression algorithms that target prediction accuracy

instead of downstream decision quality, primarily because targeting the latter would be too compu-

tationally expensive. Our paper resolves this computational challenge by leveraging approximate

criteria that can be efficiently computed.

Optimization problems that have unknown parameters, such as an unknown distribution or a

conditional expectation, are often solved by a two-stage approach: the unknown parameters are

estimated or predicted, then these are plugged in, and then the approximated optimization problem

is solved. The estimation or prediction step is often done independently of the optimization step,

targeting standard accuracy measures such as mean squared error without taking the downstream

optimization problem into account. However, all predictive models make errors and when prediction

and optimization are completely divorced, the error tradeoffs may be undesirable for the end task

of decision-making. To deal with this problem, recent literature propose various ways to tailor the

predictions to the optimization problems.

Elmachtoub and Grigas (2017) study a special CSO problem where c(z;y) = y>z is linear and

constraints are deterministic and known. In this special case, the parameter of interest is the

conditional expectation E [Y |X = x], which forms the linear objective’s coefficients. They propose

to fit a parametric model to predict the coefficients by minimizing a convex surrogate loss of the

suboptimality of the decisions induced by predicted coefficients. Elmachtoub et al. (2020) study the
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same linear CSO problem and instead predict the coefficients nonparametrically by decision trees

and random forests with suboptimality as the splitting criterion. In Appendix G Proposition 17,

we show this criterion is equivalent to what we termed the oracle splitting criterion in Eq. (8) in

the case of linear costs. Since this involves full re-optimization for each candidate split, they are

limited to very few candidate splits, suggesting using one per candidate feature, and they consider

a relatively small number of trees in their forests. In contrast, we consider the general CSO problem

and use efficient approximate criteria, which is crucial for large-scale problems and training large

tree ensembles. Hu et al. (2021) also study linear CSO problems and they show both theoretically

and empirically that with correctly specified models, integrated approaches may perform worse

than the simpler predict-then-optimize approach. Our paper demonstrates the benefit of a forest-

based integrated approach in nonlinear CSO problems, where a predict-then-optimize approach

would have to learn the whole conditional distribution, not just the conditional expectation.

Donti et al. (2017) study smooth convex optimization problems with a parametric model for the

conditional distribution of the uncertain variables (in both objective and constraints) given covari-

ates, and fit the parametric models by minimizing the decision objective directly using gradient

descent methods on the optimization risk instead of the log-likelihood. Wilder et al. (2019) fur-

ther extend this approach to nonsmooth problems by leveraging differentiable surrogate problems.

However, unless the cost function depends on the uncertain variables linearly, the stochastic opti-

mization problem may involve complicated integrals with respect to the conditional distribution

model. In contrast, our paper focuses on nonparametric forest models that cannot be trained by

gradient-based methods, and we can straightforwardly target the CSO using localized weights. Notz

(2020) consider convex optimization problems with nondifferentiable cost functions, and propose a

subgradient boosting algorithm to directly learn a decision policy. While this approach can handle

complex objectives, it can only accommodate very simple constraints like box constraints, as it

is difficult to impose complex constraints on boosting decision policies. In contrast, our approach

based on the CSO framework can readily handle general constraints.

7. Concluding Remarks

In CSO problems, covariates X are used to reduce the uncertainty in the variable Y that affects

costs in a decision-making problem. The remaining uncertainty is characterized by the conditional

distribution of Y |X = x. A crucial element of effective algorithms for learning policies for CSO

from data is the integration of prediction and optimization. One can try to fit generic models that

predict the distribution of Y |X = x for every x and then plug this in place of the true conditional

distribution, but fitting such a model to minimize prediction errors without consideration of the

downstream decision-making problem may lead to ill-performing policies. In view of this, we studied
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how to fit forest policies for CSO (which use a forest to predict the conditional distribution)

in a way that directly targets the optimization costs. The näıve direct implementation of this

is hopelessly intractable for many important managerial decision-making problems in inventory

and revenue management, finance, etc. Therefore, we instead developed efficient approximations

based on second-order perturbation analysis of stochastic optimization. The resulting algorithm,

StochOptForest, is able to grow large-scale forests that directly target the decision-making problem

of interest, which empirically leads to significant improvements in decision quality over baselines.

References

Athey S, Tibshirani J, Wager S (2019) Generalized random forests. The Annals of Statistics 47(2):1148–1178.

Bartlett PL, Long PM, Lugosi G, Tsigler A (2020) Benign overfitting in linear regression.

Belkin M, Hsu D, Ma S, Mandal S (2019) Reconciling modern machine-learning practice and the classical

bias–variance trade-off. Proceedings of the National Academy of Sciences 116(32):15849–15854.

Belkin M, Hsu D, Mitra P (2018) Overfitting or perfect fitting? risk bounds for classification and regression

rules that interpolate.

Bertsekas D (1995) Nonlinear programming. Athena Scientific 48.

Bertsimas D, Gupta V, Kallus N (2018a) Data-driven robust optimization. Mathematical Programming

167(2):235–292.

Bertsimas D, Gupta V, Kallus N (2018b) Robust sample average approximation. Mathematical Programming

171(1-2):217–282.

Bertsimas D, Kallus N (2014) From predictive to prescriptive analytics. arXiv preprint arXiv:1402.5481 .

Bertsimas D, Kallus N (2016) The power and limits of predictive approaches to observational-data-driven

optimization. arXiv preprint arXiv:1605.02347 .

Biau G, Devroye L (2015) Lectures on the Nearest Neighbor Method.

Biau G, Scornet E (2016) A random forest guided tour. Test 25(2):197–227.

Bonnans JF, Shapiro A (2000) Perturbation Analysis of Optimization Problems (New York: Springer).

Breiman L (2001) Random forests. Machine learning 45(1):5–32.

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees (CRC press).

Carroll RJ, Ruppert D, Welsh AH (1998) Local estimating equations. Journal of the American Statistical

Association 93(441):214–227.
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Supplemental Material for

Stochastic Optimization Forests

Appendix A: Contextual Stochastic Optimization with Stochastic Constraints

In Section 3, we analyzed CSO problems with only deterministic constraints. In this section, we further extend

our results and methods to CSO problems with both deterministic and stochastic constraints. Specifically,

we consider CSO problems given by

z∗(x)∈ arg min
z∈Z(x)

E [c(z;Y ) |X = x] , (33)

Z(x) =

z ∈Rd :
gk(z;x) = E [Gk(z;Y ) |X = x] = 0, k= 1, . . . , s,
gk(z;x) = E [Gk(z;Y ) |X = x]≤ 0, k= s+ 1, . . . ,m,
hk′(z) = 0, k′ = 1, . . . , s′, hk′(z)≤ 0, k′ = s′+ 1, . . . ,m′

 ,

where the stochastic constraints (those given by {gk(z;x)}mk=1) depend on the unknown distribution of Y |
X = x and need to be learned from data as well. Note that the constraint set Z(x) now varies with x due to

the stochastic constraints.

Analogously, we consider forest policies of the following form:

ẑ(x)∈ arg min
z∈Ẑ(x)

n∑
i=1

wi(x)c(z;Yi), wi(x) :=
1

T

T∑
j=1

I [τj(Xi) = τj(x)]∑n

i′=1 I [τj(Xi′) = τj(x)]
(34)

Ẑ(x) =

z ∈Rd :

∑n

i=1wi(x)Gk(z;Yi) = 0, k= 1, . . . , s,∑n

i=1wi(x)Gk(z;Yi)≤ 0, k= s+ 1, . . . ,m,
hk′(z) = 0, k′ = 1, . . . , s′, hk′(z)≤ 0, k′ = s′+ 1, . . . ,m′

 .

Notice that Ẑ(x) 6= Z(x) so, unlike the deterministic case, ẑ(x) may violate the constraints of the CSO

problem, i.e., ẑ (x) 6∈ Ẑ (x). In Appendix A.5 we further discuss the nuances and challenges of handling

stochastic constraints and the benefits of our approach as well as possible robust variants.

Examples of stochastic constraints. Example 1, Cont’d (Stochastic Constraints in Multi-

Item Newsvendor). A typical example for stochastic constraints in the multi-item newsvendor problem is

the following stochastic aggregate service level constraint:

Z(x) =

{
z ∈Rd :E

[
d∑
l=1

max{Yl− zl,0} |X = x

]
≤C ′, zl ≥ 0, l= 1, . . . , d

}
, (35)

where C ′ is a constant that stands for the maximal allowable average number of customers experiencing a

stock out across items.

Examples 2 and 3, Cont’d (Stochastic Constraints in Portfolio Optimization). For another

example, we may impose the following mean return constraint with a minimum return of R in the portfolio

optimization:

Z(x) =
{
z ∈Rd+1 : E

[
Y >z1:d |X = x

]
≥R, z1:d ∈∆d

}
. (36)

More generally we can also include in the constraints any number of criteria or weighted combinations of

criteria (mean, variance, CVaR at any level); we need only introduce a separate auxiliary variable for variance

and for CVaR at each level considered. These would all constitute stochastic constraints.
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A.1. Perturbation Analysis

In this section, we develop approximate splitting criteria for training forests for general CSO problems

described in Eq. (33). We extend the oracle splitting criterion in Eq. (8) to accommodate additional stochastic

constraints:

Coracle(R1,R2) =
∑

j=1,2 minz∈Zj
E [c(z;Y )I [X ∈Rj ]] , (37)

Zj =

z :
gj,k(z) = E [Gk(z;Y ) |X ∈Rj ] = 0, k= 1, . . . , s,
gj,k(z) = E [Gk(z;Y ) |X ∈Rj ]≤ 0, k= s+ 1, . . . ,m,
hk′(z) = 0, k′ = 1, . . . , s′, hk′(z)≤ 0, k′ = s′+ 1, . . . ,m′

 .

Again, consider a region R0 ⊆ Rd and its candidate subpartition R0 = R1 ∪R2, R1 ∩R2 = ∅. We define

the following family of optimization problems for t∈ [0,1]:

vj(t) = min
z∈Zj(t)

f0(z) + t (fj(z)− f0 (z)), zj(t)∈ arg min
z∈Zj(t)

f0(z) + t (fj(z)− f0 (z)), j = 1,2, (38)

where Zj(t) =

z :
g0,k(z) + t (gj,k(z)− g0,k(z)) = 0, k= 1, . . . , s,
g0,k(z) + t (gj,k(z)− g0,k(z))≤ 0, k= s+ 1, . . . ,m,
hk′(z) = 0, k′ = 1, . . . , s′, hk′(z)≤ 0, k′ = s′+ 1, . . . ,m′

 , j = 1,2,

fj(z) = E [c(z;Y ) |X ∈Rj ] , gj,k(z) = E [Gk(z;Y ) |X ∈Rj ] , j = 0,1,2, k= 1, . . . ,m.

Note that here only the stochastic constraints (and not the deterministic constraints) are interpolated by t,

since only stochastic constraints vary from R0 to R1, R2.

The oracle criterion is again given by Coracle(R1,R2) = p1v1(1) + p2v2(1). In the following theorem, we

present a general perturbation analysis that enables us to approximate v1(1), v2(1) in presence of both

deterministic and stochastic constraints.

Theorem 6 (Second-Order Perturbation Analysis: Stochastic and Deterministic Constraints).

Fix j = 1,2. Suppose the following conditions hold:

1. f0(z), fj(z), g0,k(z), gj,k(z) for k= 1, . . . ,m are twice continuously differentiable.

2. The problem corresponding to f0(z) has a unique minimizer z0 over Zj(0).

3. The inf-compactness condition: there exist constants α and t0 > 0 such that the constrained level set

{z ∈Zj(t) : f0(z) + t (fj(z)− f0 (z))≤ α} is nonempty and uniformly bounded over t∈ [0, t0).

4. z0 is associated with a unique Lagrangian multiplier (λ0, ν0) that also satisfies the strict complementarity

condition: λ0,k > 0 if k ∈Kg(z0) and ν0,k′ > 0 if k′ ∈Kh(z0), where Kg(z0) = {k : g0,k(z0) = 0, k= s+1, · · · ,m}

and Kh(z0) = {k′ : hk′(z0) = 0, k′ = s′ + 1, · · · ,m′} are the index sets of active at z0 inequality constraints

corresponding to t= 0.

5. The Mangasarian-Fromovitz constraint qualification condition at z0:

∇zg0,k(z0), k= 1, . . . , s are linearly independent,

∇zhk′(z0), k′ = 1, . . . , s′ are linearly independent, and

∃dz s.t. ∇zg0,k(z0)dz = 0, k= 1, . . . , s, ∇zg0,k(z0)dz < 0, k ∈Kg(z0),

∇zhk′(z0)dz = 0, k′ = 1, . . . , s′, ∇zhk′(z0)dz < 0, k′ ∈Kh(z0).
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6. Second order sufficient condition:

d>z L(z0;λ0, ν0)dz > 0 ∀dz ∈C(z0) \ {0},

where L(z;λ, ν) is the Lagrangian for the problem corresponding to t = 0, i.e., L(z;λ, ν) = f0(z) +∑m

k=1 λkg0,k(z) +
∑m′

k′=1 νk′hk′(z) and the critical cone C(z0) is defined as follows:

C(z0) =

{
dz :

d>z ∇g0,k(z0) = 0, for k ∈ {1, . . . , s}∪Kg(z0)
d>z ∇hk′(z0) = 0, for k′ ∈ {1, . . . , s′}∪Kh(z0)

}
.

Define Gj(z0) ∈ Rm as a column vector whose kth element is gj,k(z0), and GKg

j (z0) ∈ Rs+|Kg(z0)| as only

elements corresponding to equality and active inequality constraints. We analogously define Define H(z0) ∈

Rm as a column vector whose kth element is hk(z0), and HKh(z0)∈Rs+|Kh(z0)| as only elements corresponding

to equality and active at z0 inequality constraints.

Then

vj(t) = (1− t)f0(z0) + tfj(z0) + tλ>0 (Gj(z0)−G0(z0)) + o(t2)

+
1

2
t2
{
dj∗>z ∇2

zzL(z0;λ0, ν0)dj∗z + 2dj∗>z
(
∇fj(z0)−∇f0(z0) +

(
∇G>j (z0)−∇G>0 (z0)

)
λ0

)}
, (39)

z(t) = z0 + tdj∗z + o(t), (40)

where dj∗z is the first part of the unique solution of the following linear system of equations:∇2
zzL(z0;λ0, ν0) ∇GKg

0

>
(z0) ∇HKh

>
(z0)

∇>GKg

0 (z0) 0 0
∇>HKh(z0) 0 0

djzξ
η

 (41)

=

− (∇fj(z0)−∇f0(z0))−
(
∇G>j (z0)−∇G>0 (z0)

)
λ0

−
(
GKg

j (z0)−GKg

0 (z0)
)

0

 .
Theorem 6 looks very similar to Theorem 4 except that we need to account for the presence of stochastic

constraints in all conditions, and also in the final perturbation result. Note that if we remove the requirement

on stochastic constraints in the conditions, and set gj,k(z) = 0 for j = 1,2, k= 1, . . . ,m in Eqs. (39) to (41),

then we recover the conclusion in Theorem 4.

A.2. Approximate Splitting Criteria

Eqs. (39) and (40) in Theorem 6 motivate the following two different approximate splitting critera:

Capx-risk(R1,R2) =
1

2

∑
j=1,2

pjd
j∗>
z ∇2

zzL(z0;λ0, ν0)dj∗z (42)

+
∑
j=1,2

pjd
j∗>
z

(
∇fj(z0)−∇f0(z0) +

(
∇G>j (z0)−∇G>0 (z0)

)
λ0

)
,

Capx-soln(R1,R2) =
∑
j=1,2

pjfj
(
z0 + dj∗z

)
, (43)

where in the approximate risk criterion, Capx-risk(R1,R2), we omit from the extrapolation the term∑
j=1,2 pj (fj(z0) +λ>0 (Gj(z0)−G0(z0))) = p0 (f0(z0)−λ>0 G0(z0)), which does not depend on the choice of

subpartition.
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Algorithm 4 Procedure to make a decision using StochOptForest

1: procedure StochOptForest.Decide(data D, forest {(τj, Idecj ) : j = 1, . . . , T}, target x)

2: w(x)← Zeros(|D|) . Create an all-zero vector of length |D|

3: for j = 1, . . . , T do

4: N (x)←{i∈ Idecj : τj(Xi) = τj(x)} . Find the τj-neighbors of x among the data in Idecj

5: for i∈N (x) do wi(x)←wi(x) + 1
|N (x)|T . Update the sample weights

6: Ẑ(x)←

z ∈Rd :

∑
(Xi,Yi)∈D

wi(x)Gk(z;Yi) = 0, k= 1, . . . , s,∑
(Xi,Yi)∈D

wi(x)Gk(z;Yi)≤ 0, k= s+ 1, . . . ,m,

hk′(z) = 0, k′ = 1, . . . , s′, hk′(z)≤ 0, k′ = s′+ 1, . . . ,m′


7: return Minimize(

∑
(Xi,Yi)∈D

wi(x)c(z;Yi), z ∈ Ẑ(x)) . Compute the forest policy Eq. (3)

A.3. Estimating the Approximate Splitting Criteria

To estimate the approximate splitting criteria in Eqs. (42) and (43), we still estimate z0 by its sample

analogue first:

ẑ0 ∈ arg min
z∈Ẑ0

p̂0f0(z), where p̂0f0(z) :=
1

n

n∑
i=1

I [Xi ∈R0] c(z;Yi), (44)

Ẑ0 =

z :

1
n

∑n

i=1Gk(z;Y )I [Xi ∈R0] = 0, k= 1, . . . , s,
1
n

∑n

i=1Gk(z;Y )I [Xi ∈R0]≤ 0, k= s+ 1, . . . ,m,
hk′(z) = 0, k′ = 1, . . . , s′, hk′(z)≤ 0, k′ = s′+ 1, . . . ,m′

 .

Then we can estimate the gradients of fj , gj,k, hk′ at z0, Hessians of f0, g0,k, hk′ at z0, the Lagrangian multipli-

ers λ0, ν0, and the index sets Kg(z0),Kh(z0) of active inequality constraints, and dj∗z as we do in Section 2.4,

namely, by estimating all of them at ẑ0. With all of these pieces in hand, we can finally estimate our

approximate criteria in Eqs. (42) and (43).

Revisiting the Running Examples. We now illustrate the estimation of gradients and Hessians for

stochastic constraints using Eqs. (35) and (36) as examples. The aggregate service level constraint in Eq. (35)

has the same structure as the objective function in Example 1 and so estimating the corresponding gradients

and Hessians can be done in the same way as estimating the objective gradients and Hessians as in Section 2.4.

The minimum mean return constraint in Eq. (36) corresponds to G1(z;Y ) =R−Y >z ≤ 0. Then ∇2gj,1(z0)

is zero and we can estimate gj,1(z0) and ∇gj,1(z0) using simple sample averages, as in Example 5, Cont’d in

Section 2.4.

A.4. Construction of Trees and Forests

It is now possible to extend the tree fitting algorithm, Algorithm 1, to the general CSO problem in Eq. (33).

We now solve ẑ0 in line 2 using Eq. (44) instead, i.e., using the estimated constraint set Ẑ0. Then we

update line 3 to estimate λ0, ν0,Kg(z0),Kh(z0),∇f0(z0),∇2f0(z0),∇g0,k(z0),∇2g0,k(z0),∇hk(z0),∇2hk(z0),

and update line 8 to estimate ∇fj(z0),∇gj,k(z0), dj∗z . And, finally, we update line 9 to use the splitting

criteria Eqs. (42) and (43) with these estimates. Again, Algorithm 2 for fitting the forest remains the same,

since changing the optimization problem only involves how to choose tree splits but not how to combine

the tree. Finally, with the extra stochastic constraints, we need to use Algorithm 4 instead of the previous

Algorithm 3 for the final decision making. The only difference is that we use the forest weights to approximate

the constraint set Ẑ(x) to solve for the final forest-policy decision.
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A.5. Challenges with Stochastic Constraints in CSO

Infeasibility of Stochastic Constraints. In presence of stochastic constraints, we may run

into infeasible problems. Consider the portfolio optimization problem with the constraint Z(x) =

{z ∈Rd+1 :E [Y >z1:d |X = x]≥R, z1:d ∈∆d} as an example. Note that if the return requirement is positive,

R > 0, and the conditional mean return for every asset given X = x is negative, i.e., E [Yl |X = x]< 0, l =

1, . . . , d, then the constraint set Z(x) is empty since we constrain the decisions z1, . . . , zd to be all nonnegative.

Thus the conditional portfolio optimization problem with this constraint set can become infeasible for some

point x, even if the unconditional mean return for every asset is positive so the unconditional stochastic

optimization counterpart is still feasible. This appears as an intrinsic challenge with conditional stochastic

constraints.

However, in some cases, infeasibility may not be an issue, and our forest algorithm can still

provide quality decision rules. For example, in Appendix A.6, we show that our forest policies

still perform well for mean-variance portfolio optimization that allows shortselling, i.e., Z(x) ={
z ∈Rd+1 : E [Y >z1:d |X = x]≥R,

∑d

l=1 zl = 1
}

. This problem is often feasible, since we no longer enforce

the nonnegativity constraints that may be at odd with the conditional mean return constraint.

Violations of Stochastic Constraints. Because the stochastic constraints are not known, we need to

estimate conditional expectations of Gk(z;Y ) at X = x to approximate the constraint set Z(x) for every

query point x. This is much harder than estimating z0, fj(z0), ∇2f0(z0), ∇fj(z0), etc., for a given fixed

R0,R1,R2. It is akin to the difference between estimating a marginal expectation and estimating a whole

regression function. This means that even when given a fixed forest, we may still need to solve nontrivial

estimation subproblems first for final decision-making. If the constraint set is not approximated accurately,

then the resulting decisions may violate the stochastic constraints very often.

In this setting, our approach in constructing a policy was to use the forest weights to also approximate the

stochastic constraints (see Eq. (34) or line 6 in Algorithm 4), and our approach in constructing the forest

was to consider an oracle splitting criterion that enforces only the approximate constraints (Eq. (37)). Note

that for this reason, the oracle splitting criterion might not necessarily encourage splitting on constraint-

determining covariates. Instead, our focus is on considering stochastic constraints in the splitting criterion

for the purpose of approximately assessing the change in risk at constrained solutions. Therefore, we may be

concerned that using forest weights to approximate stochastic constraints may not estimate the constraints

well, and the resulting forest policy may often violate the stochastic constraints. For this reason, our approach

may be most relevant when violation of the stochastic constraints can be tolerated. Despite the potential

weakness of constraint violation, our approach seems to be a reasonable proxy that still works well in

practice (provided that infeasibility is tolerable). See Appendix A.6 for experiments where the constraints

and objective even involve completely different covariates.

Considering more robust variations on our approach in the presence of stochastic constraints to reduce

constraint violation may constitute fruitful future research. Indeed, an inherent issue is that the risk of

constraint violation is not clearly defined – were it infinite making decisions from data is hopeless, and were

it well-defined we may be able to directly address it in the objective. A possible future direction is the
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enforcement of stochastic constraints with high probability with respect to the sampling process by using

distributionally robust constraints, as done for example by Bertsimas et al. (2018a,b) in non-conditional

problems. This may be considered both in the construction of a forest policy given a forest as well as in the

construction of the forest itself. A crucial difference with non-conditional problems is that in addition to the

variance of estimating expectations from a finite sample, which the referenced works tackle, we would also

need to consider the inevitable bias of estimating a conditional expectation at X = x from a sample where the

event X = x is never observed. While the finite-sample variation may be easier to characterize and introduce

robustness for, characterizing the latter bias may involve substantive structural assumptions on how the

distribution of Y | X = x changes with small perturbations to x. And, controlling for such perturbations

non-adaptively (e.g., by bounding bias using a Lipschitz assumption) may be very susceptible to the curse

of covariate dimensionality.

A.6. Experiments: Mean-Variance Portfolio Optimization

In this section, we apply our methods to the mean-variance portfolio optimization problem (see also

Example 2): we seek an investment policy z(·) ∈ Rd that for each x aims to achieve small risk

Var (Y >z(x) |X = x) while satisfying a budget and mean return constraint, i.e., Z(x) = Z(x;R) ={
z ∈Rd :

∑d

l=1 zl(x) = 1,E [Y >z(x) |X = x]≥R
}

. We consider d= 3 assets and p= 10 covariates. The covari-

ates X are drawn from a standard Gaussian distribution, and the asset returns are independent and

are drawn from the conditional distributions Y1 | X ∼ Normal (exp(X1),5− 4I [−3≤X2 ≤−1]), Y2 | X ∼

Normal (−X1,5− 4I [−1≤X2 ≤ 1]), and Y3 |X ∼Normal (|X1|,5− 4I [1≤X2 ≤ 3]).

We compare our StochOptForest algorithm with either the apx-risk and apx-soln approximate criterion for

problems with both deterministic constraints and stochastic constraints (Appendix A.2) to four benchmarks:

our StochOptForest algorithm with apx-risk and apx-soln criteria that ignore the constraints in the forest

construction (Section 2.3), the regular random forest algorithm RandForest (which targets the predictions

of asset mean returns), and the RandSplitForest algorithm that chooses splits uniformly at random. We

do not compare to StochOptForest with the oracle splitting criterion as it is too computationally inten-

sive, as we investigate further below. In all forest algorithms, we use an ensemble of 500 trees where the

tree specifications are the same as those in Appendix C.1. To compute ẑ0 in our StochOptTree algorithm

(Algorithm 1 line 2) as well as to compute the final forest policy for any forest, we use Gurobi 9.0.2 to

solve the linearly-constrained quadratic optimization problem. For each n ∈ {100,200,400,800}, we repeat

the following experiment 50 times. We first draw a training set D of n to fit a forest policy ẑ(·) using

each algorithm. Then we sample 200 query points x0. For each query point x0, we evaluate the condi-

tional risk Var (Y >ẑ(x0) |X = x0,D) using the true conditional covariance matrix Var (Y |X = x0). Note

that the forest policy ẑ(·) may not perfectly satisfy the stochastic constraint for conditional mean return,

i.e., R̂(x0) = E [Y >ẑ(x0) |X = x0,D] may be smaller than the pre-specified threshold R. We therefore bench-

mark its performance against the minimum conditional risk with mean return equal to that of ẑ(·), namely,

z∗(x0; R̂(x0)) = arg minz∈Z(x0;R̂(x0)) Var (Y >z |X = x0), which we compute by Gurobi using the true condi-

tional mean and covariance as input. We then average these conditional risks over the 200 query points x0
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Figure 4 Results for mean-variance portfolio optimization CSO problem.

to estimate E [Var (Y >ẑ(X) |X,D) | D] and E
[
Var

(
Y >z∗(X; R̂(X)) |X,D

)
| D
]
. We define the relative risk

of each forest algorithm for each replication as the ratio of these two quantities.

Figure 4a shows the distribution of the relative risk over replications for each forest algorithm across

different n. The dashed boxes corresponding to “Constraint = no” indicate that the associated method does
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not take constraints into account when choosing the splits, which applies to all four benchmarks. We can

observe that our StochOptForest algorithms with approximate criteria that incorporate constraints achieve

the best relative risk over all sample sizes, and their relative risks decrease considerably when the training set

size n increases. In contrast, the relative risks of RandForest, RandSplitForest, and StochOptForest with the

constraint-ignoring apx-soln criterion decrease very slowly when n increases. Interestingly, in this example, the

performance of StochOptForest algorithm with the constraint-ignoring apx-risk criterion performs similarly

to our proposed algorithms that do take constraints into account when choosing splits.

Figure 4b shows the average frequency of each covariate being selected to be split on in all nodes of all trees

constructed by each algorithm over all replications when n= 800. We note that RandForest, RandSplitForest,

and StochOptForest with the constraint-ignoring apx-soln criterion split much less often on the covariate X2

that governs the conditional variances of asset returns. Since the conditional variances directly determine

the objective function in the mean-variance problem, this roughly explains the inferior performance of these

methods.

We further evaluate how well the estimated policy ẑ(·) from each forest algorithm satisfies the mean return

constraint. In Fig. 4c, we present the distribution of the average magnitude of violation for the conditional

mean return constraint, i.e., E[max{R− R̂(X),0} | D], over replications for each forest algorithm. We can

observe that for small n, all methods have similar average violations, while for large n (n≥ 400), RandForest

appears to achieve the smallest average violation, closely followed by StochOptForest with apx-risk criteria

(incorporating constraints or not). This is consistent with the fact that these methods split more often on the

covariate X1 that governs the conditional mean returns, as seen in Fig. 4b. However, this relative advantage

of RandForest in terms of conditional constraint violation is greatly overshadowed by its bad risk, even

relative to its more constrained mean return (Fig. 4a). More generally, this seeming advantage in constraint

satisfaction is largely due to the fact that RandForest is specialized to predict the conditional mean function

well, which fully determines the constraint. For stochastic constraints involving a nonlinear function of Y ,

we expect RandForest will not satisfy the constraints well just as it fails to do well in the objective here or

in Appendix C.1. (See also Appendix A.5.) In Fig. 4d, we further evaluate the violation magnitude for the

marginal mean return constraint, i.e., max{E[R− R̂(X)],0}, where the expectation inside is averaged over

all 50 replications. We note that the violations for all algorithms are extremely small. This means that the

marginal mean return constraint implied by the conditional constraint, i.e., E [Y >ẑ(X) | D]≥ R, is almost

satisfied for all algorithms.

In Fig. 12 in Appendix C.5, we also evaluate the performance of StochOptForest algorithm with the oracle

criterion in a small-scale experiment, and show that the performance of either apx-soln or apx-risk criterion

for constrained problems is close to the oracle criterion, despite the fact they are much faster to compute.

In Fig. 13 in Appendix C.5, we additionally show that similar results also hold for different mean return

constraint thresholds R.

Appendix B: Variable Importance Measures

In Sections 4 and 5, we show both empirically and theoretically that our StochOptForest algorithm can

achieve good decision-making performance for CSO problems. However, sometimes we may not only seek
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quality decisions, but also hope to identify which covariates are important in determining these decisions. In

this case, measuring the importance of each covariate is very useful.

In prediction tasks, the standard random forest algorithm provides two common ways to measure variable

importance: impurity-based importance measure and permutation-based importance measure. Below we first

describe these two impurity measures for the regular random forest algorithm, and then based on this we

motivate variable importance measures for our StochOptForest algorithm.

The impurity-based importance measure is also called the Mean Decrease in Impurity (MDI; see Section

6.1.2, Louppe 2015), which is based on the impurity measure used in tree splitting, e.g., entropy or Gini

index for classification trees and variance for regression trees. The MDI of each covariate is a weighted sum

of impurity decreases for all tree nodes that split on this covariate, averaged over all trees in a forest. To

formalize it, fix a forest consisting of trees τ1, . . . , τT and for each internal node t in each tree τi (denoted as

t∈ τi with slight abuse of notation), denote its splitting covariate as ĵt, the number of data points reaching

the node as nt, and the impurity decrease due to this split as ∆I(ĵt, t). Then the MDI importance measure

for a covariate Xj can be written as

MDI (j) =
1

T

T∑
i=1

∑
t∈τi

I
[
ĵt = j

]
p̂t∆I(ĵt, t). (45)

where p̂t = nt

n
estimates the probability of an observation reaching the node t.

Another importance measure is based on a permute-and-predict procedure using out-of-bag samples (Hastie

et al. 2001, Section 15.3.2). Suppose we hope to measure the importance of a covariate Xj based on a

given random forest. Then for each tree in this random forest, we first record its prediction accuracy on the

out-of-bag samples (i.e., samples that were not used to build this tree), and then compute its prediction

accuracy again after randomly permuting the Xj observations in the out-of-bag samples. Then we measure

the importance of Xj by the decrease in accuracy due to permuting this covariate, averaged over all trees in

the random forest.

It is natural to consider extending these two types of variable importance measures to our StochOptForest

algorithm. First, consider a direct analogue of the permutation-based importance measure in the decision-

making setting: we evaluate the increase in decision cost due to permuting each covariate in each tree, and

average them over all trees. However, to compute the decisions for out-of-bag samples and evaluate their

costs, we need to solve optimization problems in all leaf regions of each decision tree. This can be very time

consuming when the trees are deep (so they have many leaf regions) and when there are a large number

of trees. Therefore, permutation-based importance measures may often be too computationally intensive for

our proposed algorithm.

Instead, we focus on impurity-based variable importance measures for our proposed algorithm, as it only

requires quantities that are already computed in the tree construction process. Recall that the impurity-

based variable importance measures for the random forest algorithm uses the same impurity measure as that

in the tree splitting criterion (e.g., Gini index, entropy, or variance). This motivates us to view our proposed

tree splitting criteria as the impurity measures. We first consider the oracle splitting criterion in Eq. (8). To

formalize its variable importance measure, fix an internal node t0 of a tree τi that splits on the covariate
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ĵt0 , denote its two children nodes as t1 and t2, and denote the probability of an observation reaching these

nodes as pt0 , pt1 , pt2 respectively (which can be easily estimated by the fractions of samples reaching these

nodes). Viewing these three nodes as regions R0,R1,R2 respectively, a natural way to measure the impurity

decrease due to the split ĵt0 is

∆Ioracle(ĵt0 , t0) = v0 (0)−
(
pt1
pt0

v1 (1) +
pt2
pt0

v2 (1)

)
= v0 (0)− 1

pt0
Coracle (R1,R2) (46)

When using the approximate risk criterion, we note that pt0f0 (z0) + Capx-risk(R1,R2) approximates

Coracle (R1,R2) (see Theorem 2), so naturally the impurity decrease under the the apx-risk criterion is

∆Iapx-risk(ĵt0 , t0) =− 1

pt0
Capx−risk (R1,R2) . (47)

When using the apx-sol criterion, we note that Capx-soln(R1,R2) approximates Coracle (R1,R2) (see Theo-

rem 3), so naturally

∆Iapx-soln(ĵt0 , t0) = v0 (0)− 1

pt0
Capx−soln (R1,R2) . (48)

Depending on which criterion is used in the StochOptForest, we can estimate the corresponding impurity

decrease measure in Eqs. (46) to (48) and plug it into Eq. (45) to quantify the variable importance of each

covariate. Finally, since the importance measures are relative, we normalize them by assigning the largest a

value of 1 and scaling the others accordingly.

Appendix C: Additional Experimental Details

C.1. Multi-item Newsvendor

We here consider an experiment on an unconstrained multi-item newsvendor problem (see Example 1).

We consider d = 2 products and p-dimensional covariates X drawn from a standard Gaussian dis-

tribution. The conditional demand distributions are Y1 | X ∼ TruncNormal(3, exp(X1)) and Y2 | X ∼

TruncNormal(3, exp(X2)), where TruncNormal(µ,σ) is the distribution of W |W ≥ 0 where W is Gaussian

with mean µ and standard deviation σ. The holding costs are α1 = 5, α2 = 0.05 and the backorder costs are

β1 = 100, β2 = 1.

We begin by comparing forest policies using different algorithms to construct the forest. We compare

our StochOptForest algorithm with either the apx-soln or apx-risk approximate splitting criterion to three

benchmarks. All forest-constructing algorithms we consider are identical except for their splitting criterion.

One benchmark is StochOptForest with the brute-force oracle splitting criterion, which uses the empirical

counterpart to Eq. (8) (i.e., E is replaced with 1
n

∑n

i=1) and fully re-optimizes for each candidate split.

A second benchmark is the standard random forest (RandForest) algorithm, which uses the squared error

splitting criterion (Example 4). Finally, since z∗(x) is the vector of conditional 95% quantiles of (Y1, Y2) |X,

we also consider the GenRandForest algorithm for quantile regression (Example 2 and Section 5 of Athey et al.

2019; see also Section 6.1). For all forest-constructing algorithms, we use 500 trees, each tree is constructed

on bootstrap samples (Itree
j = Idec

j ), candidate splits are all possible splits with at least 20% of observations

in each child node, and the minimum node size is 10.
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Figure 5 Results for the multi-item newsvedor CSO problem with varying n and fixed p= 10.

To compare these different algorithms, we let p= 10 and for each n in {100,200,400,800} we repeat the

following experiment 50 times. We first draw a training set D of size n to fit a forest policy, ẑ(·), using each

of the above algorithms. Then we sample 200 query points x0. For each such x0 and for each policy ẑ(·),

we compute ẑ(x0) and then take the average of c(ẑ(x0);y) over 2000 values of y drawn from the conditional

distribution of Y |X = x0. We also compute the average of c(z∗(x0);y) over these. We average these over the

200 query points x0. This gives estimates of E [c(ẑ(X);Y ) | D] and E [c(z∗(X);Y )]. The relative risk for each

algorithm and each replication is the ratio of these.

In Fig. 5a, we plot the distribution of relative risk over replications for each forest algorithm and n. The

first thing to note is that for n≥ 400, the performance of our approximate splitting criteria appear identical

to the oracle criterion, as predicted by Theorems 2 and 3 and Proposition 1. The second thing to note is

that RandForest and GenRandForest have relative risks that are on average roughly 10–16% worse than our

StochOptForest algorithm.
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Figure 6 Results for the multi-item newsvedor CSO problem with fixed n and varying p.

One way to roughly understand these results is to consider how often each algorithm splits on each

covariate. Recall there are p= 10 covariates, the first and the second determine the distribution of the two

products, respectively. The first product, however, has higher costs by a factor of 100. Therefore, to have

a well-performing forest policy, we should first and foremost have good forecasts of the demand of the first

product, and hence should split very finely on X1. Secondarily, we should consider the second product and

X2. This is exactly what StochOptForest does. To visualize this, in Fig. 5b, we consider how often each

variable is chosen to be split on in all the nodes of all the trees constructed by each forest algorithm over

all replications with n= 400. We notice that our StochOptForest algorithms indeed split most often on X1,

while in contrast algorithms focusing on estimation (RandForest and GenRandForest) split equally often

on X2. More practically, in CSO problems generally, how important variables are for estimating optimal

decisions is different than how they impact decision costs and the latter is of course most crucial for effective

decision making. StochOptForest targets this by directly constructing trees that target their decision risk

rather than estimation accuracy. In Fig. 5c, we also plot the impurity-based variable importance measure for

each forest algorithm (see Appendix B). We do not include the GenRandForest algorithm there since Athey

et al. (2019) does not provide any variable importance measure. Overall the results in Fig. 5c are consistent

with those in Fig. 5b: our proposed algorithms value X1 the most, while the RandForest algorithm attaches

equal importance to both X1 and X2, which again confirms that our proposed method capture signals more

relevant to the optimization problem.

Finally, we comment on how StochOptForest handles high dimensional features effectively. We first con-

sider n= 800 and vary p in {5,10,20,40,80}. We compare to non-adaptive weighting methods for CSO, which
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construct the local decision weights wi(x) without regard to the data on Y or to the optimization prob-

lem (Bertsimas and Kallus 2014). Specifically, we consider two non-adaptive weighting schemes: k-nearest

neighbors (kNN), where wi(x) = 1/k for the Xi that are the k nearest to x, and random-splitting forest

(RandSplitForest), where trees are constructed by choosing a split uniformly at random from the candidate

splits (this is the extreme case for the Extremely Randomized Forests algorithm, Geurts et al. 2006). We

plot the relative risks (computed similarly to the above) for each algorithm and p in Fig. 6a. As we can see,

non-adaptive methods get worse with dimension due to the curse of dimensionality, while the risk of our

StochOptForest algorithms remains stable and low. In Fig. 6b, we consider a more challenging setting where

the covariate dimension can be as large as or larger than the sample size: we fix n= 200 and increase the

covariate dimension from p = 10 to p = 250. We can observe that the performance of our proposed meth-

ods does deteriorate when the covariate dimension is very high, but they still significantly outperform the

non-adaptive methods. Interestingly, when the dimension grows from p= 200 to p= 250, the performance

of all methods slightly improve, which is somewhat inconsistent with the conventional wisdom of “curse of

dimensionality.” We do not have very good explanations for this phenomenon, but we conjecture that this

may be related to counter-intuitive behaviors of interpolating estimators in supervised learning (Bartlett

et al. 2020, Belkin et al. 2019, 2018, Hastie et al. 2020). For example, it was observed that in linear regression,

when the regressor dimension exceeds the sample size, further increasing the dimension may actually improve

the out-of-sample prediction performance as long as we focus on the minimum-norm solution. Studying this

phenomenon in an optimization context is out of the scope of this paper and we leave it for future study.

C.2. More details for CVaR Portfolio Optimization

Additional details for Section 4.1. For all algorithms in Section 4.1, the forest specifications are the

same as those in Appendix C.1: each forest consists of 500 trees, each tree is constructed on bootstrap

samples (Itree
j = Idec

j ), candidate splits are all possible splits with at least 20% of observations in each child

node, and the minimum node size is 10.

To evaluate the the relative risks of different forest policies, we follow the testing data generation process

in Appendix C.1. We first sample 200 query points x0 from the marginal distribution of X. For each such

x0 and for each policy ẑ(·), we compute CVaR0.2 (Y >ẑ(x0) |X = x0) based on 2000 values of y drawn from

the conditional distribution of Y |X = x0. We also compute CVaR0.2 (Y >z∗(x0) |X = x0) based on the same

data. Then we average these over the 200 query points x0 to estimate E [CVaR0.2 (Y >ẑ(x) |X) | D] and

E [CVaR0.2 (Y >z∗(x) |X)]. The relative risk for each algorithm and each replication is the ratio of these,

which we plot in Fig. 2a.

Computing the benchmark splitting criteria that ignore the constraints (our approximate criteria that

mistakenly ignore the constraints and the GenRandForest algorithm) requires inverting Hessian estimates.

But Hessian estimates for the CVaR objective may often not be invertible. When this happens, we add

0.001 times an identity matrix of conformable size to the Hessian estimates so we can invert them and these

splitting criteria that ignore the constraints can still run. In contrast, our proposed approximate criteria that

incorporate constraints require inverting the left hand side coefficient matrices in Eq. (26). These matrices

are usually invertible thanks to the constraint gradients therein.
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Figure 7 The average frequency of splitting on each covariate by different forest policies.

Feature Splitting Frequency. In Fig. 7, we show how often each variable is chosen to be split on in

all the nodes of all trees constructed by several forest algorithms over all replications with n = 800. This

complements the variable importance measures shown in Fig. 2b, offering an alternative way to understand

the behaviors of each forest algorithm. We can observe that the RandForest algorithm splits on the first

covariate more frequently than any other covariate, as it targets the conditional mean asset returns that are

influenced more by the first covariate. This is in line with the observation in Fig. 2b that the RandForest

algorithm attaches more importance to the first covariate. Moreover, we note that our proposed criteria

choose to split on both of the first two covariates very frequently as both of them influence the conditional

asset return distributions. At the same time, according to Fig. 2b, splits on the second covariate result in

much larger criterion decreases. Finally, we observe that the GenRandForest algorithm also splits on the

signal covariates (i.e., the first two covariates) more frequently than any of the noise covariates (i.e., the 3rd

to 10th covariate), but compared to our proposed methods, the GenRandForest algorithm does still waste

more splits on the noise covariates.

Performance of StochOptForest (oracle) We further evaluate the performance of the StochOptForest

(oracle) algorithm for CVaR optimization (Section 4.1), but because this algorithm has extremely slow

running time (see Table 1), we can only do so for a very small-scale experiment. In this experiment, we

apply each forest algorithm to construct an ensemble of 50 trees with the same tree specifications as those

in Section 4.1. In Fig. 8, we show the relative risk of each forest policy over 50 repetitions for different

training data size n∈ {100,200,400}. We can observe that again our StochOptForest algorithms considerably

outperform other benchmark methods that do not take the cost structure or constraint structure of CVaR

optimization problem into account. Moreover, we observe that when n= 400, the StochOptForest algorithm

with the oracle criterion tends to perform better than our approximate criteria. However, this observation

may be limited to only this small-scale experiment, and we cannot evaluate whether the our approximate

criteria and the oracle criterion perform similarly for larger sample size because the StochOptForest algorithm

with the oracle criterion is too slow.



Kallus and Mao: Stochastic Optimization Forests 51

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

1.00

1.25

1.50

1.75

2.00

100 200 400
Sample size n

R
el

at
iv

e 
ris

k

Constraint

yes

no

Method

StochOptForest
(oracle)

StochOptForest
(apx−soln)

StochOptForest
(apx−risk)

RandForest

RandSplitForest

Figure 8 Comparing StochOptForest(oracle) with other forest methods in small-scale experiments of CVaR

Optimization.
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Figure 9 Relative risk of different forest policies for portfolio optimization with a weighted combination of CVaR

and mean as objective. The weight of mean is ρ.

Linear Combination of CVaR and Mean Return as Objective In Fig. 9, we apply the forest algo-

rithms to optimize a linear combination of CVaR and mean returun: CVaR0.1(Y >z1:d |X)− ρE [Y >z1:d |X]

for ρ ∈ {0,1,2} and n= 400. All other specifications are the same as those in Section 4.1. We observe that

across all ρ values, our StochOptForest methods with constraints-aware approximate criteria perform the

best.
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(b) Evaluating StochOptForest(Oracle) policies.

Figure 10 CVaR Optimization for asset return data drawn from Gaussian distributions.

Data from Gaussian Distribution In Fig. 10, we present results for CVaR optimization with the

asset returns drawn from Gaussian distributions. The experiment setup is the same as that in Section 4.1,

except that now the data are drawn from the same Gaussian distributions in Appendix A.6, namely, the

covariates X are drawn from a standard Gaussian distribution, and the asset returns are independent and

are drawn from the conditional distributions Y1 | X ∼ Normal (exp(X1),5− 4I [−3≤X2 ≤−1]), Y2 | X ∼

Normal (−X1,5− 4I [−1≤X2 ≤ 1]), and Y3 |X ∼Normal (|X1|,5− 4I [1≤X2 ≤ 3]).

In Fig. 10a, we again compare the StochOptForest algorithm with our approximate criteria to other

benchmarks, using the same tree and forest specifications as we do in Section 4.1. In Fig. 10b, we evaluate

the oracle criterion for small forests consisting of 50 trees. We can observe that the results are qualitatively

the same as those in Section 4.1 based on asset return data drawn from asymmetric lognormal distributions.

C.3. More Details for CVaR Shortest Path Problems

In Section 4.2, we solve a shortest path problem with a conditional CVaR objective using real data from Uber

Movement (https://movement.uber.com/). Uber Movement provides historical traveling times from one

basic geographical unit to another in many major cities worldwide during five periods in each day (AM Peak,

7am to 10am; Midday, 10am to 4pm; PM Peak, 4pm to 7pm; Evening, 7pm to 12am; Early Morning, 12am

to 7am). These traveling times are estimated from all Uber trips that passed the two basic geographical units

during the corresponding time. The meaning of a basic geographical unit may vary across different cities.

In Section 4.2, we focus on Los Angeles where the basic geographical unit is the census tract. In particular,

we consider a region in downtown Los Angeles consisting of 45 census tracts, which is depicted in Fig. 3a.

We aim to go from an eastmost census tract (green mark, roughly Aliso Village) to a westmost census tract

(red mark, roughly MacArthur Park). We collected traveling time observations for d= 93 edges during each

https://movement.uber.com/
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of the five periods in each day of 2018 and 2019, where each edge represents a path from one census tract to

one of its neighbors in the region of interest. We denote the corresponding traveling times as Y ∈ Rd. Our

goal is to choose a path between the departure point to the destination, denoted by z ∈ {0,1}d, to minimize

CVaR0.8 (Y >z |X = x0) for each covariate value x0 of interest.

Optimization Formulation. This shortest path problem can be represented by a directed graph consist-

ing of 45 nodes and 93 edges. We denote the set of nodes as N with the 1st node as the departure point and

the 45th node as the destination. If there exists an edge from a node i∈N to a node j ∈N , we denote it as

i→ j, and denote the set of all 93 edges as A. Then for each decision z ∈ {0,1}d, we can index its coordinates

by zi→j for i, j ∈N such that i→ j ∈A. Then, zi→j = 1 means that we decide to travel along the edge i→ j

and zi→j = 0 means otherwise.

In terms of the notations above, we can write the CVaR shortest path problem as follows:

z∗ (x)∈ arg min
z∈Z

CVaR0.8

(
Y >z |X = x

)
,

Z =

z ∈Rd :

zi→j ≥ 0 for any i→ j ∈A∑
j:i→j∈A zi→j −

∑
i:j→i∈A zj→i = 1 if i= 1∑

j:i→j∈A zi→j −
∑

i:j→i∈A zj→i =−1 if i= 45∑
j:i→j∈A zi→j −

∑
i:j→i∈A zj→i = 0 for any i∈N \{1,45}

 . (49)

Note that we do not enforce integer constraints.

Data Specifications. We consider four different sample sizes: half-year data (2019.07.01 to 2019.12.31),

one-year data (2019.01.01 to 2019.12.31), one-and-half-year data (2018.07.01 to 2019.12.31), and two-year

data (2018.01.01 to 2019.12.31). We consider p = 197 covariates including weather (Temperature, Wind

Speed, Precipitation, Visibility in Miles), period dummy variables (AM Peak, Midday, PM Peak, Evening,

Early Morning), weekday dummy variables, month dummy variables, 1-day-lag traveling times along all

edges, and 7-day-lag traveling times along all edges.

Forest Specifications. In the experiment in Section 4.2, all forests use the same specifications except

for the tree splitting criterion. In particular, they all consist of 100 trees, where each tree is constructed

on bootstrap samples (Itree
j = Idec

j ) and the minimum node size is 10. To reduce computation, in every

step of tree construction, we do not consider all possible splits. Instead, we generate candidate splits by

first randomly selecting 65 covariates out of the total 197 covariates (i.e., around 1/3 of covariates8), then

randomly drawing 365 cutoff values from all possible ones for each of these selected covariate, and finally

restricting to the subset of these splits that results in at least 20% of observations in each child node.

As in the CVaR portfolio optimization experiment in Section 4.1, whenever we need to invert a numerically

singular matrix estimate, we add 0.001 times an identity matrix of conformable size to the matrices to

be inverted, as in Appendix C.2 . Unlike Section 4.1, this becomes an issue also for our criteria that do

consider constraints. Indeed, the CVaR shortest path problem has integer-valued optimal solutions so it

is not particularly smooth, thus the second order perturbation analysis in Theorem 4 may not strictly

hold. Nevertheless, the perturbation analysis still provides a principled way to incorporate optimization

8 This is the default choice in the ordinary random forest algorithm for regression problems.
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problem structure into tree splitting criteria while remaining computationally efficient. (Moreover note that

the estimated Hessians in these singular matrices are based on probably-misspecified Gaussian assumptions

so they are approximations anyways). For the apx-soln criterion, this may lead to approximate solutions that

slightly violate the flow preservation constraints in Eq. (49) so we project the approximate solutions back

onto their affine hull, which is fast operation. But we do not modify the apx-risk criterion any further.

C.4. Minimum-variance Portfolio Optimization
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(c) Comparing different forest policies in large-scale experiments.
Figure 11 Results for minimum-variance portfolio optimization without stochastic constraints.
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Method n= 100 n= 200 n= 400
StochOptTree (oracle) 10.24 (1.51) 32.60 (7.63) 90.40 (13.67)

StochOptTree (apx-risk) 0.10 (0.04) 0.23 (0.04) 0.76 (0.09)
StochOptTree (apx-soln) 0.08 (0.01) 0.28 (0.05) 1.48 (0.51)

Table 2 Mean running time (in seconds) of constructing one tree for different algorithms in minimum-variance

portfolio optimization over 10 repetitions. Numbers in parentheses indicate the standard deviation of running time

over repetitions.

In Fig. 11, we compare different forest policies for minimizing Var(Y >z1:d |X = x) with constraint set Z =

{z ∈Rd+1 : z1:d ∈∆d}. The experiment setup and forest specifications are the same as those in Section 4.1.

We only show results for return data drawn from Gaussian distributions described in Appendix A.6, and the

results for asymmetric lognormal distributions described in Section 4.1 are similar so we omit them here.

In Fig. 11a, we compare the StochOptForest algorithm with the oracle criterion on a small-scale exper-

iment where forests consist of 50 trees and training data size ranges from 100 to 400. We find that the

performance of our apx-risk criterion is very close to the oracle criterion, despite that our apx-risk criterion is

much faster to compute. All StochOptForest algorithms that account for the optimization structure achieve

better performance than the benchmark methods RandForest, RandSplitForest, and StochOptForest with

the constraint-ignoring apx-soln criterion. Interestingly, the StochOptForest algorithm with the constraint-

ignoring apx-risk criterion performs quite well, although it fails to incorporate the constraint structure.

However, we still recommend using approximate criteria that incorporate the constraints, since they consis-

tently perform well across different optimization problems and ignoring the constraints may undermine the

performance. For example, in the CVaR optimization experiments in Section 4.1, we find that ignoring the

constraints in approximate criteria can considerably hurt their performance.

Moreover, in Fig. 11b we show the average feature splitting frequencies of different forest algorithms. We

can observe that all well-performing methods frequently split on X2 that determines the conditional variance

of asset returns and thus the objective function, while those ill-performing methods typically split on X2

much less often. This partly explains the observations in Fig. 11a. In Fig. 11c, we also evaluate different tree

algorithms on larger-scale experiments with forests consisting of 500 trees and sample size up to n = 800,

which again shows the superior performance of our proposed methods. Finally, we show the running time

of each tree algorithm for minimum-variance portfolio optimization in Table 2. We can observe that the

StochOptTree algorithm with the apx-risk criterion is more than 100 times faster than the StochOptTree

algorithm with the oracle criterion for all sample sizes.

C.5. Mean-variance Portfolio Optimization

In this section, we provide more experimental results on the mean-variance portfolio optimization in

Appendix A.6.

In Fig. 12, we compare the performance of StochOptForest with oracle criterion with other methods, in

particular StochOptForest with our apx-risk and apx-sol approximate criteria. Because of the tremendous

computational costs of StochOptForest (oracle), here we compare forests consisting of 50 trees and consider
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Figure 12 Comparing StochOptForest(oracle) with other forest methods in small-scale experiments for mean-

variance portfolio optimization.

n up to 400. We note that the performance of our approximate criteria is very similar to the oracle criterion,

and the results for all other methods are similar to those in Fig. 4a.

In Fig. 13, we show additional results for the experiments in Appendix A.6. More concretely, ?? presents

the relative risks of different forest policies when training set size n= 400 and the conditional mean return

constraint threshold R varies in {0.1,0.3,0.5}. We can see that the performance comparisons are very stable

across different thresholds R.

C.6. Honest Forests

In Fig. 14, we evaluate the performance of honest forests that use independent datasets to construct trees

and form tree weights respectively (see Assumption 1), and dishonest forests that use the same datasets to

construct trees and tree weights (see Section 4). The specifications of experiments in Fig. 14a and Fig. 14b

are the same as those in Section 4.1 and Appendix C.1 respectively, except that here each tree is constructed

from a subsample of size (1− 1
e
)n ≈ 0.63n drawn randomly without replacement from the whole training

data. This fraction is the expected size of distinct data points in a bootstrap sample. We can observe that

honest forests tend to be outperformed by the dishonest counterparts, especially for large n in the CVaR

optimization problem and for small n in the newsvendor problem.
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Figure 13 Additional results for mean-variance portfolio optimization experiments in Appendix A.6: relative risks

for different return constraint thresholds.

●●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●● ●
●

1.00

1.25

1.50

1.75

2.00

100 200 400 800
Sample size n

R
el

at
iv

e 
ris

k

(a) CVaR Optimization.

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●

●●

1.0

1.5

2.0

2.5

3.0

100 200 400 800
Sample size n

R
el

at
iv

e 
ris

k

Method

StochOptForest
(apx−soln)

StochOptForest
(apx−risk)

Honesty

yes

no

(b) Newsvendor problem.
Figure 14 Honest forests vs dishonest forests in CVaR optimization and newsvendor problem.

Appendix D: Perturbation Analysis

In this section we review perturbation analysis of stochastic optimization and use these tools to prove

Theorems 1 and 4.
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D.1. A heuristic argument

We first give a heuristic argument for Theorem 4 by applying the implicit function theorem to the KKT

system. This argument does not treat many regularity conditions rigorously, but it is simple and instructive.

We defer our review of the more general and rigorous analysis developed by Bonnans and Shapiro (2000) to

Appendices D.2 and D.3 below.

Consider a constrained version of the perturbation formulation in Eq. (9):

min
z∈Z

f0(z) + t (fj(z)− f0(z)),

where Z =

{
z ∈Rd :

hk(z) = 0, k= 1, . . . , s,
hk(z)≤ 0, k= s+ 1, . . . ,m

}
.

Assume that the problem above corresponding to t = 0 has a unique optimal solution z0 with a unique

Lagrangian multiplier v0. Let Kh(z0) = {k : hk(z0) = 0, k = s + 1, · · · ,m} be the index set of inequality

constraints active at z0 and assume the strict complementarity condition, namely, v0,k > 0 if and only if

k ∈Kh (z0) or k ≤ s. Under the Mangasarian-Fromovitz constraint qualification condition (condition 5 in

Theorem 4), z0 and v0 can be characterized by the following Karush–Kuhn–Tucker (KKT) system:

∇f0 (z0) +
∑

k∈{1,...,s}∪Kh(z0)

ν0,k∇hk (z0) = 0, (50)

hk (z0) = 0, k ∈Kh (z0) . (51)

Now consider the problem above with t 6= 0. Assume that it has an optimal solution zj (t) with a Lagrangian

multiplier νj (t). When t is very close to 0, we may conjecture that zj (t) is close to z0 so that the inequalities

active at zj (t) are still given by Kh (z0), vj,k (t)> 0 if and only if k ∈Kh (z0) or k ∈ {1, . . . , s}, and zj (t) and

νj (t) are also characterized by the corresponding KKT system:

Γj (zj (t) , νj (t) , t) = 0 (52)

where Γj (z, ν, t) =

[
∇f0 (z) + t (∇fj (z)−∇f0 (z)) +

∑
k∈{1,...,s}∪Kh(z0) νk∇hk (z)

HKh
(z)

]
.

Above HKh
(z) is a column vector whose elements are hk (z) for k ∈ {1, . . . , s}∪Kh (z0).

Note that Eqs. (50) and (51) imply Γj (z0, ν0,0) = 0. Moreover, the Jacobian matrix of Γj (z, ν, t) at

(z0, ν0,0) is

∇>z,νΓj (z0, ν0,0) =

[
(∇2f0(z0) +

∑m

k=1 ν0,k∇2hk(z0)) ∇HKh
>

(z0)
∇>HKh(z0) 0

]
When this Jacobian matrix is invertible, the implicit function theorem ensures that for t close enough to

0, there exist unique and continuously differentiable zj (t) and νj(t) such that Γj (zj (t) , νj (t) , t) = 0, and

dj∗z = ∂
∂t
z (t) |t=0 and ξj = ∂

∂t
νj (t) |t=0 are solutions to the following linear equation system:[

(∇2f0(z0) +
∑m

k=1 ν0,k∇2hk(z0)) ∇HKh
>

(z0)
∇>HKh(z0) 0

][
dj∗z
ξj

]
=
∂

∂t
Γj (z0, ν0,0) =

[
− (∇fj(z0)−∇f0(z0))

0

]
.

(53)

This implies that zj (t) = z0 + tdj∗z + o(t), which is exactly the conclusion in Eq. (28) in Theorem 4.
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Moreover, by the fact that (zj (t) , vj (t)) forms a KKT pair, the optimal value vj (t) has the following

formulation:

vj (t) = f0(zj (t)) + t (fj(zj (t))− f0(zj (t))) +
∑

k∈{1,...,s}∪Kh(z0)

νj,k (t)hk (zj (t)) .

We can then use the chain rule to derive the first and second order derivatives of vj (t) at t= 0 in terms of

derivatives of zj (t) at t= 0 and gradients of f0, fj .

Proposition 3. Suppose that zj (t) , νj (t) are twice continuously differentiable at t= 0. Then

∂

∂t
vj (t) |t=0 = fj(z0)− f0(z0),

∂2

∂t2
vj (t) |t=0 = dj∗>z

(
∇2f0(z0) +

m∑
k=1

ν0,k∇2hk(z0)

)
dj∗z + 2dj∗>z (∇fj(z0)−∇f0(z0)) .

Note Proposition 3 agrees with the conclusion of Theorem 4 in Eq. (27).

The above argument is largely heuristic as it makes many assumptions without justifications, like the

preservation of the active index set in the perturbed problems, the KKT formulation for the perturbed solu-

tions, and the twice continuous differentiability of the primal and dual solutions to the perturbed problems,

etc.. In Appendices D.2 and D.3, we summarize a more rigorous and more general perturbation analysis.

D.2. General Perturbation Analysis

In this section, we give an overview of the second order perturbation analysis based on results in Bonnans

and Shapiro (2000). Consider the following generic parameterized problem: for z,u in finitely dimensional

vector spaces Z,U respectively,

minz f(z,u)
s.t. gk(z,u) = 0, k= 1, . . . , s,

gk(z,u)≤ 0, k= s+ 1, . . . ,m,
(54)

where both f(z,u) and gk(z,u) are twice continuously differentiable in both z and u. We denote the first

and second order derivatives of f w.r.t (z,u) as operators Df(z,u) and D2f(z,u) repsectively:

Df(z,u)(dz, du) =Dzf(z,u)(dz) +Duf(z,u)(du) = d>z ∇zf(z,u) + d>u∇uf(z,u)

D2f(z,u)((dz, du), (dz, du)) =Dzzf(z,u)(dz, dz) +Dzuf(z,u)(dz, du) +Duzf(z,u)(du, dz) +Duuf(z,u)(du, du)

= d>z ∇zzf (z,u)dz + d>u∇uuf (z,u)du + 2d>z ∇zuf (z,u)du.

We can similarly denote the partial derivatives of f w.r.t z and u by Dzf(z,u) and Duf(z,u) respectively.

Derivatives for gk can be defined analogously.

Consider the parabolic perturbation path u(t) = u0 + tdu+ 1
2
t2ru+o(t2) for t > 0 and some elements du, ru

such that u(t)∈∈ U , and denote the associated optimization problem as Pu(t) with optimal value as V (u(t)).

We assume that the unperturbed problem Pu(0) has a unique optimal solution, which we denote as z∗, and

we also denote z∗(t) as one optimal solution of the perturbed problem Pu(t). We aim to derive the second

order taylor expansion of V (u(t)), and the first order taylor expansion of z∗(t).

We first introduce several useful notations. We define the Lagrangian of the parameterized problem as

L(z,u;λ) = f(z,u) +

m∑
k=1

λkgk(z,u),
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and the associated Lagrangian multiplier set for any (z,u) as

Λ(z,u) = {λ :DzL(z,u;λ) = 0,and λk ≥ 0, λkgk(z,u) = 0, k= s+ 1, . . . ,m}.

For any feasible point z for the unperturbed problem (i.e., t= 0), we define K(z,u0) = {k : gk(z,u0) = 0, k=

s+ 1, . . . ,m} as the index set of inequality constraints that are active at z, and further define the index sets

for active inequality constraints whose langrangian multipliers are strictly positive or 0 respectively:

K+(z,u0, λ) = {k ∈K(z,u0) : λk > 0}, K0(z,u0, λ) = {k ∈K(z,u) : λk = 0}. (55)

Consider a solution path of form z(t) = z∗+ tdz + 1
2
t2rz +o(t2) for some elements dz, du such that z(t)∈Z.

If z(t) is feasible for the perturbed problem Pu(t), then we can apply second order taylor expansion to

f(z(t), u(t)) as follows:

f(z(t), u(t)) = f(z∗, u0) + tDf(z∗, u0)(dz, du) +
1

2
t2
[
Df(z∗, u0)(rz, ru) +D2f(z∗, u0)((dz, du), (dz, du))

]
+ o(t2).

(56)

This heuristic expansion motivates two sets of optimization problems that are useful in approximating the

optimal value of the perturbed problems.

The first set optimization problem is a LP corresponding to the linear approximation term and its dual9:

V (PL) =

mindz Df(z∗, u0)(dz, du)
s.t Dgk(z

∗, u0)(dz, du) = 0, k= 1, . . . , s
Dgk(z

∗, u0)(dz, du)≤ 0, k ∈K(z∗, u0)
, (57)

V (DL) = max
λ∈Λ(z∗,u0)

DuL(z∗, λ,u0)du. (58)

Given a feasible point dz of the problem PL, we denote the corresponding set of active inequality constraints

in the problem PL as

KPL(z∗, u0, dz) = {k ∈K(z∗, u0) :Dgk(z
∗, u0)(dz, du) = 0}

We denote the sets of optimal primal and dual solutions to Eqs. (57) and (58) as S(PL) and S(DL) respec-

tively. Equation (5.110) in Bonnans and Shapiro (2000) shows that S(PL) has the following form: for any

λ∈ S(DL),

S(PL) =

{
dz :

Dgk(z
∗, u0)(dz, du) = 0, k ∈ {1, . . . , s}∪K+(z∗, u0, λ),

Dgk(z
∗, u0)(dz, du)≤ 0, k ∈K0(z∗, u0, λ)

}
.

The second set of optimization problems is a QP problem corresponding to the second order approximation

term and its dual:

V (PQ) = min
dz∈S(PL)

V (PQ(dz)), V (DQ) = min
dz∈S(PL)

V (DQ(dz)) (59)

9 The exact dual problem of problem PL in Eq. (57) actually uses a different constraint for λ than that used in
Eq. (58). In the proof of Proposition 4, we show that using these two constraint sets results in the same optimal
value, which is stated without proof in Bonnans and Shapiro (2000). So we also call the problem in Eq. (58) as the
dual of problem PL in Eq. (57).
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where

V (PQ(dz)) =

minrz Df(z∗, u0)(rz, ru) +D2f(z∗, u0)((dz, du), (dz, du))
s.t Dgk(z

∗, u0)(rz, ru) +D2gk(z
∗, u0)((dz, du), (dz, du)) = 0, k= 1, . . . , s

Dgk(z
∗, u0)(rz, ru) +D2gk(z

∗, u0)((dz, du), (dz, du))≤ 0, k ∈KPL(z∗, u0, dz)
, (60)

V (DQ(dz)) = max
λ∈S(DL)

DuL(z∗, u0;λ)ru +D2L(z∗, u0;λ)((dz, du), (dz, du)). (61)

The constraints on dz in problem PL (Eq. (57)) and constraints on rz in problem PQ(d(z)) (Eq. (60)) ensure

that path of the form z(t) = z∗ + tdz + 1
2
t2rz + o(t2) is (approximately) feasible for the perturbed problem

problem, so that the expansion in Eq. (56) is valid.

In the following proposition, we characterize the optimization problems above when assuming the

Lagrangian multiplier associated with the optimal solution in the unperturbed problem is unique, i.e.,

Λ(z∗, u0) is a singleton {λ∗}.

Proposition 4. If Λ(z∗, u0) = {λ∗} and V (PL), V (PQ) are both finite, then

V (PL) = V (DL) =DuL(z∗, u0;λ∗)du,

V (PQ(dz)) = V (DQ(dz)) =DuL(z∗, u0;λ∗)ru +D2L(z∗, u0;λ∗)((dz, du), (dz, du)).

The following theorem derives the second order expansion of V (u(t)) under regularity conditions.

Theorem 7 (Theorem 5.53 in Bonnans and Shapiro (2000)). Suppose the following conditions

hold:

1. f(z,u) and gk(z,u) for k = 1, . . . ,m are twice continuously differentiable in both z ∈Z and u ∈ U in a

neighborhood around (z∗, u0);

2. The unperturbed problem corresponding to t = 0 (or equivalently problem Pu0
) has a unique optimal

solution z∗;

3. Mangasarian-Fromovitz constraint qualification condition is satisfied at z∗:

Dzgk(z
∗, u0), k= 1, . . . , s are linearly independent,

∃dz, s.t. Dzgk(z
∗, u0)dz = 0, k= 1, . . . , s, Dzgk(z

∗, u0)dz < 0, k ∈K(z∗, u0);

4. The set of Lagrangian multipliers Λ(z∗, u0) for the unperturbed problem is nonempty;

5. The following strong form of second order sufficient condition is satisfied for the unperturbed problem:

sup
λ∈S(DL)

DzzL(z∗, λ,u0)(dz, dz)> 0,∀dz ∈C(z∗, u0;λ) \ {0},

where C(z∗, u0;λ) is the critical cone defined as follows:

C(z∗, u0;λ) =

{
dz :

Dzgk(z
∗, u0)(dz) = 0, k ∈ {1, . . . , s}∪K+(z∗, u0, λ),

Dzgk(z
∗, u0)(dz)≤ 0, k ∈K0(z∗, u0, λ)

}
.

6. The inf-compactness condition: there exist a constant α and a compact set C ⊆Z such that the sublevel

set

{z : f(z,u)≤ α, gk(z,u) = 0, k= 1, . . . , s, gk(z,u)≤ 0, k= s+ 1, . . . ,m.}

is nonempty and contained in C for any u within a neighborhood of u0.
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Then the following conclusions hold:

1. V (PL) and V (PQ) are both finite, and the optimal value function V (u(t)) for the perturbed problem in

Eq. (54) can be expanded as follows:

V (u(t)) = V (u0) + tV (PL) +
1

2
t2V (PQ) + o(t2).

2. If the problem PQ has a unique solution d∗z, then any optimal solution z∗(t) of the perturbed problem

in Eq. (54) satisfies that

z∗(t) = z∗+ td∗z + o(t).

We now show that the optimal solutions of problems PQ and DQ have a simple formulation under regularity

conditions about the dual optimal solution of the unperturbed problem.

Proposition 5. Under conditions in Proposition 4, if further Λ(z∗, u0) = {λ∗}, i.e., z∗ is associated with a

unique Lagrangian multiplier λ∗, and the strict complementarity condition holds, i.e., the Lagrangian multipli-

ers associated with all inequality constraints active at z∗ are strictly positive (or equivalently K+(z∗, u0, λ
∗) =

K(z∗, u)), then V (PQ) = V (DQ) equals the optimal value of the following optimization problem:

mindz DuL(z∗, u0;λ∗)ru +D2L(z∗, u0;λ∗)((dz, du), (dz, du))
s.t. Dgk(z

∗, u0)(dz, du) = 0, k ∈ {1, . . . , s}∪K(z∗, u0).

Proposition 5 shows that under the asserted regularity conditions, the second order approximation term

V (PQ) is the optimal value of a simple quadratic programming problem with equality constraints, which

can be solved very efficiently provided that z∗, λ∗ are known.

According to Wachsmuth (2013), one condition to ensure a unique Lagrangian multiplier is the following

linear independence constraint qualification (LICQ) condition:

Dzgk(z
∗, u0), k ∈ {1, . . . , s}∪K(z∗, u) are linearly independent. (62)

Actually, this LICQ condition is also stronger than the Mangasarian-Fromovitz constraint qualification con-

dition in Theorem 7.

D.3. Additively perturbed problems in finite-dimensional space and its connection to

approximate criteria

Additive perturbations. Consider the following optimization problem: for z ∈Rd and t > 0,

v(t) =


minz∈Rd f(z) + tδf (z)
s.t. gk(z) + tδgk(z) = 0, k= 1, . . . , s,

gk(z) + tδgk(z)≤ 0, k= s+ 1, . . . ,m
hk′(z) = 0, k′ = 1, . . . , s′,
hk′(z)≤ 0, k′ = s′+ 1, . . . ,m′,

(63)

where f , gk, hk are all twice continuously differentiable in z ∈Z with gradients and Hessian matrices denoted

by ∇ and ∇2 respectively. Moreover, δf and δgk are all differentiable with gradients denoted by ∇. We define

the Lagrangian for the problem above as follows:

L(z, t;λ, ν) = f(z) + tδf (z) +

m∑
k=1

λk(gk(z) + tδgk(z)) +

m′∑
k′=1

νk′hk′(z)
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where λ and ν are the Lagrangian multipliers associated with the constraints involving {gk}mk=1 and {hk′}mk′=1

respectively. For any feasible point z of the unperturbed problem (i.e., t= 0), we denote the index sets of

active (unperturbed) inequality constraints z as Kg(z) and Kh(z) respectively:

Kg(z) = {k : gk(z) = 0, k= s+ 1, . . . ,m}, Kh(z) = {k′ : hk′(z) = 0, k′ = s′+ 1, . . . ,m′}.

Note that the problem above in Eq. (63) is a special case of the problem in Eq. (54) with perturbation path

u(t) = t, i.e., u0 = 0, du = 1, ru = 0. Thus we can apply Theorem 7 and Proposition 5 to prove the following

theorem.

Theorem 8. Suppose the following conditions hold:

1. f(z), gk(z), hk′(z) for k = 1, . . . ,m and k′ = 1, . . . ,m′ are twice continuously differentiable, and δf , δgk

for k= 1, . . . ,m are continuously differentiable;

2. The unperturbed problem corresponding to t= 0 has a unique optimal primarxy solution z∗ that is asso-

ciated with a unique Lagrangian multiplier (λ∗, ν∗), and (λ∗, ν∗) satisfies the strict complemetarity condition,

i.e., λ∗k > 0 for k ∈Kg(z
∗) and ν∗k > 0 for k ∈Kh(z∗);

3. Mangasarian-Fromovitz constraint qualification condition is satisfied at z∗:

∇gk(z∗), k= 1, . . . , s are linearly independent and ∇hk′(z∗), k′ = 1, . . . , s′ are linearly independent,

∃dz, s.t. ∇gk(z∗)dz = 0, k= 1, . . . , s, ∇gk(z∗)dz < 0, k ∈Kg(z
∗),

∇hk′(z∗)dz = 0, k′ = 1, . . . , s′, ∇hk′(z∗)dz < 0, k′ ∈Kh(z∗);

4. Second order sufficient condition:

d>z ∇2L(z∗,0;λ∗, ν∗)dz > 0,∀dz ∈C(z∗) \ {0},

where C(z∗) is the critical cone defined as follows:

C(z∗) =
{
dz : d>z ∇gk(z∗) = 0, k ∈ {1, . . . , s}∪Kg(x

∗), d>z ∇hk′(z∗) = 0, k′ ∈ {1, . . . , s′}∪Kh(x∗)
}
.

5. The inf-compactness condition: there exist a constant α, a positive constant t0, and a compact set C ⊆Z

such that the sublevel setz :
f(z) + tδf (z)≤ α,
gk(z) + tδgk(z) = 0, k= 1, . . . , s, gk(z) + tδgk(z)≤ 0, k= s+ 1, . . . ,m,
hk′(z) = 0, k′ = 1, . . . , s′, hk′(z)≤ 0, k′ = s′+ 1, . . . ,m′.


is nonempty and contained in C for any t∈ [0, t0).

Then

v(t) = v(0) + v′(0)t+
1

2
t2v′′(0) + o(t2)

where

v′(0) = δf (z∗) +

m∑
k=1

λ∗kδgk(z∗)
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and

v′′(0) = min
dz

d>z ∇2L(z∗,0;λ∗, ν∗)dz + 2d>z

(
∇δf (z∗) +

s∑
k=1

λ∗k∇δgk(z∗)

)
(64)

s.t. d>z ∇gk(z∗) + δgk(z∗) = 0, k ∈ {1, . . . , s}∪Kg(x
∗)

d>z ∇hk(z∗) = 0, k′ ∈ {1, . . . , s′}∪Kh(x∗).

Moreover, if the optimization problem in Eq. (64) has a unique optimal solution d∗z, then any optimal solution

z∗(t) of the perturbed problem in Eq. (63) satisfies that

z∗(t) = z∗+ td∗z + o(t). (65)

According to Eq. (62), a sufficient condition for the uniqueness of the Lagrangian multiplier is the following:

∇gk(z∗), k ∈ {1, . . . , s}∪Kg(z
∗) are linearly independent,

∇hk′(z∗), k′ = {1, . . . , s′}∪Kh(z∗) are linearly independent.
(66)

D.3.1. Proving Theorem 6 In Appendix A, we aim to approximate vj(t) = minz∈Zj(t) (1− t)f0(z) +

tfj(z), zj(t)∈ arg minz∈Zj(t) (1− t)f0(z) + tfj(z) for t∈ [0,1], j = 1,2, where

Zj(t) =

z :
(1− t)g0,k(z) + tgj,k(z) = 0, k= 1, . . . , s,
(1− t)g0,k(z) + tgj,k(z)≤ 0, k= s+ 1, . . . ,m,
hk′(z) = 0, k′ = 1, . . . , s′, hk′(z)≤ 0, k′ = s′+ 1, . . . ,m′

 .

Note this is a special example of Eq. (63) with δf = fj − f0 and δgk = gj,k − g0,k for k = 1, . . . ,m. Then

applying Theorem 8 directly gives Theorem 6.

D.3.2. Proving Theorem 1 If there are no constraints, i.e., we consider the problem

v(t) = min
z∈Rd

f(z) + tδf (z). (67)

Then Theorem 8 reduces to the following corollary.

Corollary 1. Suppose the following conditions hold for f :

1. f(z) is twice continuously differentiable, and δf (z) is continuously differentiable;

2. there exists a constant α, a positive constant t0 ∈ (0,1] and compact set C ⊆Rd such that the sublevel

set {z ∈Rd : f(z) + tδf (z)≤ α} is nonempty and contained in C for any t∈ [0, t0);

3. f(z) has a unique minimizer over Rd (denoted as z∗), and ∇2f(z∗) is positive definite.

Then v(t) in Eq. (67) satisfies that

v(t) = v(0) + tδf (z∗)− 1

2
t2∇δf (z∗)>

(
∇2f(z∗)

)−1∇δf (z∗) + o(t2) (68)

and any optimal solution z∗(t) of the perturbed problem in Eq. (67) satisfies that

z∗(t) = z∗− t
(
∇2f(z∗)

)−1∇δf (z∗) + o(t)

Note applying this corollary with f = f0, δf = fj − f0, and ∇δf (z∗) =∇fj(z∗)−∇f0(z∗) =∇fj(z∗) gives

Theorem 1.
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D.4. Stronger Differentiability Results.

All results above are based on directional differentiability, which cannot quantify the magnitude of approx-

imation errors of the second order perturbation analysis. Here we show in the context of unconstrained

problems that under stronger regularity conditions, we can also bound the approximation errors by the

magnitude of perturbation δf . We will then use this to prove Theorems 2 and 3 in Appendix H.4.

Consider the following optimization problem denoted as P (f) for f :Rd 7→R,

v(f) = min
z∈Rd

f(z), z∗(f)∈ arg min
z∈Rd

f(z) (69)

We restrict f to the twice continuously differentiable function class F with norm defined as

‖f‖F = max{sup
z

|f(z)|, sup
z

‖∇f(z)‖2, sup
z

‖∇2f(z)‖F}, (70)

where ‖∇f(z)‖2 is the Euclidean norm of gradient ∇f(z) and ‖∇2f(z)‖F is the Frobenius norm of the

Hessian matrix ∇2f(z).

We consider P (f0) as the unperturbed problem and P (f0 + δf ) as the target perturbed problem that we

hope to approximate. Eq. (68) gives the first and second order functional directional derivatives of v at f0:

v′(f0; δf ) := lim
t↓0

v(f0 + tδf )− v(f0)

t
= δf (z∗(f0))

v′′(f0; δf ) := lim
t↓0

v(f0 + tδf )− v(f0)− tv′(f0; δf )
1
2
t2

=−∇δf (z∗(f0))>
(
∇2f0(z∗(f0))

)−1∇δf (z∗(f0))

We aim to expand v(f0 + δf ) and z∗(f0 + δf ) in the functional space with approximation errors bounded by

the magnitude of δf .

Theorem 9. If f0(z), δf (z) are both twice continuously differentiable, condition 2 in Corollary 1 is satisfied

for t∈ [0,1], and for any t∈ [0,1], f0(z)+tδf (z) has a unique minimizer z∗(f0 +tδf ) and ∇2 (f0 + tδf ) (z∗(f0 +

tδf )) is positive definite, then

v(f0 + δf ) = v(f0) + δf (z∗(f0))− 1

2
∇δf (z∗(f0))>

(
∇2f(z∗(f0))

)−1∇δf (z∗(f0)) + o(‖δf‖2F),

z∗(f0 + δf ) = z∗(f0)−
(
∇2f(z∗(f0))

)−1∇δf (z∗(f0)) + o(‖δf‖F).

Based on Theorem 9, we can bound the approximation errors of the proposed criteria in Section 2.3 by

o(‖fj − f0‖2F) for j = 1,2. Note that the Lipschitzness condition (condition 4 in Theorem 2) implies that

‖fj−f0‖F =O(D2
0). Therefore, the approximation errors of the proposed criteria are o(D2

0). See Theorems 2

and 3 and their proofs in Appendix H.4.

Appendix E: Optimization with Auxiliary Variables

In Examples 2 and 3, the cost function involves unconstrained auxiliary variables zaux in addition to the

decision variables zdec. In this setting, we can do perturbation analysis in two different ways. These two

different approaches lead to different approximate criteria that are equivalent under infinitesimal perturba-

tions but give different extrapolations and differ in terms of computational costs. For convenience, we focus

on unconstrained problems with a generic cost function c(zdec, zaux;y). We denote the region to be split as

R0 ⊆Rd, and its candidate subpartition as R0 =R1 ∪R2, R1 ∩R2 =∅.
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Re-optimizing auxiliary variables. In the first approach, we acknowledge the auxiliary role of zaux

and define fj by profiling out zaux first: fj(z
dec) = minzaux E

[
c(zdec, zaux;Y ) |X ∈Rj

]
for j = 0,1,2. We

assume that for each fixed zdec value, E
[
c(zdec, zaux;Y ) |X ∈Rj

]
has a unique minimizer, which we denote as

zaux
j (zdec). We also denote zdec

j as the minimizer of fj(z
dec) and zaux

j as zaux
j (zdec

j ). The following proposition

derives the gradient and Hessian matrix.

Proposition 6. Consider fj(z
dec) = minzaux E [c(zdec, zaux;Y ) |X ∈Rj ] for j = 0,1,2. Suppose that for

each zdec value and j = 1,2, E [c(zdec, zaux;Y ) |X ∈Rj ] has a unique minimizer zauxj (zdec). Moreover, we

assume that f0(zdec) has a unique minimizer zdec0 , and f0, f1, f2 are twice continuously differentiable. Then

∇fj
(
zdec0

)
=

∂

∂zdec
E
[
c(zdec0 , zauxj

(
zdec0

)
;Y ) |X ∈Rj

]
,

∇2f0

(
zdec0

)
=

∂2

(∂zdec)
>
∂zdec

E
[
c(zdec0 , zaux0 ;Y ) |X ∈R0

]
− ∂2

∂zdec (∂zaux)
>E
[
c(zdec0 , zaux0 ;Y ) |X ∈R0

]
{

∂2

∂zaux (∂zaux)
>E
[
c(zdec0 , zaux0 ;Y ) |X ∈R0

]}−1
∂2

∂zaux (∂zdec)
>E
[
c(zdec0 , zaux0 ;Y ) |X ∈R0

]
.

It is straightforward to show that Examples 2 and 3 satisfy conditions in Proposition 6 under regularity

conditions. So we can apply the gradients and Hessian matrix in Proposition 6 to derive the apx-risk criterion

and the apx-soln criterion. However, in order to estimate the gradients, we need to compute zaux
j

(
zdec

0

)
for

every candidate split by repeatedly minimizing E
[
c(zdec

0 , zaux;Y ) |X ∈Rj
]

with respect to zaux. This can be

too computationally expensive in practice.

Merging auxiliary variables with decision variables. In the second way, we merge the auxiliary

variables with the decision variables, and define f̃j(z
dec, zaux) = E

[
c(zdec, zaux;Y ) |X ∈Rj

]
for j = 0,1,2.

The following proposition derives the gradients and Hessian matrix with respect to both decision variables

and auxiliary variables.

Proposition 7. Consider f̃j(z
dec, zaux) = E [c(zdec, zaux;Y ) |X ∈Rj ] for j = 0,1,2. Suppose that

f̃0(zdec, zaux) has a unique minimizer (zdec0 , zaux0 ), and f̃0, f̃1, f̃2 are twice continuously differentiable. Then

∇f̃j
(
zdec0 , zaux0

)
=

[
∂

∂zdec
E [c(zdec0 , zaux0 ;Y ) |X ∈Rj ]

∂
∂zaux

E [c(zdec0 , zaux0 ;Y ) |X ∈Rj ]

]
,

∇2f̃0

(
zdec0 , zaux0

)
=

 ∂2

(∂zdec)
>
∂zdec

E [c(zdec0 , zaux0 ;Y ) |X ∈R0] ∂2

(∂zaux)>∂zdec
E [c(zdec0 , zaux0 ;Y ) |X ∈R0]

∂2

(∂zdec)
>
∂zaux

E [c(zdec0 , zaux0 ;Y ) |X ∈R0] ∂2

∂zaux(∂zaux)>
E [c(zdec0 , zaux0 ;Y ) |X ∈R0]

 .
Note that approximate criteria based on the formulations in Proposition 6 and Proposition 7 are both

legitimate, and they are equivalent under infinitesimal perturbations according to Theorem 1. Using the

apx-risk criterion as an example, the following proposition further investigates the relationship between the

approximate criterion based on Proposition 6 and that based on Proposition 7.

Proposition 8. Let Capx-risk(R1,R2) and C̃apx-risk(R1,R2) be the apx-risk criterion based on {f0, f1, f2}
given in Proposition 6 and {f̃0, f̃1, f̃2} given in Proposition 7 respectively. Then

Capx-risk(R1,R2) =−
∑
j=1,2

pj

(
∂

∂zdec
f̃j
(
zdec0 , zauxj

(
zdec0

)))>{(
∇2f̃0

(
zdec0 , zaux0

))−1 [
zdec0 , zdec0

]} ∂

∂zdec
f̃j
(
zdec0 , zauxj

(
zdec0

))
,

C̃apx-risk(R1,R2) =−
∑
j=1,2

pj

(
∂

∂zdec
f̃j
(
zdec0 , zaux0

))>{(
∇2f̃0

(
zdec0 , zaux0

))−1 [
zdec0 , zdec0

]} ∂

∂zdec
f̃j
(
zdec0 , zaux0

)
+R,
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where
(
∇2f̃0 (zdec0 , zaux0 )

)−1

[zdec0 , zdec0 ] is the block of the inverse matrix
(
∇2f̃0 (zdec0 , zaux0 )

)−1

whose rows and

columns both correspond to zdec0 , and R is an adjustment term that only depends on ∇f̃j (zdec0 , zaux0 ) and

∇2f̃j (zdec0 , zaux0 ).

Proposition 8 shows that evaluating Capx-risk(R1,R2) requires computing zaux
j

(
zdec

0

)
repeatedly for all

candidate splits, while evaluating C̃apx-risk(R1,R2) only requires computing
(
zdec

0 , zaux
0

)
once. To compen-

sate for the fact that C̃apx-risk(R1,R2) does not re-optimize the decision variable for each candidate split,

C̃apx-risk(R1,R2) also has an additional adjustment term R. In Examples 2 and 3, we use C̃apx-risk(R1,R2) to

reduce computation cost, as this is the main point of using approximate criteria.

Appendix F: Other Related Literature

Applications of tree models in other decision making problems. In the CSO problem, given a

realization y, the effect of decisions z on costs is assumed known (i.e., c(z;y)). This may not apply if decisions

affect uncertain costs in an a priori unknown way, such as the unknown effect of prices on demand or of

pharmacological treatments on health indicators. In these applications, data consists only of observations

of the realized costs for a single decision and not counterfactual costs for other decisions, known as partial

or bandit feedback, which requires additional identification assumptions such as no unobserved confounders

(Bertsimas and Kallus 2016). Kallus (2017), Zhou et al. (2018) apply tree methods to prescribe from a finite

set of interventions based on such data using decision quality rather than prediction error as the splitting

criterion. Since they consider a small finite number of treatments, the criterion for each candidate split is

rapidly computed by enumeration. When decisions are continuous, various works use tree ensembles to regress

cost on a decision variable (e.g., Sec. 3 of Bertsimas and Kallus 2014, Ferreira et al. 2016, among others) and

then search for the input to optimize the output. This is generally a hard optimization problem, to which

Mǐsić (2020) study mixed-integer optimization approaches. Elmachtoub et al. (2017), Féraud et al. (2016)

similarly use decision trees and random forests for online decision-making in contextual bandit problems.

Chen and Mǐsić (2020) propose to use trees and forests to nonparametrically model irrational customer

choices. Under the forest choice model, Chen and Mǐsić (2021) further develops mixed-integer optimization

algorithms to find the assortment that maximizes expected revenue. Ciocan and Mǐsić (2020) study optimal

stopping problems with applications in option pricing, and propose algorithms to construct approximately

optimal tree policies that are easy to interpret.

Applications of perturbation analysis in machine learning. Perturbation analysis studies the impact

of slight perturbations to the objective and constraint functions of an optimization problem on the optimal

value and optimal solutions, which is the foundation of our approximate splitting criteria. We refer readers

to Bonnans and Shapiro (2000) for a general treatment of perturbation analysis for smooth optimization,

and to Shapiro et al. (2014) for its application in statistical inference for stochastic optimization. In machine

learning, perturbation analysis has been successfully applied to approximate cross-validation for model eval-

uation and tuning parameter selection. Exact cross-validation randomly splits the data into many folds,

and then repeatedly solves empirical risk minimization (ERM) using all but one fold data, which can be

computationally prohibitive if the number of folds is large. In the context of parametric models, recent works
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propose to solve the ERM problem only once with full data, and then apply a one-step Newton update to

the full-data estimate to approximate the estimate when each fold of data is excluded (e.g., Giordano et al.

2019, Stephenson and Broderick 2020, Wilson et al. 2020). Koh and Liang (2017) employ similar ideas to

quantify the importance of a data point in model training by approximating the parameter estimate change

if the data distribution is infinitesimally perturbed towards the data point of interest. All of these works

only focus on unconstrained optimization problems.

Appendix G: Supplementary Lemmas and Propositions

Lemma 1 (Convergence of ẑ0). Suppose the following conditions hold:

1. supz |p̂0f0(z)− p0f0(z)| a.s.−→ 0 as n→∞.

2. f0 is a continuous function and f0(z) has a unique minimizer z0 over Rd.

3. For large enough n, arg minz p̂0f0(z) is almost surely a nonempty and uniformly bounded set.

Then ẑ0
a.s.−→ z0 as n→∞.

Proposition 9 (Estimation for Squared Cost Function.). When c(z;y) = 1
2
‖z− y‖2,

1

n

n∑
i=1

I [Xi ∈R0] c(ẑ0;Yi) +
1

2
Ĉapx-risk(R1,R2) = Ĉapx-soln(R1,R2) =

∑
j=1,2

nj
2n

d∑
l=1

Var({Yi,l :Xi ∈Rj , i≤ n}),

Proposition 10 (Gradient and Hessian for Example 2). For the cost function c(z;y) in Eq. (5)

and fj(z) = E [c(z;Y ) |X ∈Rj ], we have

∇fj(z0) = 2

[
E [Y Y > |X ∈Rj ]z0,1:d−E [Y |X ∈Rj ]z0,d+1

z>0,1:d (E [Y |X ∈R0]−E [Y |X ∈Rj ])

]
,

∇2f0(z0) = 2

[
E [Y Y > |X ∈R0] −E [Y |X ∈R0]
−E [Y > |X ∈R0] 1

]
.

Proposition 11 (Gradient and Hessian for Example 3). Consider the cost function c(z;y) in

Eq. (7) and fj(z) = E [c(z;Y ) |X ∈Rj ]. If Y has a continuous density function and z0 6= 0, then

∇fj(z0) =
1

α

[
−E [Y I [Y >z0,1:d ≤ qα0 (Y >z0,1:d)] |X ∈Rj ]
P (qα0 (Y >z0,1:d)−Y >z0,1:d ≥ 0 |X ∈Rj)−α

]
,

∇2f0(z0) =
µ0 (qα0 (Y >z0,1:d))

α

[
E [Y Y > | Y >z0,1:d = qα0 (Y >z0,1:d),X ∈R0] −E [Y | Y >z0,1:d = qα0 (Y >z0,1:d),X ∈R0]
−E [Y > | Y >z0,1:d = qα0 (Y >z0,1:d),X ∈R0] 1

]
,

where qα0 (Y >z0,1:d) is the α-quantile of Y >z0,1:d given X ∈ R0 and µ0 is the density function of Y >z0,1:d

given X ∈R0.

If further Y |X ∈R0 has Gaussian distribution with mean µ0 and covariance matrix Σ0, then

E
[
Y | Y >z0,1:d = qα0 (Y >z0,1:d),X ∈R0

]
=m0 + Σ0z0,1:d

(
z>0,1:dΣ0z0,1:d

)−1
(qα0 (Y >z0)−m>0 z0,1:d),

Var
(
Y | Y >z0,1:d = qα0 (Y >z0,1:d),X ∈R0

)
= Σ0−Σ0z0,1:d

(
z>0,1:dΣ0z0,1:d

)−1
z>0,1:dΣ0.

Lemma 2 (Sufficient conditions for Proposition 1). Under conditions in Lemma 1, if we further

assume the following conditions:

1. P (X ∈Rj)> 0 for j = 0,1,2;

2. ∇2f0(z) is continuous, and ∇2f0(z0) is invertible;

3. there exist a compact neighborhood N around z0 such that supz∈N ‖Ĥ0(z) − ∇2f0(z)‖ = op(1),

supz∈N ‖ĥj(z)−∇fj(z)‖=Op(n
−1/2), and {I [Xi ∈R0] c(z;Yi) : z ∈N} is a Donsker class;
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4. conditions in Lemma 1 hold;

Then ‖Ĥ−1
0 (ẑ0)− (∇2f0(z0))

−1 ‖= op(1), ‖ĥj(ẑ0)−∇fj(z0)‖=Op(n
−1/2) for j = 1,2.

Proposition 12 (Regularity conditions for Estimators in Example 1). Consider the esstimates(
ĥj(ẑ0)

)
l
= 1

nj

∑n

i=1 I [Xi ∈Rj , Yl ≤ ẑ0,l] and
(
Ĥ0(ẑ0)

)
l
= (αl+βl)

1
njb

∑n

i=1 I [Xi ∈Rj ]K((Yi,l− ẑ0,l)/b) given

in Example 1. Suppose the following conditions hold:

1. P (X ∈Rj)> 0 for j = 0,1,2;

2. The density function µl(z) is Hölder continuous, i.e., there exist a constant 0<a≤ 1 such that |µl(z)−
µl(z

′)| ≤ ‖z− z′‖a for z, z′ ∈Rd, and µl(z)> 0 for z in a neighborhood around z0;

3. the bandwidth b satisfies that b≥ logn/n and b→ 0 as n→∞;

4. conditions in Lemma 1 hold.

Then
(
ĥj(ẑ0)

)
l

and
(
Ĥ0(ẑ0)

)
l

given in Example 1 satisfy the conditions in Proposition 1.

Proposition 13 (Regularity conditions for Estimators in Example 2). Consider the estimators

ĥj(ẑ0) and Ĥ0(ẑ0) given in Example 2:

ĥj(ẑ0) = 2

[ 1
nj

∑n

i=1 I [Xi ∈Rj ]YiY >i ẑ0,1:d− 1
nj

∑n

i=1 I [Xi ∈Rj ]Yiẑ0,d+1

ẑ>0,1:d

(
1
n0

∑n

i=1 I [Xi ∈R0]Yi− 1
nj

∑n

i=1 I [Xi ∈Rj ]Yi
) ]

,

Ĥ0(ẑ0) = 2

[ 1
n0

∑n

i=1 I [Xi ∈R0]YiY
>
i − 1

n0

∑n

i=1 I [Xi ∈R0]Yi
− 1
n0

∑n

i=1 I [Xi ∈R0]Y >i 1

]
.

If conditions in Lemma 1 and condition 1 in Lemma 2 hold and Var (Y |X ∈R0) is vertible, then ĥj(ẑ0) and

Ĥ0(ẑ0) satisfy conditions in Proposition 1.

Proposition 14 (Regularity conditions for Estimators in Example 3). Consider the estimator

ĥj(ẑ0) and Ĥ0(ẑ0) given in Example 3:

ĥj(ẑ0) =

[
− 1
nj

∑n

i=1 I [Y >i ẑ0,1:d ≤ q̂α0 (Y >ẑ0,1:d),Xi ∈Rj ]Yi
1
nj

∑n

i=1 I [Y >i ẑ0,1:d ≤ qα0 (Y >ẑ0,1:d),Xi ∈Rj ]−α

]

Ĥ0(ẑ0) =
µ̂0(q̂α0 (Y >ẑ0))

α

[
M̂2 −M̂1

−M̂1 1

]
where

M̂1 = m̂0 + Σ̂0ẑ0

(
ẑ>0,1:dΣ̂0ẑ0,1:d

)−1

(q̂α0 (Y >ẑ0,1:d)− m̂>0 ẑ0,1:d)

M̂2 = M̂1M̂
>
1 + Σ̂0− Σ̂0ẑ0,1:d

(
ẑ>0,1:dΣ̂0ẑ0,1:d

)−1

ẑ>0,1:dΣ̂0

If the conditions in Lemma 1 and condition 1 in Lemma 2 holds, the density function of Y >z0 is positive

at qα0 (Y >z0) and it also satisfies the Hölder continuity condition, i.e., condition 2 in Proposition 12, and also

the bandwidth satisfies the condition 3 in Proposition 12, then ĥj(ẑ0) =∇fj(z0) +Op(n
−1/2) and ‖Ĥ0(ẑ0)−

∇2f0(z0)‖→ 0.

Proposition 15 (Regularity Conditions for Estimators in Example 5). Suppose that c(z;y) is

twice continuously differentiable in z for every y and conditions in Lemma 1 and condition 1 in Lemma 2 hold,

then the the conditions in Proposition 1 are satisfied for estimates Ĥ0(ẑ0) = 1
n0

∑n

i=1 I [Xi ∈R0]∇2c (ẑ0;Yi)

and ĥj(ẑ0) = 1
nj

∑n

i=1 I [Xi ∈Rj ]∇c (ẑ0;Yi) given in Example 5.
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Below we introduce the linear independence constraint qualification condition for deterministic constraints

only. See Eq. (66) for a more complete condition with both deterministic constraints and stochastic con-

straints.

Definition 1 (Linear Independence Constraint Qualification). Consider constraints

Z =

{
z ∈Rd :

hk(z) = 0, k= 1, . . . , s,
hk(z)≤ 0, k= s+ 1, . . . ,m

}
and the index set of inequality constraints active at a point z0 ∈ Z denoted as Kh(z0) = {k : hk(z0) =

0, k = s + 1, · · · ,m}. The linear independence constraint qualification condition is satisfied at z0 ∈ Z if

{∇hk (z0) : k ∈ {1, . . . , s}∪Kh(z0)} are linearly independent.

According to Wachsmuth (2013), the linear independence constraint qualification (LICQ) condition is a

sufficient condition for the Mangasarian-Fromovitz constraint qualification condition (condition 5 in The-

orem 4). Moreover, when the LICQ condition is satisfied at a optimal solution z0, then it has a unique

Lagrangian multiplier v0 such that (z0, v0) satisfy the Karush–Kuhn–Tucker conditions (condition 4 in The-

orem 4). In the proposition below, we show that the LICQ condition is satisfied for any z ∈ Z for the

constraints Z given in Examples 1 to 3, so conditions 4 and 5 in Theorem 4 are satisfied for these examples.

Proposition 16. Example 1 with the constraints Z =
{
z ∈Rd :

∑d

l=1 zl ≤C, zl ≥ 0, l= 1, . . . , d
}

and

Examples 2 and 3 with the simplex constraint Z = {z ∈Rd+1 :
∑d

l=1 zl = 1, zl ≥ 0, l= 1, . . . , d} all satisfy the

linear independence constraint qualification condition in Definition 1 at any z ∈Z.

Finally, we point out the splitting criterion considered in Elmachtoub et al. (2020) is what we termed the

oracle criterion in Eq. (8).

Proposition 17. When c (z;y) = y>z, the Smart Predict-then-Optimize (SPO) criterion in Elmachtoub

et al. (2020) is equivalent the oracle splitting criterion in Eq. (8).

Appendix H: Omitted Proofs

H.1. Proofs for Appendix D

Proof for Proposition 3 Recall that

vj (t) = f0(zj (t)) + t (fj(zj (t))− f0(zj (t))) +
∑

k∈K̃h(z0)

νj,k (t)hk (zj (t)) ,

where K̃h (z0) = {1, . . . , s}∪Kh (z0).

Taking the derivatives w.r.t t based on the chain rule, we have

∂

∂t
vj (t) = fj (zj (t))− f0 (zj (t)) +

∑
k∈K̃h(z0)

(
∂

∂t
νj,k (t)

)
hk (zj (t))

+

∇f0 (zj (t)) +
∑

k∈K̃h(z0)

νj,k (t)∇hk (zj (t)) + t (∇fj (zj (t))−∇f0 (zj (t)))

 ∂

∂t
zj (t) .
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Therefore,

∂

∂t
vj (t) |t=0 = fj (z0)− f0 (z0) +

∇f0 (z0) +
∑

k∈K̃h(z0)

ν0,k∇hk (z0)

 ∂

∂t
zj (t) |t=0 +

∑
k∈K̃h(z0)

(
∂

∂t
νj,k (t) |t=0

)
hk (z0)

= fj (z0)− f0 (z0) ,

where the second equation holds because ∇f0 (z0) +
∑

k∈K̃h(z0) ν0,k∇hk (z0) = 0 according to Eq. (51), and

hk (z0) = 0 for any k ∈ K̃h (z0) by the definition of Kh (z0).

Further taking the second order derivatives, we have

∂2

∂t2
vj (t) = 2 (∇fj (zj (t))−∇f0 (zj (t)))

∂

∂t
zj (t) +

∑
k∈K̃h(z0)

(
∂2

∂t2
νj,k (t)

)
hk (zj (t))

+ 2
∑

k∈K̃h(z0)

(
∂

∂t
νj,k (t)

)
∇>hk (zj (t))

(
∂

∂t
zj (t)

)

+

∇f0 (zj (t)) +
∑

k∈K̃h(zj(t))

νj,k (t)∇hk (zj (t)) + t (∇fj (zj (t))−∇f0 (zj (t)))

 ∂2

∂t2
zj (t)

+

(
∂

∂t
zj (t)

)>∇2f0 (zj (t)) +
∑

k∈K̃h(z0)

νj,k (t)∇2hk (zj (t))

( ∂

∂t
zj (t)

)
.

Evaluating the above at t= 0 gives

∂2

∂t2
vj (t) |t=0 = 2 (∇fj (z0)−∇f0 (z0))dj∗z + 2

∑
k∈K̃h(z0)

(
∂

∂t
νj,k (t) |t=0

)
∇>hk (z0)dj∗z

+
(
dj∗z
)>∇2f0 (zj (t)) +

∑
k∈K̃h(z0)

νj,k (t)∇2hk (zj (t))

dj∗z .

According to Eq. (53), we know that

2
∑

k∈K̃h(z0)

(
∂

∂t
νj,k (t) |t=0

)
∇>hk (z0)dj∗z = 2

∑
k∈K̃h(z0)

ξj∇>hk (z0)dj∗z

=− 2 (∇fj(z0)−∇f0(z0))
>
dj∗z − 2

(
dj∗z
)>∇2f0 (zj (t)) +

∑
k∈K̃h(z0)

νj,k (t)∇2hk (zj (t))

dj∗z .

Moreover, note that by the first equation in Eq. (53), we have

(
dj∗z
)>∇2f0 (zj (t)) +

∑
k∈K̃h(z0)

νj,k (t)∇2hk (zj (t))

dj∗z +
(
dj∗z
)>∇HKh

>
(z0)ξj =− (∇fj(z0)−∇f0(z0))

>
dj∗z ,

and by the second equation in Eq. (53), we have(
dj∗z
)>∇HKh

>
(z0)ξj = 0.

Thus

(
dj∗z
)>∇2f0 (zj (t)) +

∑
k∈K̃h(z0)

νj,k (t)∇2hk (zj (t))

dj∗z =− (∇fj(z0)−∇f0(z0))
>
dj∗z .
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It follows that

∂2

∂t2
vj (t) |t=0 =−

(
dj∗z
)>∇2f0 (zj (t)) +

∑
k∈K̃h(z0)

νj,k (t)∇2hk (zj (t))

dj∗z

=
(
dj∗z
)>∇2f0 (zj (t)) +

∑
k∈K̃h(z0)

νj,k (t)∇2hk (zj (t))

dj∗z + 2 (∇fj(z0)−∇f0(z0))
>
dj∗z .

Proof for Proposition 4 Note that the Lagrangian multiplier set Λ(z∗, u0) for the unperturbed problem

can be written as follows:

Λ(z∗, u0) =

λ :
λk ≥ 0 if k ∈K(z∗, u0), λk = 0, if k ∈ {s+ 1, . . . ,m} \K(z∗, u0),
λk ∈R if k ∈ {1, . . . , s},
Dzf(z∗, u0) +

∑m

k=1 λkDzgk(z
∗, u0) = 0

 .

Similarly, we can define the Lagrangian for the problem PL:

LPL(dz;λ) =Df(z∗, u0)(dz, du) +

s∑
k=1

λkDgk(z
∗, u0)(dz, du) +

∑
k∈K(z∗,u0)

λkDgk(z
∗, u0)(dz, du).

The multiplier set for any dz feasible for the problem PL as follows:

ΛPL(dz) =

λ :
λk ≥ 0 if k ∈KPL(z∗, u0, dz), λk = 0, if k ∈K(z∗, u0) \KPL(z∗, u0, dz)
λk ∈R if k ∈ {1, . . . , s}∪ ({s+ 1, . . . ,m} \K(z∗, u0)) ,
Dzf(z∗, u0) +

∑m

k=1 λkDzgk(z
∗, u0) = 0

 .

Then by duality of linear program, for any d∗z ∈ S(PL),

V (PL) = max
λ
LPL(d∗z;λ).

We know that any λ∗PL ∈ ΛPL(d∗z) attains the maximum above. For any λ ∈ ΛPL(d∗z) or λ ∈ Λ(z∗, u0), by

the fact that Dzf(z∗, u0) +
∑m

k=1 λkDzgk(z
∗, u0) = 0 , we also have LPL(d∗z;λ) =DuL(z∗, λ,u0)du. Moreover,

ΛPL(d∗z) differs with Λ(z∗, u0) only in two aspects: (1) for λ ∈ Λ(z∗, u0), λk = 0 for k ∈ {s + 1, . . . ,m} \

K(z∗, u0), but for λ ∈ ΛPL(d∗z), λk ∈ R for k ∈ {s + 1, . . . ,m} \K(z∗, u0), which does not matter because

LPL(dz;λ) does not depend on λk for k ∈ {s+ 1, . . . ,m} \K(z∗, u0); (2) for λ ∈ Λ(z∗, u0), λk ≥ 0 for k ∈

K(z∗, u0) \KPL(z∗, u0, d
∗
z), but for λ ∈ ΛPL(d∗z), λk = 0 for k ∈K(z∗, u0) \KPL(z∗, u0, d

∗
z), which does not

matter as well because Dgk(z
∗, u0)(d∗z, du) = 0 for k ∈K(z∗, u0)\KPL(z∗, u0, d

∗
z) so that λk for k ∈K(z∗, u0)\

KPL(z∗, u0, d
∗
z) do not influence LPL(d∗z;λ) as well. This means that for any λ∗PL ∈ ΛPL(d∗z), there always

exists λ′ ∈Λ(z∗, u0) such that LPL(d∗z;λ
∗
PL) = maxλLPL(d∗z;λ) =LPL(d∗z;λ

′).

Therefore, for any d∗z ∈ S(PL),

V (PL) = max
λ
LPL(d∗z;λ) = max

λ∈Λ(z∗,u0)
DuL(z∗, λ,u0)du = V (DL),

which justifies the dual formulation in Eq. (58).

By the definition of Lagrangian multiplier set, S(DL) = ΛPL(d∗z) for any d∗z ∈ S(PL). Now we consider the

Lagrangian of the problem PQ(dz):

LPQ(rz;λ) =Df(z∗, u0)(rz, ru) +D2f(z∗, u0)((dz, du), (dz, du))

+
∑

k∈KPL(z∗,u0,dz)∩{1,...,s}

λk
(
Dgk(z

∗, u0)(rz, ru) +D2gk(z
∗, u0)((dz, du), (dz, du))

)
.
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Note that PQ(dz) is a linear program, and by the strong duality, we have that for any r∗z ∈ S(PQ(dz))

V (PQ(dz)) = V (DQ(dz)) = max
λ
LPQ(r∗z ;λ).

The set of Lagrangian multipliers that attain the maximum above is

ΛPQ(dz)(r
∗
z) =

λ :
λk ≥ 0 if k ∈KPQ(z∗, u0, rz), λk = 0, if k ∈KPL(z∗, u0, dz) \KPQ(z∗, u0, rz)
λk ∈R if k ∈ {1, . . . , s}∪ ({s+ 1, . . . ,m} \KPL(z∗, u0, dz)) ,
Dzf(z∗, u0) +

∑
k∈KPL(z∗,u0,dz)∩{1,...,s} λkDzgk(z

∗, u0) = 0

 ,

where KPQ(z∗, u0, rz) is the index set of active inequality constraints in the problem PQ(dz), i.e.,

KPQ(z∗, u0, rz) = {k ∈KPL(z∗, u0, dz) :Dgk(z
∗, u0)(rz, ru) +D2gk(z

∗, u0)((dz, du), (dz, du)) = 0}.

Thus for any λ∈ΛPQ(dz),

V (PQ(dz)) = V (DQ(dz)) =LPQ(r∗z ;λ) =DuL(z∗, u0;λ)ru +D2L(z∗, u0;λ)((dz, du), (dz, du)).

Again, ΛPQ(dz)(r
∗
z) differs with S(DL) = ΛPL(d∗z) only in aspects that do no influence the value of LPQ(r∗z ;λ).

So for any λ∈ΛPQ(dz), there always exists λ′ ∈ S(DL), such that LPQ(r∗z ;λ) =LPQ(r∗z ;λ
′). Therefore,

V (PQ(dz)) = V (DQ(dz)) =LPQ(r∗z ;λ) = sup
λ∈S(DL)

LPQ(r∗z ;λ).

This proves the dual formulation in Eq. (61).

It follows that if the optimal dual solution of the unperturbed problem is unique, i.e., Λ(z∗, u0) = {λ∗},

then

V (PL) = V (DL) =DuL(z∗, λ∗, u0)du.

Since V (PQ) is finite, S(PL) 6= ∅. By strong duality, we have ∅ 6= S(DL)⊆ Λ(z∗, u0) = {λ∗}, thus we must

have S(DL) = {λ∗}. Therefore,

V (PQ(dz)) = V (DQ(dz)) = max
λ∈S(DL)

DuL(z∗, λ,u0)ru +D2L(z∗, λ,u0)((dz, du), (dz, du))

=DuL(z∗, λ∗, u0)ru +D2L(z∗, λ∗, u0)((dz, du), (dz, du)).

Proof for Proposition 5. Under the asserted strict complementarity condition, K0(z∗, u0, λ
∗) = ∅ and

K+(z∗, u0, λ
∗) =K(z∗, u0), so

S(PL) =
{
dz : Dgk(z

∗, u0)(dz, du) = 0, k ∈ {1, . . . , s}∪K(z∗, u0)
}
.

According to Proposition 4, we have

V (PQ) = V (DQ) = min
dz∈S(PL)

DuL(z∗, λ∗, u0)ru +D2L(z∗, λ∗, u0)((dz, du), (dz, du)).

The asserted conclusion then follows.

Proof for Theorem 8. Note that the optimization problem in Eq. (63) corresponds to perturbation path

u(t) = t, i.e., u0 = 0, du = 1, ru = 0. By assuming unqiue Lagrangian multipliers (λ∗, ν∗), we have

V (PL) = V (DL) =∇tL(z∗,0;λ∗, ν∗)du

= δf (z∗) +
∑
k

λ∗kδgk(z∗).
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Moreover, because du = 1, ru = 0,

V (PQ) = V (DQ) = min
dz∈S(PL)

d>z ∇2
zzL(z∗,0;λ∗, ν∗)dz + 2d>z ∇2

ztL(z∗,0;λ∗, ν∗) +∇2
ttL(z∗,0;λ∗, ν∗)

Note that

∇2
ttL(z∗,0;λ∗, ν∗) = 0,

∇2
tzL(z∗,0;λ∗, ν∗) =∇δf (z∗) +

s∑
k=1

λ∗k∇δgk(z∗).

Then Eq. (64) follows from the fact that the constraints in DQ now reduces to the following:{
d>z ∇z [gk(z) + tδgk(z)] + du∇t [gk(z) + tδgk(z)]

}
|(z,t)=(z∗,0)

=d>z [∇gk(z) + t∇δgk(z)] |(z,t)=(z∗,0) +∇t [gk(z) + tδgk(z)] |(z,t)=(z∗,0)

=d>z ∇gk(z∗) + δgk(z∗),[
d>z ∇zhk(z) + du∇thk(z)

]
|(z,t)=(z∗,0) = d>z ∇hk(z∗).

Proof for Corollary 1 Note that under the asserted conditions, conditions 1, 2, 4, 5 in Theorem 8 hold,

and condition 3 in Theorem 8 degenerates and thus holds trivially.

Note that v′(0) in Theorem 8 now reduces to δf (z∗), and

v′′(0) = min
dz

d>z ∇2f(z∗)dz + 2d>z ∇δf (z∗).

Under the condition that ∇2f(z∗) is positive definite (and thus invertible), we have that the optimization

problem in the last display has a unique solution d∗z =− (∇2f(z∗))
−1∇δf (z∗). Consequently,

v′′(0) =−∇δf (z∗)>
(
∇2f(z∗)

)−1∇δf (z∗).

Proof for Theorem 9. Consider the function φ(t) = v(f0 + tδf ). Given the asserted conditions, for any

t ∈ [0,1], f0(z) + tδf (z) satisfies the conditions in Corollary 1, thus results in Corollary 1 imply that φ(t) is

twice differentiable:

φ′(t) = v′(f0 + tδf ; δf ) = δf ;

φ′′(t) = v′′(f0 + tδf ; δf ) =−∇δf (z∗(f0 + tδf ))>
(
∇2(f0 + tδf )(z∗(f0 + tδf ))

)−1∇δf (z∗(f0 + tδf )).

We now argue that φ′′(t) is also continuous in t ∈ [0,1]. Since condition 2 in Corollary 1 is

satisfied for t ∈ [0,1], there exist a compact set N such that that z∗(f0 + tδf (z)) ∈ N for t ∈

[0,1]. Note that supz∈N |f0(z) + tδf (z) − f0(z)| → 0 as t → 0 by the fact that δf (z) is bounded

over N . Then according to Theorem 5.3 in Shapiro et al. (2014), z∗(f0 + tδf ) → z∗(f0) as t →

0. Similarly, supz∈N ‖∇2(f0 + tδf )(z)−∇2f0(z)‖F → 0 as t → 0. This convergence together with

the continuity of ∇2f0(z) and ∇2δf (z) imply that ‖∇2(f0 + tδf )(z∗(f0 + tδf ))−∇2f0(z∗(f0))‖F →

0. It then follows from the invertibility of ∇2(f0 + tδf )(z∗(f0 + tδf )) for any t ∈ [0,1] that

‖ (∇2(f0 + tδf )(z∗(f0 + tδf )))
−1− (∇2f0(z∗(f0)))

−1 ‖F→ 0. Moreover, by the continuity of ∇δf , we have that

‖∇δf (z∗(f0 + tδf ))−∇δf (z∗(f0))‖2→ 0 as t→ 0. These together show that φ′′(t) is continuous in t∈ [0,1].



Kallus and Mao: Stochastic Optimization Forests 75

Now that φ(t) is twice continuously differentiable over [0,1], there exists t′ ∈ [0,1] such that

φ(1) = φ(0) +φ′(0) +
1

2
φ′′(t′),

where φ′(0) = v′(f ; δf ) and φ′′(t′) = v′′(f + t′δf ; δf ). Or equivalently,

v(f0 + δf ) = v(f0) + v′(f ; δf ) + v′′(f0; δf ) + v′′(f0 + t′δf ; δf )− v′′(f0; δf ).

Denote R1 =∇δf (z∗(f0 + tδf ))−∇δf (z∗(f0)) and R2 = (∇2 (f0 + tδf ) (z∗(f0 + tδf )))
−1 − (∇2f0(z∗(f0)))

−1
.

It is straightforward to verify that

v′′(f0 + t′δf ; δf )− v′′(f0; δf ) =∇δf (z∗(f0))>
(
∇2f0(z∗(f0))

)−1∇δf (z∗(f0))

−∇δf (z∗(f0 + tδf ))>
(
∇2 (f0 + tδf ) (z∗(f0 + tδf ))

)−1∇δf (z∗(f0 + tδf ))

=R>1
(
∇2f0(z∗(f0))

)−1
R1 + 2R1

(
∇2f0(z∗(f0))

)−1∇δf (z∗(f0))

+∇δf (z∗(f0 + tδf ))>R2∇δf (z∗(f0 + tδf )).

As δf → 0, we have supz∈N | (f0 + tδf ) (z)− f0(z)| → 0, so that Theorem 5.3 in Shapiro et al. (2014) again

implies that |z∗(f0 + tδf )− z∗(f0)| → 0. It follows that there exist a constant β ∈ [0,1] such that R1 =

∇2δf (βz∗(f0 +tδf )+(1−β)z∗(f0))(z∗(f0 +tδf )−z∗(f0)) = o(∇2δf (βz∗(f0 +tδf )+(1−β)z∗(f0))) = o(‖δf‖F).

Similarly, we can also prove that ‖R2‖F→ 0 as δf → 0. It follows that as δf → 0,

v′′(f0 + t′δf ; δf )− v′′(f0; δf ) = o(‖δf‖2F).

Therefore,

v(f0 + δf ) = v(f0) + δf (z∗)− 1

2
∇δf (z∗)>

(
∇2f(z∗)

)−1∇δf (z∗) + o(‖δf‖2F).

Similarly, we can prove that

z∗(f0 + δf ) = z∗(f0)−
(
∇2f(z∗)

)−1∇δf (z∗) + o(‖δf‖F).

H.2. Proofs for Appendix E

Proof for Proposition 6. By first order optimality condition, for any zdec,

∂

∂zaux
E
[
c(zdec, zaux

j

(
zdec

)
;Y ) |X ∈Rj

]
= 0.

It follows that

∇fj
(
zdec

0

)
=

∂

∂zdec
E
[
c(zdec

0 , zaux
j

(
zdec

0

)
;Y ) |X ∈Rj

]
.

Note that

∇2f0

(
zdec

0

)
=

∂2

(∂zdec)
>
∂zdec

E
[
c(zdec

0 , zaux
0 ;Y ) |X ∈R0

]
+

∂2

∂zdec (∂zaux)
>E
[
c(zdec

0 , zaux
0 ;Y ) |X ∈R0

] ∂

(∂zdec)
> z

aux
0

(
zdec

0

)
.

Moreover, under the asserted smoothness condition and invertibility condition, the implicit function theorem

futher implies that

∂

(∂zdec)
> z

aux
0

(
zdec

0

)
=−

{
∂2

∂zaux (∂zaux)
>E
[
c(zdec

0 , zaux
0 ;Y ) |X ∈R0

]}−1

× ∂2

∂zaux (∂zdec)
>E
[
c(zdec

0 , zaux
0 ;Y ) |X ∈R0

]
,

which in turn proves the formula for ∇2fj
(
zdec

0

)
in Proposition 6.
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Proof for Proposition 8 The conclusion follows directly from the following facts that can be easily verified:

∇fj
(
zdec

0

)
=

∂

∂zdec
f̃j
(
zdec

0 , zaux
j

(
zdec

0

))
,

∇2f0

(
zdec

0

)
=
(
∇2f̃0

(
zdec

0 , zaux
0

))−1 [
zdec

0 , zdec
0

]
.

H.3. Proofs for Appendix G

Proof for Lemma 1 The conclusion directly follows from Theorem 5.3 in Shapiro et al. (2014).

Proof for Proposition 9 Note that

ẑ0 = arg min
z

1

n

n∑
i=1

I [Xi ∈R0]‖z−Yi‖2 =
1

n0

∑
i

I [Xi ∈R0]Yi.

Analogously, we define ẑj = 1
nj

∑
i
I [Xi ∈Rj ]Yi.

Note that ∇c(z;y) = z− y and ∇2c(z;y) = I. Thus the gradient and Hessian estimates are

ĥj(ẑ0) =
1

nj

∑
i

I [Xi ∈Rj ] (ẑ0−Yi) = ẑ0− ẑj , Ĥ0(ẑ0) = I.

It follows that

Ĉapx-soln(R1,R2) =
∑
j=1,2

1

n

n∑
i=1

I [Xi ∈Rj ] c
(
ẑ0− Ĥ−1

0 ĥj ; Yi

)
=
∑
j=1,2

1

2n

n∑
i=1

I [Xi ∈Rj ] c (ẑj ; Yi) =
1

2n

∑
j=1,2

n∑
i=1

I [Xi ∈Rj ]‖Yi− ẑj‖22

=
1

2

∑
j=1,2

nj
n

(
1

nj

n∑
i=1

I [Xi ∈Rj ]‖Yi− ẑj‖22

)
=

1

2

∑
j=1,2

nj
n

d∑
l=1

Var ({Yi,l :Xi ∈Rj , i≤ n})

and

1
2
Ĉapx-risk(R1,R2) + 1

2

∑
j=1,2

1
n

∑
i
I [Xi ∈Rj ]‖Yi− ẑ0‖22

=
1

2

∑
j=1,2

nj
n

d∑
l=1

[
1

nj

∑
i

I [Xi ∈Rj ] (Yi,l− ẑ0,l)
2− (ẑ0,l− ẑj,l)2

]

=
1

2

∑
j=1,2

nj
n

d∑
l=1

[
1

nj

∑
i

I [Xi ∈Rj ] (Yi,l− ẑj,l + ẑj,l− ẑ0,l)
2− (ẑ0,l− ẑj,l)2

]

=
1

2

∑
j=1,2

nj
n

d∑
l=1

[
1

nj

∑
i

I [Xi ∈Rj ] (Yi,l− ẑj,l)2 +
1

nj

∑
i

I [Xi ∈Rj ] (Yi,l− ẑj,l)(ẑj,l− ẑ0,l)

]

=
1

2

∑
j=1,2

nj
n

d∑
l=1

1

nj

∑
i

I [Xi ∈Rj ] (Yi,l− ẑj,l)2 =
∑
j=1,2

nj
2n

d∑
l=1

Var ({Yi,l :Xi ∈Rj , i≤ n})

Proof for Proposition 10. Note that in Proposition 10,

∇c(z;y) = 2

[
yy>z1:d− zd+1y
zd+1− z>1:dy

]
,∇2c(z;y) = 2

[
yy> −y
−y> 1

]
,

and also

z0,d+1 = arg min
zd+1∈R

E
[
(Y >z1:d− zd+1)2 |X ∈R0

]∣∣
z1:d=z0,1:d

= z>0,1:dE [Y |X ∈R0] .

It follows that

∇fj(z0) = E [∇c(z0;Y ) |X ∈Rj ] = 2

[
E [Y Y > |X ∈Rj ]z0,1:d−E [Y |X ∈Rj ]z0,d+1

z>0,1:d (E [Y |X ∈R0]−E [Y |X ∈Rj ])

]
and

∇2f0(z0) = E
[
∇2c(z;Y ) |X ∈R0

]
= 2

[
E [Y Y > |X ∈R0] −E [Y |X ∈R0]
−E [Y > |X ∈R0] 1

]
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Proof for Proposition 11 Recall that

fj(z) = E
[

1

α

(
zd+1−Y >z1:d

)
I
[
zd+1−Y >z1:d ≥ 0

]
− zd+1 |X ∈Rj

]
,

and also z0,d+1 = qα0 (Y >z0).

Under the assumption that Y has a continuous density function and z 6= 0, Lemma 3.1 in Hong and Liu

(2009) implies that

∂

∂z1:d

fj(z) =− 1

α
E
[
Y I
[
zd+1−Y >z1:d ≥ 0

]
|X ∈Rj

]
,

∂

∂zd+1

fj(z) =
1

α
P
(
zd+1−Y >z1:d ≥ 0 |X ∈Rj

)
− 1.

Before deriving the Hessian, we first denote µj(ul, yl) as the joint density of
∑

l′ 6=l zl′Yl′ and Yl given X ∈Rj .
It follows that for l= 1, . . . , d,

∂2

∂2zl
f0(z0)

=− 1

α

∂

∂zl
E
[
YlI
[
Y >z1:d ≤ zd+1

]
|X ∈R0

]∣∣∣∣
z=z0

=− 1

α

∂

∂zl

∫ ∫ zd+1−zlyl

−∞
ylµl(ul, yl) dul dyl

∣∣∣∣
z=z0

=− 1

α

∫
(−yl)ylµl(zd+1− zlyl, yl) dyl

∣∣∣∣
z=z0

=− µ0 (qα0 (Y >z0))

α

{
−E
[
Y 2
l | Y >z0 = qα0 (Y >z0),X ∈R0

]}
=
µ0 (qα0 (Y >z0))

α
E
[
Y 2
l | Y >z0 = qα0 (Y >z0),X ∈R0

]
.

Similarly we can prove that for l, l′ = 1, . . . , d

∂2

∂zl∂zl′
f0(z0) =

µ0 (qα0 (Y >z0))

α
E
[
YlYl′ | Y >z0 = qα0 (Y >z0),X ∈R0

]
.

In contrast, for l= 1, . . . , d,

∂2

∂zd+1∂zl
f0(z0) =

∂

∂zl

(
1

α
P
(
zd+1−Y >z1:d ≥ 0 |X ∈R0

)
− 1

)∣∣∣∣
z=z0

=
1

α

∂

∂zl

∫ ∫ zd+1−zlyl

−∞
µl(ul, yl) dul dyl

∣∣∣∣
z=z0

=
1

α

∫
−ylµl(zd+1− zlyl, yl) dyl

∣∣∣∣
z=z0

=−µ0 (qα0 (Y >z0))

α
E
[
Yl | Y >z0 = qα0 (Y >z0),X ∈R0

]
,

and

∂2

∂2zd+1

f0(z0) =
∂

∂zd+1

(
1

α
P
(
zd+1−Y >z1:d ≥ 0 |X ∈R0

)
− 1

)∣∣∣∣
z=z0

=
1

α

∂

∂zd+1

∫ ∫ zd+1−zlyl

−∞
µl(ul, yl) dul dyl

∣∣∣∣
z=z0

=
1

α

∫
µl(zd+1− zlyl, yl)

∣∣∣∣
z=z0

=
µ0 (qα0 (Y >z0))

α
.
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When Y |X ∈R0 has Gaussian distribution with mean m0 and covariance matrix Σ0, then (Y,Y >z0,1:d)

given X ∈R0 is also has a Gaussian distribution

N
([

m0

m>0 z0,1:d

]
,

[
Σ0 Σ0z0,1:d

z>0,1:dΣ0 z
>
0,1:dΣ0z0,1:d

])
It follows that Y | Y >z0,1:d = qα0 (Y >z0,1:d) also has a Gaussian distribution with the following conditional

mean and conditional variance:

E
[
Y | Y >z0,1:d = qα0 (Y >z0,1:d),X ∈R0

]
=m0 + Σ0z0,1:d

(
z>0,1:dΣ0z0,1:d

)−1
(qα0 (Y >z0)−m>0 z0,1:d),

Var
(
Y | Y >z0,1:d = qα0 (Y >z0,1:d),X ∈R0

)
= Σ0−Σ0z0,1:d

(
z>0,1:dΣ0z0,1:d

)−1
z>0,1:dΣ0.

Proof for Lemma 2 Under the conditions in Lemma 1, we have that ẑ0→ z0 almost surely, which implies

that there exist a neighborhood N around z0 such that ẑ0 ∈N almost surely for sufficiently large n.

Since supz∈N ‖Ĥ0(z)−∇2f0(z)‖F = op(1) and∇2f0(z) is continuous, we have that ‖Ĥ0(ẑ0)−∇2f0(z0)‖F =

op(1) (Shapiro et al. 2014, Proposition 5.1). By the fact that ∇2f0(z0) is invertible and the con-

tinuous mapping theorem, we also have that Ĥ0(ẑ0) is differentiable with high probability and

‖Ĥ−1
0 (ẑ0)− (∇2f0(z0))

−1 ‖F = op(1).

Since {(x, y) 7→ I [x∈R0] c(z;y) : z ∈N} is a Donsker class,
√
n
(
p̂0f0(·)− p0f0(·)

)
converges to a Gaussian

process (Van der Vaart 2000, Sec. 19.2). By Slutsky’s theorem, this means that
√
n
(
f̂0(·)− f0(·)

)
converges

to a Gaussian process as well. Then according to Theorem 5.8 in Shapiro et al. (2014), if
√
n
(
f̂0(·)− p0f0(·)

)
converges to a Gaussian process as well and ∇2f0(z0) is invertible, then

√
n(ẑ0 − z0) also converges to a

Gaussian distribution, which implies that ẑ0 − z0 = Op(n
−1/2). It follows that we have the following holds

almost surely:

‖ĥj(ẑ0)−∇fj(z0)‖2 ≤ ‖ĥj(ẑ0)−∇fj(ẑ0)‖2 + ‖∇fj(ẑ0)−∇fj(z0)‖2

≤ sup
z∈N
‖ĥj(z0)−∇fj(z0)‖2 + ‖∇fj(ẑ0)−∇fj(z0)‖2

≤ sup
z∈N
‖ĥj(z0)−∇fj(z0)‖2 + ‖∇2fj(z0)‖F‖ẑ0− z0‖2, (71)

which implies that ‖ĥj(ẑ0)−∇fj(z0)‖=Op(n
−1/2).

Proof for Proposition 12. Note that we only need to verify the conditions in Lemma 2 and that∣∣∣ 1
n

∑n

i=1 I [Xi ∈Rj ] c
(
ẑ0− Ĥ−1

0 (ẑ0)ĥj(ẑ0);Yi

)
− fj

(
z0− (∇2f0(z0))

−1∇fj(z0)
)∣∣∣ = Op(n

−1/2) for j = 1,2.

Recall that (∇fj(z0))l = (αl + βl)P (Yl ≤ z0,l |X ∈Rj) − βl and (∇2f0(z0))ll = (αl + βl)µ0,l(z0) for l =

1, . . . , d, j = 1,2, and (∇2f0(z0))ll′ = 0 for l 6= l′, where µ0,l is the density of Yl |X ∈R0. Note that ∇2f0(z)

is continuous, and ∇2f0(z0) is invertible under the asserted conditions.

Note that the indicator function class {(x, yl) 7→ I [x∈Rj , yl ≤ zl] : zl ∈ R} is a Donsker class (Van der

Vaart 2000, Ex. 19.6). Therefore, supz∈Rd |
(
ĥj(z)

)
l
− (∇fj(z0))l|=Op(n

−1/2).

Using the Theorem 2 in Jiang (2017) for the uniform convergence of kernel density estimator, we can

straightforwardly show that under the asserted Holder continuity condition for µk and rate condition for

bandwidth b, the Hessian estimator satisfies that supz

∣∣∣(Ĥ0(z)
)
ll
− (∇2f0(z0))ll

∣∣∣= op(1) for l= 1, . . . , d.
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Moreover, note that

c(z;y) =

d∑
l=1

max{αl(zl− yl), βl(yl− zl)}=

d∑
l=1

βl(yl− zl)− (αl +βl)(yl− zl)I [yl ≤ zl] .

Here the function classes {yl 7→ βl(yl − zl) : z ∈Rd} and {yl 7→ (αl + βl)(yl − zl) : z ∈Rd} are linear function

classes with fixed dimension, so they are Donsker classes (Van der Vaart 2000, Ex 19.17). Moreover, {yl 7→
I [yl ≤ zl] : zl ∈Rd} is also a Donsker class (Van der Vaart 2000, Ex. 19.6). It follows that the function class

{(x, y) 7→ I [x∈Rj ] c(z;y) : z ∈ Rd} is also a Donsker class, according to Ex 19.20 of Van der Vaart (2000).

Similar to proving ‖ĥj(ẑ0)−∇fj(ẑ0)‖=Op(n
−1/2) in Lemma 2 (see Eq. (71)), we can prove that for j = 1,2,∣∣∣∣∣ 1n

n∑
i=1

I [Xi ∈Rj ] c
(
ẑ0− Ĥ−1

0 (ẑ0)ĥj(ẑ0);Yi

)
− fj

(
z0−

(
∇2f0(z0)

)−1∇fj(z0)
)∣∣∣∣∣=Op(n

−1/2).

Proof for Proposition 13. Since Example 2 is a special example of Example 5, the conclusions in Propo-

sition 13 directly follow from Proposition 15.

Proof for Proposition 14. Recall that q̂α0 (Y >i ẑ0) is the empirical quantile of Y >ẑ0 based on data in R0.

Equivalently, q̂α0 (Y >i ẑ0) is the (approximate) minimizer of the following optimization problem:

min
β∈R

1
n

∑n

i=1 (α− I [Y >i ẑ0−β ≤ 0]) (Y >i ẑ0−β) I [Xi ∈R0]
1
n

∑n

i=1 I [Xi ∈R0]

Since {y 7→ y>z−β : z ∈Rd, β ∈R} is a Donsker class (Van der Vaart 2000, Ex. 19.17) and so is

{y 7→ I [y>z−β] : z ∈Rd, β ∈R}. This implies that

sup
β∈R,z∈Rd

∣∣∣∣∣ 1n
n∑
i=1

(
α− I

[
Y >i z−β ≤ 0

]) (
Y >i z−β

)
I [Xi ∈R0]−E

[(
α− I

[
Y >i z−β ≤ 0

]) (
Y >i z−β

)
I [Xi ∈R0]

]∣∣∣∣∣→ 0.

Together with ẑ0→ z0 and the continuity of E [(α− I [Y >i z−β ≤ 0]) (Y >i z−β) I [Xi ∈R0]] in z, this implies

that

sup
β∈R

∣∣∣∣∣ 1n
n∑
i=1

(
α− I

[
Y >i ẑ0−β ≤ 0

]) (
Y >i ẑ0−β

)
I [Xi ∈R0]−E

[(
α− I

[
Y >i z0−β ≤ 0

]) (
Y >i z0−β

)
I [Xi ∈R0]

]∣∣∣∣∣→ 0.

Moreover, 1
n

∑n

i=1 I [Xi ∈R0] → P (X ∈R0) by Law of Large Number. It follows from Theo-

rem 5.5 in Shapiro et al. (2014) that q̂α0 (Y >i ẑ0) converges to the set of minimizers of

E [(α− I [Y >i z−β ≤ 0]) (Y >i z−β) |Xi ∈R0]. Since the density function of Y >z0 at qα0 (Y >z0) is positive, min-

imizer of E [(α− I [Y >i z−β ≤ 0]) (Y >i z−β) |Xi ∈R0] is unique. Therefore, q̂α0 (Y >i ẑ0) converges to qα0 (Y >i z0).

Since {y 7→ y>z−β : z ∈Rd, β ∈R} is a Donsker class (Van der Vaart 2000, Ex. 19.17), obviously

{(x, y) 7→ I [y>z−β,x∈Rj ] : z ∈Rd, β ∈R} and thus {(x, y) 7→ I [y>z−β ≤ 0, x∈Rj ]y : z ∈Rd, β ∈R} are

also Donsker classes. Morever, we already prove that q̂α0 (Y >i ẑ0) converges to qα0 (Y >i z0), and obviously
nj

n
=

1
n

∑n

i=1 I [Xi ∈Rj ]→ P (X ∈Rj). Therefore,

− 1

αnj

n∑
i=1

I
[
Y >i ẑ0 ≤ q̂α0 (Y >ẑ0),Xi ∈Rj

]
Yi =− 1

α
E
[
I
[
Y >i z0 ≤ qα0 (Y >z0)

]
Yi |Xi ∈Rj

]
+Op(n

−1/2).

Similarly, we can show that

1

nj

n∑
i=1

1

α
I
[
Y >i ẑ0,1:d ≤ qα0 (Y >ẑ0),Xi ∈Rj

]
− I [Xi ∈Rj ]

=
1

α
P
(
qα0 (Y >z0)−Y >z0,1:d ≥ 0 |X ∈Rj

)
− 1 +Op(n

−1/2).
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Therefore, ĥj(ẑ0) =∇fj(z0) +Op(n
−1/2).

Under the Gaussian assumption,

E
[
Y | Y >z0 = qα0 (Y >z0),X ∈R0

]
=m0 + Σ0z0

(
z>0 Σ0z0

)−1
(qα0 (Y >z0)−m>0 z0)

Var
(
Y | Y >z0 = qα0 (Y >z0),X ∈R0

)
= Σ0−Σ0z0

(
z>0 Σ0z0

)−1
z>0 Σ0.

Since both are continuous in z0,m0,Σ0, q
α
0 (Y >z0), so when we plug in the empirical estimators that converge

to the true values, the estimator for E [Y | Y >z0 = qα0 (Y >z0),X ∈R0], Var (Y | Y >z0 = qα0 (Y >z0),X ∈R0),

and E [Y Y > | Y >z0 = qα0 (Y >z0),X ∈R0] are all consistent.

Similar to the proof of Proposition 12, we can show that under the asserted Holder continuity condition

and the rate condition on bandwidth b,

1

n0b

n∑
i=1

I [Xi ∈R0]K
((
Y >i ẑ0− qα(Y >ẑ0)

)
/b
)

= µ0

(
qα0 (Y >z0)

)
+ op(1).

Then by the upper boundedness of µ0, we have that ‖Ĥ0(ẑ0)−∇2f0(z0)‖F = op(1).

Proof for Proposition 15. Since ∇2f(z) is continuous at z = z0 and ẑ0→ z0 almost surely according to

Lemma 1, there exist a sufficiently small compact neighborhood N around z0 such that the minimum singular

value of ∇2f(z), denoted as σmin(∇2f(z)), is at least 2
3
σmin (∇2f(z0)) for any z ∈N , and for n large enough

ẑ0 ∈N almost surely. Recall that ∇2f0(z) = E [∇2c (z;Yi) |Xi ∈R0] and ∇fj(z) = E [∇c (z;Yi) |Xi ∈Rj ].

Since∇2c(z;y) is continuous for all y andN is compact, the class of functions (of y) {y 7→∇2c(z;y) : z ∈N}

is a Glivenko-Cantelli class (Van der Vaart 2000, Example 19.8), which implies the uniform convergence

supz∈N ‖Ĥ0(z)−∇2f0(z)‖ a.s.→ 0. Without loss of generality, we can also assume for large enough n that Ĥ0(z)

is invertible for z ∈N , and σmin

(
Ĥ0(z)

)
≥ 1

2
σmin(∇2f(z))≥ 1

3
σmin (∇2f(z0)) for z ∈N .

Since ∇c(z;y) is continuously differentiable, and N is compact, ∇c(z;y) is Lipschitz in z on N . It follows

that {y 7→ ∇c(z;y) : z ∈ N} is a Donsker class (Van der Vaart 2000, Example 19.7). This implies that

n1/2
(
ĥj(·)−∇fj(·)

)
converges to a Gaussian process G(·) over z ∈ N . Therefore, n1/2

(
ĥj(·)−∇fj(·)

)
=

Op(1), and supz∈N ‖ĥj(z)−∇fj(z)‖2 =Op(n
−1/2). Note that the Donsker property of {y 7→∇c(z;y) : z ∈N}

also implies that it is a Glivenko-Cantelli class, so that supz∈N ‖ĥj(z)−∇fj(z)‖2
a.s.→ 0.

By the fact that for z ∈N , σmin

(
Ĥ0(z)

)
≥ 1

3
σmin (∇2f(z0)), ‖ĥj(z)−∇fj(z)‖2

a.s.→ 0 and∇fj(z) is bounded

onN , we have that there exist another compact setN ′ such that for sufficiently large n, z−Ĥ−1
0 (z)ĥj(z)∈N ′

for any z ∈N . Since c(z;y) is continuously differnetiable, it is also Lipschitz in z on N ′. Again this means

that {y 7→ c(z;y) : z ∈N ′} is a Donsker class, so that

sup
z∈N ′
| 1
n

n∑
i=1

I [Xi ∈Rj ] c(z;Yi)−E [I [X ∈Rj ] c(z;Y )] |=Op(n
−1/2).

Therefore, supz∈N

∣∣∣ 1
nj

∑n

i=1 I [Xi ∈Rj ] c(r̂(z);Yi)−E [I [X ∈Rj ] c(r̂(z);Y )]
∣∣∣ = Op(n

−1/2) for r̂(z) := z −

Ĥ−1
0 (z)ĥj(z). Since r̂(z)→ z0− (∇2f(z0))

−1∇f(z0) almost surely, we have that∣∣∣∣∣ 1n
n∑
i=1

I [Xi ∈Rj ] c(ẑ0− Ĥ−1
0 (ẑ0)ĥj(ẑ0);Yi)−E

[
I [X ∈Rj ] c(z0−

(
∇2f(z0)

)−1∇f(z0);Y )
]∣∣∣∣∣=Op(n

−1/2).
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Proof of Proposition 16 The constraints in Example 1 can be rewritten as

Z =

{
z ∈Rd : hk (z) =−zk ≤ 0, hd+1 (z) =

d∑
l=1

zl−C ≤ 0

}
.

Note that at any z ∈ Z, there are at most d active inequality constraints, and their gradients have to be

linearly independent. So it satisfies the LICQ condition at any z ∈ Z. Similarly, we can prove the LICQ

condition for Examples 2 and 3 with the simplex constraint.

Proof of Proposition 17 Fix a parent region R0 and a split that partitions it into two subregions R1

and R2 (with sample sizes n1, n2 respectively). According to Eq. (4) in Elmachtoub et al. (2020), the SPO

splitting criterion for the given split can be written as follows:

CSPO (R1,R2) =

2∑
j=1

nj
n

min
z∈Z

1

nj

∑
i:Xi∈Rj

Y >i z−
1

nj

∑
i:Xi∈Rj

min
z∈Z

Y >i z


=

2∑
j=1

min
z∈Z

1

n

∑
i:Xi∈Rj

Y >i z

−( 1

n

n∑
i=1

min
z∈Z

Y >i z

)
.

Note that the second term above does not depend on the split so using the SPO criterion to choose splits

is equivalent to using only the first term to choose splits. It is easy to see that the first term is exactly our

oracle splitting criterion with all unknown expectations replaced by sample averages:

Ĉoracle(R1,R2) =
∑
j=1,2

min
z∈Z

Ê [c(z;Y )I [X ∈Rj ]] =

2∑
j=1

min
z∈Z

1

n

∑
i:Xi∈Rj

Y >i z

 .

H.4. Proofs for Section 2

Proof for Lemma 1 The conclusion follows from Theorem 5.3 in Shapiro et al. (2014) when the population

optimization problem has a unique optimal solution.

Proof for Theorem 2 Conditions 1, 2, 3 imply that conditions in Theorem 9 are satisfied for both δf =

f1− f0 and δf = f2− f0.

Therefore, Theorem 9 implies that for j = 1,2,

min
z∈Rd

fj(z) = fj(z0)− 1

2
∇fj(z0)

> (∇2f0(z0)
)−1∇fj(z0) + o(‖fj − f0‖F)

where ‖fj − f0‖F = max{supz |fj(z)− f0(z)|, supz ‖∇fj(z)− f0(z)‖2, supz ‖∇2fj(z)− f0(z)‖F}. By the Lisp-

chitzness condition, we have ‖fj − f0‖F =O(D2
0). Therefore,

Coracle(R1,R2) =
∑
j=1,2

pj min
z∈Rd

fj(z) =
∑
j=1,2

pj

(
fj(z0)− 1

2
∇fj(z0)

> (∇2f0(z0)
)−1∇fj(z0)

)
+ o(D2

0)

= p0f0(z0) +
1

2
Capx-risk(R1,R2) + o(D2

0).

Proof for Theorem 3 By Theorem 9 with δf = fj − f0 respectively,

zj(1) = z0−
(
∇2f0(z0)

)−1∇fj(z0) +Rj ,

where Rj = o(‖fj − f0‖F).
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It follows from mean-value theorem that there exist a diagonal matrix Λj whose diagonal entries are real

numbers within [0,1] such that

vj(1) = fj(zj(1)) = fj

(
z0−

(
∇2f0(z0)

)−1∇fj(z0) +Rj

)
= fj

(
z0−

(
∇2f0(z0)

)−1∇fj(z0)
)

+R>j ∇fj
(
z0−

(
∇2f0(z0)

)−1∇fj(z0) + ΛjRj

)
.

We can apply mean-value theorem once again to ∇fj to get

∇fj
(
z0−

(
∇2f0(z0)

)−1∇fj(z0) + ΛjRj

)
=∇fj(zj(1)) +O((I −Λj)

>
Rj) =O((I −Λj)

>
Rj),

where the last equality follows from the first order necessary condition for optimality of zj(1).

It follows that

vj(1) = fj

(
z0−

(
∇2f0(z0)

)−1∇fj(z0)
)

+O(R>j (I −Λj)Rj)

= fj

(
z0−

(
∇2f0(z0)

)−1∇fj(z0)
)

+ o(‖fj − f0‖2F)

= fj

(
z0−

(
∇2f0(z0)

)−1∇fj(z0)
)

+ o(D2
0)

Therefore

Coracle(R1,R2) =
∑
j=1,2

pjfj(zj(1)) =
∑
j=1,2

pjfj

(
z0−

(
∇2f0(z0)

)−1∇fj(z0)
)

+ o(D2
0)

= Capx-soln(R1,R2) + o(D2
0).

Proof for Proposition 1. Under the asserted condition, Ĥ−1
0 − ∇2f−1

0 (z0) = op(1), ĥj = ∇fj(z0) =

Op(n
−1/2) for j = 1,2. It follows that

Ĉapx-risk(R1,R2) =−
∑

j=1,2 ĥ
>
j Ĥ

−1
0 ĥj

=−
∑
j=1,2

(
h>j (z0) +Op(n

−1/2)
) (
H−1

0 (z0) + op(1)
) (
h>j (z0) +Op(n

−1/2)
)

=−
∑
j=1,2

h>j (z0)H−1
0 (z0)hj(z0) + 2h>j (z0)H−1

0 (z0)Op(n
−1/2) + op(n

−1/2)

= Capx-risk(R1,R2) +Op(n
−1/2).

Note, the condition that
∣∣∣ 1
n

∑n

i=1 I [Xi ∈Rj ] c
(
ẑ0− Ĥ−1

0 ĥj ;Yi

)
− fj(z0)

∣∣∣ = Op(n
−1/2) for j = 1,2 directly

ensures that

Ĉapx-soln(R1,R2) = Capx-soln(R1,R2) +Op(n
−1/2).

H.5. Proofs for Section 5

For brevity we define c(z;x) = E [c(z;Y ) |X = x] and ĉ(z;x) =
∑n

i=1wi(x)c(z;Yi). Under Assumption 2, X is

compact. Without loss of generality, we assume X ⊆ [0,1]p.

Lemma 3. Let x∈X be fixed and

{
wij(x) =

I[i∈Idecj ,τj(Xi)=τj(x)]∑n
i′=1

I[i∈Idecj
,τj(Xi′ )=τj(x)]

, i= 1, . . . , n

}
be the weights derived

from the jth tree. Under Assumptions 1 and 2, if further kn→∞ and logT = o(kn), then for any z ∈ C, as

n→∞,

sup
1≤j≤T

∣∣∣∣∣
n∑
i=1

wij(x) (c(z;Yi)− c(z;Xi))

∣∣∣∣∣ p→ 0, sup
1≤j≤T

∣∣∣∣∣
n∑
i=1

wij(x) (b(Yi)−E [b(Yi) |Xi])

∣∣∣∣∣ p→ 0.
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Proof for Lemma 3. In this proof, we fix j = 1, . . . , T and implicitly condition on Itree
j . Conditionally on

{Xi : i∈ Idec
j }, wij(x) for i= 1, . . . , n are all fixed, and these weights satisfy that wij(x)≥ 0,

∑n

i=1wij(x) = 1

and maxiwij(x) = [ 1
kn
, 1

2kn−1
]. According to Lemma 12.1 in Biau and Devroye (2015), we have that for any

ε≤ min{1,2C}
max{η,η′} and any z ∈ C,

P

(∣∣∣∣∣
n∑
i=1

wij(x) (c(z;Yi)− c(z;Xi))

∣∣∣∣∣≥ ε |X1, . . . ,Xn

)
≤ exp

(
−knε

2η2

8C

)
,

P

(∣∣∣∣∣
n∑
i=1

wij(x) (b(Yi)−E [b(Yi) |Xi])

∣∣∣∣∣≥ ε |X1, . . . ,Xn

)
≤ exp

(
−knε

2η′2

8C

)
.

It follows that

P

(
sup
j

∣∣∣∣∣
n∑
i=1

wij(x) (c(z;Yi)− c(z;Xi))

∣∣∣∣∣≥ ε |X1, . . . ,Xn

)
≤ exp

(
logT − knε

2η2

8C

)
,

P

(
sup
j

∣∣∣∣∣
n∑
i=1

wij(x) (b(Yi)−E [b(Yi) |Xi])

∣∣∣∣∣≥ ε |X1, . . . ,Xn

)
≤ exp

(
logT − knε

2η′2

8C

)
.

This means that as n→∞,

sup
j

∣∣∣∣∣
n∑
i=1

wij(x) (c(z;Yi)− c(z;Xi))

∣∣∣∣∣→ 0, sup
j

∣∣∣∣∣
n∑
i=1

wij(x) (b(Yi)−E [b(Yi) |Xi])

∣∣∣∣∣→ 0.

Lemma 4. If the assumptions in Lemma 3 hold, sn/kn→∞ and T = o(sn/kn), then as n→∞,

sup
z∈C

∣∣ĉ(z;x)− c(z;x)
∣∣ p→ 0.

Proof for Lemma 4. Note that∣∣ĉ(z;x)− c(z;x)
∣∣≤ 1

T

T∑
j=1

∣∣∣∣∣
n∑
i=1

wij(x) (c(z;Yi)−E [c(z;Yi) |Xi = x])

∣∣∣∣∣
≤ 1

T

T∑
j=1

∣∣∣∣∣
n∑
i=1

wij(x) (c(z;Yi)−E [c(z;Yi) |Xi])

∣∣∣∣∣
+

1

T

T∑
j=1

∣∣∣∣∣
n∑
i=1

wij(x) (E [c(z;Yi) |Xi]−E [c(z;Yi) |Xi = x])

∣∣∣∣∣ . (72)

Denote Rj(x) as the leaf of the jth tree that contains x. For a set S ⊆ Rp, define diamJ (S) =

supx,x′∈S

(∑
j∈J (xj −x′j)2

)1/2

. Following the same arguments as in Lemma 2 of Wager and Athey (2018),

we have that

P (diamJ (Rj(x))≥ ε)≤√p exp
(
−C1 log3 (sn/(2kn− 1))

)
.

This implies that when sn/kn→∞ and T = o(sn/kn),

P
(

sup
1≤j≤T

diamJ (Rj(x))≥ ε
)
≤√pT exp

(
−C1 log3 (sn/(2kn− 1))

)
→ 0.

Note that wij(x) > 0 only for i such that Xi ∈ Rj(x). This and the Lipschitz continuity of c(z;x) in x

together imply that

sup
z∈C

∣∣∣∣∣
n∑
i=1

wij(x) (E [c(z;Yi) |Xi]−E [c(z;Yi) |Xi = x])

∣∣∣∣∣≤Lc sup
j

diamJ (Rj(x))→ 0. (73)
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It follows that

sup
z∈C

1

T

T∑
j=1

∣∣∣∣∣
n∑
i=1

wij(x) (E [c(z;Yi) |Xi]−E [c(z;Yi) |Xi = x])

∣∣∣∣∣→ 0.

Now consider a ε/C̃−cover of C, which we denote as {z1, . . . , zM} with M ≤KC̃d
(

diam(C)
ε

)d
for a positive

constant K. This induces brackets of type [c(zk;Y )− ε

C̃
b(Y ), c(zk;Y ) + ε

C̃
b(Y )] for the function class {y 7→

c(z;y) : z ∈ C}. Note that for any z ∈ C,
n∑
i=1

wij(x) (c(z;Yi)−E [c(z;Yi) |Xi])≤ max
1≤k≤M

{
n∑
i=1

wij(x)

(
c(zk;Yi) +

ε

C̃
b(Yi)

)
−

n∑
i=1

wij(x)E
[
c(zk;Yi) +

ε

C̃
b(Yi) |Xi

]}

+
ε

C̃

n∑
i=1

wij(x)E [b(Yi) |Xi]

By Lemma 3, we have

sup
j

max
1≤k≤M

{
n∑
i=1

wij(x)

(
c(zk;Yi) +

ε

C̃
b(Yi)

)
−

n∑
i=1

wij(x)E
[
c(zk;Yi) +

ε

C̃
b(Yi) |Xi

]}
p→ 0.

Moreover,

sup
j

ε

C̃

n∑
i=1

wij(x)E [b(Yi) |Xi] =
ε

C̃

n∑
i=1

wij(x)E [b(Yi) |Xi = x] +
ε

C̃

n∑
i=1

wij(x) (E [b(Yi) |Xi]−E [b(Yi) |Xi = x])

≤ ε+
ε

C̃
Lb sup

j

diamJ (Rj(x))→ ε.

Thus as n→∞,

sup
j,z

n∑
i=1

wij(x) (c(z;Yi)−E [c(z;Yi) |Xi])≤ ε

Similarly, we can prove that as n→∞,

inf
j,z

n∑
i=1

wij(x) (c(z;Yi)−E [c(z;Yi) |Xi])≥−ε

By the arbitrariness of ε, we have

sup
j,z

∣∣∣∣∣
n∑
i=1

wij(x) (c(z;Yi)−E [c(z;Yi) |Xi])

∣∣∣∣∣→ 0. (74)

Eqs. (72) to (74) together imply that

sup
z∈C

∣∣ĉ(z;x)− c(z;x)
∣∣ p→ 0.

Proof for Theorem 5. By condition 2 of Assumption 2, we have that for sufficiently large n, ẑn ∈ C and

arg minz∈Z c(z;x)⊆C almost surely. Let us fix z0 ∈ arg minz∈Z c(z;x).

The conclusion follows from∣∣∣∣c(ẑn;x)−min
z∈Z

c(z;x)

∣∣∣∣= |c(ẑn;x)− c(z0;x)| ≤
∣∣c(ẑn;x)− ĉ(ẑn;x)

∣∣+ ∣∣ĉ(ẑn;x)− c(z0;x)
∣∣

≤ 2 sup
z∈C
|z;x)− c(z;x)| → 0.

Here the last inequality follows from the facts that∣∣c(ẑn;x)− ĉ(ẑn;x)
∣∣≤ sup

z∈C
|z;x)− c(z;x)|

and that∣∣ĉ(ẑn;x)− c(z0;x)
∣∣={ ĉ(ẑn;x)− c(z0;x)≤ ĉ(z0;x)− c(z0;x)≤ supz∈C

∣∣ĉ(z;x)− c(z;x)
∣∣ if ĉ(ẑn;x)≥ c(z0;x)

c(z0;x)− ĉ(ẑn;x)≤ c(ẑn;x)− ĉ(ẑn;x)≤ supz∈C
∣∣ĉ(z;x)− c(z;x)

∣∣ if ĉ(ẑn;x)< c(z0;x)
.
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Proof for Proposition 2. Statement 1. Consider cl(z;y) = max{αl (zl− yl) , βl (yl− zl)}. Note cl(z;y)−

cl(z
′;y) = βl (zl− z′l) if z′l, zl ≤ yl and cl(z

′;y) − cl(z;y) = αl (zl− z′l) if z′l, zl ≥ yl. Denote ∆l = |zl− z′l|,

∆zl = |zl− yl| and ∆z′
l

= |z′l − yl|. When zl ≤ yl, yl ≤ z′l, obviously ∆l = ∆zl + ∆z′
l
, and |cl(z;y)− cl(z′;y)|=∣∣∣βl∆zl −αl∆z′

l

∣∣∣≤max{αl, βl}max{∆zl ,∆z′
l
} ≤max{αl, βl}∆l. Similarly we can show that when zl > yl, yl >

z′l, |cl(z;y)− cl(z′;y)| ≤max{αl, βl}∆l. Therefore, |c(z;y)− c(z′;y)| ≤
√
dmax{αl, βl}‖z− z′‖2.

Statement 2. Letting C ′ = supz̃∈C ‖z̃‖, note that for any z, z′ ∈ C,

|c(z;y)− c(z′;y)|=
∣∣(y>z1:d− zd+1)2− (y>z′1:d− z′d+1)2

∣∣
≤
∣∣y> (z1:d + z′1:d)−

(
zd+1 + z′d+1

)∣∣ ∣∣y> (z1:d− z′1:d)−
(
zd+1− z′d+1

)∣∣
≤
(
‖y‖2‖zd+1 + z′d+1‖2 +

∣∣zd+1 + z′d+1

∣∣)∥∥∥∥[y1
]∥∥∥∥

2

‖z− z′‖2

≤ 2C ′ (‖y‖2 + 1)
√
‖y‖22 + 1‖z− z′‖2

≤ 4
√

2C ′max{1,‖y‖22}‖z− z′‖.

Statement 3. Note that for any z, z′ ∈ C,

|c(z;y)− c(z′;y)|=
∣∣∣∣ 1α max

{
zd+1− y>z1:d, 0

}
− 1

α
max

{
z′d+1− y>z′1:d, 0

}∣∣∣∣+ ∣∣zd+1− z′d+1

∣∣
≤ 1

α

∣∣zd+1− y>z1:d− z′d+1 + y>z′1:d

∣∣+ ∣∣zd+1− z′d+1

∣∣
≤
(
‖y‖2 + 1 +

1

α

)
‖z− z′‖2.
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