
Distributionally Robust Batch Contextual Bandits

Nian Si∗1, Fan Zhang†1, Zhengyuan Zhou‡2, and Jose Blanchet§1

1Department of Management Science & Engineering, Stanford University
2Stern School of Business, New York University

Abstract

Policy learning using historical observational data is an important problem that has found

widespread applications. Examples include selecting offers, prices, advertisements to send to

customers, as well as selecting which medication to prescribe to a patient. However, existing

literature rests on the crucial assumption that the future environment where the learned policy

will be deployed is the same as the past environment that has generated the data – an assumption

that is often false or too coarse an approximation. In this paper, we lift this assumption and aim

to learn a distributionally robust policy with incomplete observational data. We first present a

policy evaluation procedure that allows us to assess how well the policy does under worst-case

environment shift. We then establish a central limit theorem type guarantee for this proposed

policy evaluation scheme. Leveraging this evaluation scheme, we further propose a novel learning

algorithm that is able to learn a policy that is robust to adversarial perturbations and unknown

covariate shifts with a performance guarantee based on the theory of uniform convergence. Fi-

nally, we empirically test the effectiveness of our proposed algorithm in synthetic datasets and

demonstrate that it provides the robustness that is missing using standard policy learning algo-

rithms. We conclude the paper by providing a comprehensive application of our methods in the

context of a real-world voting dataset.

1 Introduction

As a result of the digitization of our economy, user-specific data has exploded across a variety of

application domains: electronic medical data in health care, marketing data in product recommenda-

tion, and customer purchase/selection data in digital advertising ([10, 53, 15, 6, 68]). Such growing

availability of user-specific data has ushered in an exciting era of personalized decision making, one

that allows the decision maker(s) to personalize the service decisions based on each individual’s dis-

tinct features. As such, heterogeneity across individuals (i.e. best recommendation decisions vary

across individuals) can be intelligently exploited to achieve better outcomes.
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When abundant historical data are available, effective personalization can be achieved by learning

a policy offline (i.e. from the collected data) that prescribes the right treatment/selection/recom-

mendation based on individual characteristics. Such an approach has been fruitfully explored (see

Section 1.3) and has witnessed tremendous success. However, this success is predicated on (and

hence restricted to) the setting where the learned policy is deployed in the same environment from

which past data has been collected. This restriction limits the applicability of the learned policy, be-

cause one would often want to deploy this learned policy in a new environment where the population

characteristics are not entirely the same as before, even though the underlying personalization task

is still the same. Such settings occur frequently in managerial contexts, such as when a firm wishes

to enter a new market for the same business, hence facing a new, shifted environment that is similar

yet different. We highlight several examples below:

• Product Recommendation in a New Market. In product recommendation, different products

and/or promotion offers are directed to different customers based on their covariates (e.g. age,

gender, education background, income level, marital status) in order to maximize sales. Suppose

the firm has enjoyed great success in the US market by deploying an effective personalized product

recommendation scheme that is learned from its US operations data1, and is now looking to enter a

new market in Europe. What policy should the firm use initially, given that little transaction data

in the new market is available? The firm could simply reuse the same recommendation policy that is

currently deployed for the US market. However, this policy could potentially be ineffective because

the population in the new market often has idiosyncratic features that are somewhat distinct from

the previous market. For instance, the market demographics will be different; further, even two

individuals with the same observable covariates in different markets could potentially have different

preferences as a result of the cultural, political, and environmental divergences. Consequently, such an

environment-level “shift” renders the previously learned policy fragile. Note that in such applications,

taking the standard online learning approach – by gradually learning to recommend in the new market

as more data in that market becomes available – is both wasteful and risky. It is wasteful because it

entirely ignores the US market data even though presumably the two markets still share similarities

and useful knowledge/insights can be transferred. It is also risky because a “cold start” policy may

be poor enough to cause the loss of customers in an initial phase, in which case little further data

can be gathered. Moreover, there may be significant reputation costs associated with the choice of

a poor cold start. Finally, many personalized content recommendation platforms – such as news

recommendation or video recommendation – also face these problems when initiating a presence in

a new market.

• Feature-Based Pricing in a New Market. In feature-based pricing, a platform sells a product

with features xt on day t to a customer, and prices it at pt, which corresponds to the action (assumed

to take discrete values). The reward is the revenue collected from the customer, which is pt if the

customer decides to purchase the product and 0 otherwise. The (generally-unknown-to-the-platform)

1Such data include a database of transactions, each of which records the consumer’s individual characteristics, the
recommended item, and the purchase outcome.
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probability of the customer purchasing this product depends on both the price pt and the product

xt itself. If the platform now wishes to enter a new market to sell its products, it will need to learn

a distributionally robust feature-based pricing policy (which maps xt to pt) that takes into account

possible distributional shifts which arise in the new market.

• Loan Interest Rate Provisioning in a New Market In loan interest rate provisioning, the loan

provider (typically a bank) would gather individual information xt (such as personal credit history,

outstanding loans, current assets and liabilities etc) from a potential borrower t, and based on that

information, provision an interest rate at, which corresponds to our action here. In general, the

interest rate at will be higher for borrowers who have a larger default probability, and lower for

borrowers who have little or no chance to default. Of course, the default probability is not observed,

and depends on both the borrower’s financial situation xt and potentially on at, which determines

how much payment to make in each installment. For the latter, note that a higher interest rate

would translate into a larger installment payment, which may deplete the borrower’s cash flow and

hence make default more likely. What is often observed is the sequence of installment payments for

many borrowers under a given environment over a certain horizon (say 30 years for a home loan). If

the borrower defaults at any point, then all subsequent payments are zero. With such information,

the reward for the bank corresponding to an individual borrower is the present value of the stream

of payments made by discounting the cash flows back to the time when the loan was made (using

the appropriate market discount rate). A policy here would be one that selects the best interest rate

to produce the largest expected present value of future installment payment streams. When opening

up a new branch in a different area (i.e. environment), the bank may want to learn a distributionally

robust interest rate provisioning policy so as to take into account the environment shift. A notable

feature of home loans is that they often span a long period of time. As such, even in the same

market, the bank may wish to have some built-in robustness level in case there are shifts over time.

1.1 Main Challenges

The aforementioned applications 2 highlight the need to learn a personalization policy that is robust

to unknown shifts in another environmentt, an environment of which the decision maker has little

knowledge or data. Broadly speaking, there can be two sources of such shifts:

1. Covariate shift: The population composition – and hence the marginal distribution of the

covariates – can change. For instance, in the product recommendation example, demographics

in different markets will be different (e.g. markets in developed countries will have more people

that are educated than those in developing countries), and certain segments of the population

that are a majority in the old market might be a minority in the new market.

2. Concept drift: How the outcomes depend on the covariates and prescription can also change,

thereby resulting in different conditional distributions of the outcomes given the two. For

2Other applications include deploying a personalized education curriculum and/or digital tutoring plan based on
students’ characteristics in a different school/district than from where the data was collected.
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instance, in product recommendation, large market segments in the US (e.g. a young population

with high education level) choose to use cloud services to store personal data. In contrast,

the same market segment in some emerging markets (where data privacy may be regulated

differently) may prefer to buy flash drives to store at least some of the personal data.

These two shifts, often unavoidable and unknown, bring forth significant challenges in provisioning

a suitable policy in the new environment, at least during the initial deployment phase. For instance,

a certain subgroup (e.g. educated females in their 50s or older that live in rural areas) may be under-

represented in the old environment’s population. In this case, the existing product recommendation

data are insufficient to identify the optimal recommendation for this subgroup. This insufficiency is

not a problem in the old environment, because the sub-optimal prescription for this subgroup will not

significantly affect the overall performance of the policy given that the subgroup occurrence is not

sufficiently frequent. However, with the new population, this subgroup may have a larger presence, in

which case the incorrect prescription will be amplified and could translate into poor performance. In

such cases, the old policy’s performance will be particularly sensitive to the marginal distribution of

the subgroup in the new environment, highlighting the danger of directly deploying the same policy

that worked well before.

Even if all subgroups are well-represented, the covariate shift will cause a problem if the decision

maker is constrained to select a policy in a certain policy class such as trees or linear policy class,

due to, for instance, interpretability and/or fairness considerations. In such cases, since one can only

hope to learn the best policy in the policy class (rather than the absolute best policy), the optimal

in-class policy will change when the underlying covariate marginal distribution shifts in the new

environment, rendering the old policy potentially ineffective. Note that this could be the case even

if the covariate marginal distribution is the only thing that changes.

Additionally, even more challenging is the existence of concept drift. Fundamentally, this type

of shifts occurs because there are hidden characteristics at a population level (cultural, political,

environmental factors or other factors that are beyond the decision maker’s knowledge) that also

influence the outcome, but are unknown, unobservable. and different across the environments. As

such, the decision maker faces a challenging hurdle: because these population-level factors that may

influence the outcome are unknown and unobservable, making it is infeasible to explicitly model

them in the first place, let alone deciding what policy to deploy as a result of them. therefore, the

decision maker faces an “unknown unknown” dilemma when choosing the right policy for the new

environment.

Situated in this challenging landscape, one naturally wonders if there is any hope to rigorously

address the problem of policy learning in shifted environments with a significant degree of model

uncertainty. This challenge leads to the following fundamental question: Using the (contextual

bandits) data collected from one environment, can we learn a robust policy that would provide reliable

worst-case guarantees in the presence of both types of environment shifts? If so, how can this be done

in a data-efficient way? Our goal is to answer this question in the affirmative, as we shall explain.
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1.2 Our Message and Managerial Insights

To answer this question we adopt a mathematical framework which allows us to formalize and

quantify environmental model shifts. First, we propose a distributionally robust formulation of policy

learning in batch contextual bandits that accommodates both environment shifts. To overcome the

aforementioned “unknown unknown” challenge that presents modelling difficulty, our formulation

takes a general, fully non-parametric (and hence model-agnostic) approach to describe the shift

at the distribution level: we allow the new environment to be an arbitrary distribution in a KL-

neighborhood around the old environment’s distribution. As such, the shift is succinctly represented

by a single quantity: the KL-radius δ. We then propose to learn a policy that has maximum value

under the worst-case distribution, that is optimal for a decision maker who wishes to maximize value

against an adversary who selects a worst-case distribution to minimize value. Such a distributionally

robust policy – if learnable at all – would provide decision makers with the guarantee that the

value of deploying this policy will never be worse – and possibly better – no matter where the new

environment shifts within this KL-neighborhood.

Regarding the choice of δ, we provide two complementary perspectives on its selection process

from a managerial viewpoint; each useful in the particular context one is concerned with. First,

when data across different environments are available, one can estimate δ using such data. Such an

approach would work well (and is convenient) if the new environment is different in similar ways

in nature compared to how those other environments differ. For instance, in the voting application

we consider in this paper (the August 2006 primary election in Michigan [35]), voting turnout data

from different cities have been collected. As such, when deploying a new policy to encourage voters

to vote in a different city, one can use the δ that is estimated from data across those different cities

(we describe the technical procedures for such estimation in Section 6). Second, we can view δ

as a parameter that can vary and that trades off with the optimal distributionally robust value:

the larger the δ, the more conservative the decision maker, the smaller the optimal distributionally

robust value. We can compute the optimal distributionally robust values (and the corresponding

policies) – one for each δ – for a range of δs; see Figure 1 for an illustration. Inspecting Figure 1,

we see that the difference between the optimal distributionally robust value under δ = 0 (i.e., no

distributional shifts) and the optimal distributionally robust value for a given δ representing the

price of robustness. If the new environment had actually remained unchanged, then deploying a

robust policy “eats” into the value. As such, the decision maker can think of this value reduction as

a form of insurance premium budget in order to protect the downside, in case the new environment

did shift in unexpected ways. Consequently, under a given premium budget (i.e. the amount of

per-unit profit/sales that the decision maker is willing to forgo), a conservative choice would be for

the decision maker to select the largest δ where the difference is within this amount (δ∗ in Figure 1),

and have the maximum robustness coverage therein. Importantly, if the new environment ends up

not shifting in the worst possible way or not as much, then the actual value will only be higher. In

particular, if the new environment does not shift at all, then the insurance premium the decision

maker ends up paying after using the distributionally robust policy (under δ∗) is smaller than the

5



Figure 1: Maximum distributionally robust values as a function of δ.

budget, because its value under the old environment is larger than its value under the corresponding

worst-case shift. Consequently, selecting δ this way yields the optimal worst-case policy under a

given budget3.

Second, we show that learning distributionally robust policies can indeed be done in a statis-

tically efficient way. In particular, we provide an algorithmic framework that solves this problem

optimally. To achieve this, we first provide a novel scheme for distributionally robust policy evalua-

tion (Algorithm 1) that estimates the robust value of any given policy using historical data. We do

so by drawing from duality theory and transforming the primal robust value estimation problem–an

infinitely-dimensional problem–into a dual problem that is 1-dimensional and convex, hence ad-

mitting an efficiently computable solution, which we can solve using Newton’s method. We then

establish, in the form of a central limit theorem, that the proposed estimator converges to the true

value at an Op

(
n−1/2

)
rate where n is the number of data points. Building upon the estimator, we

devise a distributionally robust policy learning algorithm (Algorithm 2) and establish that (Theo-

rem 2) it achieves a Op(n
−1/2) finite-sample regret. Such a finite-sample regret bound informs the

decision maker that in order to learn an ϵ-optimal distributionally robust policy, a dataset on the

order of 1
ϵ2

samples suffice with high probability. Note that this result is true for any δ, where the

regret bound itself does not depend on δ. In addition, we also characterize the fundamental limit of

this problem by establishing a Ω(n−1/2) lower bound for expected regret, thus making it clear that

our policy learning algorithm is statistically optimal in the minimax sense. Taken together, these

results highlight that we provide an optimal prescription framework for learning distributionally

robust policies.

Third, we demonstrate the empirical efficacy and efficiency of our proposed algorithm by pro-

viding extensive experimental results in Section 5. We dedicate Section 6 to the voting problem

mentioned previously using our distributionally robust policy learning framework and demonstrate

its applicability on a real-world dataset. Finally, we extend our results to f -divergence measures and

3Of course, if the new environment ends up shifting a larger amount than δ∗ and also in the worst possible way,
then the actual value could be even smaller. However, in such situations, one would be much worse off with just using
the old environment’s optimal policy, which is not robust at all.
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show our framework is still applicable even beyond KL-divergence (Section 7).

1.3 Related Work

As mentioned, our work is closely related to the flourishing and rapidly developing literature on offline

policy learning in contextual bandits; see, e.g, [28, 85, 89, 88, 76, 61, 45, 47, 46, 91, 43, 17]. Many

valuable insights have been contributed: novel policy evaluation and policy learning algorithms have

been developed; sharp minimax regret guarantees have been characterized in many different settings;

and extensive and illuminating experimental results have been performed to offer practical advice

for optimizing empirical performance. However, this line of work assumes the environment in which

the learned policy will be deployed is the same as the the environment from which the training data

is collected. In such settings, robustness is not a concern. Importantly, this line of work developed

and used the family of doubly robust estimators for policy evaluation and learning [28, 91]. For

clarification, we point out that this family of estimators, although related to robustness, does not

address the robustness discussed in this paper (i.e. robustness to environment shifts). In particular,

those estimators aim to stabilize statistical noise and deal with mis-specified models for rewards and

propensity scores, where the underlying environment distribution is the same across test and training

environments.

Correspondingly, there has also been an extensive literature on online contextual bandits, for

example, [53, 65, 31, 62, 18, 37, 3, 4, 66, 67, 44, 54, 2, 23, 54], whose focus is to develop online

adaptive algorithms that effectively balance exploration and exploitation. This online setting is not

the focus of our paper. See [14, 50, 74] for a few articulate expositions. Despite this, we do point out

that as alluded to before and whenever possible, online learning can complement the distributionally

robust policy learned and deployed initially. We leave this investigation for future work.

Additionally, there is also rapidly growing literature in distributionally robust optimization

(DRO); see, e.g, [11, 22, 40, 69, 7, 33, 57, 26, 75, 70, 49, 81, 51, 59, 83, 56, 87, 1, 86, 73, 34,

16, 36, 12, 24, 48, 27, 39]. The existing DRO literature has mostly focused on the statistical learning

aspects, including supervised learning and feature selection type problems, rather than on the deci-

sion making aspects. Furthermore, much of that literature uses DRO as tool to prevent over-fitting

when it comes to making predictions, rather than dealing with distributional shifts. To the best

of our knowledge, we provide the first distributionally robust formulation for policy evaluation and

learning under bandit feedback and shifted environments, in a general, non-parametric space.

Some of the initial results appeared in the conference version [72], which only touched a very

limited aspect of the problem: policy evaluation under shifted environments. In contrast, this paper

is substantially developed and fully addresses the entire policy learning problem. We summarize the

main differences below:

1. The conference version focused on the policy evaluation problem and only studied a non-stable

version of the policy evaluation scheme, which is outperformed by the stable policy evaluation

scheme analyzed here (we simply dropped the non-stable version of the policy evaluation scheme

in this journal version).
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2. The conference version did not study the policy learning problem, which is our ultimate ob-

jective. Here, we provide a policy learning algorithm and establish the minimax optimal rate

Op(n
−1/2) for the finite-sample regret by providing the regret upper bound as well as the

matching regret lower bound.

3. We demonstrate the applicability of our policy learning algorithms and provide results on a

real-world voting data set, which is missing in the conference version.

4. We provide practical managerial insights for the choice of the critical parameter δ which governs

the size of distributional shifts.

5. We finally extend our results to f -divergence measures, a broader class of divergence measures

that include KL as a special case.

2 A Distributionally Robust Formulation of Batch Contextual Ban-

dits

2.1 Batch Contextual Bandits

Let A be the set of d actions: A = {a1, a2, . . . , ad} and let X be the set of contexts endowed with

a σ-algebra (typically a subset of Rp with the Borel σ-algebra). Following the standard contex-

tual bandits model, we posit the existence of a fixed underlying data-generating distribution on

(X,Y (a1), Y (a2), . . . , Y (ad)) ∈ X ×∏d
j=1 Yj , where X ∈ X denotes the context vector, and each

Y (aj) ∈ Yj ⊂ R denotes the random reward obtained when action aj is selected under context X.

Let {(Xi, Ai, Yi)}ni=1 be n iid observed triples that comprise of the training data, where (Xi, Yi(a
1), . . . , Yi(a

d))

are drawn iid from the fixed underlying distribution described above, and we denote this underlying

distribution by P0. Further, in the i-th datapoint (Xi, Ai, Yi), Ai denotes the action selected and

Yi = Yi(Ai). In other words, Yi in the i-th datapoint is the observed reward under the context Xi

and action Ai. Note that all the other rewards Yi(a) (i.e. for a ∈ A− {Ai}), even though they exist

in the model (and have been drawn according to the underlying joint distribution), are not observed.

We assume the actions in the training data are selected by some fixed underlying policy π0 that

is known to the decision-maker, where π0(a | x) gives the probability of selecting action a when the

context is x. In other words, for each context Xi, a random action Ai is selected according to the

distribution π0(· | Xi), after which the reward Yi(Ai) is observed. Finally, we use P0 ∗ π0 to denote

the product distribution on space X ×∏d
j=1 Yj × A. We make the following assumptions on the

data-generating process.

Assumption 1. The joint distribution (X,Y (a1), Y (a2), . . . , Y (ad), A) satisfies:

1. Unconfoundedness: (Y (a1), Y (a2), . . . , Y (ad)) is independent with A conditional on X, i.e.,

(Y (a1), Y (a2), . . . , Y (ad)) |= A|X.
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2. Overlap: There exists some η > 0, π0(a | x) ≥ η, ∀(x, a) ∈ X ×A.

3. Bounded reward support: 0 ≤ Y (ai) ≤M for i = 1, 2, . . . , d.

Assumption 2 (Positive densities/probabilities). The joint distribution (X,Y (a1), Y (a2), . . . , Y (ad))

satisfies one of the following assumptions below:

1. In the continuous case, for any i = 1, 2, . . . , d, Y (ai)|X has a conditional density fi(yi|x),
which has a uniform non-zero lower bound, i.e., fi(yi|x) ≥ b > 0 over the interval [0,M ] for

any x ∈ X .

2. In the discrete case, for any i = 1, 2, . . . , d, Y (ai) is supported on a finite set D with cardinality

more than 1, and Y (ai)|X satisfies P0(Y (ai) = v|X) ≥ b > 0 almost surely for any v ∈ D.

The overlap assumption ensures that some minimum positive probability is guaranteed regardless

of the context is. This assumption ensures sufficient exploration in collecting the training data,

and indeed, many operational policies have ϵ-greedy components. Assumption 1 is standard and

commonly adopted in both the estimation literature ([63, 41, 42]) and the policy learning literature

([85, 89, 47, 76, 90]). Assumption 2 is made to ensure the Op(n
−1/2) convergence rate.

Remark 1. In standard contextual bandits terminology, µa(x) ≜ EP0 [Yi(a) | Xi = x] is known as the

mean reward function for action a. Depending on whether one assumes a parametric form of µa(x)

or not, one needs to employ different statistical methodologies. In particular, when µa(x) is a linear

function of x, this setting is known as linear contextual bandits, an important and most extensively

studied subclass of contextual bandits. In this paper, we do not make any structural assumption on

µa(x): we are in the non-parametric contextual bandits regime and work with general underlying

data-generating distributions P0.

2.2 Standard Policy Learning

With the aforementioned setup, the standard goal is to learn a good policy from a fixed deterministic

policy class Π using the training data, often known as the batch contextual bandits problem (in

contrast to online contextual bandits), because all the data has already been collected before the

decision maker aims to learn a policy. A policy π : X → A is a function that maps a context vector

x to an action and the performance of π is measured by the expected reward this policy generates,

as characterized by the policy value function:

Definition 1. The policy value function Q : Π→ R is defined as: Q(π) ≜ EP0 [Y (π(X))], where

the expectation is taken with respect to the randomness in the underlying joint distribution P0 of

(X,Y (a1), Y (a2), . . . , Y (ad)).

With this definition, the optimal policy is a policy that maximizes the policy value function. The

objective in the standard policy learning context is to learn a policy π that has the policy value as

large as possible, which is equivalent to minimizing the discrepancy between the performance of the

optimal policy and the performance of the learned policy π.

9



2.3 Distributionally Robust Policy Learning

Using the policy value function Q(·) as defined in Definition 1 to measure the quality of a policy brings

out an implicit assumption that the decision maker is making: the environment that generated the

training data is the same as the environment where the policy will be deployed. This is manifested in

that the expectation in Q(·) is taken with respect to the same underlying distribution P0. However,

the underlying data-generating distribution may be different for the training environment and the

test environment. In such cases, the policy learned with the goal to maximize the value under P0

may not work well under the new test environment.

To address this issue, we propose a distributionally robust formulation for policy learning, where

we explicitly incorporate into the learning phase the consideration that the test distribution may not

be the same as the training distribution P0. To that end, we start by introducing some terminology.

First, the KL-divergence between two probability measures P and P0, denoted by D(P||P0), is

defined as D(P||P0) ≜
∫
log
(

dP
dP0

)
dP. With KL-divergence, we can define a class of neighborhood

distributions around a given distribution. Specifically, the distributional uncertainty set UP0(δ) of

size δ is defined as UP0(δ) ≜ {P ≪ P0 | D(P||P0) ≤ δ}, where P ≪ P0 means P is absolutely

continuous with respect to P0. When it is clear from the context what the uncertainty radius δ is,

we sometimes drop δ for notational simplicity and write UP0 instead. We remark that in practice, δ

can be selected empirically. For example, we can collect historical distributional data from different

regions and compute distances between them. Then, although the distributional shift direction is

unclear, a reasonable distributional shift size δ can be estimated. Furthermore, we can also check

the sensitivity of robust policy with respect to δ and choose an appropriate one according to a given

insurance premium budget. We detail these two approaches in Section 6.4.

Definition 2. For a given δ > 0, the distributionally robust value function QDRO : Π → R is

defined as: QDRO(π) ≜ infP∈UP0
(δ)EP[Y (π(X))].

In other words, QDRO(π) measures the performance of a policy π by evaluating how it performs

in the worst possible environment among the set of all environments that are δ-close to P0. With

this definition, the optimal policy π∗DRO is a policy that maximizes the distributionally robust value

function: π∗DRO ∈ argmaxπ∈Π{QDRO(π)}. If such optimal policy does not exist, we can always

construct a sequence of policies whose distributionally robust value converges to the supremum

supπ∈Π{QDRO(π)}. Then, all of our results can generalize to this case. Therefore, for simplicity, we

assume the optimal policy exists. To be robust to the changes between the test environment and the

training environment, our goal is to learn a policy such that its distributionally robust policy value

is as large as possible, or equivalently, as close to the best distributionally robust policy as possible.

We formalize this notion in Definition 3.

Definition 3. The distributionally robust regret RDRO(π) of a policy π ∈ Π is defined as

RDRO(π) ≜ maxπ′∈Π infP∈UP0
(δ)EP[Y (π′(X))]− infP∈UP0

(δ)EP[Y (π(X))].

Several things to note. First, per its definition, we can rewrite regret asRDRO(π) = QDRO(π
∗
DRO)−

QDRO(π). Second, the underlying random policy that has generated the observational data (specifi-
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cally the Ais) could be totally irrelevant with the policy class Π. Third, when a policy π̂ is learned

from data and hence RDRO(π̂) is a random variable, then a regret bound in such cases is customarily

a high probability bound that highlights how regret scales as a function of the size n of the dataset,

the error probability and other important parameters of the problem, e.g. the complexity of the

policy class Π.

Regarding some other definitions of regret, one may consider choices such as

sup
P∈UP0

(δ)
max
π′∈Π

(EP[Y (π′(X))]−EP[Y (π(X))]),

where for a fixed distribution P, one compares the learned policy with the best one that could be

done under perfect knowledge of P. In this definition the adversary is very strong in the sense that

it knows the test domain. Therefore, a problem of this definition is that the regret does not converge

to zero when n goes to infinity (even for a randomized policy π). We will not discuss this notion in

this paper.

3 Distributionally Robust Policy Evaluation

3.1 Algorithm

In order to learn a distributionally robust policy – one that maximizes QDRO(π) – a key step lies in

accurately estimating the given policy π’s distributionally robust value. We devote this section to

tackling this problem.

Lemma 1 (Strong Duality). For any policy π ∈ Π, we have

inf
P∈UP0

(δ)
EP [Y (π(X))] = sup

α≥0
{−α logEP0 [exp(−Y (π(X))/α)]− αδ} (1)

= sup
α≥0

{
−α logEP0∗π0

[
exp(−Y (A)/α)1{π(X) = A}

π0(A | X)

]
− αδ

}
, (2)

where 1{·} denotes the indicator function.

The proof of Lemma 1 is in Appendix A.2.

Remark 2. When α = 0, by the discussion of Case 1 after Assumption 1 in Hu and Hong [40], we

define

−α logEP0 [exp(−Y (π(X))/α)]− αδ|α=0 = ess inf{Y (π(X)},

where ess inf denotes the essential infimum. Therefore, −α logEP0 [exp(−Y (π(X))/α)]−αδ is right

continuous at zero. In fact, Lemma A12 in Appendix A.3 shows that the optimal value is not

attained at α = 0 if Assumption 2.1 is enforced.

The above strong duality allows us to transform the original problem of evaluating infP∈UP0(δ)
EP [Y (π(X))],

where the (primal) variable is a infinite-dimensional distribution P into a simpler problem where the
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(dual) variable is a positive scalar α. Note that in the dual problem, the expectation is taken with

respect to the same underlying distribution P0. This then allows us to use an easily-computable plug-

in estimate of the distributionally robust policy value. To easily reference the subsequent analysis of

our algorithm, we capture the important terms in the following definition.

Definition 4. Let {(Xi, Ai, Yi)}ni=1 be a given dataset. We define

Wi(π, α) ≜
1{π(Xi) = Ai}
π0(Ai | Xi)

exp(−Yi(Ai)/α), S
π
n ≜

1

n

n∑
i=1

1{π(Xi) = Ai}
π0 (Ai|Xi)

and

Ŵn(π, α) ≜
1

nSπ
n

n∑
i=1

Wi(π, α).

We also define the dual objective function and the empirical dual objective function as

ϕ(π, α) ≜ −α logEP0 [exp(−Y (π(X))/α)]− αδ,

and

ϕ̂n(π, α) ≜ −α log Ŵn(π, α)− αδ,

respectively.

Then, we define the distributionally robust value estimators and the optimal dual variable using

the following notations.

1. The distributionally robust value estimator Q̂DRO : Π→ R is defined by Q̂DRO(π) ≜ supα≥0

{
ϕ̂n(π, α)

}
.

2. The optimal dual variable α∗(π) is defined by α∗(π) ≜ argmaxα≥0 {ϕ(π, α)}, and the empirical

dual value is denoted as αn(π) ∈ argmaxα≥0

{
ϕ̂n(π, α)

}
.

Wi(π, α) is a realization of the random variable inside the expectation in equation (2), and we

approximate EP0∗π0

[
exp(−Y (A)/α)1{π(X)=A}

π0(A|X)

]
by its empirical average Ŵn(π, α) with a normalization

factor Sπ
n . Note that E[Sπ

n ] = 1 and Sπ
n → 1 almost surely. Therefore, the normalized Ŵn(π, α)

is asymptotically equivalent with the unnormalized 1
n

∑n
i=1Wi(π, α). The reason for dividing a

normalization factor Sπ
n is that it makes our evaluation more stable; see discussions in [72] and [77].

The upper bound of α∗(π) proven in Lemma A11 of Appendix A.3 establishes the validity of the

definitions α∗(π), namely, α∗(π) is attainable and unique.

Remark 3. Another recent paper [30] also discusses a similar problem. The estimator they propose

is equivalent to

sup
a≥0
−α log

(
1

n

n∑
i=1

exp

(
−1 {π(Xi) = Ai}Yi

απ0 (Ai|Xi)

))
− αδ. (3)

We remark that their estimator is not consistent, namely, the estimator (3) does not converge to

infP∈UP0
(δ)EP [Y (π(X))], when n goes to infinity.
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By Hu and Hong [40, Proposition 1 and their discussion following the proposition], we provide a

characterization of the worst case distribution in Proposition 1.

Proposition 1 (The Worst Case Distribution). Suppose that Assumption 1 is imposed. For any

policy π ∈ Π, when α∗(π) > 0, we define a probability measure P(π) supported on X ×∏d
j=1 Yj such

that
dP(π)

dP0
=

exp(−Y (π(X)/α∗(π)))

EP0 [exp(−Y (π(X)/α∗(π)))]
,

where dP(π)/dP0 is the Radon-Nikodym derivative; when α∗(π) = 0, we define

dP(π)

dP0
=

1{Y (π(X)) = ess inf{Y (π(X)}}
P0(Y (π(X)) = ess inf{Y (π(X)}) .

Then, we have that P(π) is the unique worst case distribution, namely

P(π) = argmin
P∈UP0

(δ)
EP[Y (π(X)].

Proposition 1 shows that the worst case measure P(π) is an exponentially tilted measure with

respect to the underlying measure P0, where P(π) puts more weights on the low end. Since α∗(π)

can be approximated by αn(π), and αn(π) is explicitly computable as we shall see in Algorithm 1,

we are able to understand how the worst case measure behaves. Moreover, we show that the worst

case measure P(π) maintains mutual independence when Y (a1), . . . , Y (ad) are mutually independent

conditional on X under P0 in the following Corollary.

Corollary 1. Suppose that Assumptions 1 and 2 is imposed and under P0, Y (a1), . . . , Y (ad) are

mutually independent conditional on X. Then, for any policy π ∈ Π, under the worst case measure

P(π), Y (a1), . . . , Y (ad) are still mutually independent conditional on X.

The proofs of Proposition 1 and Corollary 1 are in Appendix A.2.

To compute Q̂DRO, one needs to solve an optimization problem to obtain the distributionally

robust estimate of the policy π. As the following lemma indicates, this optimization problem is easy

to solve.

Lemma 2. The empirical dual objective function ϕ̂n(π, α) is concave in α and its partial derivative

admits the expression

∂

∂α
ϕ̂n(π, α) = −

∑n
i=1 Yi(Ai)Wi(π, α)

αSπ
nŴn(π, α)

− log Ŵn(π, α)− δ,

∂2

∂α2
ϕ̂n(π, α) =

(
∑n

i=1 Yi(Ai)Wi(π, α))
2

α3(Sπ
n)

2(Ŵn(π, α))2
−
∑n

i=1 Y
2
i (Ai)Wi(π, α)

α3Sπ
nŴn(π, α)

.

Further, if the array {Yi(Ai)1{π(Xi) = Ai}}ni=1 has at least two different non-zero entries, then

ϕ̂n(π, α) is strictly-concave in α.
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The proof of Lemma 2 is in Appendix A.2. Since the optimization problem Q̂DRO = maxα≥0

{
ϕ̂n(π, α)

}
is maximizing a concave function, it can be computed using the Newton-Raphson method. Based on

all of the discussions above, we formally give the distributionally robust policy evaluation algorithm

in Algorithm 1. By Luenberger and Ye [55, Section 8.8], we have that ϕ̂n(π, α) converges to the

global maximum Q̂DRO(π) quadratically in Algorithm 1 if the initial value of α is sufficiently closed

to the optimal value.

Algorithm 1 Distributionally Robust Policy Evaluation

1: Input: Dataset {(Xi, Ai, Yi)}ni=1, data-collecting policy π0, policy π ∈ Π, and initial value of
dual variable α.

2: Output: Estimator of the distributionally robust policy value Q̂DRO(π).
3: repeat
4: Let Wi(π, α)← 1{π(Xi)=Ai}

π0(Ai|Xi)
exp(−Yi(Ai)/α).

5: Compute Sπ
n ← 1

n

∑n
i=1

1{π(Xi)=Ai}
π0(Ai|Xi)

.

6: Compute Ŵn(π, α)← 1
nSπ

n

∑n
i=1Wi(π, α).

7: Update α← α− ( ∂
∂α ϕ̂n)/(

∂2

∂α2 ϕ̂n).
8: until α converges.
9: Return Q̂DRO(π)← ϕ̂n(π, α).

3.2 Theoretical Guarantee of Distributionally Robust Policy Evaluation

In the next theorem, we demonstrate that the approximation error for policy evaluation function

Q̂DRO(π) is Op(1/
√
n) for a fixed policy π.

Theorem 1. Suppose Assumptions 1 and 2 are enforced, and define

σ2(α) =
α2

E[exp (−Y (π(X))/α)]2
E

[
1

π0 (π(X)|X)
(exp (−Y (π(X))/α)−E [exp (−Y (π(X))/α)])2

]
.

Then, for any policy π ∈ Π, we have

√
n
(
Q̂DRO(π)−QDRO(π)

)
⇒ N

(
0, σ2(α∗(π))

)
, if α∗(π) > 0, and

√
n
(
Q̂DRO(π)−QDRO(π)

)
→ 0 in probability, if α∗(π) = 0,

where α∗(π) is defined in Definition 4, ⇒ denotes convergence in distribution, and N (0, σ2) is the

normal distribution with mean zero and variance σ2.

Theorem 1 ensures that we are able to evaluate the performance of a policy in a new environment

using only the training data even if the new environment is different from the training environment.

The proof of Theorem 1 is in Appendix A.3.
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4 Distributionally Robust Policy Learning

In this section, we study the policy learning aspect of the problem and discuss both the algorithm

and its corresponding finite-sample theoretical guarantee. The aim is to find a robust policy that has

reasonable performance in a new environment with unknown distributional shifts. First, with the

distributionally robust policy evaluation scheme discussed in the previous section, we can in principle

compute the distributionally robust optimal policy π̂DRO by picking a policy in the given policy class

Π that maximizes the value of Q̂DRO, i.e.

π̂DRO ∈ argmax
π∈Π

Q̂DRO(π) = argmax
π∈Π

sup
α≥0

{
−α log Ŵn(π, α)− αδ

}
. (4)

How do we compute π̂DRO? In general, this problem is computationally intractable since it is

highly non-convex in its optimization variables (π and α jointly). However, following the standard

tradition in the machine learning and optimization literature , we can employ certain approximate

schemes that, although do not guarantee global convergence, are computationally efficient and prac-

tically effective (for example, greedy tree search [32, Section 9.2] for decision-tree policy classes and

gradient descent [64] for linear policy classes).

A simple and quite effective scheme is alternate minimization, given in Algorithm 2, where we

learn π̂DRO by fixing α and minimizing on π and then fixing π and maximizing on α in each itera-

tion. Since the value of Q̂DRO(π) is non-decreasing along the iterations of Algorithm 2, the converged

solution obtained from Algorithm 2 is a local maximum of Q̂DRO. In practice, to accelerate the algo-

rithm, we only iterate once for α (line 8) using the Newton-Raphson step α← α−
(

∂
∂α ϕ̂n

)
/
(

∂2

∂α2 ϕ̂n

)
.

Subsequent simulations (see next section) show that this is often sufficient.

Algorithm 2 Distributionally Robust Policy Learning

1: Input: Dataset {(Xi, Ai, Yi)}ni=1, data-collecting policy π0, and initial value of dual variable α.
2: Output: Distributionally robust optimal policy π̂DRO.
3: repeat
4: Let Wi(π, α)← 1{π(Xi)=Ai}

π0(Ai|Xi)
exp(−Yi(Ai)/α).

5: Compute Sπ
n ← 1

n

∑n
i=1

1{π(Xi)=Ai}
π0(Ai|Xi)

.

6: Compute Ŵn(π, α)← 1
nSπ

n

∑n
i=1Wi(π, α).

7: Update π ← argminπ∈Π Ŵn(π, α).

8: Update α← argmaxα>0{ϕ̂n(π, α)}.
9: until α converges.

10: Return π.

4.1 Statistical Performance Guarantee

We now establish the finite-sample statistical performance guarantee for the distributionally robust

optimal policy π̂DRO. Before giving the theorem, we first need to define entropy integral in the policy

class, which represents the class complexity.
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Definition 5. Given the feature domain X , a policy class Π, a set of n points {x1, . . . , xn} ⊂ X ,
define:

1. Hamming distance between any two policies π1 and π2 in Π : H(π1, π2) =
1
n

∑n
j=1 1{π1(xj) ̸=

π2(xj)}.

2. ϵ-Hamming covering number of the set {x1, . . . , xn} : N
(n)
H (ϵ,Π, {x1, . . . , xn}) is the smallest

number K of policies {π1, . . . , πK} in Π, such that ∀π ∈ Π, ∃πi, H(π, πi) ≤ ϵ.

3. ϵ-Hamming covering number of Π : N
(n)
H (ϵ,Π) ≜ sup

{
N

(n)
H (ϵ,Π, {x1, . . . , xn}) |x1, . . . , xn ∈ X

}
.

4. Entropy integral: κ(n) (Π) ≜
∫ 1
0

√
logN

(n)
H (ϵ2,Π)dϵ.

The defined entropy integral is the same as Definition 4 in [91], which is a variant of the classical

entropy integral introduced in [29], and the Hamming distance is a well-known metric for measuring

the similarity between two equal-length arrays whose elements are supported on on discrete sets [38].

We then discuss the entropy integrals κ(n) (Π) for different policy classes Π.

Example 1 (Finite policy classes). For a policy class ΠFin containing a finite number of policies,

we have κ(n) (ΠFin) ≤
√

log(|ΠFin|), where |ΠFin| denotes the cardinality of the set ΠFin.

The entropy integrals for the linear policy classes and decision-tree policy classes are discussed in

Section 5.2 and Section 6.2, respectively. For the special case of binary action, we have the following

bound for the entropy integral by [60] (see the discussion following Definition 4).

Lemma 3. If d = 2, we have κ(n) (Π) ≤ 2.5
√
V C(Π), where V C(·) denotes the VC dimension

defined in [80].

This result can be further generalized to the multi-action policy learning setting, where d is

greater than 2; see the proof of Theorem 2 in [60].

Lemma 4. We have κ(n) (Π) ≤ 2.5
√
log(d)Graph(Π), where Graph(·) denotes the graph dimension

(see the definition in [8]).

Graph dimension is a direct generalization of VC dimension. There are many papers that discuss

the graph dimension and also a closely related concept, Natarajan dimension; see, for example,

[20, 21, 60, 58].

Theorem 2 demonstrates that with high probability, the distributionally robust regret of the

learned policy RDRO(π̂DRO) decays at a rate upper bounded by Op(κ
(n)/
√
n).

Theorem 2. Suppose Assumption 1 is enforced. Then, with probability at least 1 − ε, under As-

sumption 2.1, we have

RDRO(π̂DRO) ≤
4

bη
√
n

(
24(
√
2 + 1)κ(n) (Π) +

√
2 log

(
2

ε

)
+ C

)
, (5)
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where C is a universal constant, and under Assumption 2.2, when

n ≥
{

4

bη

(
24(
√
2 + 1)κ(n) (Π) + 48

√
|D| log (2) +

√
2 log

(
2

ε

))}2

,

we have

RDRO(π̂DRO) ≤
4M

bη
√
n

(
24(
√
2 + 1)κ(n) (Π) + 48

√
|D| log (2) +

√
2 log

(
2

ε

))
, (6)

where |D| denotes the cardinality of the set D.

The key challenge to the proof of Theorem 2 is that QDRO(π) is hard to quantify, since it is

a non-linear functional of the probability measure P. Thanksfully, Lemmas 5 and 6 allow us to

transform the hardness of analysis of QDRO(π) into the well-studied terms such as the quantile and

the total variation distance.

Lemma 5. For any probability measures P1,P2 supported on R, we have∣∣∣∣sup
α≥0
{−α logEP1 [exp (−Y/α)]− αδ} − sup

α≥0
{−α logEP2 [exp (−Y/α)]− αδ}

∣∣∣∣ ≤ sup
t∈[0,1]

|qP1 (t)− qP2 (t)| ,

where qP (t) denotes the t-quantile of a probability measure P, defined as

qP (t) ≜ inf {x ∈ R : t ≤ FP (x)} ,

where FP is the CDF of P.

Lemma 6. Suppose P1 and P2 are supported on D and satisfy Assumption 1.3. We further assume

P2 satisfies Assumption 2.2. When TV(P1,P2) < b/2, we have∣∣∣∣sup
α≥0
{−α logEP1 [exp (−Y/α)]− αδ} − sup

α≥0
{−α logEP2 [exp (−Y/α)]− αδ}

∣∣∣∣ ≤ 2M

b
TV(P1,P2),

where TV denotes the total variation distance.

The detailed proof is in Appendix A.4. We see those bounds in (5) and (6) for the distributionally

robust regret does not depend on the uncertainty size δ. Furthermore, if supn κ
(n) < ∞ including

the finite policy classes, linear classes, decision-tree policy classes and the case where V C(Π) or

Graph(Π) is finite, we have a parametric convergence rate Op(1/
√
n). Further, if κ(n) = op(

√
n),

we have RDRO(π̂DRO) → 0 in probability. Generally, we may expect the complexities of parametric

classes are O(1). Theorem 2 guarantees the robustness of the policy learned from the training

environment given sufficient training data and low complexity of the policy class. This result means

that the test environment performance is guaranteed as long as test and training environments do

not differ too much. We will show this rate is optimal up to a constant in Theorem 3.
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4.2 Statistical Lower Bound

In this subsection, we provide a tight lower bound of the distributionally robust batch contextual ban-

dit problem. First we define P(M) as the collection of all joint distributions of (X,Y (a1), Y (a2), . . . , Y (ad), A)

satisfying Assumption 1. To emphasize the dependence on the underlying distribution P0, we rewrite

RDRO(π) = RDRO(π,P0). We further denote Pπ0
0 to be the distribution of the observed triples

{X,A, Y (A)}.

Theorem 3. Let d = 2 and δ ≤ 0.226. Then, for any policy π as a function of {Xi, Ai, Yi}ni=1, it

holds that

sup
P0∗π0∈P(M)

E(Pπ0
0 )

n [RDRO(π,P0)] ≥
Mκ(n) (Π)

160
√
n

, for n ≥ κ(n) (Π)2 ,

where (Pπ0
0 )n denotes the n-times product measure of Pπ0

0 .

The proof of Theorem 3 is in Appendix A.5. Theorem 3 shows that the dependence of the regret

on the complexity κ(n)(Π); the number of samples, n; and the bound of the reward, M , is optimal

up to a constant. It means that it is impossible to find a good robust policy with a small amount of

training data or a relatively large policy class.

5 Simulation Studies

In this section, we provide discussions on simulation studies to justify the robustness of the proposed

DRO policy π̂DRO in the linear policy class. Specifically, Section 5.1 discusses a notion of the Bayes

DRO policy, which is viewed as a benchmark; Section 5.2 presents an approximation algorithm to

efficiently learn a linear policy; Section 5.3 gives a visualization of the learned DRO policy, with a

comparison to the benchmark Bayes DRO policy, and demonstrates the performance of our proposed

estimator.

5.1 Bayes DRO Policy

In this section, we give a characterization of the Bayes DRO policy π∗DRO, which maximizes the

distributionally robust value function within the class of all measurable policies, i.e.,

π∗DRO ∈ argmax
π∈Π

{QDRO(π)},

where Π denotes the class of all measurable mappings from X to the action set A. Despite the Bayes

DRO policy is not being learnable given finitely many training samples, it could be a benchmark in a

simulation study. Proposition 2 shows how to compute π∗DRO if we know the population distribution.

Proposition 2. Suppose that for any α > 0 and any a ∈ A, the mapping x 7→ EP0 [ exp (−Y (a)/α)|X = x]
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is measurable. Then, the Bayes DRO policy is

π∗DRO(x) ∈ argmin
a∈A

{
EP0

[
exp

(
− Y (a)

α∗(π∗DRO)

)∣∣∣∣X = x

]}
,

where α∗(π∗DRO) is an optimizer of the following optimization problem:

α∗(π∗DRO) ∈ argmax
α≥0

{
−α logEP0

[
min
a∈A
{EP0 [ exp (−Y (a)/α)|X]}

]
− αδ

}
. (7)

See Appendix A.6 for the proof.

Remark 4. π∗DRO only depends on the marginal distribution of X and the conditional distributions

of Y (ai)|X, i = 1, 2, . . . , d. Therefore, the conditional correlation structure of Y (ai)|X, i = 1, 2, . . . , d

does not affect π∗DRO.

5.2 Linear Policy Class and Logistic Policy Approximation

In this section, we introduce the linear policy class ΠLin. We consider X to be a subset of Rp, and the

action set A = {1, 2, . . . , d}. To capture the intercept, it is convenient to include the constant variable
1 in X ∈ X , thus in the rest of Section 5.2, X is a p+1 dimensional vector and X is a subset of Rp+1.

Each policy π ∈ ΠLin is parameterized by a set of d vectors Θ = {θa ∈ Rp+1 : a ∈ A} ∈ R(p+1)×d,

and the mapping π : X → A is defined as

πΘ(x) ∈ argmax
a∈A

{
θ⊤a x

}
.

The optimal parameter for linear policy class is characterized by the optimal solution of

max
Θ∈R(p+1)×d

EP0 [Y (πΘ(X))].

Due to the fact that EP0 [Y (πΘ(X))] = EP∗π0

[
Y (A)1{πΘ(X)=A}

π0(A|X)

]
, the associated sample average

approximation problem for optimal parameter estimation is

max
Θ∈R(p+1)×d

1

n

n∑
i=1

Yi(Ai)1{πΘ(Xi) = Ai}
π0 (Ai|Xi)

.

However, the objective in this optimization problem is non-differentiable and non-convex, thus we

approximate the indicator function using a softmax mapping by

1{πΘ(Xi) = Ai} ≈
exp(θ⊤Ai

Xi)∑d
a=1 exp(θ

⊤
a Xi)

,
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which leads to an optimization problem with smooth objective:

max
Θ∈R(p+1)×d

1

n

n∑
i=1

Yi(Ai) exp(θ
⊤
Ai
Xi)

π0 (Ai|Xi)
∑d

a=1 exp(θ
⊤
a Xi)

.

We employ the gradient descent method to solve for the optimal parameter

Θ̂Lin ∈ argmax
Θ∈R(p+1)×d

{
1

n

n∑
i=1

Yi(Ai) exp(θ
⊤
Ai
Xi)

π0 (Ai|Xi)
∑d

a=1 exp(θ
⊤
a Xi)

}
,

and define the policy π̂Lin ≜ πΘ̂Lin
as our linear policy estimator. In Section 5.3, we justify the

efficacy of π̂Lin by empirically showing π̂Lin is capable of discovering the (non-robust) optimal decision

boundary.

As an oracle in Algorithm 2, a similar smoothing technique is adopted to solve argminπ∈ΠLin
Ŵn(π, α)

for linear policy class ΠLin. We omit the details here due to space limitations.

We will present an upper bound of the entropy integral κ(n)(ΠLin) in Lemma 7. By plugging the

result of Lemma 7 into Theorem 2, one can quickly remark that the regret RDRO(π̂DRO) achieves

the optimal asymptotic convergence rate Op(1/
√
n) given by Theorem 2.

Lemma 7. There exists a universal constant C such that κ(n)(ΠLin) ≤ C
√
dp log(d) log(dp).

The proof of Lemma 7 is achieved by upper bounding ϵ-Hamming covering number N
(n)
H (ϵ,ΠLin)

in terms of the graph dimension in Lemma 4, then by deploying an upper bound of graph dimension

for the linear policy class provided in [21].

5.3 Experiment Results

In this section, we present two simple examples with an explicitly computable optimal linear DRO

policy. We illustrate the behavior of distributionally robust policy learning in Section 5.3.1 and we

demonstrate the effectiveness of the distributionally robust policy in Section 5.3.2.

5.3.1 A Linear Boundary Example

We consider X = {x = (x(1), . . . , x(p)) ∈ Rp :
∑p

i=1 x(i)
2 ≤ 1} to be a p-dimensional closed unit

ball, and the action set A = {1, . . . , d}. We assume that Y (i)’s are mutually independent conditional

on X with conditional distribution

Y (i)|X ∼ N (β⊤i X,σ
2
i ), for i = 1, . . . , d.

for vectors {β1, . . . , βd} ⊂ Rp and {σ21, . . . , σ2d} ⊂ R+. In this case, by directly computing the

moment generating functions and applying Proposition 2, we have

π∗DRO(x) ∈ argmax
i∈{1,...,d}

{
β⊤i x−

σ2i
2α∗(π∗DRO)

}
.
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We consider the linear policy class ΠLin. Apparently, the DRO Bayes policy π∗DRO(x) is in the

class ΠLin, thus it is also the optimal linear DRO policy, i.e., π∗DRO ∈ argmaxπ∈ΠLin
QDRO(π).

Consequently, we can check the efficacy of the distributionally robust policy learning algorithm by

comparing π̂DRO against π∗DRO.

Now we describe the parameter in the experiment. We choose p = 5 and d = 3. To facilitate

visualization of the decision boundary, we set all the entries of βi to be 0 except for the first two

dimensions. Specifically, we choose

β1 = (1, 0, 0, 0, 0), β2 = (−1/2,
√
3/2, 0, 0, 0), β3 = (−1/2,−

√
3/2, 0, 0, 0).

and σ1 = 0.2, σ2 = 0.5, σ3 = 0.8. We define the Bayes policy π∗ as the policy that maximizes

EP0 [Y (π(X))] within the class of all measurable policies. Under this setting, π∗(x) ∈ argmaxi=1,2,3{β⊤i x}.
The feature space X is partitioned into three regions based on π∗: for i = 1, 2, 3, we say x ∈ X be-

longs to Region i if π∗(x) = i. Given X, the action A is drawn according to the underlying data

collection policy π0, which is described in Table 1.

Region 1 Region 2 Region 3

Action 1 0.50 0.25 0.25

Action 2 0.25 0.50 0.25

Action 3 0.25 0.25 0.50

Table 1: The probabilities of selecting an action based on π0 in the linear example.

We generate {Xi, Ai, Yi}ni=1 according to the procedure described above as training dataset, from

which we learn the non-robust linear policy π̂Lin and the distributionally robust linear policy π̂DRO.

Figure 2 presents the decision boundary of four different policies: (a) π∗; (b) π̂Lin; (c) π
∗
DRO; (d)

π̂DRO, where n = 5000 and δ = 0.2. One can quickly remark that the decision boundary of π̂Lin

resembles π∗; and the decision boundary of π̂DRO resembles π∗DRO, which demonstrates that π̂Lin is

the (nearly) optimal non-DRO policy and π̂DRO is the (nearly) optimal DRO policy.

This distinction between π∗ and π∗DRO is also apparent in Figure 2: π∗DRO is less likely to choose

Action 3, but more likely to choose Action 1. In other words, a distributionally robust policy prefers

action with smaller variance. We remark that this finding is consistent with [25] and [26] as they find

the DRO problem with KL-divergence is a good approximation to the variance-regularized quantity

when δ → 0.

5.3.2 A Non-linear Boundary Example

In this section, we compare the performance of different estimators in a simulation environment

where the Bayes decision boundaries are nonlinear.

We consider X = [−1, 1]5 to be a 5-dimensional cube, and the action set to be A = {1, 2, 3}. We
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Figure 2: Comparison of decision boundaries for different policies in the linear example: (a) Bayes
policy π∗; (b) linear policy π̂Lin; (c) Bayes distributionally robust policy π∗DRO; (d) distributionally
robust linear policy π̂DRO. We visualize the actions selected by different policies against the value of
(X(1), X(2)). Training set size n = 5000; size of distributional uncertainty set δ = 0.2.

assume that Y (i)’s are mutually independent conditional on X with conditional distribution

Y (i)|X ∼ N (µi(X), σ2i ), for i = 1, 2, 3.

where µi : X → A is a measurable function and σi ∈ R+ for i = 1, 2, 3. In this setting, we are still

able to analytically compute the Bayes policy π∗(x) ∈ argmaxi=1,2,3{µi(x)} and the DRO Bayes
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π∗DRO(x) ∈ argmaxi=1,2,3

{
µi(x)− σ2

i
2α∗(π∗

DRO)

}
.

In this section, the conditional mean µi(x) and conditional variance σi are chosen as

µ1(x) = 0.2x(1), σ1 = 0.8,

µ2(x) = 1−
√

(x(1) + 0.5)2 + (x(2)− 1)2, σ2 = 0.2,

µ3(x) = 1−
√

(x(1) + 0.5)2 + (x(2) + 1)2), σ3 = 0.4.

Given X, the action A is drawn according to the underlying data collection policy π0 described in

Table 2.

Region 1 Region 2 Region 3

Action 1 0.50 0.25 0.25

Action 2 0.30 0.40 0.30

Action 3 0.30 0.30 0.40

Table 2: The probabilities of selecting an action based on π0 in nonlinear example.

Now we generate the training set {Xi, Ai, Yi}ni=1 and learn the non-robust linear policy π̂Lin and

distributionally robust linear policy π̂DRO in linear policy class ΠLin, for n = 5000 and δ = 0.2. Figure

3 presents the decision boundary of four different policies: (a) π∗; (b) π̂Lin; (c) π
∗
DRO; (d) π̂DRO. As

π∗ and π∗DRO have nonlinear decision boundaries, any linear policy is incapable of accurate recovery

of Bayes policy. However, we quickly notice that the boundary produced by π̂Lin and π̂DRO are

reasonable linear approximation of π∗ and π∗DRO, respectively. Especially noteworthy is the robust

policy prefers action with small variance (Action 2), which is consistent with our finding in Section

5.2.

Now we introduce two evaluation metrics in order to quantitatively characterize the adversarial

performance for different policies.

1. We generate a test set with n′ = 2500 i.i.d. data points sampled from P0 and evaluate the

worst case performance of each policy using Q̂DRO with a radius δtest. Note that δtest may be

different from δ in the training procedure. The results are reported in the first row of Tables

3 and 4.

2. We first generateM = 100 independent test sets, where each test set consists of n′ = 2500 i.i.d.

data points sampled from P0. We denote them by

{{(
X

(j)
i , Y

(j)
i (a1), . . . , Y

(j)
i (ad)

)}n′

i=1

}M

j=1

.

Then, we randomly sample a new dataset around each dataset, i.e.,
(
X̃

(j)
i , Ỹ

(j)
i (a1), . . . , Ỹ

(j)
i (ad)

)
is sampled on the KL-sphere centered at

(
X

(j)
i , Y

(j)
i (a1), . . . , Y

(j)
i (ad)

)
with a radius δtest.

Then, we evaluate each policy using Q̂min, defined by

Q̂min(π) ≜ min
1≤j≤M

{
1

n′

n′∑
i=1

Ỹ
(j)
i

(
π
(
X̃

(j)
i

))}
.
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Figure 3: Comparison of decision boundaries for different policies in nonlinear example: (a) optimal
policy under population distribution P0; (b) optimal linear policy π̂Lin learned from data; (c) Bayes
distributionally robust policy π∗DRO; (d) distributionally robust linear policy π̂DRO. We visualize the
actions selected by different policies against the value of (X(1), X(2)). Training size is 5000; size of
distributional uncertainty set δ = 0.2.

The results are reported in the second row in Tables 3 and 4.

We compare the robust performance of π̂Lin and π̂DRO and the POEM policy π̂POEM introduced

in [76]. The regularization parameter of the POEM estimator is chosen from {0.05, 0.1, 0.2, 0.5, 1},
and we find the results are insensitive to the regularization parameter. We fix the uncertainty radius
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δ = 0.2 used in the training procedure and size of test set n′ = 2500. In Table 3, we let the training

set size range from 500 to 2500, and we fix δtest = δ = 0.2, while in Table 4, we fix the training

set size to be n = 2500, and we let the magnitude of “environment change” δtest range from 0.02

to 0.4. We denote π̂0.2DRO to be the DRO policy with δ = 0.2. Tables 3 and 4 report the mean and

the standard error of the mean of Q̂DRO and Q̂min computed using T = 1000 i.i.d. experiments,

where an independent training set and an independent test set are generated in each experiment.

Figure 4 visualizes the relative differences between π̂Lin/π̂POEM and π̂0.2DRO in distributional shift

environments.

n = 500 n = 1000 n = 1500 n = 2000 n = 2500

Q̂DRO

π̂Lin 0.0852± 0.0013 0.1031± 0.0008 0.1093± 0.0005 0.1120± 0.0005 0.1135± 0.0004
π̂POEM 0.0621± 0.0014 0.0858± 0.0009 0.0972± 0.0007 0.1013± 0.0006 0.1057± 0.0005
π̂0.2DRO 0.0998± 0.0011 0.1120± 0.0007 0.1152± 0.0005 0.1166± 0.0004 0.1170± 0.0004

Q̂min

π̂Lin 0.2183± 0.0011 0.2347± 0.0007 0.2398± 0.0005 0.2426± 0.0005 0.2437± 0.0005
π̂POEM 0.2030± 0.0011 0.2230± 0.0007 0.2311± 0.0006 0.2344± 0.0006 0.2378± 0.0005
π̂0.2DRO 0.2249± 0.0009 0.2384± 0.0006 0.2428± 0.0005 0.2439± 0.0005 0.2460± 0.0005

Table 3: Comparison of robust performance for different training sizes n when δ = δtest = 0.2.

We can easily observe from Table 3 that π̂0.2DRO achieves the best robust performance among all

three policies and the superiority is significant in the most of cases, which implies π̂DRO is more

resilient to adversarial perturbations. We also highlight that π̂DRO has smaller standard deviation

(
√
T×standard error) in Table 3 and the superiority of π̂DRO is more manifest under smaller training

set, indicating π̂DRO is a more stable estimator compared with π̂Lin and π̂POEM. In Table 4 and

Figure 4, we find that π̂DRO significantly outperforms π̂Lin and π̂POEM for a wide range of δtest even

if the model is misspecified in the sense that δtest ̸= δ, and the results of small δtest indicate that our

method may potentially alleviate overfitting. These results show that our method is insensitive to

the choice of the uncertainty radius δ in the training procedure.

δtest = 0.02 δtest = 0.06 δtest = 0.10 δtest = 0.20 δtest = 0.30 δtest = 0.40

Q̂DRO

π̂Lin 0.2141± 0.0003 0.1783± 0.0003 0.1546± 0.0004 0.1132± 0.0004 0.0840± 0.0005 0.0601± 0.0005
π̂POEM 0.2097± 0.0003 0.1734± 0.0004 0.1497± 0.0004 0.1087± 0.0005 0.0787± 0.0005 0.0543± 0.0005
π̂0.2DRO 0.2164± 0.0003 0.1805± 0.0003 0.1574± 0.0003 0.1170± 0.0004 0.0882± 0.0004 0.0646± 0.0005

Q̂min

π̂Lin 0.2602± 0.0005 0.2545± 0.0005 0.2516± 0.0005 0.2443± 0.0005 0.2378± 0.0005 0.2305± 0.0005
π̂POEM 0.2556± 0.0005 0.2511± 0.0005 0.2472± 0.0005 0.2400± 0.0005 0.2334± 0.0005 0.2263± 0.0005
π̂0.2DRO 0.2613± 0.0004 0.2563± 0.0004 0.2532± 0.0004 0.2461± 0.0005 0.2397± 0.0005 0.2329± 0.0005

Table 4: Comparison of robust performance for different test environments δtest when δ = 0.2 and
n = 2500.
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Figure 4: Difference of robust performance for different test environments δtest when δ = 0.2 and
n = 2500.

6 Real Data Experiments: Application on a Voting Dataset

In this section, we compare the empirical performance of different estimators on a voting dataset

concerned with the August 2006 primary election.4 This dataset was originally collected by [35] to

study the effect of social pressure on electoral participation rates. Later, the dataset was employed by

[91] to study the empirical performance of several offline policy learning algorithms. In this section,

we apply different policy learning algorithms to this dataset and illustrate some interesting findings.

6.1 Dataset Description

For completeness, we borrow the description of the dataset from [91] since we use almost the same

(despite different reward) data preprocessing procedure. We only focus on aspects that are relevant

to our current policy learning context.

The dataset contains 180002 data points (i.e. n = 180002), each corresponding to a single

voter in a different household. The voters span the entire state of Michigan. There are ten voter

characteristics in the dataset: year of birth, sex, household size, city, g2000, g2002, g2004, g2000,

p2002, and p2004. The first four features are self-explanatory. The next three features are outcomes

for whether a voter voted in the general elections in 2000, 2002 and 2004 respectively: 1 was recorded

if the voter did vote and 0 was recorded if the voter did not vote. The last three features are outcomes

for whether a voter voted in the primary in 2000, 2002 and 2004. As [35] pointed out, these 10 features

are commonly used as covariates for predicting whether an individual voter will vote.

There are five actions in total, as listed below:

Nothing: No action is performed.

4Data available in https://github.com/gsbDBI/ExperimentData/tree/master/Social
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Civic: A letter with ”Do your civic duty” is mailed to the household before the primary election.

Monitored: A letter with ”You are being studied” is mailed to the household before the primary

election. Voters receiving this letter are informed that whether they vote or not in this election will

be observed.

Self History: A letter with the voter’s past voting records as well as the voting records of other

voters who live in the same household is mailed to the household before the primary election. The

letter also indicates that, once the election is over, a follow-up letter on whether the voter voted will

be sent to the household.

Neighbors: A letter with the voting records of this voter, the voters living in the same household,

and the voters who are neighbors of this household is mailed to the household before the primary

election. The letter also indicates that all your neighbors will be able to see your past voting records

and that follow-up letters will be sent so that whether this voter voted in the upcoming election will

become public knowledge among the neighbors.

In collecting this dataset, these five actions are randomly chosen independent of everything else,

with probabilities equal to 10
18 ,

2
18 ,

2
18 ,

2
18 ,

2
18 (in the same order as listed above). The outcome is

whether a voter has voted in the 2006 primary election, which is either 1 or 0. It is not hard to

imagine that Neighbors is the best policy for the whole population as it adds the highest social

pressure for people to vote. Therefore, instead of directly using the voting outcome as a reward, we

define Yi, the reward associated to voter i, as the voting outcome minus the social cost of deploying

an action to this voter, namely,

Yi(a) = 1{voter i votes under action a} − ca, ∀a ∈ A,

where ca is the vector of cost for deploying certain actions. Here, we set ca = (0.3, 0.32, 0.34, 0.36, 0.38)

to be close to the empirical average of each action.

6.2 Decision Trees and Greedy Tree Search

We introduce the decision-tree policy classes. We follow the convention in [9]. A depth-L tree has L

layers in total: branch nodes live in the first L− 1 layers, while the leaf nodes live in the last layer.

Each branch node is specified by the variable to be split on and the threshold b. At a branch node,

each component of the p-dimensional feature vector x can be chosen as a split variable. The set of

all depth-L trees is denoted by ΠL. Then, Lemma 4 in [91] shows that

κ(n)(ΠL) ≤
√
(2L − 1) log p+ 2L log d+

4

3
L1/4

√
2L − 1.

In the voting dataset experiment, we concentrate on the policy class ΠL.

The algorithm for decision tree learning needs to be computationally efficient, since algorithm

will be iteratively executed in Line 7 of Algorithm 2 to compute argminπ∈ΠL
Ŵn(π, α). Since finding

an optimal classification tree is generally intractable, see [9], here we adopt an heuristic algorithm

called greedy tree search. This procedure can be inductively defined. First, to learn a depth-2 tree,
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greedy tree search will brute force search all the possible spliting choices of the branch node, and all

the possible actions of the leaf nodes. Suppose that the learning procedure for depth-(L − 1) tree

has been defined. To learn a depth-L tree, we first learn a depth-2 tree with the optimal branching

node, which partitions all the training data into two disjointed groups associated with two leaf nodes.

Then each leaf node is replaced by the depth-(L − 1) tree trained using the data in the associated

group.

6.3 Training and Evaluation Procedure

Consider a hypothetical experiment of designing distributionally robust policy. In the experiment,

suppose that the training data is collected from some cities, and our goal is to learn a robust policy

to be deployed to the other cities. Dividing the training and test population based on the city voters

live creates both a covariate shift and a concept drift between training set and test set. For example,

considering the covariate shift first, the distribution of year of birth is generally different across

different cities. As for the concept drift, it is conceivable that different groups of population may

have different response to the same action, depending on some latent factors that are not reported

in the dataset, such as occupation and education. The distribution of such latent factors also varies

among different cities, which results in concept drift. Consequently, we use the feature city to divide

the training set and the test set, in order to test policy performance under “environmental change”.

The voting data set contains 101 distinct cities. To comprehensively evaluate the out-of-sample

policy performance, we adapt leave-one-out cross-validation to generate 101 pairs of the training

and test set, each test set contains exactly one district city and the corresponding training set is

the complement set of the test set. On each pair of the training and test set, we learn a non-

robust depth-3 decision tree policy π̂3 and distributionally robust decision tree policies π̂DRO in Π3

for δ ∈ {0.1, 0.2, 0.3, 0.4}, then on the test set the policies are evaluated using the unbiased IPW

estimator

Q̂IPW(π) ≜
1

n

n∑
i=1

1{π(Xi) = Ai}
π0(Ai | Xi)

Yi(Ai).

Consequently, for each policy π we get 101 of Q̂IPW(π) scores on 101 different test sets.

6.4 Selection of Distributional Shift Size δ

The distributional shift size δ quantifies the level of robustness of the distributionally robust pol-

icy learning algorithm. The empirical performance of the algorithm substantially depends on the

selection of δ. On one hand, if δ is too small, the robustification effect is negligible and the algo-

rithm would learn an over-aggressive policy; on the other hand, if δ is overly large, the policy is

over-conservative, always choosing the action subject to the smallest reward variation. We remark

that the selection of δ is more a managerial decision rather than a scientific procedure. It depends

to the decision-makers’ own risk-aversion level and their own perception of the new environments.

In this section, we provide a guide to help select δ in this voting dataset.
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A natural approach to select δ is to empirically estimate the size of distributional shift using the

training data. From the training set, we partition the data in 20% of cities as our validation set

with distribution denoted by P20, and we use P80 to denote the distribution of the remaining 80% of

the training set. We estimate the D(P20||P80), which reasonably quantifies the size of distributional

shift across different cities. To this end, we decompose distributional shift into two parts,

D(P20||P80) = D(P20
X ||P80

X )︸ ︷︷ ︸
marginal distribution of X

+ EP20
X
[D(P20

Y |X||P80
Y |X)]︸ ︷︷ ︸

conditional distribution of Y given X

,

where Pi
X denote the X-marginal distribution of Pi, and Pi

Y |X denote the conditional distribution

of Y given X for Pi, for i = 20, 80. To estimate the size of marginal distributional shift D(P20
X ||P80

X ),

we first apply grouping to features such as year of birth, in order to avoid of infinite KL-divergence.

Next we focus on the conditional distributional shift D(P20
Y |X||P80

Y |X). Noticing that the value

of Y (a) is binary for each a, we fit two logistic regression models separately for P20 and P80 to

estimate the conditional distribution of Y (a) givenX. We estimateD(P20
Y |X||P80

Y |X) using the fitted

logistic regression model, then take the expectation of X over P20
X . We repeat the 80%/20% random

splitting 100 times, and compute D(P20||P80) using this procedure. Additional experimental details

are reported in Appendix B.2. The empirical CDF of the estimated δ from those 100 experiments is

reported in Figure 5a. It is easy to see approximately 90% percent of δs are less than 0.2.
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Figure 5: Selection of distributional shift size δ.

Beside explicitly estimating the uncertainty size, we also check the sensitivity of our policy on

δ. We present the reward profile for our distributionally robust policy in Figure 5b. In the figure,

we employ the x-axis to represent the δ used in the policy training process. The top black line

is the non-robust pure value function, which appears to be almost invariant among policies with

different robust level for δ ∈ [0, 0.4]. The blue line is the distributionally robust value function with

δ fixed to 0.2. We remark that the non-robust policy π̂0DRO has a deficient performance in terms
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of robust value function, yet the robust value function improves as the robust level of the policy is

increasing and becomes non-sensitive to the delta when δ larger than 0.2. Finally, this red line is the

distributionally robust value function with respect to the same δ in the training process. Thus, it is

the actual training reward.

6.5 Experimental Result and Interpretation

We summarize some important statistics of Q̂IPW(π) scores in Table 5, including mean, standard

deviation, minimal value, 5th percentile, 10th percentile, and 20th percentile. All the statistics are

calculated based on the result of 101 test sets.

mean std min 5th percentile 10th percentile 20th percentile

Q̂IPW(π̂3) 0.0386 0.0991 -0.2844 -0.1104 -0.0686 -0.0358

Q̂IPW(π̂DRO)

δ = 0.1 0.0458 0.0989 -0.2321 -0.1007 -0.0489 -0.0223
δ = 0.2 0.0368 0.0895 -0.2314 -0.0785 -0.0518 -0.0217
δ = 0.3 0.0397 0.0864 -0.2313 -0.0677 -0.0407 -0.0190
δ = 0.4 0.0383 0.0863 -0.2312 -0.0677 -0.0429 -0.0202

Table 5: Comparison of important statistics for voting dataset.

We remark that the mean value of Q̂IPW(π̂DRO) is comparable to Q̂IPW(π̂3), and it is even better

when an appropriate value of δ (such as δ = 0.1) is selected. One can also observe that Q̂IPW(π̂DRO)

has a smaller standard deviation and a larger minimal value when comparing to Q̂IPW(π̂3), and the

difference becomes larger as δ increases. The comparison of 5th, 10th, and 20th percentiles also

indicates that π̂DRO perform better than π̂3 in “bad” (or “adversarial”) scenarios of environmental

change, which is exactly the desired behavior of π̂DRO by design.

To reinforce our observation in Table 5, we visualize and compare the distribution of Q̂IPW(π̂DRO)

and Q̂IPW(π̂3) in Figure 6, for (a) δ = 0.1 and (b) δ = 0.4. We notice that the histogram of

Q̂IPW(π̂DRO) is more concentrated than the histogram of Q̂IPW(π̂3), which supports our observation

that π̂DRO is more robust.

We present two instances of distributionally robust decision trees in Figure 7: (a) is an instance

of robust tree with δ = 0.1, and (b) is an instance of robust tree with δ = 0.4. We remark that

the decision tree in (b) deploys the action Nothing to most of the potential voters, because almost

all the individuals in the dataset were born after 1917 and have a household size fewer than 6. For

a large value of δ, the distributionally robust policy π̂DRO becomes almost degenerate, which only

selects Nothing, the action with a minimal reward variation.
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Figure 6: Comparison of the distribution of Q̂IPW between distributionally robust decision tree
against non-robust decision tree. (a) δ = 0.1, (b) δ = 0.4.
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Figure 7: Examples of distributionally robust decision trees when (a) δ = 0.1, (b) δ = 0.4.

7 Extension to f-divergence Uncertainty Set

In this section, we generalize the KL-divergence to f -divergence. Here, we define f -divergence

between P and P0 as

Df (P||P0) ≜
∫
f

(
dP

dP0

)
dP0,

where f : R → R+ ∪ {+∞} is a convex function satisfying f(1) = 0 and f(t) = +∞ for any

t < 0. Then, we define the f -divergence uncertainty set as Uf
P0

(δ) ≜ {P ≪ P0 | Df (P||P0) ≤ δ}.
Accordingly, the distributionally robust value function is defined below.

Definition 6. For a given δ > 0, the distributionally robust value function Qf
DRO : Π → R is

defined as: Qf
DRO(π) ≜ inf

P∈Uf
P0

(δ)
EP[Y (π(X))].

We focus on Cressie-Read family of f -divergence, defined in [19]. For k ∈ (1,∞), function fk is

defined as

fk(t) ≜
tk − kt+ k − 1

k(k − 1)
.

31



As k → 1, fk → f1(t) = t log t − t + 1,which becomes KL-divergence. For the ease of notation, we

use Qk
DRO (·), Uk

P0
(δ), and Dk (·||·) as shorthands of Qf

DRO (·), Uf
P0

(δ), and Df (·||·) , respectively, for
k ∈ [1,∞). We further define k∗ ≜ k/(k − 1), and ck(δ) ≜ (1 + k(k − 1)δ)1/k. Then, [24] give the

following duality results.

Lemma 8. For any Borel measure P supported on the space X ×∏d
j=1 Yj and k ∈ (1,∞), we have

inf
Q∈Uk

P(δ)
EQ[Y (π(X))] = sup

α∈R

{
−ck (δ)EP

[
(−Y (π(X)) + α)k∗+

] 1
k∗ + α

}
.

We then generalize Lemma 5 to Lemma 9 and Lemma 6 to Lemma 10 for fk-divergence uncer-

tainty set.

Lemma 9. For any probability measures P1,P2 supported on R and k ∈ [1,+∞), we have∣∣∣∣sup
α∈R

{
−ck (δ)EP1

[
(−Y + α)k∗+

] 1
k∗ + α

}
− sup

α∈R

{
−ck (δ)EP2

[
(−Y + α)k∗+

] 1
k∗ + α

}∣∣∣∣
≤ ck(δ) sup

t∈[0,1]
|qP1 (t)− qP2 (t)| .

Lemma 10. Suppose P1 and P2 are supported on D and satisfy Assumption 1.3. We further assume

P2 satisfies Assumption 2.2. When TV(P1,P2) < b/2, we have for k > 1∣∣∣∣sup
α∈R

{
−ck (δ)EP1

[
(−Y + α)k∗+

] 1
k∗ + α

}
− sup

α∈R

{
−ck (δ)EP2

[
(−Y + α)k∗+

] 1
k∗ + α

}∣∣∣∣
≤ 2ck (δ)M

bk∗
(b/2)1/k∗ TV(P1,P2).

where TV denotes the total variation distance.

The proofs of Lemma 9 and 10 and are in Appendix A.7. As an analog of Definitions 3, 4 and

Equation (4), we further make the following definition.

Definition 7. 1. The distributionally robust value estimator Q̂k
DRO : Π→ R is defined by

Q̂k
DRO(π) ≜ sup

α∈R

{
−ck (δ)

1

nSπ
n

n∑
i=1

1{π(Xi) = Ai}
π0(Ai | Xi)

(
(−Y (π(X)) + α)k∗+

) 1
k∗ + α

}
.

2. The distributionally robust regret Rk
DRO(π) of a policy π ∈ Π is defined as

Rk
DRO(π) ≜ max

π′∈Π
inf

P∈Uk
P0

(δ)
EP[Y (π′(X))]− inf

P∈Uk
P0

(δ)
EP[Y (π(X))].
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3. The optimal policy π̂kDRO which maximizes the value of Q̂k
DRO is defined as

π̂kDRO ≜ argmax
π∈Π

Q̂k
DRO(π).

By applying Lemmas 9 and 10 and executing the same lines as the proof of Theorem 2, we have

an analogous theorem below.

Theorem 4. Suppose Assumption 1 is enforced and k > 1. With probability at least 1 − ε, under
Assumption 2.1, we have

Rk
DRO(π̂

k
DRO) ≤

4ck(δ)

bη
√
n

(
24(
√
2 + 1)κ(n) (Π) +

√
2 log

(
2

ε

)
+ C

)
,

where C is a universal constant; and under Assumption 2.2, when

n ≥
{

4

bη

(
24(
√
2 + 1)κ(n) (Π) + 48

√
|D| log (2) +

√
2 log

(
2

ε

))}2

,

we have

RDRO(π̂DRO) ≤
4ck (δ)M

k∗bη
√
n

(b/2)1/k∗

(
24(
√
2 + 1)κ(n) (Π) + 48

√
|D| log (2) +

√
2 log

(
2

ε

))
.

We emphasize on the importance of Assumption 2. Without Assumption 2, [24] show a minimax

rate (in the supervise learning setting)

Rk
DRO(π̂

k
DRO) = Op

(
n−

1
k∗∨2 log n

)
, (8)

which is much slower than our results under a natural assumption (Assumption 2).

8 Conclusion

We have provided a distributionally robust formulation for policy evaluation and policy learning in

batch contextual bandits. Our results focus on providing finite-sample learning guarantees. Espe-

cially interesting is that such learning is enabled by a dual optimization formulation.

A natural subsequent direction would be to extend the algorithm and results to the Wasser-

stein distance case for batch contextual bandits, which cannot be classified as a special case in our

f -divergence framework. We remark that the extension is non-trivial. Given a lower semicontinu-

ous function c, recall that the Wasserstein distance between two measures, P and Q, is defined as

DWc(P,Q) = minπ∈Π(P,Q)Eπ {c(X,Y )} , where Π(P,Q) denotes the set of all joint distributions of

the random vector (X,Y ) with marginal distributions P and Q, respectively. The key distinguish-

ing feature of Wasserstein distance is that unlike f -divergence, it does not restrict the perturbed
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distributions to have the same support as P0, thus including more realistic scenarios. This feature,

although desirable, also makes distributionally robust policy learning more challenging. To illustrate

the difficulty, we consider the separable cost function family c ((x, y1, y2, . . . , yd) , (x
′, y′1, y

′
2, . . . , y

′
d)) =

d(x, x′) + α
∑d

i=1 d(yi, y
′
i) with α > 0, where d is a metric. We aim to find π∗W−DRO that maximizes

QW−DRO(π) ≜ infDWc (P,P0)≤δ EP[Y (π(X))]. Leveraging strong duality results [12, 33, 56], we can

write:

QW−DRO(π) = sup
γ≥0

{
−γδ +EP0

[
inf
u,v
{v + γ(d(X,u) + αd(v, Y (π(u)))}

]}
.

However, the difficulty now is that Y (π(u)) is not observed if π0(u) ̸= π(u). We leave this challenge

for future work.
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Appendix A Proofs of Main Results

Appendix A.1 Auxiliary Results

To prove Theorem 1 and 2, we first collect some theorems in stochastic optimization [71] and com-

plexity theory (Wainwright [82, Section 4]).

Definition 8 (Gâteaux and Hadamard directional differentiability). Let B1 and B2 be Banach spaces

and G : B1 → B2 be a mapping. It is said that G is directionally differentiable at a considered point

µ ∈ B1 if the limits

G′
µ(d) = lim

t↓0

G (µ+ td)−G(µ)
t

exists for all d ∈ B1.

Furthermore, it is said that G is Gâteaux directionally differentiable at µ if the directional deriva-

tive G′
µ(d) exists for all d ∈ B1 and G′

µ(d) is linear and continuous in d. For ease of notation, we

also denote Dµ(µ0) be the operator G′
µ0
(·).

Finally, it is said that G is Hadamard directionally differentiable at µ if the directional derivative

G′
µ(d) exists for all d ∈ B1 and

G′
µ(d) = lim

t↓0
d′→d

G (µ+ td′)−G(µ)
t

.

Theorem A5 (Danskin theorem, Theorem 4.13 in [13]). Let Θ ∈ Rd be a nonempty compact set

and B be a Banach space. Suppose the mapping G : B ×Θ→ R satisfies that G(µ, θ) and Dµ (µ, θ)

are continuous on Oµ0 × Θ, where Oµ0 ⊂ B is a neighborhood around µ0. Let ϕ : B → R be

the inf-functional ϕ(µ) = infθ∈ΘG(µ, θ) and Θ̄(µ) = argmaxθ∈ΘG(µ, θ). Then, the functional ϕ is

directionally differentiable at µ0 and

G′
µ0
(d) = inf

θ∈Θ̄(µ0)
Dµ (µ0, θ) d.

Theorem A6 (Delta theorem, Theorem 7.59 in [71]). Let B1 and B2 be Banach spaces, equipped

with their Borel σ-algrebras, YN be a sequence of random elements of B1, G : B1 → B2 be a mapping,

and τN be a sequence of positive numbers tending to infinity as N →∞. Suppose that the space B1 is

separable, the mapping G is Hadamard directionally differentiable at a point µ ∈ B1, and the sequence

XN = τN (YN − µ) converges in distribution to a random element Y of B1. Then,

τN (G (YN )−G (µ))⇒ G′
µ (Y ) in distribution,

and

τN (G (YN )−G (µ)) = G′
µ (XN ) + op(1).

Proposition 3 (Proposition 7.57 in [71]). Let B1 and B2 be Banach spaces, G : B1 → B2, and

µ ∈ B1. Then the following hold: (i) If G (·) is Hadamard directionally differentiable at µ, then the
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directional derivative G′
µ (·) is continuous. (ii) If G(·) is Lipschitz continuous in a neighborhood of

µ and directionally differentiable at µ, then G(·) is Hadamard directionally differentiable at µ.

Definition 9 (Rademacher complexity). Let F be a family of real-valued functions f : Z → R.

Then, the Rademacher complexity of F is defined as

Rn (F) ≜ Ez,σ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

σif(zi)

∣∣∣∣∣
]
,

where σ1, σ2, . . . , σn are i.i.d with the distribution P (σi = 1) = P (σi = −1) = 1/2.

Theorem A7 (Theorem 4.10 in [82]). If f(z) ∈ [−B,B], we have with probability at least 1 −
exp

(
− nϵ2

2B2

)
,

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(zi)−Ef(z)

∣∣∣∣∣ ≤ 2Rn (F) + ϵ.

Theorem A8 (Dudley’s Theorem, (5.48) in [82]). If f(z) ∈ [−B,B], we have a bound for the

Rademacher complexity,

Rn (F) ≤ E

[
24√
n

∫ 2B

0

√
logN(t,F , ∥·∥Pn

)dt

]
,

where N(t,F ,∥·∥Pn
) is t-covering number of set F and the metric ∥·∥Pn

is defined by

∥·∥Pn
≜

√√√√ 1

n

n∑
i=1

(f(zi)− g(zi))2.

Appendix A.2 Proofs of Lemma 1 Corollary 1 and Lemma 2 in Section 3.1

Proof of Lemma 1. The first equality follows from Hu and Hong [40, Theorem 1]. The second equality

holds, because for any (Borel measurable) function f : R→ R and any policy π ∈ Π, we have

EP [f(Y (π(X)))] = EP∗π0

[
f(Y (π(X)))1{π(X) = A}

π0(A | X)

]
= EP∗π0

[
f(Y (A))1{π(X) = A}

π0(A | X)

]
. (A.1)

Plugging in f(x) = exp(−x/α) yields the result.

Proof of Corollary 1. Since Y (a1), Y (a2), . . . , Y (ad) are mutually independent conditional on X, and

Y (ai)|X has a density if Y (ai) is a continuous random variable, we can write the joint measure of

Y (a1), Y (a2), . . . , Y (ad), X as (
d∏

i=1

fi(yi|x)λ(dyi)
)
µ(dx),

where λ denotes the Lebesgue measure in R if Assumption 2.1 is enforced, and denotes a uniformly

distributed measure on D that λ(d) = 1 for d ∈ D if Assumption 2.2 is enforced, and µ(dx) denotes the
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measure induced by X on the space X . Without loss of generality, we assume ess inf{Y (π(X)} = 0.

Then, For the simplicity of notation, when α∗(π) = 0, we write

exp(−Y (π(X)/α∗(π))) = 1{Y (π(X)) = ess inf{Y (π(X)}},

which means

EP0 [exp(−Y (π(X)/α∗(π)))] = P0(Y (π(X)) = ess inf{Y (π(X)}).

Then, by Proposition 1, we have under P(π), Y (a1), Y (a2), . . . , Y (ad), X have a joint measure

exp(−Y (π(X)/α∗(π)))

EP0 [exp(−Y (π(X)/α∗(π)))]

(
d∏

i=1

fi(yi|x)λ(dyi)
)
µ(dx) =

(
d∏

i=1

f ′i(yi|x)λ(dyi)
)
µ′(dx),

where

f ′i(yi|x) =
{

fi(yi|x)
exp(−yi/α

∗(π))fi(yi|x)∫
exp(−yi/α∗(π))fi(yi|x)λ(dyi)

for i ̸= π(x)

for i = π(x)
,

and

µ′(dx) =

∫
exp(−yi/α∗(π))fi(yi|x)µ(dyi)
EP0 [exp(−Y (π(X)/α∗(π)))]

,

which completes the proof.

Proof of Lemma 2. The closed form expression of ∂
∂α ϕ̂n(π, α) and

∂2

∂α2 ϕ̂n(π, α) follows from elemen-

tary algebra. By the Cauchy Schwartz’s inequality, we have

( n∑
i=1

Yi(Ai)Wi(π, α)
)2
≤ nSπ

nŴn(π, α)

n∑
i=1

Y 2
i (Ai)Wi(π, α).

Therefore, it follows that ∂2

∂α2 ϕ̂n(π, α) ≤ 0. Note that the Cauchy Schwartz’s inequality is actually

an equality if and only if

Y 2
i (Ai)Wi(π, α) = cWi(π, α) if Wi(π, α) ̸= 0

for some constant c independent of i. Since the above condition is violated if {Yi(Ai)1{π(Xi) =

Ai}}ni=1 has at least two different non-zero values, we have in this case ϕ̂n(π, α) is strictly-concave

in α.

Appendix A.3 Proof of the central limit theorem in Section 3.2

We first give the upper and lower bounds for α∗(π) in Lemmas A11 and A12.

Lemma A11 (Uniform upper bound of α∗(π)). Suppose that Assumption 1.3 is imposed, we have

the optimal dual solution α∗(π) ≤ α and the empirical dual solution αn(π) ≤ α, where α =M/δ .
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Proof. First note that infP∈UP0(δ)
EP [Y (π(X))] ≥ ess inf Y (π(X)) ≥ 0 and

−α logEP0 [exp (−Y (π(X)) /α]− αδ ≤M − αδ.

M − αδ ≥ 0 gives the upper bound α∗(π) ≤ α :=M/δ.

Lemma A12 (Lower bound of α∗(π)). Suppose that Assumption 2.1 is imposed, we have α∗(π) > 0.

Proof. To ease the notation, we abbreviate Y (π(X)) as Y. It is easy to check the density of fY has

a lower bound b > 0. Since fY is a continuous function on a compact space, we have fY is upper

bounded. Let b(π) = supx∈[0,M ] fY (x).

First, note that limα→0 ϕ (π, α) = 0. We only need to show lim infα→0
∂ϕ(π,α)

∂α > 0.

The derivative of ϕ (π, α) is given by

∂ϕ (π, α)

∂α
= −E [Y/α exp (−Y/α)]

E [exp (−Y/α)] − log (E [exp (−Y/α)])− δ.

Since P0 has a continuous density, we have log (E [exp (−Y/α)])→ −∞. Notice that

E [Y/α exp (−Y/α)] ≤ αb and lim inf
α→0

E [exp (−Y/α)] /α ≥ b.

Therefore, we have

lim sup
α→0

E [Y/α exp (−Y/α)]
E [exp (−Y/α)] ≤ b(π)

b
.

Finally, we arrive the desired result

lim inf
α→0

∂ϕ (π, α)

∂α
→ +∞,

which completes the proof.

Lemma A13. Suppose Assumption 1.1 is enforced. We have pointwise central limit theorem,

√
n
(
Ŵn(π, α)−E [Wi (π, α)]

)
⇒ N

(
0,E

[
1

π0 (π(X) | X)
(exp (−Y (π(X))/α)−E [exp (−Y (π(X))/α)])2

])
,

for any π ∈ Π and α > 0.

Proof. After reformulation, we have

Ŵn(π, α)−E [Wi (π, α)] =

1
n

∑n
i=1Wi (π, α)−

(
1
n

∑n
i=1

1{π(Xi)=Ai}
π0(Ai|Xi)

)
E [Wi (π, α)]

1
n

∑n
i=1

1{π(Xi)=Ai}
π0(Ai|Xi)

=

1
n

∑n
i=1

(
Wi (π, α)− 1{π(Xi)=Ai}

π0(Ai|Xi)
E [Wi (π, α)]

)
1
n

∑n
i=1

1{π(Xi)=Ai}
π0(Ai|Xi)

.
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The denominator 1
n

∑n
i=1

1{π(Xi)=Ai}
π0(Ai|Xi)

p→ 1 and the nominator converges as

1√
n

n∑
i=1

(
Wi (π, α)−

1 {π(Xi) = Ai}
π0 (Ai|Xi)

E [Wi (π, α)]

)
⇒ N(0,Var

(
Wi (π, α)−

1 {π(Xi) = Ai}
π0 (Ai|Xi)

E [Wi (π, α)]

)
,

where

Var

(
Wi (π, α)−

1 {π(Xi) = Ai}
π0 (Ai|Xi)

E [Wi (π, α)]

)
= E

[
Wi (π, α)

2
]
− 2E

[(
1 {π(Xi) = Ai}
π0 (Ai|Xi)

)2

exp (−Y (π(X))/α)

]
E [Wi (π, α)]

+E

[
1 {π(Xi) = Ai}
π0 (Ai|Xi)

]2
E [Wi (π, α)]

2 (A.2)

= E

[
1

π0 (π(X)|X)
E [exp (−2Y (π(X))/α) |X]

]
− 2E

[
1

π0 (π(X)|X)
E [exp (−Y (π(X))/α) |X]

]
E [Wi (π, α)]

+E

[
1

π0 (π(X)|X)

]
E [exp (−Y (π(X))/α)]2

= E

[
1

π0 (π(X)|X)
(exp (−Y (π(X))/α)−E [exp (−Y (π(X))/α)])2

]
.

By Slutsky’s theorem, the desired result follows.

To ease the proofs below, we define P̂π
n as the weighted empirical distribution by

P̂π
n ≜

1

nSπ
n

n∑
i=1

1{π(Xi) = Ai}
π0 (Ai|Xi)

∆ {Yi, Xi} ,

where ∆{·} denote a dirac measure.

Lemma A14. Suppose Assumptions 1.1 and 2.2 are enforced. Then, we have

lim
n→+∞

sup
v∈D

(
|P̂π

n(Y = v)−P0(Y = v)|
)
= 0 almost surely.

Proof. Note that

P̂π
n(Y = v) =

1

nSπ
n

n∑
i=1

1{π(Xi) = Ai}1{Yi = v}
π0 (Ai|Xi)

,

and by Assumption 1.1,

E

[
1{π(Xi) = Ai}1{Yi = v}

π0 (Ai|Xi)

]
= E

[
E [1{π(Xi) = Ai|X}]E [1{Yi = v|X}]

π0 (Ai|Xi)

]
= P0(Y = v).
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By the law of large number, we have Sπ
n → 1 almost surely, and

1

n

n∑
i=1

1{π(Xi) = Ai}1{Yi = v}
π0 (Ai|Xi)

→ P0(Y = v) almost surely.

By Slutsky’s lemma [e.g. 52, Theorem 1.8.10]), we have P̂π
n(Y = v)−P0(Y = v)→ 0 almost surely.

Since D is a finite set, we arrive the desired results.

Lemma A15. Suppose Assumptions 1.1 and 2.2 are enforced. We have that when α = 0,

lim
n→∞

P⊗(ϕ̂n(π, 0) = ϕ(π, 0)) = 1,

where P⊗ denotes the product measure
∏∞

i=1P0, which is guaranteed to be unique by the Kolmogorov

extension theorem. and thus

√
n(ϕ̂n(π, 0)− ϕ(π, 0))→ 0 in probability.

Proof. By Remark 2, we have

ϕ̂n(π, 0) = ess inf Ŷ π
n ,

where Ŷ π
n is the distribution of Y under the measure Pπ

n. Therefore,

P⊗(ϕ̂n(π, 0) = ϕ(π, 0)) = P⊗(P̂
π
n(Y = min

v∈D
v) > 0)→ 1,

because P̂π
n(Y = minv∈D v)→ P0(Y = minv∈D v).

Now we are ready to show the proof of Theorem 1.

Proof. Proof of Theorem 1 We divide the proof into two parts: continuous case and discrete case.

(1) Continuous case, i.e., Assumption 2.1 is satisfied: Note that

√
n
(
Ŵn(π, α)−E[Wi(π, α)]

)
⇒ Z1 (α) ,

where by Lemma A13

Z1 (α) ∼ N
(
0,E

[
1

π0 (π(X)|X)
(exp (−Y (π(X))/α)−E [exp (−Y (π(X))/α)])2

])
.

By Lemma A12, there exists α(π) > 0 such that α∗(π) ≥ α(π). To ease the notation, we abbreviate

α(π), α∗(π) as α, α∗. Since Ŵn(π, α) is Lipschitz continuous over the set α ∈ [α/2, 2α], we have

√
n
(
Ŵn(π, ·)−E[Wi(π, ·)]

)
⇒ Z1 (·) , (A.3)

46



uniformly in Banach space C([α/2, 2α]) of continuous functions ψ : [α/2, 2α] →R equipped with

the the sup-norm ∥ψ∥ := supx∈[α/2,2α] ψ(x) [e.g. 5, Corollary 7.17]. Z1 is a random element in

C([α/2, 2α]).
Define the functionals

G1(ψ, α) = α log (ψ(α)) + αδ, and V1(ψ) = inf
α∈[α/2,2α]

G1(ψ, α),

for ψ > 0. By the Danskin theorem [13, Theorem 4.13], V1 (·) is directionally differentiable at any

µ ∈ C([α/2, 2α]) with µ > 0 and

V ′
1,µ (ν) = inf

α∈X̄(µ)
α (1/µ(α)) ν(α), ∀ν ∈ C([α/2, 2α])),

where X̄ (µ) = argminα∈[α/2,2α]) α log (µ(α)) + αδ and V ′
1,µ (ν) is the directional derivative of V1 (·)

at µ in the direction of ν. On the other hand, V1(ψ) is Lipschitz continuous if ψ (·) is bounded away

from zero. Notice that

E[Wi(π, α)] = E[exp (−Y (π(X))/α)] ≥ exp (−2M/α) . (A.4)

Therefore, V1 (·) is Hadamard directionally differentiable at µ = E[Wi(π, ·)] (see, for example, Propo-

sition 7.57 in [71]). By the Delta theorem (Theorem 7.59 in [71]), we have

√
n
(
V1(Ŵn(π, ·))− V1(E[Wi(π, ·)])

)
⇒ V ′

1,E[Wi(π,·)] (Z1) .

Furthermore, we know that log (E (exp (−βY ))) is strictly convex w.r.t β given Var (Y ) > 0 and

xf(1/x) is strictly convex if f(x) is strictly convex. Therefore, α log (E[Wi(π, α)]) + αδ is strictly

convex for α > 0 and thus

V ′
1,E[Wi(π,·)] (Z1) = α∗ (1/E[Wi(π, α

∗)])Z1 (α
∗)

d
= N

(
0,

(α∗)2

E [Wi(π, α∗)]2
E

[
1

π0 (π(X)|X)
(exp (−Y (π(X))/α)−E [exp (−Y (π(X))/α)])2

])
,

where
d
= denotes equality in distribution. By Lemma 1, we have that

Q̂DRO(π) = − inf
α≥0

(
α log

(
Ŵn(π, α)

)
+ αδ

)
,

and

QDRO(π) = − inf
α≥0

(α log (E[Wi(π, α)]) + αδ) = −V1(E[Wi(π, α)]).

We remain to show P(Q̂DRO(π) ̸= −V1(Ŵn(π, α)))→ 0, as n→∞. The weak convergence (A.3)
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also implies the uniform convergence,

sup
α∈[α/2,2α])

∣∣∣Ŵn(π, α)−E[Wi(π, α)]
∣∣∣→ 0 a.s..

Therefore, we further have

sup
α∈[α/2,2α])

∣∣∣(α log
(
Ŵn(π, α)

)
+ αδ

)
− (α log (E[Wi(π, α)]) + αδ)

∣∣∣→ 0 a.s.

given E[Wi(π, α)] is bounded away from zero in (A.4). Let

ϵ = min {α/2 log (E[Wi(π, α/2)]) + αδ/2, 2α log (E[Wi(π, 2α)]) + 2αδ}−(α∗ log (E[Wi(π, α
∗)]) + α∗δ) > 0.

Then, given the event{
sup

α∈[α/2,2α])

∣∣∣(α log
(
Ŵn(π, α)

)
+ αδ

)
− (α log (E[Wi(π, α)]) + αδ)

∣∣∣ < ϵ/2

}
,

we have

α∗ log
(
Ŵn(π, α)

)
+ α∗δ < min

{
α/2 log

(
Ŵn(π, α/2)

)
+ αδ/2, 2α log

(
Ŵn(π, 2α)

)
+ 2αδ

}
,

which means Q̂DRO(π) = −V1(Ŵn(π, α)) by the convexity of α log
(
Ŵn(π, α)

)
+ αδ.

Finally, we complete the proof by Slutsky’s lemma [e.g. 52, Theorem 1.8.10]).:

√
n
(
Q̂DRO(π)−QDRO(π)

)
=
√
n
(
Q̂DRO(π) + V1(Ŵn(π, α))

)
+
√
n
(
V1(E[Wi(π, α)])− V1(Ŵn(π, α))

)
⇒ 0 +N

(
0, σ2(α∗)

) d
= N

(
0, σ2(α∗)

)
,

where

σ2(α) =
α2

E [Wi(π, α)]
2E

[
1

π0 (π(X)|X)
(exp (−Y (π(X))/α)−E [exp (−Y (π(X))/α)])2

]
.

(2) Discrete case, i.e., Assumption 2.2 is satisfied: First, ifVar(Y (π(X))) = 0, we have Q̂DRO(π) =

QDRO(π) = Y almost surely with α∗(π) = 0. Therefore, in the following, we focus on the case

Var(Y (π(X))) > 0. Without loss of generality, we assume the smallest element in the set D is zero

since we can always translate Y . Note that

√
n
(
Ŵn(π, α)−E[Wi(π, α)]

)
⇒ Z1 (α) ,
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for α > 0, and

√
n
(
Ŵn(π, 0)−E[Wi(π, 0)]

)
⇒ N

(
0,E

[
1

π0 (π(X) | X)
(1−P[Y = 0])2

])
.

Further, in the discrete case, we have

E[Wi(π, α)] = E[exp (−Y (π(X))/α)] ≥ b for α ≥ 0. (A.5)

Since Var(Y ) > 0, the proof of continuous case shows that ϕ(π, α) is strictly concave for α > 0.

Then, ϕ(π, α) has a unique maximizer in [0, α]. The remaining proof is the same as the continuous

case.

Appendix A.4 Proof of the statistical performance guarantee in Section 4.1

Proof of Lemma 6. For any probability measure P1 supported on D, we have

sup
α≥0
{−α logEP1 [exp (−Y/α)]− αδ} = sup

α≥0

{
−α log

(∑
d∈D

[exp (−d/α)P1 (Y = d)]

)
− αδ

}
.

Therefore, we have∣∣∣∣sup
α≥0
{−α logEP1 [exp (−Y/α)]− αδ} − sup

α≥0
{−α logEP2 [exp (−Y/α)]− αδ}

∣∣∣∣
≤ sup

α≥0

∣∣∣∣α log

(∑
d∈D [exp (−d/α)P1 (Y = d)]∑
d∈D [exp (−d/α)P2 (Y = d)]

)∣∣∣∣ (A.6)

= sup
α≥0

∣∣∣∣α log

(∑
d∈D [exp (−d/α) (P1 (Y = d)−P2 (Y = d))]∑

d∈D [exp (−d/α)P2 (Y = d)]
+ 1

)∣∣∣∣ .
Since we can always divide the denominator and nominator of (A.6) by exp (−mind∈D d/α) , we can

assume mind∈D d = 0 without loss of generality. Therefore, we have∑
d∈D

[exp (−d/α)P2 (Y = d)] = P2 (Y = 0) +
∑

d∈D,d ̸=0

[exp (−d/α)P2 (Y = d)] ≥ b.

Then, if
∣∣∑

d∈D [exp (−d/α) (P1 (Y = d)−P2 (Y = d))]
∣∣ < b/2, we have

sup
α≥0

∣∣∣∣α log

(∑
d∈D [exp (−d/α) (P1 (Y = d)−P2 (Y = d))]∑

d∈D [exp (−d/α)P2 (Y = d)]
+ 1

)∣∣∣∣
≤ 2 sup

α≥0

{
α

∣∣∑
d∈D [exp (−d/α) (P1 (Y = d)−P2 (Y = d))]

∣∣∑
d∈D [exp (−d/α)P2 (Y = d)]

}

≤ 2

b
sup
α≥0

{
α

∣∣∣∣∣∑
d∈D

[exp (−d/α) (P1 (Y = d)−P2 (Y = d))]

∣∣∣∣∣
}
. (A.7)
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Then, we turn to (A.7),∣∣∣∣∣∑
d∈D

[exp (−d/α) (P1 (Y = d)−P2 (Y = d))]

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
 ∑

d:P1(Y=d)
≥P2(Y=d)

[
e−d/α (P1 (Y = d)−P2 (Y = d))

]−
 ∑

d:P1(Y=d)
<P2(Y=d)

[
e−d/α (P2 (Y = d)−P1 (Y = d))

]
∣∣∣∣∣∣∣∣ ,

which can be bounded by ∑
d:P1(Y=d)
≥P2(Y=d)

e−M/α (P1 (Y = d)−P2 (Y = d))

−
 ∑

d:P1(Y=d)
<P2(Y=d)

(P2 (Y = d)−P1 (Y = d))



≤

 ∑
d:P1(Y=d)
≥P2(Y=d)

[
e−d/α (P1 (Y = d)−P2 (Y = d))

]−
 ∑

d:P1(Y=d)
<P2(Y=d)

[
e−d/α (P2 (Y = d)−P1 (Y = d))

]

≤

 ∑
d:P1(Y=d)
≥P2(Y=d)

(P1 (Y = d)−P2 (Y = d))

−
 ∑

d:P1(Y=d)
<P2(Y=d)

[
e−M/α (P2 (Y = d)−P1 (Y = d))

] .

Further, we observe that

TV(P1,P2) =
∑

d:P1(Y=d)≥P2(Y=d)

(P1 (Y = d)−P2 (Y = d))

=
∑

d:P1(Y=d)<P2(Y=d)

(P2 (Y = d)−P1 (Y = d)) ,

where TV(P1,P2) denotes the total variation between P1 and P2. Therefore, we have

sup
α≥0

{
α

∣∣∣∣∣∑
d∈D

[exp (−d/α) (P1 (Y = d)−P2 (Y = d))]

∣∣∣∣∣
}

≤ sup
α≥0
{α(1− exp (−M/α))}TV(P1,P2).

And it is easy to verify that

sup
α≥0
{α(1− exp (−M/α))} ≤M.

By combining all the above together, we have when TV(P1,P2) < b/2,∣∣∣∣sup
α≥0
{−α logEP1 [exp (−Y/α)]− αδ} − sup

α≥0
{−α logEP2 [exp (−Y/α)]− αδ}

∣∣∣∣
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≤ 2M

b
TV(P1,P2).

We first give the proof of Lemma 5.

Proof of Lemma 5. Notice that∣∣∣∣sup
α≥0
{−α logEP1 {exp (−Y/α)} − αδ} − sup

α≥0
{−α logEP2 {exp (−Y/α)} − αδ}

∣∣∣∣
≤ sup

α≥0
|α logEP1 [exp (−Y/α)]− α logEP2 [exp (−Y/α)]|

= sup
α≥0
|α logEPU

[exp (−qP1 (U) /α)]− α logEPU
[exp (−qP2 (U) /α)]| ,

where PU ∼ U([0, 1]) and the last equality is based on the fact that qP (U)
d
= P.

Denote T = supt∈[0,1] |qP1 (t)− qP2 (t)| and we have

α logEPU
[exp (−qP1 (U) /α)]− α log [EPU

exp (−qP2 (U) /α)]

= α log

[∫ 1

0
exp (−qP1 (u) /α) du

]
− α log

[∫ 1

0
exp (−qP2 (u) /α) du

]
≤ α log

[∫ 1

0
exp (−qP2 (u) /α) exp (T/α) du

]
− α log

[∫ 1

0
exp (−qP2 (u) /α) du

]
= T.

Similarly, we have

α log [EPU
exp (−qP2 (U) /α)]− α log [EPU

exp (−qP1 (U) /α)] ≤ T.

The desired result then follows.

Lemma A16. Suppose probability measures P1 and P2 supported on [0,M ] and P1 has a positive

density fP1 (·) with a lower bound fP1 ≥ b over the interval [0,M ]. Then, we have

sup
t∈[0,1]

|qP1 (t)− qP2 (t)| ≤
1

b
sup

x∈[0,M ]
|FP1 (x)− FP2 (x)| .

Proof. For ease of notation, let x1 = qP1 (t) and x2 = qP2 (t) . Since the distribution is right-

continuous with left limits and P1 is continuous, we have

FP2 (x2−) ≤ t, FP2 (x2) ≥ t, and FP1 (x1) = t.
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If x1 ≥ x2, we have

x1 − x2 ≤ 1

b
(FP1 (x1)− FP1 (x2))

≤ 1

b
((FP1 (x1)− FP1 (x2)) + (FP2 (x2)− FP1 (x1)))

=
1

b
(FP2 (x2)− FP1 (x2)) .

If x1 < x2, we construct a monotone increasing sequence x(1), x(2), . . . with x(n) ↑ x2. Since P1 is

continuous, we have FP1

(
x(n)

)
↑ FP1 (x2) . Then, notice that

x2 − x1 ≤ 1

b
(FP1 (x2)− FP1 (x1))

≤ 1

b

(
(FP1 (x2)− FP1 (x1)) +

(
FP1 (x1)− FP2

(
x(n)

)))
=

1

b

(
FP1 (x2)− FP2

(
x(n)

))
= lim

n→∞

1

b

(
FP1

(
x(n)

)
− FP2

(
x(n)

))
.

Therefore, for every t, we have

|qP1 (t)− qP2 (t)| = |x1 − x2| ≤
1

b
sup

x∈[0,M ]
|FP1 (x)− FP2 (x)| .

The desired results then follows.

By utilizing Lemmas 5, 6 and A16, we are ready to prove Theorem 2.

Proof of Theorem 2. Recall RDRO(π̂DRO) = QDRO(π
∗
DRO)−QDRO(π̂DRO). Then,

RDRO(π̂DRO)

= QDRO(π
∗
DRO)− Q̂DRO(π̂DRO) + Q̂DRO(π̂DRO)−QDRO(π̂DRO)

≤
(
QDRO(π

∗
DRO)− Q̂DRO(π

∗
DRO)

)
+
(
Q̂DRO(π̂DRO)−QDRO(π̂DRO)

)
≤ 2 sup

π∈Π

∣∣∣Q̂DRO(π)−QDRO(π)
∣∣∣ .

Note that

Q̂DRO(π) = sup
α≥0

{
−α log

[
EP̂π

n
exp (−Yi(π(Xi))) /α)

]
− αδ

}
. (A.8)

Therefore, we have

RDRO(π̂DRO)

≤ 2 sup
π∈Π

∣∣∣∣sup
α≥0

{
−α log

[
EP̂π

n
exp (−Yi(π(Xi)) /α)

]
− αδ

}
− sup

α≥0
{−α log [EP0 exp (−Y (π(X)) /α)]− αδ}

∣∣∣∣(A.9)
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We then divide the proof into two parts: continuous case and discrete case.

(1) Continuous case, i.e., Assumption 2.1 is satisfied: By Lemmas 5, A16 and Assumption 1, we

have

sup
π∈Π

∣∣∣∣sup
α≥0

{
−α log

[
EP̂π

n
exp (−Yi(π(Xi))) /α)

]
− αδ

}
− sup

α≥0
{−α log [EP0 exp (−Y (π(X))) /α)]− αδ}

∣∣∣∣
≤ sup

π∈Π
sup

x∈[0,M ]

1

b

∣∣∣EP̂π
n
[1 {Yi(π(Xi)) ≤ x}]−EP0

[1 {Yi(π(Xi)) ≤ x}]
∣∣∣

= sup
π∈Π,x∈[0,M ]

1

b

∣∣∣∣∣
(

1

nSπ
n

n∑
i=1

1{π(Xi)) = Ai}
π0 (Ai|Xi)

1 {Yi(π(Xi)) ≤ x}
)
−EP0

[1 {Y (π(X)) ≤ x}]
∣∣∣∣∣

≤ sup
π∈Π,x∈[0,M ]

1

b

∣∣∣∣∣
(
1

n

n∑
i=1

1{π(Xi)) = Ai}
π0 (Ai|Xi)

1 {Yi(π(Xi)) ≤ x}
)
−EP0

[
1{π(X) = Ai}
π0 (A|X)

1 {Y (π(X)) ≤ x}
]∣∣∣∣∣(A.10)

+ sup
π∈Π,x∈[0,M ]

1

b

∣∣∣∣∣
(
Sπ
n − 1

nSπ
n

n∑
i=1

1{π(Xi) = Ai}
π0 (Ai|Xi)

1 {Y (π(Xi)) ≤ x}
)∣∣∣∣∣ . (A.11)

For (A.10), by Wainwright [82, Theorem 4.10], we have with probability 1− exp
(
−nϵ2η2/2

)
sup

π∈Π,x∈[0,M ]

1

b

∣∣∣∣∣
(
1

n

n∑
i=1

1{π(Xi) = Ai}
π0 (Ai|Xi)

1 {Yi(π(Xi) ≤ x}
)
−EP0

[
1{π(X) = A}
π0 (A|X)

1 {Y (π(X) ≤ x}
]∣∣∣∣∣

≤ 1

b
(2Rn (FΠ,x) + ϵ) , (A.12)

where the function class FΠ,x is defined as

FΠ,x ≜

{
fπ,x(X,Y,A) =

1{π(X) = A}1{Y (π(X)) ≤ x}
π0(A|X)

∣∣∣∣π ∈ Π, x ∈ [0,M ]

}
.

For (A.11), we have

1

b

∣∣∣∣∣
(
Sπ
n − 1

nSπ
n

n∑
i=1

1{π(Xi) = Ai}
π0 (Ai|Xi)

1 {Y (π(Xi) ≤ x}
)∣∣∣∣∣ ≤ 1

b
|Sπ

n − 1| , (A.13)

Further, by Wainwright [82, Theorem 4.10] and the fact 1
π0(A|X) ≤ 1

η and E
[
1{π(X)=A}
π0(A|X)

]
= 1, we

have with probability at least 1− exp
(
−nϵ2η2/2

)
,

sup
π∈Π
|Sπ

n − 1| ≤ 2Rn (FΠ) + ϵ, (A.14)

where FΠ ≜
{
fπ(X,A) =

1{π(X)=A}
π0(A|X)

∣∣∣π ∈ Π
}
.

By combining (A.12), (A.13), and (A.14), we have with probability at least 1−2 exp
(
−nϵ2η2/2

)
,

RDRO(π̂DRO) ≤
2

b
(2Rn (FΠ,x) + ϵ) +

2

b
(2Rn (FΠ) + ϵ) .
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Now, we turn to the Rademacher complexity of the classes FΠ,x and FΠ. First, for the class FΠ,

notice that √√√√ n∑
i=1

1

n

(
1{π1(Xi) = Ai}

π0(Ai|Xi)
− 1{π2(Xi) = Ai}

π0(Ai|Xi)

)2

=

√√√√ 1

n

n∑
i=1

(
1{π1(Xi) ̸= π2(Xi)}

π0(Ai|Xi)

)2

≤ 1

η

√
H (π1, π2).

Therefore, the covering number

N
(
t,FΠ, ∥·∥Pn

)
≤ N

(
t,Π,

√
H (·, ·)/η

)
= N

(n)
H

(
η2t2,Π, {x1, . . . , xn}

)
≤ N (n)

H

(
η2t2,Π

)
.

For the class FΠ,x, we claim

N
(
t,FΠ,x, ∥·∥Pn

)
≤ N (n)

H

(
η2t2/2,Π

)
sup
P
N
(
ηt/
√
2,FI , ∥·∥P

)
,

where FI = {f(t) ≜ 1 {t ≤ x} |x ∈ [0,M ]}. For ease of notation, let

NΠ(t) = N
(n)
H

(
η2t2/2,Π

)
, and NI(t) = sup

P
N
(
ηt/
√
2,FI , ∥·∥P

)
.

Suppose {π1, π2, . . . , πNΠ(t)} is a cover for Π and
{
1π {t ≤ x1} ,1π {t ≤ x2} , . . . ,1π

{
t ≤ xNI(t)

}}
is

a cover for FI under the distance ∥·∥P̂π
, defined by

P̂π ≜
1

n

n∑
i=1

∆ {Yi(π(Xi))} .

Then, we claim that F t
Π,x is a t-cover set for FΠ,x, where F t

Π,x is defined as

F t
Π,x ≜

{
1{πi(X) = A}1πi{Y (πi(X)) ≤ xj}

π0(A|X)

∣∣∣∣ i ≤ NΠ(t), j ≤ NI(t)

}
.

For fπ,x(X,Y,A) ∈ FΠ,x, we can pick π̃, x̃ such that fπ̃,x̃(X,Y,A) ∈ F t
Π,x, H (π, π̃) ≤ t2/2 and

∥1 {Y ≤ x} − 1 {Y ≤ x̃}∥P̂π̃
≤ t/
√
2. Then, we have√√√√ n∑

i=1

1

n

(
1{π(Xi) = Ai}1{Y (π(Xi)) ≤ x1}

π0(Ai|Xi)
− 1{π̃(Xi) = Ai}1{Y (π̃(Xi)) ≤ x̃}

π0(Ai|Xi)

)2

≤ 1

η

√√√√H (π, π̃) +
1

n

n∑
i=1

1{π(Xi) = π̃(Xi)} (1{Y (π̃(Xi)) ≤ x} − 1{Y (π̃(Xi)) ≤ x̃})2
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≤ 1

η

√
η2t2/2 + η2t2/2 = t.

From Lemma 19.15 and Example 19.16 in [79], we know

sup
P
N (t,FI , ∥·∥P) ≤ K

(
1

t

)2

,

where K is a universal constant. Finally, by Dudley’s theorem [e.g. 82, (5.48)], we have

Rn (FΠ) ≤ 24E

∫ 2/η

0

√
logN

(
t,FΠ, ∥·∥Pn

)
n

dt

 ≤ 24κ(n) (Π)

η
√
n

,

and

Rn (FΠ,x) ≤
24√
n

∫ 2/η

0

√
log
(
N

(n)
H (η2t2/2,Π)

)
+ log

(
sup
P
N
(
ηt/
√
2,FI , ∥·∥P

))
dt

=
24

η
√
n

∫ 2

0

√
log
(
N

(n)
H (s2/2,Π)

)
+ log

(
sup
P
N
(
s/
√
2,FI , ∥·∥P

))
ds

≤ 24

η
√
n

∫ √
2

0

(√
log
(
N

(n)
H (s2/2,Π)

)
+
√
logK +

√
4 log (1/s)

)
ds

≤ 24
√
2κ(n) (Π)

η
√
n

+ C/
√
n,

where C is a universal constant. Therefore, by picking ε′ = 2 exp
(
−nϵ2η2/2

)
, we have with proba-

bility 1− ε′,

RDRO(π̂DRO) ≤
4

bη
√
n

(
24(
√
2 + 1)κ(n) (Π) +

√
2 log

(
2

ε′

)
+ C

)
. (A.15)

(2) Discrete case, i.e., Assumption 2.2 is satisfied: By Lemmas 6 and Assumption 1, when

supπ∈ΠTV
(
P̂π

n,P0

)
≤ b/2, we have

sup
π∈Π

∣∣∣∣sup
α≥0

{
−α log

[
EP̂π

n
exp (−Yi(π(Xi))) /α)

]
− αδ

}
− sup

α≥0
{−α log [EP0 exp (−Y (π(X))) /α)]− αδ}

∣∣∣∣
≤ sup

π∈Π

2M

b
TV

(
P̂π

n,P0

)
= sup

π∈Π
sup
S∈SD

2M

b

∣∣∣P̂π
n [S]−P0 [S]

∣∣∣ ,
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where SD = {S : S ⊂ D} contains all subsets of D. Then

sup
π∈Π

sup
S∈SD

2M

b

∣∣∣P̂π
n [S]−P0 [S]

∣∣∣
= sup

π∈Π,S∈SD

2M

b

(
1

nSπ
n

n∑
i=1

1{π(Xi) = Ai}1{Yi ∈ S}
π0 (Ai|Xi)

−EP0 [1{Yi ∈ S}]
)

≤ sup
π∈Π,S∈SD

2M

b

(
1

n

n∑
i=1

1{π(Xi) = Ai}1{Yi ∈ S}
π0 (Ai|Xi)

−EP0 [1{Yi ∈ S}]
)

(A.16)

+ sup
π∈Π,S∈SD

2M

b

(
Sπ
n − 1

nSπ
n

n∑
i=1

1{π(Xi) = Ai}1{Yi ∈ S}
π0 (Ai|Xi)

)
(A.17)

For (A.16), by Wainwright [82, Theorem 4.10], we have with probability 1− exp
(
−nϵ2η2/2

)
sup

π∈Π,S∈SD

2M

b

(
1

n

n∑
i=1

1{π(Xi) = Ai}1{Yi ∈ S}
π0 (Ai|Xi)

−EP0 [1{Yi ∈ S}]
)

≤ 2M

b
(2Rn (FΠ,D) + ϵ) , (A.18)

where the function class FΠ,D is defined as

FΠ,D ≜

{
fπ,S(X,Y,A) =

1{π(Xi) = Ai}1{Yi ∈ S}
π0(A|X)

∣∣∣∣π ∈ Π, S ⊂ D
}
.

For (A.17), we have

2M

b

(
Sπ
n − 1

nSπ
n

n∑
i=1

1{π(Xi) = Ai}1{Yi ∈ S}
π0 (Ai|Xi)

)
≤ 2M

b
|Sπ

n − 1| . (A.19)

By combining (A.18), (A.19) and (A.14), we have with probability at least 1− 2 exp
(
−nϵ2η2/2

)
,

RDRO(π̂DRO) ≤
2M

b
(2Rn (FΠ,D) + ϵ) +

2M

b
(2Rn (FΠ) + ϵ) .

Now, we turn to the Rademacher complexity of the classes FΠ,D. We claim

N
(
t,FΠ,D, ∥·∥Pn

)
≤ N (n)

H

(
η2t2/2,Π

)
2|D|,

where |D| denotes the cardinality of set D. By similar argument with the continuous case, we have

F t
Π,D is a t-cover set for FΠ,D, where F t

Π,D is defined as

F t
Π,D ≜

{
1{πi(X) = A}1{Yi(πi(Xi)) ∈ S}

π0(A|X)

∣∣∣∣ i ≤ NΠ(t), S ⊂ D
}
.
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Finally, by Dudley’s theorem [e.g. 82, (5.48)]

Rn (FΠ,D) ≤
24√
n

∫ 2/η

0

√
log
(
N

(n)
H (η2t2/2,Π)

)
+ |D| log (2)dt

=
24

η
√
n

∫ 2

0

√
log
(
N

(n)
H (s2/2,Π)

)
+ |D| log (2)ds

≤ 24

η
√
n

(∫ √
2

0

(√
log
(
N

(n)
H (s2/2,Π)

))
ds+ 2

√
|D| log (2)

)

≤ 24
√
2κ(n) (Π) + 48

√
|D| log (2)

η
√
n

Therefore, by picking ε′ = 2 exp
(
−nϵ2η2/2

)
, we have with probability 1− ε′,

RDRO(π̂DRO) ≤
4M

bη
√
n

(
24(
√
2 + 1)κ(n) (Π) + 48

√
|D| log (2) +

√
2 log

(
2

ε′

))
.

Appendix A.5 Proof of the statistical lower bound in Section 4.2

We first define some useful notions. For p, q ∈ [0, 1], Let

DKL(p||q) = p log(p/q) + (1− p) log((1− p)/(1− q)).

Let g(p) = infDKL(p||q)≤δ q.

Lemma A17. For δ ≤ 0.226, g(p) is differentiable and g′(p) ≥ 1/2 for p ∈ [0.4, 0.6].

Proof. Since δ ≤ 0.226 and p ≥ 0.4, we have p ≥ g(p) ≥ 0.1. By Yang et al. [84, Lemma B.12], we

have

g′(p) =
log(p/g(p))− log((1− p)/(1− g(p)))

p/g(p)− (1− p)/(1− g(p)) ,

and g′(p) is increasing. Therefore, g′(p) ≥ g′(0.4) ≥ 0.5.

Proof of Theorem 3. Since we consider two-action scenario, we denote the actions to be 0 and 1. We

first follow the lines in the proof in Kitagawa and Tetenov [47, Theorem 2.2]. By Lemma 3, the VC

dimension of the policy class Π is larger or equal than v ≜ ⌈4/25κ(n)(Π)2⌉. Let x1, x2, . . . , xv be

v points that are shattered by policy Π. Let b = {b1, b2, . . . , bv} ∈ {0, 1}v . By definition, for each

b ∈ {0, 1}v , there exist a π ∈ Π such that π(xi) = bi for i = 1, 2, . . . , v.We use π = {π1, π2, . . . , πv} ∈
{0, 1}v to denote the policy π restricted in {x1, x2, . . . , xv} . Now, we consider you two distributions

Y0 =

{
M

0

with prob. 1− p− γ
with prob. p+ γ

, Y1 =

{
M

0

with prob. 1− p+ γ

with prob. p− γ
,
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for p, γ > 0, which will be determined later. Then, we construct Pb ∗ πb,0 ∈ P(M) for every

b ∈ {0, 1}v . The marginal distribution of X in Pb supports uniformly on {x1, x2, . . . , xv} , with
equal mass 1/v. Further,

πb,0(A = bi|X = xi) = πb,0(A = 1− bi|X = xi) =
1

2
,

and conditional on xi, Y (bi) follows the distribution of Y1 and Y (1 − bi) follows the distribution of

Y0. We also define dH(b,b′) =
∑v

i=1 |bi − b′i| .
To emphasize the dependence on the underlying distrbutionPb, we rewriteQDRO(π) = QDRO(π,Pb).

Now, by Lemma 1, we have

sup
π∈Π

QDRO(π,Pb) = sup
π∈Π

sup
α≥0
{−α log (EPb

[exp(−Y (π(X))/α)])− αδ}

= sup
α≥0

sup
π∈Π
{−α log (EPb

[exp(−Y (π(X))/α)])− αδ} .

Since for every α ≥ 0, we have E [exp(−Y1/α)] ≤ E [exp(−Y0/α)] , we have the optimal policy for

the distribution Pb is π∗b = b. Further,

sup
π∈Π

QDRO(π,Pb) = QDRO(π
∗
b,Pb) = sup

α≥0
{−α log (E [exp(−Y1/α)])− αδ}

= inf
D(P||Y1)≤δ

EY∼P [Y ]

= Mg(1− p+ γ).

Then, for any π ∈ Π for any Pb, we have

QDRO(π,Pb) = sup
α≥0

{
−α log

(
1

v

v∑
i=1

exp(−Y (πi))/α)

)
− αδ

}

= sup
α≥0

−α log

1

v

 v∑
i=1,πi=bi

E [exp(−Y1/α)] +
v∑

i=1,πi ̸=bi

E [exp(−Y0/α)]

− αδ


= sup
α≥0

{
−α log

(
v − dH(b, π)

v
E [exp(−Y1/α)] +

dH(b, π)

v
E [exp(−Y0/α)]

)
− αδ

}
.

To simplify the notation, let m = dH(b, π). Then, we have

QDRO(π,Pb)

= sup
α≥0

{
−α log

(
v −m
v

E [exp(−Y1/α)] +
m

v
E [exp(−Y0/α)]

)
− αδ

}
= sup

α≥0

{
−α log

((
v −m
v

(1− p+ γ) +
m

v
(1− p− γ)

)
E [exp(−M/α)] +

(
m

v
(p+ γ) +

v −m
v

(p− γ)
))
− αδ

}
= sup

α≥0

{
−α log

((
1− p+ v − 2m

v
γ

)
E [exp(−M/α)] +

(
p− v − 2m

v
γ

))
− αδ

}
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We construct the distribution of Ỹm :

Ỹm =

{
M

0

with prob. 1− p+ v−2m
v γ

with prob. p− v−2m
v γ.

Then, QDRO(π,Pb) becomes

QDRO(π,Pb) = inf
D(P||Ỹm)≤δ

EY∼P [Y ] =Mg

(
1− p+ γ − 2m

v
γ

)
.

By Lemma A17, if p = 1/2 and γ ≤ 0.1, we have

RDRO(π,Pb) = Mg(1− p+ γ)−Mg

(
1− p+ γ − 2m

v
γ

)
≥ 2m

v
Mγ min

x∈[1−p−γ,1−p+γ]
g′(x) ≥ dH(b, π)Mγ

v
.

Then, by Assouad Lemma [78, Theorem 2.12 (ii)], we have

max
P0∗π0∈P(M)

E(Pπ0
0 )

n [RDRO(π,P0)]

≥Mγ

v
max

P0∗π0∈P(M)
E(Pπ0

0 )
n [dH(b, π)]

≥Mγ

2

(
1− max

dH(b,b′)=1
TV

((
P

πb,0

b

)n
,
(
P

πb′,0
b′

)n))
,

where TV(·, ·) denotes the total variation distance between two measures. By Pinsker’s inequality

([78, Lemma 2.5]), we have

TV
((

P
πb,0

b

)n
,
(
P

πb′,0
b′

)n)
≤
√
D
((

P
πb,0

b

)n ||(Pπb′,0
b′

)n)
/2 =

√
nD

(
P

πb,0

b ||Pπb′,0
b′

)
/2.

For b,b′ such that dH(b,b′) = 1, Let bl ̸= b′l and without loss of generality, we assume bl = 1. Then,

wave

D
(
P

πb,0

b ||Pπb′,0
b′

)
=

v∑
i=1

1∑
j=0

1∑
k=0

P
πb,0

b (X = xi, A = j, Y =Mk) log

(
P

πb,0

b (X = xi, A = j, Y =Mk)

P
πb′,0
b′ (X = xi, A = j, Y =Mk)

)

=

1∑
j=0

1∑
k=0

P
πb,0

b (X = xl, A = j, Y =Mk) log

(
P

πb,0

b (X = xl, A = j, Y =Mk)

P
πb′,0
b′ (X = xl, A = j, Y =Mk)

)

=
1

2v
(p+ γ) log

(
p+ γ

p− γ

)
+

1

2v
(1− p− γ) log

(
1− p− γ
1− p+ γ

)
+

1

2v
(p− γ) log

(
p− γ
p+ γ

)
+

1

2v
(1− p+ γ) log

(
1− p+ γ

1− p− γ

)
=

1

v
DKL(p+ γ||p− γ).
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For p = 1/2 and γ ≤ 0.1, we have by Tsybakov [78, Lemma 2.7]

DKL(p+ γ||p− γ) ≤ (2γ)2/
(
p2 − γ2

)
.

By picking γ = 1
4

√
v
n ≤ 0.1, which requires n ≥ κ(n)(Π)2, we have

max
P0∗π0∈P(M)

E(Pπ0
0 )

n [RDRO(π,P0)] ≥
M

40

√
v

n
.

Recall that v = ⌈4/25κ(n)(Π)2⌉. Therefore, we have

max
P0∗π0∈P(M)

E(Pπ0
0 )

n [RDRO(π,P0)] ≥
Mκ(n)(Π)

100
√
n

.

Appendix A.6 Proof of the Bayes DRO policy result in Section 5.1

Proof of Proposition 2. By Lemma 1, we have

QDRO(π
∗
DRO) = sup

π∈Π
sup
α≥0
{−α logEP0 [exp(−Y (π(X))/α)]− αδ}

= sup
α≥0

sup
π∈Π
{−α logEP0 [exp(−Y (π(X))/α)]− αδ} . (A.20)

The inner maximization (A.20) can be further simplified as

sup
π∈Π
{−α logEP0 [exp(−Y (π(X))/α)]− αδ}

= sup
π∈Π
{−α logEP0 [E [exp(−Y (π(X))/α)|X]]− αδ}

= −α logEP0

[
inf
π∈Π

E [exp(−Y (π(X))/α)|X]

]
− αδ.

Since Π contains all measurable policies, we have

inf
π∈Π

E [exp(−Y (π(X))/α)|X] = min
a∈A
{E [exp(−Y (a)/α)|X]} ,

and the optimal dual variable is

α∗(π∗DRO) = argmax
α≥0

{
−α logEP0

[
min
a∈A
{EP0 [ exp (−Y (a)/α)|X]}

]
− αδ

}
.

Finally, we have for any a ∈ A, the set

{x ∈ X : π∗DRO(x) = a} =
{
x ∈ X : EP0 [ exp (−Y (a)/α)|X = x] ≤ EP0

[
exp

(
−Y (a′)/α

)∣∣X = x
]
, for ∀a′ ∈ A/{a}

}
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is measurable.

Appendix A.7 Proof of the extension results in Section 7

Proof of Lemma 9. If k = 1, we have ck(δ) = 1, and thus Lemma 9 recovers Lemma 5. For k ∈
(1,+∞), notice that∣∣∣∣sup

α∈R

{
−ck (δ)EP1

[
(−Y + α)k∗+

] 1
k∗ + α

}
− sup

α∈R

{
−ck (δ)EP2

[
(−Y + α)k∗+

] 1
k∗ + α

}∣∣∣∣
≤ ck (δ) sup

α∈R

∣∣∣∣EP1

[
(−Y + α)k∗+

] 1
k∗ −EP2

[
(−Y + α)k∗+

] 1
k∗

∣∣∣∣
= ck (δ) sup

α∈R

∣∣∣∣EPU

[
(−qP1 (U) + α)k∗+

] 1
k∗ −EPU

[
(−qP2 (U) + α)k∗+

] 1
k∗

∣∣∣∣ ,
where PU ∼ U([0, 1]) and the last equality is based on the fact that qP (U)

d
= P.

By the triangular inequality in Lk∗ (U) space, we have∣∣∣∣EPU

[
(−qP1 (U) + α)k∗+

] 1
k∗ −EPU

[
(−qP2 (U) + α)k∗+

] 1
k∗

∣∣∣∣
≤ EPU

[
|qP1 (U)− qP2 (U)|k∗

] 1
k∗

≤ sup
t∈[0,1]

|qP1 (t)− qP2 (t)| .

Proof of Lemma 10. We begin with∣∣∣∣∣∣supα∈R

−ck (δ)
(∑

d∈D

[
(−d+ α)k∗+ P1 (d)

]) 1
k∗

+ α

− sup
α∈R

−ck (δ)
(∑

d∈D

[
(−d+ α)k∗+ P2 (d)

]) 1
k∗

+ α


∣∣∣∣∣∣

≤ ck (δ) sup
α∈R

∣∣∣∣∣∣
(∑

d∈D

[
(−d+ α)k∗+ P1 (d)

]) 1
k∗

−
(∑

d∈D

[
(−d+ α)k∗+ P2 (d)

]) 1
k∗

∣∣∣∣∣∣ (A.21)

= ck (δ)max

 sup
α≤M

∣∣∣∣∣∣
(∑

d∈D

[
(−d+ α)k∗+ P1 (d)

]) 1
k∗

−
(∑

d∈D

[
(−d+ α)k∗+ P2 (d)

]) 1
k∗

∣∣∣∣∣∣ , (A.22)

sup
α>M

∣∣∣∣∣∣
(∑

d∈D

[
(−d+ α)k∗+ P1 (d)

]) 1
k∗

−
(∑

d∈D

[
(−d+ α)k∗+ P2 (d)

]) 1
k∗

∣∣∣∣∣∣
 . (A.23)

We tackle the two cases α ≤ M and α > M separately. To ease of notation, we abbreviate

P1 (Y = d) ,P2 (Y = d) as P1 (d) ,P2 (d).
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1) Case α ≤M : Note that

ck (δ) sup
α≤M

∣∣∣∣∣∣
(∑

d∈D

[
(−d+ α)k∗+ P1 (d)

]) 1
k∗

−
(∑

d∈D

[
(−d+ α)k∗+ P2 (d)

]) 1
k∗
∣∣∣∣∣∣ (A.24)

= ck (δ) sup
α≤M

∣∣∣∣∣∣
(∑

d∈D

(
(−d+ α)+ (P1 (d))

1
k∗

)k∗) 1
k∗

−
(∑

d∈D

(
(−d+ α)+ (P2 (d))

1
k∗

)k∗) 1
k∗
∣∣∣∣∣∣

≤ ck (δ) sup
α≤M

max


 ∑

d:P1(d)
≥P2(d)

(
(−d+ α)+P1 (d)

1
k∗

)k∗
1
k∗

−

 ∑
d:P1(d)
≥P2(d)

(
(−d+ α)+P2 (d)

1
k∗

)k∗


1
k∗

,

 ∑
d:P1(d)
<P2(d)

(
(−d+ α)+P1 (d)

1/k∗
)k∗

1
k∗

−

 ∑
d:P1(d)
<P2(d)

(
(−d+ α)+P2 (d)

1/k∗
)k∗


1
k∗

 .

By the k∗-norm triangular inequality and the fact that (−d+ α)+ ≤M for α ≤M, we have

 ∑
d:P1(d)
≥P2(d)

(
(−d+ α)+ (P1 (d))

1/k∗
)k∗

1
k∗

−

 ∑
d:P1(d)
≥P2(d)

(
(−d+ α)+ (P2 (d))

1/k∗
)k∗


1
k∗

≤ ck (δ)M

 ∑
d:P1(d)
≥P2(d)

∣∣∣(P1 (d))
1/k∗ − (P2 (d))

1/k∗
∣∣∣k∗


1
k∗

.

Consider the function h(x) = x1/k∗ ,

h′(x) =
1

k∗
x1/k∗−1 ≤ 1

k∗
(b/2)1/k∗−1 , when x ≥ b/2.

Then, when TV(P1,P2) ≤ b/2, we have

ck (δ)M

 ∑
d:P1(d)
≥P2(d)

∣∣∣(P1 (d))
1/k∗ − (P2 (d))

1/k∗
∣∣∣k∗


1
k∗
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≤ ck (δ)M

 ∑
d:P1(d)
≥P2(d)

(
1

k∗
(b/2)1/k∗−1 |P1 (d)−P2 (d)|

)k∗


1
k∗

=
ck (δ)M

k∗
(b/2)1/k∗−1

 ∑
d:P1(d)
≥P2(d)

|P1 (d)−P2 (d)|k∗


1
k∗

≤ ck (δ)M

k∗
(b/2)1/k∗−1

∑
d:P1(d)
≥P2(d)

|P1 (d)−P2 (d)|

≤ ck (δ)M

k∗
(b/2)1/k∗−1TV(P1,P2).

The same bound holds for {d ∈ D : P1 (d) < P2 (d)}, which completes this case.

2) Case α > M : In this case, we have

ck (δ) sup
α>M

∣∣∣∣∣∣
(∑

d∈D

[
(−d+ α)k∗+ P1 (d)

]) 1
k∗

−
(∑

d∈D

[
(−d+ α)k∗+ P2 (d)

]) 1
k∗

∣∣∣∣∣∣
= ck (δ) sup

α>M

∣∣∣∣∣∣
(∑

d∈D

[
(α− d)k∗ P1 (d)

]) 1
k∗

−
(∑

d∈D

[
(α− d)k∗ P2 (d)

]) 1
k∗

∣∣∣∣∣∣ .
We will focus on

∣∣∣∣(∑d∈D

[
(α− d)k∗ P1 (d)

]) 1
k∗ −

(∑
d∈D

[
(α− d)k∗ P2 (d)

]) 1
k∗

∣∣∣∣ and without loss of

generality, we assume ∑
d∈D

[
(α− d)k∗ P1 (d)

]
≥
∑
d∈D

[
(α− d)k∗ P2 (d)

]
.

Recall that for the function h(x) = x1/k∗ , the derivative is

h′(x) =
1

k∗
x1/k∗−1 ≤ 1

k∗
(x)1/k∗−1 , when x ≥ x.

Therefore, we have

ck (δ)

(∑
d∈D

[
(α− d)k∗ P1 (d)

]) 1
k∗

−
(∑

d∈D

[
(α− d)k∗ P2 (d)

]) 1
k∗

≤ ck (δ)

k∗

(∑
d∈D

[
(α− d)k∗ P2 (d)

])1/k∗−1(∑
d∈D

[
(α− d)k∗ (P1 (d)−P2 (d))

])
. (A.25)
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Then, when TV(P1,P2) ≤ b/2, we have

∑
d∈D

[
(α− d)k∗ P2 (d)

]
≥ b

2

(
α−min

d∈D
d

)k∗

⇒
(∑

d∈D

[
(α− d)k∗ P2 (d)

])1/k∗−1

≤ (b/2)1/k∗−1

(
α−min

d∈D
d

)1−k∗

. (A.26)

Furthermore, we have∑
d∈D

[
(α− d)k∗ (P1 (d)−P2 (d))

]

=

 ∑
d:P1(d)
>P2(d)

(α− d)k∗ (P1 (d)−P2 (d))

−
 ∑

d:P1(d)
<P2(d)

(α− d)k∗ (P2 (d)−P1 (d))


≤

(
α−min

d∈D
d

)k∗ ∑
d:P1(d)
>P2(d)

(P1 (d)−P2 (d))−
(
α−max

d∈D
d

)k∗ ∑
d:P1(d)
<P2(d)

(P2 (d)−P1 (d))

=

((
α−min

d∈D
d

)k∗

−
(
α−max

d∈D
d

)k∗
) ∑

d:P1(d)
>P2(d)

(P1 (d)−P2 (d)) . (A.27)

The last equation is due to∑
d:P1(d)>P2(d)

(P1 (d)−P2 (d)) =
∑

d:P1(d)<P2(d)

(P2 (d)−P1 (d)) .

We further note that ∑
d:P1(d)>P2(d)

(P1 (d)−P2 (d)) = TV(P1,P2), (A.28)

and ((
α−min

d∈D
d

)k∗

−
(
α−max

d∈D
d

)k∗
)

≤
(
max
d∈D

d−min
d∈D

d

)(
α−min

d∈D
d

)k∗−1

≤ M

(
α−min

d∈D
d

)k∗−1

. (A.29)
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By combining bounds (A.25) - (A.29), we have

ck (δ)

(∑
d∈D

[
(α− d)k∗ P1 (d)

]) 1
k∗

−
(∑

d∈D

[
(α− d)k∗ P2 (d)

]) 1
k∗

≤ ck (δ)M

k∗
(b/2)1/k∗−1TV(P1,P2), for any α > M,

which completes the proof.

Appendix B Experiments

Appendix B.1 Optimization of multi-linear policy

This section provides implementation details for how to compute argminΘ∈R(p+1)×d Ŵn(πΘ, α) where

πΘ is the multilinear policy associated with parameter Θ. Recall the definition of Ŵn(π, α) from

definition 4 that

Ŵn(π, α) =
1

nSπ
n

n∑
i=1

Wi(π, α) =

∑n
i=1

1{π(Xi)=Ai}
π0(Ai|Xi)

exp(−Yi(Ai)/α)∑n
i=1

1{π(Xi)=Ai}
π0(Ai|Xi)

.

As we did in Section 5.2, we employ the smooth approximation of the indicator function

1{πΘ(Xi) = Ai} ≈
exp(θ⊤Ai

Xi)∑d
a=1 exp(θ

⊤
a Xi)

.

Now for i = 1, . . . , n, we the smooth weight function pi : R
(p+1)×d → R+ as

pi(Θ) ≜
exp(θ⊤Ai

Xi)

π0 (Ai|Xi)
∑d

a=1 exp(θ
⊤
a Xi)

,

then the estimator Ŵn(πΘ, α) admits the smooth approximation

Ŵn(πΘ, α) ≈ W̃n(πΘ, α) ≜

∑n
i=1 pi(Θ) exp(−Yi(Ai)/α)∑n

i=1 pi(Θ)
.

In addition, we have

∇ΘW̃n(πΘ, α) = W̃n(πΘ, α)∇Θ log
(
W̃n(πΘ, α)

)
≈ W̃n(πΘ, α) ·

(
∇Θ log

(
n∑

i=1

pi(Θ) exp(−Yi(Ai)/α)

)
−∇Θ log

(
n∑

i=1

pi(Θ)

))

= W̃n(πΘ, α) ·
(∑n

i=1∇Θpi(Θ) exp(−Yi(Ai)/α)∑n
i=1 pi(Θ) exp(−Yi(Ai)/α)

−
∑n

i=1∇Θpi(Θ)∑n
i=1 pi(Θ)

)
.
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Therefore, we can employ gradient to descent to solve for Θ that minimizes W̃n(πΘ, α), which ap-

proximately minimizes Ŵn(πΘ, α) as well. This is how we solve for argminΘ∈R(p+1)×d Ŵn(πΘ, α) in

implementation.

Appendix B.2 Experimental details of δ selection in Section 6.4

In this section we will provide further details on the δ selection experiment.

Recall that we intend to estimate δ based on the data of 100 cities in the training set. To this

end, we will partition the data in 20% of cities as our validation set with distribution denoted by

P20, and we use P80 to denote the distribution of the rest 80% of the training set. We will explain

the detail of how to estimate D(P20||P80) in the rest of this section.

We first explain how to estimate the divergence between marginal distributions of X, which is

denoted by D(P20
X ||P80

X ). A directly computation using the sampled distributions P20
X and P80

X may

result in infinite value, because (1) some features such as year of birth contains outliers whose value

only appears in P20
X or P80

X ; (2) X is a nine-dimensional vector, which exaggerates the prior problem.

In view of that the demographic features (year of birth, sex, household size) are weakly correlated

with the historical voting records, we will compute the divergence on them separately. In order to

avoid infinite KL-divergence, we first regroup two demographic features, Year of Birth (YoB) and

Household Size (HS), according to the following rules:

YoB group =



1 if YoB ≤ 1943

2 if 1943 < YoB ≤ 1952

3 if 1952 < YoB ≤ 1959

4 if 1959 < YoB ≤ 1966

5 if 1966 < YoB

HS group =



1 if HS = 1

2 if HS = 2

3 if HS = 3

4 if HS ≥ 4

After the regrouping, we define the demographic feature vectorXdemo = ( HS group, YoB group, sex),

and compute the KL-divergence D(P20
Xdemo

||P80
Xdemo

). The historical voting record vector is defined as

Xrec = (g2004, g2002, g2000, d2004, d2002, d2000), and we compute its divergence D(P20
Xrec
||P80

Xrec
)

directly. We will use the sum D(P20
Xdemo

||P80
Xdemo

) +D(P20
Xrec
||P80

Xrec
) as approximation for the diver-

gence between P20
X and P80

X .

Next, we will explain how to apply logistic regression to estimate EP20
X
[D(P20

Y |X||P80
Y |X)]. We

independently fit two logistic regression of Y ∼ X, using data corresponding to P20 and P80 respec-

tively. The result of logistic regression implies a fitted conditional distribution of Y given X, i.e.,

P(Y = 1|X) = (1 + exp(β̂0 + β̂⊤X))−1, where β̂0 and β̂ are fitted parameters for the logistic regres-

sion. We denoted by P̂ 20
Y |X as the fitted conditional distribution using the data P20, and P̂ 80

Y |X as

the fitted conditional distribution using the data P80. Since both P̂ 20
Y |X and P̂ 80

Y |X are Bernoulli

distribution parameterized as a function of X, the KL-divergence between them D(P̂20
Y |X||P̂80

Y |X)

can also be computed in closed form as a function of X. Finally, we compute the average value of
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the estimated KL-divergence using the distribution of P20
X .

To conclude this section, we provide the full formula used in the computation:

D(P20||P80) ≈ D(P20
Xdemo

||P80
Xdemo

) +D(P20
Xrec
||P80

Xrec
) +EP20

X
[D(P̂20

Y |X||P̂80
Y |X)].
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