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Abstract

Many decision makers are thought to economize on attention by processing information at

the simpler level of a category. We directly test whether such category focus reflects an

adaptive response to attention constraints, in five preregistered experiments using an

information sampling paradigm with mouse tracking. Consistent with rational principles,

participants focus more on category-level information when individual differences are small,

when the category contains more members, and when time constraints are more severe,

though cognitive load has no effect. Participants are sensitive to the statistical structure of

the category even when it must be learned from experience, and they respond to a latent

shift in this structure. Beliefs about category members tend to cluster together more when

category focus is high—a key element of rational inattention. However, this is counteracted

by greater weight placed on salient and idiosyncratic information when the category is

large. Our results broadly substantiate influential theories of categorical thinking, giving us

a clearer view on the drivers and consequences of inattention.
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Attention constraints and learning in categories

Introduction

Our world is vast, but our attention is finite (Simon, 1971; Kahneman, 1973; Caplin,

2016). We thus have to split our attention across the immense array of information

available to us. In many situations, decision makers cope with this complexity by

processing information at the simpler level of a category. For instance, investors have

limited time and effort and cannot learn about all of the countless stocks in a market.

They might choose to study the value of an index rather than appraise each individual

stock contained in that index (Peng & Xiong, 2006). Similarly, managers may pay more

attention to macroeconomic data than firm-level signals (Kacperczyk, Van Nieuwerburgh,

& Veldkamp, 2016), analysts may compile aggregated rather than segmented information

about branches of a company (Bens, Monahan, & Steele, 2018), and multiproduct firms

may be more responsive to aggregate demand shocks than good-specific shocks (Pasten &

Schoenle, 2016).

Focusing on information at the category level leads agents to neglect heterogeneity

among category members, resulting in economic anomalies. These anomalies are generally

characterized by excess correlation in beliefs or outcomes of members in the same category

and exaggerated differences across categories. For example, a range of inefficiencies have

been tied to categorical investment patterns (aka “style investing”) in behavioral finance

(Barberis & Shleifer, 2003), such as excess comovement of assets in the same class

(Barberis, Shleifer, & Wurgler, 2005) and abnormal gains of companies that merely

changed to dotcom names during the Internet bubble (Cooper, Dimitrov, & Rau, 2001).

Phenomena like these (e.g., Gilbert, Kogan, Lochstoer, & Ozyildirim, 2012) can persist

because attention is naturally taxed more as scale increases, in contrast to the traditional

view that distortions will be minimized in thick markets with many participants.

Nevertheless, seminal theoretical work has shown how such category focus could be

an individually efficient response when attention is scarce, because category-level signals
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are informative about all category members, whereas idiosyncratic information pertains

only to each member separately (Peng & Xiong, 2006; Maćkowiak & Wiederholt, 2009;

Kacperczyk et al., 2016). This entails that attention to the category level versus the

individual level should vary based on the costs and benefits induced by the information

environment (as described below more specifically). These boundedly rational theories

have provided influential explanations for the anomalous behavior of managers, firms, and

households with large-scale economic consequences (reviewed briefly in the next section).

However, despite the wide-ranging impact of these theories, we still lack direct evidence for

the crucial assumption that people rationally balance attention to the category level and

the individual level.

We conduct the most direct empirical test to date of rational inattention1 applied to

learning in categories, by developing a new laboratory paradigm. Our task was designed to

transparently measure attention using mouse tracking, while precisely controlling the

statistical structure of information via an abstract sampling paradigm. Across 5

pre-registered experiments, we test whether selective attention to category-level

information adapts to the environment in line with rational principles.

People playing our “stock prediction game” had to accurately estimate the values of

various hypothetical stocks based on a stream of incoming information.2 These values were

generated by a known categorical structure (following Peng & Xiong, 2006). Participants

were told that the stocks were all in the same industry and so the value of each was equal

to the arithmetic sum of two latent components, a common industry-level factor (reflecting

the category average) and a unique stock-specific factor (reflecting individual deviation

1 Throughout the paper, we use a broad definition of rational inattention which retains the core idea of
selective attention that is adaptively deployed, but does not restrict it to information-theoretic formalisms.
Our task similarly places some limits on the shape of attainable signals, so that we can directly and
transparently measure attention. This allows us to focus on—and is consistent with—our motivating
applications to categorical information choice (e.g., Kacperczyk et al., 2016) rather than the most subtle
internal properties of information processing.
2 Note that minimizing the variance of beliefs can emerge naturally from a broader optimization problem,
such as in the setting of Peng and Xiong (2006) where agents invest in the stock market under budget and
attention constraints.
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from the average). These factors varied randomly and independently across periods.

In each period, participants could reveal noisy signals every half-second about any

component (either the common industry factor or any one of the stock-specific factors) by

hovering their mouse over the corresponding factor, until time ran out. They could only

acquire signals for one factor at a time, and so might have to alternate between factors

depending on their strategy. Longer time spent on a factor meant more signals were

acquired. Therefore, time was a proxy for attention, consistent with both theoretical

tradition (Sims, 2003) and high empirical correlations between the two (Caplin, Csaba,

Leahy, & Nov, 2020). This link is commonly made in process-tracing studies (Willemsen &

Johnson, 2011; Schulte-Mecklenbeck et al., 2017; Gabaix, 2019) and enshrined in popular

sequential sampling models of information processing (Krajbich, 2019), as processing time

is crucial in the brain’s functioning (Pashler & Johnston, 1998; Nobre & Coull, 2010). In

the field, viewing time of free, publicly available information is associated with reduced

analyst error in earnings forecasts (Gibbons, Iliev, & Kalodimos, 2021). We thus

investigated theoretical predictions by measuring the amount of time spent mousing over

each factor, and evaluating how this changed when we manipulated properties of the

environment.

Existing theory generates sharp predictions in our paradigm. If attention is rationally

deployed, one’s category focus should adjust flexibly based on the value of information

attainable at each level. Several implications follow from this central idea (Peng & Xiong,

2006). First, when members of a category are similar, there is little to be gained by

learning each one’s unique qualities; thus, people should focus more on information at the

category level when idiosyncratic variation is low relative to shared variation. Second,

category-level information reduces uncertainty about every member, and so its value scales

with category size; thus, people should focus more on information at the category level

when the category contains many members. Finally, continuing to accumulate information

about a given variable yields diminishing returns; thus, people should focus more on
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information at the category level when they face severe attention constraints.

We found that people preferentially attended to information at the industry level

when stock-specific variation was relatively lower (Experiments 1 and 5), when the

industry contained more stocks (Experiment 2), and when time constraints were more

severe (Experiment 3). There was no apparent effect of cognitive load caused by forcing

signals to be kept in working memory (Experiment 4), which was consistent with the

theory under the experimental design. People were sensitive to the prior variation at each

level even when they were not given explicit information on these statistics or feedback on

the accuracy of their predictions but had to learn them purely from the acquired signals;

they were also able to adjust their attention allocation following a latent shift in the

statistical structure of the category (Experiment 5).

We found further signatures of rational inattention in our data. When a person’s

category focus is higher, their predictions of stock values in a given period should be more

similar to each other, since almost no differentiating information is being processed.

Consistent with this, predictions tended to be less dispersed in periods with higher

category focus—a key behavioral implication of models based on inattention (Peng &

Xiong, 2006; Kacperczyk et al., 2016). Moreover, we found that category focus had a

U-shaped relationship with prediction error that broadly matched the theoretical

predictions in each experiment. Too much attention to the category leads to a detrimental

neglect of individual differences, while too little attention means the category information

is not being efficiently exploited. The intermediate allocation which balanced these

opposing forces varied depending on the structure of the environment as described above.

Categorical attention, behavior, and performance were thus linked to each other and

the environment in accordance with rational inattention—with one exception. In

conditions where attention is more strained, value predictions should be less dispersed

(controlling for category focus) because less individuating information is acquired.

However, when there were many stocks in Experiment 3, predictions were more dispersed
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rather than less. Model fitting revealed that in this condition, participants placed even

more weight on the stock-specific signals and on the most recent signals, which were salient

because their values were highlighted and displayed numerically (Bordalo, Gennaioli, &

Shleifer, 2022). This finding suggests that as the task becomes more challenging, people

may be more inclined to fixate on salient information, which can counteract the clustering

of values that stems from categorical thinking.

Overall, we found that people adapted their degree of categorical focus broadly in line

with rational principles. Our results substantiate core elements of influential theories of

categorical information processing, while revealing how judgments might deviate from this

benchmark. This work sharpens the link between categorical attention, behavior, and

performance, giving us a clearer view on the drivers and consequences of inattention, and

offering a reproducible platform for further investigations.

Rational Inattention and Learning in Categories

Our results speak to many prominent applications of rational inattention built

around the hypothesized cognitive mechanism. Peng and Xiong (2006) theoretically

demonstrate how the optimal allocation of attention can lead investors to focus on

category-level information. Combining attention allocation with portfolio allocation, their

model reproduces several elements of style investing and empirical features of asset returns,

such as excess comovement of assets within a category (Barberis & Shleifer, 2003).

Kacperczyk et al. (2016) theoretically and empirically analyze the performance of mutual

fund managers, and propose that an important part of manager skill involves properly

balancing attention to macroeconomic aggregates and idiosyncratic firm-level data. They

argue that in recessions (characterized by high aggregate volatility and price of risk),

attention to aggregates should increase and fund outperformance should rise. Maćkowiak

and Wiederholt (2009) posit that firms rationally attend more to idiosyncratic conditions

when they vary more than aggregate conditions, which could explain why prices respond
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rapidly to sector-specific shocks and slowly to monetary policy shocks. Maćkowiak and

Wiederholt (2015) extend this analysis to include households, with analogous implications

for consumption patterns. These applications all rest on the assumption that decision

makers rationally adapt their category focus.

Although past empirical work has aimed to tease out implications of rational

inattention in related market contexts (Peng, Xiong, & Bollerslev, 2007; Drake, Jennings,

Roulstone, & Thornock, 2017; Huang, Huang, & Lin, 2019; Ehrmann & Jansen, 2020; Choi

& Gupta-Mukherjee, 2022; Liu, Peng, & Tang, in press), field settings pose many

challenges to researchers. Naturalistic information structures are often opaque and

high-dimensional, categorization schemes and information processing capacity may vary

widely among individuals and circumstances, the lack of controlled experimental variation

makes it hard to establish what causes attention to shift, and attention itself is difficult to

clearly measure. Analyses of field data thus require various indirect and assumption-laden

methods to infer critically important variables like attention (Gabaix, 2019). Our

experimental approach enables more straightforward tests.

Our research also relates to influential perspectives in cognitive science which

maintain that attention is spent where it has maximum benefit (Gottlieb, 2018).3 Past

work has shown that when tasked with forming guesses of unknown feature values (i.e.,

inference; Markman & Ross, 2003), people are thought to concentrate on prototypical

category information, and some have argued this focus depends on how the information is

to be used (Rehder, Colner, & Hoffman, 2009; Braunlich & Love, 2022). Similar to the

present setting, young children—another set of highly capacity-constrained

agents—preferentially seek out information about kinds of things rather than about

concrete individuals, such as facts applicable to all dogs rather than one specific dog

(Cimpian & Park, 2014; Cimpian & Petro, 2014). This tendency seems sensitive to the

3 This work fits into a wider body of research asserting that cognitive resources broadly are spent where
they are most valuable (Bhui, Lai, & Gershman, 2021).
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potential for information gain, as it only emerges when talking to knowledgeable adults.

The rational predictions we test provide precise insight into conditions which stimulate

attention to prototypical information, and have escaped experimental scrutiny so far.

Experiments 1–4

Participants. Five hundred and eighty-four participants from the United States

were recruited on Amazon Mechanical Turk, split across four experiments (Experiment 1,

n = 147; Experiment 2, n = 145; Experiment 3, n = 146; Experiment 4, n = 146). They

were paid a base of $2 plus a bonus of up to $6 that depended on performance as described

below. Sample sizes were documented in the preregistrations, and based on monetary

constraints, informed partly by pilot studies which suggested that this number should be

sufficient to detect the hypothesized effects if present. To help ensure data quality,

participation was restricted to workers who had completed 100+ HITs with at least a 98%

approval rate. Participants provided informed consent, and the study was approved by the

Harvard Committee on the Use of Human Subjects (Experiments 1–3) or the MIT

Committee on the Use of Humans as Experimental Subjects (Experiment 4). The

preregistrations can be found at https://osf.io/6mcqy (Experiments 1–3) and

https://osf.io/245ks (Experiment 4).

Procedure. All experiments used the same “stock prediction game” paradigm

pictured in Figure 1, with some variations. In each period, participants had to estimate the

values of several hypothetical stocks after selectively acquiring a stream of information

about the components of value (a common industry-level factor and idiosyncratic

stock-specific factors). The stocks were abstractly labeled A, B, C, and so on. Values were

given by the arithmetic sum of the two factors, meaning each stock’s value was equal to the

common industry-level factor plus an idiosyncratic stock-specific factor. These factors were

generated independently in every period from zero-mean Gaussian distributions portrayed

on screen by sideways bell curves (so participants were shown these priors). Hence, the
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Figure 1 . Screenshot of Experiment. Participants had to predict the values of hypothetical stocks, which
were given by the sum of a common industry factor and idiosyncratic stock-specific factors. Noisy signals
could be acquired moment-to-moment by mousing over any factors until time ran out.

periods were effectively repetitions of the same estimation problem. For simplicity, all

stock-specific factors had the same prior distribution. In short, letting c ∼ N (0, σ2
industry)

be the industry factor and mA, mB, and mC ∼ N (0, σ2
stock) be stock-specific factors in a

given period, participants had to make their best guess as to the stock values vA = c+mA,

vB = c+mB, and vC = c+mC .

However, the exact factor values were not explicitly provided, and participants

instead had to learn about them by mousing over the corresponding factor. While their

mouse cursor was positioned over a given factor, a noisy Gaussian signal of its true value

would be revealed every 500 milliseconds, drawn accordingly from N (c, σ2
signal) or

N (mi, σ
2
signal). Participants could mouse over any factor they wanted at any moment

before a limited budget of time ran out, which was represented by an on-screen timer.

After time expired in a period, participants recorded their point prediction of every

stock’s total value (the sum of its two relevant factors) using a set of sliders. They did not

provide predictions for the industry factor or any stock-specific factors by themselves. This

phase had no time limit. Upon submitting these predictions, they were shown the true
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stock values and the magnitudes of their errors (only for feedback, as these did not affect

any random variables in subsequent periods). At the end of the experiment, they were paid

a bonus based on the mean squared error of their predictions in each period according to a

quadratic loss function of which they were informed.4

We used a within-subjects design in each of the four experiments. All experiments

consisted of two blocks of 10 periods each. Within each block the design parameters were

fixed, and the treatments occurred across blocks. We implemented the following

treatments, which were expected to increase the relative attention paid to the industry

factor (for reasons laid out in the Introduction):

• Experiment 1’s treatment increased the relative prior variance of the industry factor

(simultaneously increasing σindustry from 5 to 30 and decreasing σstock from 30 to 5, to

keep the total variance constant).

• Experiment 2’s treatment increased the number of stocks (raising nstocks from 2 to 8).

• Experiment 3’s treatment decreased the time budget (reducing available time from 20

seconds to 8 seconds).

• Experiment 4’s treatment increased the degree of cognitive load (rather than the

signals remaining onscreen during the prediction stage, they vanished right as the

next signal appeared).

The design parameters for each experiment are documented in Table 1. The order of

blocks was counterbalanced. The serial position of the industry factor was also

counterbalanced across subjects, but kept the same across blocks for any given subject. In

Experiments 1–3, the last signal for each factor was highlighted and its number was

displayed as pictured in Figure 1.

4 The total payoff function was given by $6−
∑20

t=1 MSEt/200 where t denotes the period. The penalty
term was capped at $6/20 = $0.30 in each period so that the total payment would not drop below $0.
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σindustry σstock σsignal nstock time vanish

Exp. 1 – low category variance 5 30 10 5 12 s N
high category variance 30 5 10 5 12 s N

Exp. 2 – few category members 30 5 10 2 12 s N
many category members 30 5 10 8 12 s N

Exp. 3 – long time limit 30 5 10 5 20 s N
short time limit 30 5 10 5 8 s N

Exp. 4 – signals remain 20 20 10 5 12 s N
signals vanish 20 20 10 5 12 s Y

Exp. 5 – low category variance 1 30 10 5 12.75 s Y
high category variance 30 1 10 5 12.75 s Y
equal category variance 15 15 10 5 12.75 s Y

Table 1
Experimental Design Parameters. In Experiment 5, the low and high category variance conditions occurred
in the first half of periods, and the equal category variance condition occurred in the second half.

After reading the instructions, participants were provided with two self-paced

practice periods in which they were told the true values of each factor and allowed

unlimited time to sample information. This was intended to clearly explicate the task

structure. They were subsequently asked two basic comprehension check questions to verify

their understanding of the task (see Appendix B).

Exclusions. Based on our preregistered criteria, we exclude participants who failed

to correctly answer the two comprehension check questions, participants who spent more

than 20% of their available viewing time on average not mousing over any factor, and then

remaining periods in which more than 20% of the available viewing time was spent not

mousing over any factor. As these were relatively fine-grained measures of attention, this

left 100 (Experiment 1), 91 (Experiment 2), 100 (Experiment 3), and 114 (Experiment 4)

participants remaining in the analyses. We also exclude a small number of periods across

the experiments where responses were made outside of the permissible slider bounds due to

technical glitches (3 periods in Experiment 1, 3 in Experiment 2, and 1 in Experiment 3).
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Results

First, we note that participants were able to perform reasonably well in the task.

Predictions were moderately to highly correlated with true values, with median correlations

ranging from 0.520–0.928 across experiments (see Appendix D).

Category focus. Our primary variable of interest is the category focus, which we

define as the fraction of time spent mousing over the industry factor compared to the

average stock-specific factor. For example, if out of the 12 second time limit, a participant

spent 7 seconds attending to the industry factor and a total of 5 seconds attending to the 5

stock-specific factors (meaning an average of 1 second per stock-specific factor), the

category focus would be 7/12− 1/12 = 0.5. This metric was used because it scales

appropriately with the time limit and number of stocks, and is motivated by the theoretical

model we draw upon (see Appendix A for our streamlined Bayesian variant of the model in

Peng & Xiong, 2006).

The category focus is displayed for each experimental condition in Figure 2. The

treatment effects appear to be in line with the first three predictions. These conclusions are

formally supported by Bayesian random effects models reported in Table 2, which predict

category focus based on the treatment condition, with subject-specific coefficients for both

intercept and treatment effect.5 The regressions indicate positive effects of higher

category-level variance (P (βvariance > 0) > 0.999), category size (P (βsize > 0) > 0.999), and

time pressure (P (βtime > 0) = 0.956), but not of vanishing signals (P (βload > 0) = 0.679).

Our preregistered test criterion of P (β > 0) > 0.95 is met in the first three cases. Although

the null effect from Experiment 4 ran counter to our initial expectations, as we will see

later, it turns out to be consistent with the model due to the experiment’s different design

parameters. Thus, participants appear to alter their patterns of attention as predicted by

5 The regressions were computed using the brms package in R version 4.0.5 with default weakly
informative priors (Bürkner, 2017).
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Figure 2 . Attention Allocation Patterns. (Left) Mean time spent attending to each factor; (right) category
focus (i.e., difference between proportions of time spent on category and average member). Low vs high
relative category variance (Experiment 1 and first half of Experiment 5), few vs many category members
(Experiment 2), lengthy vs brief time limit (Experiment 3), and signals remaining onscreen or vanishing
(Experiment 4). Error bars depict 95% confidence intervals.
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Category focus
Coefficient Posterior mean Posterior 95% CI P (β > 0)

Exp. 1 Intercept 0.069 [0.042, 0.098] >0.999
Higher category variance 0.053 [0.026, 0.079] >0.999

Exp. 2 Intercept 0.038 [0.000, 0.076] 0.975
Larger category size 0.131 [0.091, 0.174] >0.999

Exp. 3 Intercept 0.129 [0.091, 0.169] >0.999
Shorter time limit 0.030 [−0.006, 0.066] 0.956

Exp. 4 Intercept 0.046 [0.026, 0.064] >0.999
Data points vanish 0.004 [−0.013, 0.021] 0.679

Exp. 5 Intercept 0.048 [0.036, 0.059] >0.999
Higher category variance 0.028 [0.012, 0.043] >0.999

Table 2
Treatment Effects on Category Focus. Posterior estimates from Bayesian random effects models predicting
category focus from experimental condition. P (β > 0) denotes the posterior probability that the coefficient is
positive. First half of periods included for Experiment 5. CI = credible interval.

the theory.6

Prediction dispersion. We investigate another key behavioral signature of

category thinking under rational inattention: when category focus is higher, predictions of

stock values in a given period should be more similar to each other, because less

individuating information is obtained.

The standard deviation7 of participants’ stock predictions is plotted conditional on

the category focus in Figure 3. We also derive and plot the theoretical relationship between

the two for comparison (see Appendix A for details), parameterized based on the

experimental design.8 The model implies that as category focus increases, the variance

6 Due to the i.i.d. Gaussian nature of the signals, the theory does not constrain the dynamic sequence of
information processing. Because we accordingly focus on the overall amount of attention paid to different
information sources rather than the sequence, we report analyses of the attention trajectory in Appendix
E, along with analyses of learning across periods. We also explore the effect of the factors’ serial positions
on attention in Appendix F.
7 Due to high skewness, we log transform the standard deviation and, later, the error of the stock
predictions.
8 The plotted theoretical predictions for Experiment 4 assume that when signals vanish, it translates into
cutting signal precision in half. Qualitative implications are not appreciably different with other fractions.
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across stock predictions in a period should decline from the true prior variance of the

stock-specific factor down to 0 (plus any baseline response noise due, for instance, to the

slider interface9). Consistent with this implication, predictions of stocks are generally more

similar (i.e., their standard deviation is lower) when category focus is higher. Table 3

contains the results of Bayesian random effects models revealing this relationship.

Variable log(1 + Prediction SD)
Exp. 1 Higher category variance Lower category variance
Intercept 2.317 [2.255, 2.377] (<.001) 3.287 [3.244, 3.330] (<.001)
Category focus 0.367 [−0.981, 1.697] (.291) −1.303 [−2.932, 0.222] (.954)
Category focus2 0.551 [−0.833, 2.062] (.227) 0.017 [−1.466, 1.404] (.486)
Exp. 2 Larger category size Smaller category size
Intercept 2.387 [2.302, 2.475] (<.001) 1.912 [1.821, 2.001] (<.001)
Category focus −2.165 [−3.957,−0.150] (.984) −1.457 [−3.648, 0.790] (.897)
Category focus2 −0.144 [−1.618, 1.403] (.577) −0.274 [−2.602, 2.203] (.600)
Exp. 3 Shorter time limit Longer time limit
Intercept 2.362 [2.298, 2.424] (<.001) 2.341 [2.273, 2.414] (<.001)
Category focus −1.972 [−3.364,−0.526] (.996) −1.171 [−2.803, 0.662] (.911)
Category focus2 −0.732 [−2.011, 0.612] (.862) −1.221 [−2.735, 0.529] (.919)
Exp. 4 Data points remain Data points vanish
Intercept 2.846 [2.798, 2.895] (<.001) 2.989 [2.956, 3.023] (<.001)
Category focus −2.609 [−3.993,−1.203] (>.999) −1.331 [−2.506,−0.160] (.984)
Category focus2 −0.227 [−1.658, 1.297] (.624) −0.991 [−2.212, 0.228] (.949)
Exp. 5 Higher category variance Lower category variance
Intercept 2.362 [2.286, 2.440] (<.001) 3.152 [3.099, 3.204] (<.001)
Category focus 0.220 [−1.261, 1.769] (.393) −2.132 [−3.334,−0.993] (>.999)
Category focus2 −0.975 [−2.628, 0.709] (.393) −1.905 [−3.131,−0.772] (.999)

Table 3
Regression Results: Prediction Dispersion and Category Focus. Posterior mean estimates from Bayesian
random effects models with prediction dispersion regressed on category focus (using orthogonal
polynomials). 95% credible intervals in brackets and P (β < 0) in parentheses.

9 When plotting the theoretical predictions, we roughly calibrate the level of response noise to the data.
Specifically, we set the standard deviation of response noise to be the 10th percentile of prediction standard
deviations across all included periods in each experiment. This provides a balance between finding the
minimal level of variation (corresponding to irreducible noise) while avoiding undue influence from outliers
(either participants or periods with unusually low noise).
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Figure 3 . Prediction Dispersion and Category Focus. The dependent variable log(Pred. SD) is the
logarithm of 1 plus the standard deviation across stock value predictions in a given period. (Left) Data,
binned averages with quadratic regression lines and 95% credible intervals from Bayesian random effects
models. (Right) Theory, plus response noise.
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The theory also implies that prediction dispersion should be lower in conditions

where attention is more strained, holding category focus constant. A violation of this is

apparent in Experiment 2, though: predictions are more variable, rather than less, when

there are many stocks. We investigate this finding further using model fitting to capture

how individual participants form predictions based on the signals they acquire (see

Appendix C). The model includes parameters to reflect the weight placed on industry

signals, the weight placed on stock signals, the extra weight placed on the most recent

signal from each factor, and response noise.10 This analysis reveals that when there are

many stocks (compared to when there are few), participants place even more weight on the

stock-specific signals and on the most recent signals (P (β > 0) = .990 and .996

respectively, Bayesian signed rank test; see Table S1). The latter are salient because their

values are displayed numerically and highlighted in red (Bazley, Cronqvist, & Mormann,

2021). Such overweighting of a few noisy signals for each factor makes the predictions more

dispersed. Regression analysis confirms that these weight parameters are indeed positively

associated with dispersion in the stock predictions (P (β > 0) = .999 and .994; see Tables

S2 and S3). This result suggests that when the task is complex due to scale, people may be

inclined to fixate on salient information, which can counteract the correlation in

predictions that stems from categorical thinking.

Prediction accuracy. While category focus is monotonically related to prediction

dispersion, it should have a curvilinear relationship with prediction error. Attending too

much to the category leads the agent to neglect heterogeneity, while attending too little

prevents the agent from efficiently drawing upon the category information. An

intermediate level of category focus balances these considerations (with corner solutions

obtaining in more extreme cases). The exact location of this optimum depends on the

environmental structure as described earlier.

10 The model captured individual judgments well, as model predictions were moderately to very highly
correlated with participant responses, with median correlations ranging from 0.590–0.934 across
experiments (see Appendix D).
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Figure 4 . Prediction Error and Category Focus. The dependent variable log(Error) is the logarithm of 1
plus the mean squared error in stock value predictions in a given period. (Left) Data, binned averages with
quadratic regression lines and 95% credible intervals from Bayesian random effects models. (Right) Theory,
plus response noise; dashed lines indicate error-minimizing levels of category focus.
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Variable log(1 + Prediction Error)
Exp. 1 Higher category variance Lower category variance
Intercept 5.131 [4.968, 5.292] (<.001) 4.809 [4.678, 4.935] (<.001)
Category focus −6.015 [−9.057,−2.777] (>.999) 2.429 [−0.593, 5.345] (.056)
Category focus2 4.572 [1.430, 8.142] (.004) 1.733 [−1.036, 4.648] (.112)
Exp. 2 Larger category size Smaller category size
Intercept 5.269 [5.110, 5.427] (<.001) 4.676 [4.488, 4.876] (<.001)
Category focus −4.785 [−8.112,−1.391] (.997) −6.812 [−10.434,−2.957] (>.999)
Category focus2 2.365 [−0.806, 5.591] (.078) 7.207 [3.231, 11.112] (<.001)
Exp. 3 Shorter time limit Longer time limit
Intercept 5.236 [5.094, 5.382] (<.001) 5.099 [4.917, 5.277] (<.001)
Category focus −5.715 [−8.904,−2.469] (>.999) −2.705 [−5.955, 0.757] (.942)
Category focus2 2.494 [−0.534, 5.938] (.061) 1.179 [−1.812, 4.208] (.223)
Exp. 4 Data points remain Data points vanish
Intercept 6.174 [6.081, 6.268] (<.001) 5.160 [5.021, 5.295] (<.001)
Category focus 0.748 [−1.593, 3.036] (.254) 0.149 [−2.421, 2.696] (.458)
Category focus2 3.781 [1.334, 6.382] (.002) 4.361 [1.440, 7.404] (.003)
Exp. 5 Higher category variance Lower category variance
Intercept 5.640 [5.506, 5.774] (<.001) 6.210 [6.104, 6.320] (<.001)
Category focus −6.554 [−9.580,−3.505] (>.999) 2.710 [0.119, 5.245] (.020)
Category focus2 0.615 [−2.314, 3.635] (.338) 0.194 [−2.220, 2.684] (.439)

Table 4
Regression Results: Prediction Error and Category Focus. Posterior mean estimates from Bayesian random
effects models with prediction error regressed on category focus (using orthogonal polynomials). 95%
credible intervals in brackets and P (β < 0) in parentheses.

Error in the stock predictions is plotted against the category focus in Figure 3. Table

4 contains the results of Bayesian random effects models capturing this relationship. We

also derive and plot the theoretical relationship between the two for comparison (see

Appendix A for details), parameterized based on the experimental design as before.

Participants exhibit more error than the theoretical bound because perceptual limitations

prevent them from extracting the entire information content of the signals. However, the

shapes of the theoretical curves are broadly recapitulated in the data. The empirical

incentive structure of the task thus seems commensurate with the theory.
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These plots reveal that in Experiment 4, the optimal level of category focus is

scarcely affected by the change in signal precision. This null effect occurs largely because

the industry- and stock-level prior variances were equal in that experiment, negating the

benefit of focusing on the category. Hence, the theory entails that under the actual task

conditions, no effect should be expected. This observation underscores the importance of

formal models that predict how category focus emerges from a complex interaction between

environmental variables.

Experiment 5

In the previous experiments, participants were shown the prior variances of the

industry and stock-specific factors. However, in many natural settings, this internal

category structure might be unknown and would have to be learned from experience.

Moreover, it could even change over time without being explicitly signposted. Experiment

5 explores whether people can cope under these more challenging conditions in two ways.

First, can people adjust their attention allocation when the category’s internal statistics

must be learned from minimal information? Second, does the degree of category focus

adapt when these statistics surreptitiously change? This investigation probes the

boundaries of the claim that rational inattention applies well in repeated situations, where

agents might discover the optimal strategy through experience (Maćkowiak, Matĕjka, &

Wiederholt, in press).

Participants. Two hundred and ninety-nine participants from the United States

were recruited on Amazon Mechanical Turk according to the same criteria as the previous

experiments. They were paid a base of $3 plus a bonus of up to $6 based on performance

in the same way as the previous tasks. The sample size was increased because the

treatment (described below) was between-subjects rather than within-subjects.

Participants provided informed consent, and the study was approved by the MIT

Committee on the Use of Humans as Experimental Subjects. The preregistration can be
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found at https://osf.io/y8jcq.

Procedure. The basic elements of the task were similar to those of Experiment 1.

However, in the first block of 10 periods, half of the participants experienced high relative

category variance (σindustry = 30, σstock = 1) and the other half experienced low relative

category variance (σindustry = 1, σstock = 30). In the second block of 10 periods, all

participants encountered equal variances at both levels (σindustry = 15, σstock = 15). The

blocks were not explicitly demarcated, meaning there was no overt sign of this transition.

The design parameters are documented in Table 1.

Exclusions. We use the same preregistered exclusion criteria as the previous

experiments, leaving 228 participants remaining in the analysis.

Results

For consistency with the previous experiments, we conduct similar analyses and

construct the same plots using the data from the first half of the periods in Experiment 5.

The results are displayed in Figures 2, 3, and 4. They replicate our results from

Experiment 1, with small differences due to variation in the design parameters.
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Figure 5 . Dynamics of Category Focus in Experiment 5. Dashed gray line indicates the change point in the
variance structure. Regression lines shown from Bayesian random effects model with 95% credible intervals.

Learning dynamics. The dynamics of category focus are displayed in Figure 5.

Category focus begins at the same level in each condition, as there is hardly any way to
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Category focus
Coefficient First half Second half
Intercept 0.071 [0.043, 0.099] (>.999) 0.020 [−0.014, 0.053] (.878)
High cond. (first) −0.018 [−0.057, 0.022] (.189) 0.085 [0.040, 0.130] (>.999)
Period −0.005 [−0.010,−0.001] (.009) 0.001 [−0.002, 0.004] (.735)
High cond. (first) × Period 0.011 [0.005, 0.017] (>.999) −0.004 [−0.008, 0.000] (.024)

Table 5
Regression Results: Dynamics of Category Focus in Experiment 5. Posterior estimates from Bayesian
random effects models with category focus regressed on experimental condition and period. 95% credible
intervals in brackets and P (β > 0) in parentheses.

determine the statistics with such little data. However, patterns of attention diverge across

the first half of the task as environmental statistics are learned, consistent with rational

principles. Category focus increases in the condition with high relative category variance

where stocks have nearly identical values, while it decreases in the condition with low

relative category variance where stocks have nearly uncorrelated values (interaction

P (β > 0) > .999; see Bayesian random effects regressions reported in Table 5).

After the latent shift occurs halfway through the task, these trends change. Category

focus starts to converge again (interaction P (β < 0) = .976), which makes sense as both

conditions then have the same environmental statistics. Persistent changes do remain

throughout the task. Category focus remains higher in the condition starting with higher

category focus (P (β > 0) greater than 0.95 for periods 7 onward, Bayesian t-tests).

Concluding Remarks

Influential theories rely on the pivotal assumption that learning at the category level

emerges from the rational allocation of limited attention (Peng & Xiong, 2006; Maćkowiak

& Wiederholt, 2009; Kacperczyk et al., 2016). We conduct the most direct empirical test of

this assumption to date. We develop an abstract sampling paradigm which lets us tightly

control the structure of the information environment and reveal attention transparently

using mouse tracking. These design features enable us to directly weigh the data against
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implications of rational inattention. The results indicate that people flexibly adjust their

patterns of attention to category information broadly in line with rational principles.

Future research can build on our work in several ways. First, although our study

assumed a fixed category structure, inattention to individual differences could increase the

stability of category representations by leading people to neglect evidence that certain

members should be recategorized (Kruschke, 2011). For example, in finance, this would be

consistent with lengthy persistence of asset classes until long stretches of poor performance

trigger a reclassification (Barberis & Shleifer, 2003). Meaningful, testable interactions can

hence occur between inference within a category and classification into a category.

Second, more complex interactions between attention and decision making should be

experimentally characterized. The objective function we used was meant to reflect a

generic goal involving the accurate evaluation of each individual item. This allowed us to

cleanly isolate the formation of beliefs, increasing the general applicability of our findings.

However, it may not fully capture the ultimate goal of the decision maker in any given

scenario, such as investing in a portfolio, although the two are related in some cases (Peng

& Xiong, 2006). It would be valuable to investigate further how the downstream uses of

information affect the manner in which information is processed upstream (Gottlieb, 2018).

Our task serves as a useful jumping-off point for such studies.

Third, other tests will be needed to determine whether our findings extend to more

covert forms of attention (Carrasco, 2011). In contrast to some (but not all) models of

rational inattention (e.g., Mondria, 2010), participants could not shape information with

full flexibility. This may be appropriate for settings where information is available in

restricted forms, and might serve as a sensible approximation in other cases, but testing

subtler aspects of attention would require another paradigm.

Finally, our results indicate the need for theories that integrate both “top down” task

relevance and “bottom up” stimulus salience into a unified framework. For example,

Heinke (2019) extends a model of rational inattention to incorporate the salience or
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visibility of signals, producing a rich interplay between active and passive information

processing. Our findings suggest that the scale of the decision problem may influence

attention via both of these pathways. A unified formal perspective on attention is essential

for a truly complete framework.
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Appendix A

Theoretical Model

We present a fully Bayesian variant of the attention allocation problem in Peng and

Xiong (2006), streamlined for the purposes of this study. In the current setup, the agent is

tasked with accurately estimating the values of several random variables, vi, i = 1, . . . , n,

aiming to minimize the expected quadratic loss of his predictions. The variables are

generated according to a hierarchical structure, in which they are equal to the sum of two

components: a shared category factor c, and an idiosyncratic member-specific factor mi, so

vi = c+mi. Both components are drawn from normal distributions, c ∼ N (µc, 1/τc) and

mi ∼ N (µm, 1/τm).

To help form accurate predictions, the agent gains information by collecting noisy

signals about these factors, which requires splitting his limited attention across them. In

each moment of time, he draws a noisy signal from any one of the n+ 1 factors he chooses.

These signals are generated from a normal distribution with mean equal to the true factor

value (c or mi) and precision τε. We denote the jth signal from a given factor as xj0c or xjimi ,

and all signals collectively as x. The agent has a finite attention budget, κ, denoting the

total number of signals available (in this case, the amount of time available for signal

collection multiplied by the frequency at which signals are drawn). He must therefore

choose which fraction λ of time to spend attending to the shared factor c. By symmetry,

the remainder is spread evenly across the idiosyncratic factors mi, so each receives fraction
1−λ
n

of the attention. We ignore the discreteness of signal timing for simplicity.

The posterior distributions of the factors are

c|x ∼ N
(
τcµc + τε

∑
j0 x

j0
c

τc + τελκ
, (τc + τελκ)−1

)
(1)

mi|x ∼ N

τmµm + τε
∑
ji x

ji
mi

τm + τε
(

1−λ
n

)
κ
,
(
τm + τε

(
1−λ
n

)
κ
)−1

 . (2)



Due to independence of the components, the objective is equivalent to minimizing the sum

of their expected posterior variances (with the category factor being weighted more heavily

than each member-specific factor). Assuming an interior solution in what follows,

arg min
λ

V =
[
(τc + τελκ)−1 +

(
τm + τε

(
1−λ
n

)
κ
)−1

]
(3)

∂V

∂λ
=− τεκ

(τc + τελκ)2 +
1
n
τεκ

(τm + τε
(

1−λ
n

)
κ)2

= 0 (4)

λ∗ =
(

1
1 +
√
n

)(
1 + nτm −

√
nτc

τεκ

)
(5)

We define the category focus, λ̄, as the fraction of time spent on the category factor

relative to the average fraction of time spent on the member-specific factors:

λ̄ = λ∗ −
(

1− λ∗

n

)
= λ∗

(1 + n

n

)
− 1
n

(6)

We evaluate how the category focus changes based on various parameters:

∂λ̄

∂τc
= −

(
n+ 1
n+
√
n

)( 1
τεκ

)
< 0 (7)

∂λ̄

∂τm
=
(
n+ 1√
n+ 1

)( 1
τεκ

)
> 0 (8)

∂λ̄

∂κ
= ∂λ̄

∂τε
=
(
n+ 1
n+
√
n

)(
τc −
√
nτm

τεκ

)
< 0 when

√
nσ2

c > σ2
m (9)

These expressions respectively mean that category focus is decreasing in prior

category precision and increasing in prior member-specific precision (i.e., increasing in prior

category variance and decreasing in prior member-specific variance), and decreasing in

attention capacity and signal precision when prior category variance scaled based on the

number of members is greater than prior member-specific variance.

Prediction dispersion. To calculate the theoretical variance of the value

predictions, note first that the category component of the predictions should remain the



same across all members and can thus be ignored. Denote the posterior mean of mi

conditional on x as m̂i =
τmµm+τε

∑
ji
x
ji
mi

τm+τε( 1−λ
n )κ , and observe further that only the term

τε
∑

ji
x
ji
mi

τm+τε( 1−λ
n )κ varies with the signals drawn (and moreover, µm = 0 in the present task).

Suppose J =
(

1−λ
n

)
κ signals are received for each member (again ignoring signal

discreteness for simplicity), and let a = Jτε
τm+Jτε and x̄mi = 1

J

∑
ji x

ji
mi
, so

V ar(m̂i) = V ar(ax̄mi) = a2V ar(x̄mi). By the law of total variance,

V ar(x̄mi) = E[V ar(x̄mi |mi)] + V ar(E[x̄mi |mi]) (10)

= E

[
σ2
ε

J

]
+ V ar(mi) (11)

= σ2
ε

J
+ σ2

m (12)

a2V ar(x̄mi) =
(

Jτε
τm + Jτε

)2 (σ2
ε

J
+ σ2

m

)
(13)

= (Jτε)2

(τm + Jτε)2

( 1
Jτε

+ 1
τm

)
(14)

= (Jτε)2

(τm + Jτε)2

(
τm + Jτε
τmJτε

)
(15)

= Jτε
τm(τm + Jτε)

. (16)

Observe that as the number of member-specific signals J grows large (small λ), the

variance of the posterior means will converge to the prior variance of the member-specific

factor, σ2
m, because that is the level of irreducible uncertainty. Further, when no

member-specific signals are acquired (J = 0, large λ), the variance of the posterior means

equals zero, because there is nothing to distinguish each member and so the exact same

prediction will be made for all of them. As category focus increases (and hence J

decreases), the prediction variance will decrease from σ2
m to 0.

Prediction accuracy. The theoretical error of the value predictions can be

obtained by observing that the posterior variance is the Bayes estimator of the quadratic



loss (Roberts 2007). Thus, the error can be simply given as the posterior variance

(τc + τελκ)−1 +
(
τm + τε

(
1−λ
n

)
κ
)−1

.

Response noise. There is also variation that may be caused by response noise due

to the experiment’s slider interface. Assuming it is normally distributed for tractability, it

can be included in the calculations for prediction error and variance by simply adding in its

variance. In the main text, when plotting the theoretical predictions, we roughly calibrate

this level of response noise to the data. Specifically, we set the standard deviation of

response noise to be the 10th percentile of prediction standard deviations across all

(included) periods in each experiment. This provides a balance between finding the

minimal level of variation (corresponding to uncontrollable noise) while avoiding undue

influence from outliers (either participants or periods with unusually low noise). In Figure

S1, we show the same plot as in the main text connecting prediction dispersion and

category focus, but without any response noise. This plot reveals that the main effect of

response noise is to produce a floor on the prediction dispersion, which can attenuate the

link to category focus when prediction dispersion is already low. For example, this

attenuation is visible in the high category variance condition of Experiment 1.
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Supplemental Material, Figure S1 . Prediction Dispersion and Category Focus Without Response Noise.
Relationship between category focus and dispersion in stock value predictions in the same period. (Left)
Data, binned averages with quadratic regression lines and 95% credible intervals from Bayesian random
effects models. (Right) Theory, without response noise.



Appendix B

Comprehension Check

1. If the industry factor is −8, and the stock-specific factor for A is 30, what is the

total value of stock A?

• 30

• 38

• −8

• 22 (correct)

2. If the industry factor is 10, the stock-specific factor for A is −15, and the

stock-specific factor for B is 5, what is the total value of stock A?

• 10

• 15

• −5 (correct)

• −15



Appendix C

Model Fitting

We fit an extended version of the theoretical model to capture how individual

participants integrate signals to form their predictions. Suppose that J0 signals are

obtained for the category factor and Ji signals are obtained for a given stock-specific factor.

Using the notation from Appendix A, we suppose that the prediction of Stock i’s value is

constructed as ĉ+ m̂i where

ĉ =
τcµc +∑

j0 τ
j0
ε,cx

j0
c

τc +∑
j0 τ

j0
ε,c

(17)

m̂i =
τmµm +∑

ji τ
ji
ε,mx

ji
mi

τm +∑
ji τ

ji
ε,m

(18)

are the posterior means of the category and stock-specific factors conditional on the

acquired signals, with two modifications. First, we allow the subjective weights placed on

signals from the category factor (τε,c) and the stock-specific factors (τε,m) to differ. Second,

we allow these weights to differ depending on when the signal was received (τ j0ε,c and τ jiε,m).

Specifically we add another parameter (ψ) which allows a different weight to be placed on

the last signal seen for each factor, to reflect its increased salience as it was highlighted and

displayed numerically in Experiments 1–3:

τ j0ε,c =


τε,c when j0 < J0

ψτε,c when j0 = J0

(19)

τ jiε,m =


τε,m when ji < Ji

ψτε,m when ji = Ji

(20)

The special case of ψ = 1 represents no effect of salience.

Finally, to translate this point estimate into a response distribution that includes



noise due to extraneous factors such as the slider response paradigm, we assume the

prediction is input with Gaussian response noise and hence is given by N (ĉ+ m̂i, σ
2
response).

Accordingly, we fit 4 free parameters to the data for each individual: the weight

placed on category-level signals (τε,c), the weight placed on stock-specific signals (τε,m), the

last signal salience weight (ψ), and the response noise (σresponse). The remaining variables

(µc, µm, τc, τm, xj0c , xjimi , J0, and Ji) are determined from the data or design parameters.

We fit the model using Bayesian parameter estimation, with the following weakly

informative priors, where τε,c and τε,m are scaled up by 100: τε,c ∼ Cauchyx>0(1, 10),

τε,m ∼ Cauchyx>0(1, 10), ψ ∼ Cauchyx>0(1, 10), and σresponse ∼ Cauchyx>0(0, 25), where

Cauchyx>0(x0, γ) denotes the Cauchy distribution truncated below at zero with location

parameter x0 and scale parameter γ. The summary statistics of the fitted parameters are

in Table S1. See van Doorn, Ly, Marsman, and Wagenmakers (2020) about Bayesian

signed rank and rank sum tests. Regressions of prediction dispersion on the parameters are

in Tables S2 and S3.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5
high many brief vanish high

Parameter low few lengthy remain low
τε,c 0.353 [0.490] 0.391 [0.572] 0.443 [0.577] 0.263 [0.643] 0.202 [0.372]

1.492 [0.892] 0.478 [0.578] 0.389 [0.506] 0.446 [0.531] 1.122 [0.350]
P (diff. > 0) (<.001) (.103) (.929) (<.001) (<.001)
τε,m 2.290 [1.267] 2.062 [0.985] 2.335 [0.992] 0.309 [0.565] 1.254 [1.104]

0.802 [0.825] 1.846 [1.143] 1.986 [0.715] 1.207 [1.036] 0.139 [0.323]
P (diff. > 0) (>.999) (.990) (.999) (<.001) (>.999)
ψ 2.997 [1.777] 2.866 [1.756] 3.090 [1.421] 1.112 [0.917] 1.079 [1.183]

3.069 [1.528] 2.261 [1.800] 2.983 [1.536] 1.247 [0.803] 0.788 [0.607]
P (diff. > 0) (.332) (.996) (.695) (.088) (.927)
σresponse 9.225 [4.317] 10.790 [6.719] 9.798 [5.096] 15.977 [3.586] 12.778 [3.981]

8.293 [4.265] 10.176 [5.895] 10.445 [5.074] 9.989 [4.000] 17.631 [4.511]
P (diff. > 0) (.988) (.792) (.042) (>.999) (<.001)
Supplemental Material, Table S1
Parameter Estimates. Means shown with standard deviations in brackets. The posterior probability that the
difference across conditions is positive is shown in parentheses, according to a Bayesian signed rank test
(Exps. 1–4) or a Bayesian rank sum test (Exp. 5).



Variable log(1 + Prediction SD)
Exp. 1 Higher category variance Lower category variance
Intercept 1.502 [1.295, 1.706] (>.999) 3.051 [2.879, 3.223] (>.999)
τε,c 0.085 [−0.014, 0.186] (.952) 0.087 [0.041, 0.135] (>.999)
τε,m 0.065 [0.026, 0.103] (>.999) 0.071 [0.021, 0.120] (.998)
ψ 0.040 [0.011, 0.067] (.998) 0.001 [−0.027, 0.028] (.517)
σresponse 0.057 [0.044, 0.070] (>.999) 0.006 [−0.006, 0.017] (.849)
Category focus 0.022 [−1.141, 1.194] (.515) −1.372 [−2.914, 0.111] (.035)
Category focus2 0.112 [−1.157, 1.501] (.564) 0.541 [−0.858, 1.893] (.782)
Exp. 2 Larger category size Smaller category size
Intercept 1.601 [1.327, 1.883] (>.999) 1.087 [0.832, 1.342] (>.999)
τε,c −0.136 [−0.256,−0.019] (.014) 0.004 [−0.113, 0.126] (.517)
τε,m 0.116 [0.040, 0.191] (.999) 0.121 [0.055, 0.185] (>.999)
ψ 0.057 [0.012, 0.102] (.994) 0.039 [−0.002, 0.079] (.969)
σresponse 0.041 [0.029, 0.053] (>.999) 0.051 [0.037, 0.065] (>.999)
Category focus −1.473 [−3.541, 0.756] (.090) −1.333 [−3.381, 0.757] (.098)
Category focus2 −0.003 [−1.496, 1.525] (.496) −0.912 [−3.256, 1.558] (.222)
Exp. 3 Shorter time limit Longer time limit
Intercept 1.574 [1.327, 1.829] (>.999) 1.462 [1.208, 1.720] (>.999)
τε,c −0.050 [−0.143, 0.039] (.141) 0.032 [−0.073, 0.133] (.720)
τε,m 0.077 [0.019, 0.136] (.995) 0.091 [0.006, 0.173] (.983)
ψ 0.070 [0.031, 0.110] (.999) 0.051 [0.015, 0.088] (.997)
σresponse 0.042 [0.031, 0.054] (>.999) 0.051 [0.040, 0.063] (>.999)
Category focus −1.458 [−2.867,−0.036] (.022) −1.206 [−2.645, 0.393] (.070)
Category focus2 −0.763 [−2.088, 0.563] (.126) −1.579 [−3.006,−0.023] (.024)
Exp. 4 Data points vanish Data points remain
Intercept 2.331 [2.129, 2.538] (>.999) 2.803 [2.665, 2.942] (>.999)
τε,c −0.075 [−0.139,−0.012] (.011) 0.016 [−0.045, 0.076] (.693)
τε,m 0.088 [0.013, 0.164] (.990) 0.074 [0.038, 0.109] (>.999)
ψ −0.032 [−0.074, 0.012] (.073) −0.015 [−0.054, 0.023] (.228)
σresponse 0.034 [0.022, 0.046] (>.999) 0.011 [0.002, 0.020] (.990)
Category focus −2.535 [−3.931,−1.171] (<.001) −1.251 [−2.382,−0.104] (.017)
Category focus2 −0.540 [−1.951, 1.009] (.227) −1.200 [−2.367,−0.047] (.020)

Supplemental Material, Table S2
Regression Results, Exps. 1–4: Prediction Dispersion and Model Parameter Estimates. Posterior mean
estimates from Bayesian random effects models with prediction dispersion regressed on fitted model
parameters. 95% credible intervals in brackets and P (β > 0) in parentheses.



Variable log(1 + Prediction SD)
Exp. 5 Higher category variance Lower category variance
Intercept 1.366 [1.143, 1.596] (>.999) 2.568 [2.365, 2.784] (>.999)
τε,c −0.112 [−0.259, 0.036] (.069) −0.069 [−0.202, 0.057] (.153)
τε,m 0.018 [−0.039, 0.071] (.745) 0.182 [0.040, 0.322] (.992)
ψ 0.010 [−0.034, 0.057] (.671) −0.010 [−0.088, 0.067] (.406)
σresponse 0.077 [0.063, 0.091] (>.999) 0.037 [0.026, 0.047] (>.999)
Category focus −0.109 [−1.733, 1.557] (.434) −2.149 [−3.310,−0.966] (<.001)
Category focus2 −0.319 [−2.045, 1.527] (.361) −2.029 [−3.293,−0.829] (<.001)

Supplemental Material, Table S3
Regression Results, Exp. 5: Prediction Dispersion and Model Parameter Estimates. Posterior mean
estimates from Bayesian random effects models with prediction dispersion regressed on fitted model
parameters. 95% credible intervals in brackets and P (β > 0) in parentheses.



Appendix D

Correlations Between Participant Predictions and True Values
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Supplemental Material, Figure S2 . Correlations Between Participant Predictions and True Values.
Distribution of correlation coefficients for all participants. Mean and median values reported with
bootstrapped 95% confidence intervals in parentheses.



Correlations Between Participant Predictions and Fitted Model Predictions
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Correlations Between Fitted Model Predictions and True Values
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Appendix E

Within-Period Attention Trajectories
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Supplemental Material, Figure S5 . Examples of Attention Trajectories. Number denotes period number.
Dashed gray line indicates the position of the industry for the participant.
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Supplemental Material, Figure S6 . Number of Attention Switches. Number of times that attention switches
from one factor to another, relative to the total number of factors. Means with 95% confidence intervals.

Attention trajectories tend to follow a waterfall or cascade type pattern, going from

top to bottom, as is visible in the example trajectories shown in Figure S5. There is

sometimes also a return of attention to the industry factor at the end after some signals

have been acquired from all of the factors. The number of attention switches relative to the

number of factors is shown in Figure S6. A pure cascade pattern would yield a ratio of 1.

The ratio is especially elevated when going from many stocks to few stocks (in Experiment

2) or from a short time limit to a long time limit (in Experiment 3). In both of these

situations, the participant is moving from a more stringent environment to a more relaxed

one, and so may be more lax with their attention trajectory.



Across-Period Dynamics
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Supplemental Material, Figure S7 . Category Focus Across Periods and Blocks. Color indicates which block
was encountered first. Error bars depict 95% confidence intervals.



Coefficient Category focus
Exp. 1 Higher category variance Lower category variance
Intercept 0.084 [0.038, 0.129] (>.999) 0.041 [0.000, 0.084] (.975)
Period 0.010 [0.003, 0.017] (.998) −0.004 [−0.009, 0.002] (.083)
Block 0.020 [−0.042, 0.085] (.740) 0.080 [0.020, 0.140] (.996)
Period × Block −0.009 [−0.019, 0.001] (.040) 0.002 [−0.006, 0.010] (.698)
Exp. 2 Larger category size Smaller category size
Intercept 0.099 [0.056, 0.143] (>.999) 0.025 [−0.036, 0.088] (.782)
Period 0.011 [0.003, 0.020] (.996) −0.005 [−0.013, 0.004] (.126)
Block 0.036 [−0.027, 0.098] (.879) 0.098 [0.011, 0.188] (.985)
Period × Block 0.001 [−0.011, 0.013] (.569) −0.007 [−0.019, 0.004] (.113)
Exp. 3 Shorter time limit Longer time limit
Intercept 0.086 [0.027, 0.145] (.998) 0.102 [0.048, 0.154] (>.999)
Period 0.014 [0.008, 0.021] (>.999) 0.001 [−0.006, 0.008] (.594)
Block 0.075 [−0.010, 0.155] (.960) 0.066 [−0.009, 0.142] (.960)
Period × Block −0.013 [−0.023,−0.004] (.003) −0.004 [−0.014, 0.006] (.203)
Exp. 4 Data points vanish Data points remain
Intercept 0.105 [0.071, 0.141] (>.999) 0.041 [0.008, 0.076] (.992)
Period −0.007 [−0.011,−0.003] (<.001) −0.001 [−0.007, 0.005] (.383)
Block −0.065 [−0.113,−0.020] (.003) −0.005 [−0.058, 0.046] (.424)
Period × Block 0.005 [0.000, 0.010] (.970) 0.005 [−0.005, 0.015] (.858)

Supplemental Material, Table S4
Across-Period Dynamics of Category Focus. Posterior estimates from Bayesian random effects models
predicting category focus from period and block number. Block is a dummy variable indicating the second
block. 95% credible intervals in brackets and P (β > 0) in parentheses.

Across periods, there is some evidence of learning dynamics, as indicated by the

positive coefficients on the period term in the regressions of Table S4. These dynamics

appear only in the experimental conditions that demand a greater emphasis on the

category, with hints of the opposite pattern in the other conditions. Across blocks, people

tend to start off closer to the Bayesian benchmark in the second block, especially in the

conditions fostering lower category focus. This is formally suggested by the generally

positive coefficients on the block term in Table S4, although this effect could also simply

reflect a spillover of strategies from one environment to the next.



Appendix F

Order Effects

Supplemental Material, Figure S8 . Attention and Serial Position. Means shown with 95% confidence
intervals.


