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We consider the problem of comparing a finite number of stochastic systems with respect
to a single system (designated as the “standard”) via simulation experiments. The
comparison is based on expected performance, and the goal is to determine if any system
has larger expected performance than the standard, and if so to identify the best of the alter-
natives. In this paper we provide two-stage experiment design and analysis procedures to
solve the problem for a variety of scenarios, including those in which we encounter unequal
variances across systems, as well as those in which we use the variance reduction technique
of common random numbers and it is appropriate to do so. The emphasis is added because in
some cases common random numbers can be counterproductive when performing compar-
isons with a standard. We also provide methods for estimating the critical constants required
by our procedures, present a portion of an extensive empirical study, and demonstrate one

of the procedures via a numerical example.

(Simulation; Multiple Comparisons; Ranking and Selection; Output Analysis)

1. Introduction

We consider an important case of the general class of
problems that require comparing a finite and relatively
small number of simulated systems in terms of their
expected performance. By small we mean less than 20
systems.

There has been recent interest in the specific prob-
lem of determining the best of these systems, where
“best” means maximum or minimum expected per-
formance of a single common performance measure.
See, for instance, Goldsman et al. (1991), Matejcik
and Nelson (1995), Nakayama (1995), Nelson and
Matejcik (1995), Yang and Nelson (1991), and the ref-
erences therein. This work has yielded a rich collec-
tion of procedures, including two-stage procedures
that guarantee with high probability (or confidence)
that the best system is chosen, and simultaneously
guarantee that confidence intervals for the difference
between each alternative’s performance and the best
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system’s performance contain the true differences. In
this paper we derive procedures with very similar
characteristics that apply to problems in which one of
the systems is singled out as the standard or bench-
mark, and the others are evaluated with respect to the
standard as well as with respect to each other.

A basic rule of thumb when comparing systems is
that sharper inference is obtained by focusing only on
the specific comparisons that are relevant to the appli-
cation at hand (Hsu 1996, Ch. 2). For instance, when
it is important to select the best, and the number of
observations is fixed, then the procedures cited above
are more statistically efficient—meaning more likely
to detect actual differences between each system and
the best—than procedures that provide all pairwise
comparisons among the alternatives. Similarly, when
we desire comparisons with respect to a standard,
we are more likely to obtain conclusive results if
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we derive procedures that specifically deliver those
comparisons.

In many applications the expected performance of
the standard, as well as the expected performance
of the alternatives, is unknown. For example, the
standard might be an existing system that is being
considered for replacement, but it is nevertheless sim-
ulated to provide a fair comparison with the alterna-
tives. A second example occurs when the standard is
the (known) least-cost system design, the design that
will be implemented unless more expensive alterna-
tives can significantly better its performance in terms
of some measure other than cost. In the statistics liter-
ature this type of problem is known as “comparison
with a control.”

In other applications the performance of the stan-
dard may be considered known or certain (so that its
variance is zero). An example is an existing system
that has been in place long enough that its long-run
average performance is well documented; the simula-
tion might be undertaken to evaluate various upgrade
strategies. A second example of a known standard
is a goal or requirement—such as responding to cus-
tomer calls within 30 minutes—when the purpose
of the simulation study is to determine which sys-
tem designs can meet or beat this standard. Clearly,
a known standard is a limiting case of an unknown
standard as the performance of the unknown stan-
dard becomes more and more certain. We unify the
treatment of the known and unknown standard cases
in this paper.

The procedures that we develop here share the fol-
lowing characteristics:

1. They require that the simulation experiment be
performed in two stages, a first stage to assess the
variability of the simulation output, and a second
stage designed to achieve the desired precision of the
comparison.

2. They exploit the concept of an indifference zone,
which is an experimenter-specified difference in
expected performance that is deemed practically sig-
nificant, and therefore worth detecting.

3. They yield a decision, either that no alternative
is better than the standard or that one or more of them
is better. When at least one of the alternatives is better,
the procedures indicate which alternative is the best.
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These decisions are guaranteed to be correct with an
experimenter-specified probability.

4. They provide the following bounds: bounds on
the difference between each alternative and the stan-
dard, when none of the alternatives betters it; and
bounds on the difference between each alternative
and the best of the others when one or more of the
alternatives is better than the standard. These bounds
are also guaranteed to be correct with at least an
experimenter-specified probability.

Our procedures extend the work of Bechhofer and
Turnbull (1978) and Paulson (1952) by adapting them
to handle unequal variances and common random
numbers—conditions frequently encountered in sim-
ulation experiments—and by adding the bounds on
the differences. Like this earlier work, the specific pro-
cedures we derive depend on the simulation output
data being normally distributed.

A characteristic of our procedures (and those of
Bechhofer and Turnbull 1978 and Paulson 1952) is that
they require one or more critical constants, constants
that are neither easily calculated nor readily tabled.
To remedy this problem, we also exhibit methods
to estimate upper bounds on these constants, bounds
that hold with an experimenter-specified probability.
Because the probability that our procedures achieve
their objectives is an increasing function of the critical
constants, employing upper bounds ensures that the
objectives are achieved with at least the prespecified
probability.

The paper is organized as follows: The next sec-
tion presents the generic comparison-with-a-standard
procedure and establishes the key probability state-
ments that guarantee its success. These key statements
do not depend upon the output data being normally
distributed. Section 3 customizes the generic proce-
dure for different properties of the simulation output
data; all of these customizations depend on normal-
ity. Section 4 shows how to estimate the critical val-
ues required by some versions of the comparison
procedure. Section 5 presents a portion of an empiri-
cal evaluation of these procedures, while §6 explicitly
illustrates one of them via a numerical example.
Finally, §7 describes some direct extensions of the
research. The longer proofs are contained in the online
companion to this paper, available on the Management
Science website at (mansci.pubs.informs.org).
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2. Framework

In this section we precisely define the comparison
problem of interest and put in place the framework
that we use to derive procedures.

Let m; denote the ith system, for i =0,1,...,k,
where m, is the designated benchmark or standard.
Let X represent the jth output (typically a sam-
ple average from within a replication or batch) from
system i. In this paper X;;, X,,... are taken to be
independent and identically distributed (i.i.d.), a con-
dition that is always true for replications, and is
approximately true when batching within a single
long replication if the underlying stochastic process is
stationary and the batches are sufficiently large.

System i has expected performance u; = E[X;], and
we denote the ordered but unknown means for alter-
native (nonstandard) systems 1,2, ...,k as

Mg = M) = -0 = Mg

The system associated with uj; is unknown, but is
denoted ;. The expected performance of the stan-
dard is denoted as u,. Without loss of generality, we
assume that a larger expected value corresponds to
better performance.

All of our procedures are based on estimating the
true mean, u;, by a sample mean, so we let Z denote
the sample mean of all of the observations from sys-
tem i, and let }_([l-] denote the sample mean associated
with the (nonstandard) system having mean w;;. The
X7 need not be ordered, in contrast to X;, which
denotes the ith smallest (nonstandard) sample mean;
that is,

Xo = Xgy =0 = X

We wish to retain the standard when none of the
alternatives is better, and we wish to select the best
of the alternatives when it is at least a practically
significant amount & better than everything else. The
parameter 0 is called the indifference-zone parameter. 1f
the best alternative is less than & better than the other
alternatives or the standard, then we are indifferent
to which of these “good” systems we select. We will
show that our procedures guarantee, with probability
at least 1 — «a, that the selected system is within 6 of
the best regardless of the configuration of the true means.
Of course, if the experimenter sets 6 to be very small,
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the procedures may sometimes need to make fine dis-
tinctions between close competitors, and then a great
deal of sampling may be required. In any case, as we
will show, our goals will be achieved if the following
hold:

Pr{select my} > 1—a whenever wy > uyy. (1)
Pr{select 7y} > 1 —a whenever
Mg = Mp-q) 6 and ppg > pg + 6. 2

Our procedures provide a constant, ¢, and an algo-
rithm to determine the number of outputs, N, to be
obtained from ;, such that (1) and (2) hold when
we apply the following rule: Choose the standard if
)_((k) < X, + c; otherwise choose the alternative associ-
ated with X;,. When the expected performance of the
standard is known, then replace X, by w, in the rule.

A generic version of our procedure, where we
implicitly assume that each system has finite variance,
is as follows:

Generic Comparison-with-a-Standard Procedure

Step 0. Given k alternative systems and a standard,
specify an initial sample size, 1, an indifference-zone
parameter 6, and a confidence level 1 — a. Determine
appropriate constants ¢ and h, and let c =6h/g.

Step 1. Generate a sample X;;, Xp, ..., X,
system i, for i =0,1,2,... , k.

Step 2. Compute the appropriate variance estima-
tor S? for each system i.

Step 3. Determine the required total sample size
from system i as

oo ]
_ max{no, R’%S) ” ©)

where [x] denotes the least integer that is greater than
or equal to x.

Step 4. Obtainadditional outputs X; ,, 11, X; 12, - - -,
X; n, from system i if needed, and compute the overall
sample mean

from

fori=0,1,2,...,k.
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Step 5. With confidence level greater than or equal
to 1 —«, apply the following rule:
Step 5a. If )_((k) < X, + ¢, then choose the stan-
dard and form the one-sided joint confidence inter-
vals

X;+c (4)

fori=1,2,...,k.

Step 5b. Otherwise, choose the alternative asso-
ciated with the largest sample mean X, and form
the multiple comparisons with the best (MCB) confidence
intervals

Mi — maxp, € |:_<Xi —maxX, —5) ,

(Z —maxX, + 8)+] (5)

fori=0,1,2,...,k, where —x~ =min{0, x}, and x* =
max{0, x}.

CoMMENT. If pu, is known, then we do not need to
sample from system 0, and we replace X, by y, in
Step 5.

CoMMENT. If smaller expected performance is bet-
ter, then simply multiply all of the observations by —1
before applying the procedure.

We now derive the fundamental probability state-
ments that guarantee a correct selection. In this
section our only requirement on Xj; is that the distri-
bution of X;; —u; is independent of y;; a sufficient con-
dition is that the Xj; are normally distributed. We will
use the notation “Vi, ,” to meani=a,a+1,...,0.

The generic algorithm will ensure that (1) holds if

Pr{X;<X,+c, Vi } 21—« (6)

whenever u, > u;, Vi;.,. Notice that (6) depends on
the unknown means u;. However, if w, > u;, Vi, 4,
then

Xi—Xo) — (wi — o) < ¢, Vilmk}/ 7)

and (7) does not depend on the unknown means. Sim-
ilarly, (2) will hold if

(}_(z' - }_(0) — (i — o) < ¢ — (K — Mo), Vilmk}
(

Pr {)_([k] > X,+c, )_([k] > }_([i], Vipya}=1—a (8)
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whenever g > -y +86 and pyy > po+8. Again, (8)
depends on the unknown means u;. However, if ;>
M1 +6 and ppy > po + 8, then

Pr {X[k] >§0 + C,_X[k] > X[,‘] ’ Vil.“kfl }
= L{ (X[lg]__ Xo) = (kg — o) > € — (g — o),
(X[k] - X[i])__ (M[k] - M[i]) > = (M[k] - M[z’])/ Viy g }
z PL{ (X = Xo) = (Mg — Mo) > € =9,
(X[k] _X[i]) - (/J“[k] —,U«[i]) > _SIVil---k—l}f )

and (9) is independent of the unknown means. There-
fore, we can attain (1) and (2) if we can derive a pro-
cedure that simultaneously guarantees that

Pr{()zz'_}_{o_)_(l’vi_l’vo)SCrVil---k}Zl—a (10)
Pr {(_X[k] —_Xo) - (M[k] — o) >c—9,
(X = Xiip) — (g — M) > _8/V11---k—1} >1—a. (11)

When w, is known, then we replace X, by w, in (10)
and (11).

We derive procedures for a variety of cases in §3,
where we assume that the simulation output data are
normally distributed. However, (10) and (11) depend
only on the weaker condition that the distribution of
X — i; is independent of ;. Therefore, procedures
for other types of data could be based on satisfying
(10) and (11) provided appropriate constants g and h
can be determined.

We have shown that (10) and (11) guarantee a cor-
rect selection with probability > 1 — a. The following
theorem shows that (10) and (11) are also sufficient
to establish the confidence intervals in Step 5 of the
generic procedure:

THEOREM 1. If (10) and (11) hold and the distribution
of Xj; — p; is independent of w;, then the events (4) and (5)
occur individually with probability greater than or equal to
1-a.

Proor. That (4) holds with probability greater than
or equal to 1 —a follows immediately from (10). To

show that (5) holds, we first assume that wq > py_q+
8 and ppy > po+ 0. Then, since ¢ > 0, we have

Pr{ Xy > Xo, Xy > Xy Vi i1}
> Pl‘ {X[k] > XO + c, X[k] > X[i]’ Vll...k_l}
= 1 -,

where the last inequality follows because (11) implies
(8). Therefore, (5) holds with probability greater than
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or equal to 1 —a by Theorem 1 of Nelson and Matejcik
(1995). O

As a consequence of our Theorem 1, we are guar-
anteed that the mean of the system with the largest
overall sample mean (be it the standard, or one of the
alternatives) is within 8 of the largest true mean with
probability greater than or equal to 1 — o under all pos-
sible configurations of ug, My, ..., ;. To state the fol-
lowing corollary, let B denote the index of the system
with the largest overall sample mean.

CororLARY 1. If (10) and (11) hold and the distribu-
tion of X; — p; is independent of w;, then

Pr [,LLB—I?EBX,LL[ > —6} >1—a.
Proor. From Theorem 1, we know that

Mp —MaXfL, € [—(XB—rggBXxe—ﬁ) ,
()_(B —max X, + 6)+i|
B

occurs with probability greater than or equal to 1 —a.
But since X, > X,, V{,_;, the smallest possible value
of the lower bound is —6. O

Notice that we may still select the standard even
if X, is not the largest sample mean, because our
requirements (1) and (2) favor the standard, seeking
to retain it even if it is tied with the best. Thus, we
require substantial evidence before giving up the stan-
dard. Corollary 1 guarantees that we get a “good” sys-
tem, with high probability, if we select the one with
the largest sample mean.

3. Procedures

We have derived specific instances of the generic
comparison-with-a-standard procedure to handle the
types of data encountered in simulation. Specifically,
we consider the following cases:

Status of the Standard. We consider the case in
which u, is known and when it is unknown and must
be estimated along with the expected performance of
the alternatives. When u, is unknown, it may be esti-
mated via a simulation experiment or by collecting
data on the real system.

MANAGEMENT ScIENCE/Vol. 47, No. 3, March 2001

Unequal Variances Across Systems. All of our pro-
cedures permit unequal variances across systems,
although Case C is an approximation when the vari-
ances are not all the same. This is one of the contri-
butions of our work beyond that of Bechhofer and
Turnbull (1978) and Paulson (1952).

Dependence Across Systems. We develop procedures
in which all systems are simulated (or sampled, if
m, is a real system) independently. For the case of
unknown p,, we also develop procedures in which
the simulations of all systems are driven by common
random numbers (CRN), inducing dependence across
systems. One way we account for the effect of CRN
is to assume that the induced variance-covariance
matrix across systems satisfies a condition known
as sphericity. In brief, assuming sphericity leads to a
procedure that approximates the variance of the dif-
ference between observations from any two of the
systems by the average variance of the difference
between observations from all pairs of systems. See
Nelson (1993) and Nelson and Matejcik (1995) for fur-
ther discussion of the implications of sphericity, as
well as empirical tests for it.

We also show that it may be counterproductive to
use CRN when pu, is known, or u, is unknown and
estimated independently of the alternatives. There-
fore, we do not derive CRN-compatible procedures
for these cases.

For readers only interested in applications, §3.1
gives the essential information required to customize
the generic procedure for various cases. The proofs
are in the online companion.

3.1. Customizing the Generic Procedure
All of our procedures require critical values (g, /) that
satisfy

Pr{H<h}=1-a,
PriG=gl=1-a,

where H and G are random variables whose distribu-
tions depend on whether or not we know u,, we use
CRN, or we assume sphericity. In addition, all of the
procedures require a variance estimator S? associated
with system i from the first-stage sample (Step 2). In
this section we collect the definitions of G, H, and
Sf for each of the cases considered below. To do so,
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let Zy,Z,,...,Z; be iid. N(0,1) random variables;
let Y,,Y;,..., Y, be iid. y* random variables, each
with 1y —1 degrees of freedom and independent of
the Zs; let T,T,,T,,..., T, be iid. t random vari-
ables, each with 1, —1 degrees of freedom; and let
(91,9,,...,9,) be a multivariate-t random vector
with common correlation 1/2 and k(n, —1) degrees
of freedom. In the formulas below a - subscript indi-
cates averaging with respect to that subscript for the
1, observations from the first stage of sampling.

Case A. py known, alternative systems simulated
independently, the X;; are normally distributed, and
the variances across systems may be unequal.

H=max|{T,, T,,..., T,};
G = max{Z[(n,—1)/Y,]"?
+h, Zi[(ng = 1) A/ Y;+1/Y)1V?, Vi 4 q);
1y .
52 = Z(X’] - XZ‘A)Z-
j=1

1

ny—1°

Case B. pm, unknown, all systems simulated inde-
pendently, the X;; are normally distributed, and the
variances across systems may be unequal.

H = max{Z;[(n, —1)(1/Y; + 1/Y0)]1/2r Vil
G = max{Zy[(n,—1)(1/ Y+ 1/Yk)]1/2
+h, Z[(ng— 1)1/ Y, +1/Y)]V?, Viy x4}

§ = —— Y (X - X
110—1 par ij i

Case C. py unknown, all systems simulated using
CRN, and (X;, X, --. , X;;) have a multivariate nor-
mal distribution whose variance-covariance matrix
satisfies sphericity.

H=max{7;,7,, ..., T},
G=max{F,+h,T,,...,T};

2 _ 2 2 O Y ¥ LX)
S?=8"= m;g(&;j X=X +X)"
Case D. u, unknown, all systems simulated using
CRN, and (Xy;, Xyj, ... , X};) have a multivariate nor-
mal distribution whose variance-covariance matrix
is unknown. For Case D, whose proof exploits the
Bonferroni inequality, it is easier to provide somewhat
different definitions of ¢ and h; in particular, (g, /)
simultaneously solve

1—kPr{T > h}=1—«a;
1-Pr{T+h>g}—(k—1)Pr{T>g}=1-«a
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(such a solution exists and is unique). The variance
estimator for Case D is

Sf:?:max{ ! i[(XZ’j—XU)—(Z.—}_(Z‘)T},

i, it | ng—1 =t

the largest variance of the difference.

Notice that Cases C and D use a common sam-
ple size N for all systems. In §4 we provide a proce-
dure for estimating the quantiles (g, ) for Cases A, B,
and C. For Case D, a simple numerical search suffices.

3.2. The Issue of Normality

Cases A-D all assume that the simulation output data
are normally distributed, either marginally or jointly.
Normality of the first-stage observations is important
because the joint distribution of X; and S? is central to
the derivations of the procedures. Therefore, it makes
sense to consider whether or when this is a reasonable
expectation for simulation output data.

In many simulation studies the basic output data
Xi,Xip, ... are themselves averages of large num-
bers of other more basic outputs. For example, if
X1, Xip , ... correspond to different replications, and
the performance measure is expected cycle time for
a product, then X;; would typically be the average of
the cycle times for a large number (perhaps hundreds)
of individual products that were completed during
the jth replication. In this case, the central limit the-
orem suggests that approximate normality of the X;;
may be anticipated.

Clearly situations do arise in which the output from
each replication is not even approximately normally
distributed. For instance, if each replication produces
a single observation of time to failure for a system,
then there is no a priori reason to expect normal-
ity. However, if a large number of replications can be
obtained, say m, then Goldsman et al. (1991) suggest
that they be partitioned into n, “macroreplications,”
each consisting of m/n, “microreplications.” The aver-
age value within each macroreplication is then treated
as the basic output data value. If m is large enough,
then the microreplication averages will be approxi-
mately normally distributed.

Even when only a single replication is obtained
in order to estimate long-run performance in a
steady-state simulation, we may anticipate that the
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X, Xip, ... will be approximately normally dis-
tributed if they correspond to nonoverlapping batch
means of many individual observations. Batch-size
analysis in Matejcik and Nelson (1995) then suggests
that the number of batches be kept to roughly 40, so
that each batch mean is based on a very large number
of observations. This same guideline applies to the
number of macroreplications that should be formed
when outputs are obtained across replications.

In §5, we present empirical examples to investigate
the robustness of our procedures to departures from
normality.

3.3. CRN May Be Counterproductive

We have not presented procedures that incorpo-
rate CRN for the simulation of the alternatives
my, My, ... , T when m, is simulated or sampled inde-
pendently, or when , is known so that 7, is not sim-
ulated at all. In this section we present a brief anal-
ysis that shows why CRN may be counterproductive
in these cases, and it is therefore safer to simulate the
alternatives independently.

Suppose that we have k = 2 alternatives, u, is
known, and we take exactly one observation from
each of the alternative systems, yielding data (X;, X,).
Suppose further that (X;, X,) has a bivariate normal
distribution with parameters (u,, 4y, 07, 02, p). We
assume p > 0, representing the effect of CRN.

For this simple example, the lower bound on PCS
(11) becomes

Pr{Xpy — ppy > ¢ =8, (Xp — Xpyy) — (g2 — opyy) > —96}
= Pr{Xp — ppy < 8—c, (X = Xp)

- (M[Z] —M[1]) <8} (12)

Basic mathematical statistics shows that

Y= COV[(X[z] - M[z])/ (X[z] - X[l]) - (M[z] - M[l])] <0

if p > opy/0p; (Where 0'[21.] is the variance of system
m;7); this is certainly possible when the variances are
unequal. However, by Slepian’s inequality (see, for
instance, Tong 1980), we know that (12) is an increas-
ing function of y. Therefore, when p > o, /0y, the
lower bound on the probability of correct selection is
larger if the alternatives are simulated independently
(in which case p =0 and 7y > 0) rather than with CRN.

MANAGEMENT ScIENCE/Vol. 47, No. 3, March 2001

Intuitively, when the standard is fixed and all of
the alternatives hang together (due to CRN), then if
one of the alternatives is difficult to distinguish from
the standard, they all are. A similar argument holds
when u, is unknown, m, is simulated or sampled
independently of the alternatives, and the alternatives
are simulated using CRN.

4. Estimating Critical Values
Traditionally, critical values for statistical inference
have been computed, often via intensive numeri-
cal integration, and then tabled for later use. This
becomes impractical when the desired critical val-
ues depend on a large number of problem param-
eters. In the present setting, the critical values (g, /)
depend on the confidence level, 1 —«, the number
of systems, k, the first-stage sample size, 1, and
whether or not CRN is employed. When the required
numerical integration is of low dimension, then real-
time numerical calculation of the critical values may
be possible. However, each problem type may then
require a finely tuned numerical procedure that works
well over the feasible range of problem parameters.

As computation speed increases, another approach
becomes viable: Use a separate simulation experiment
to estimate the critical values as needed for the prob-
lem at hand. As we will show, the present context is
ideal for this approach.

Cases A, B, and C presented in §3 require a pair of
quantiles (g, k) that satisfy

Pr{(z_}_(o)_(:“«i_,“«o) <c,Vip ) 2Pr{H<h}=1-a,

which corresponds to the Probability Requirement
(10), and

Pr{(}?{k] - }_(0)__ (Kx) — Mo)
> =8, (X = Xpp) = (Rpg — Mgi)
>—6,Vij 1} =Pr{G<g}l=1-q,

which corresponds to the Probability Requirement
(11). Notice that for Cases A-C, H and G are con-
tinuous random variables; and we can write G =
max{M, +h, M,, ..., M}, where M;, M,, ... , M, are
random variables that are easily sampled. (See the
online companion for additional details, in particular
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on how G and H correspond to the probability state-
ments above.) Further, for all of our procedures the
total sample size from system i satisfies

g_SiZ
e (5)

so that N; is an increasing function of g. This implies
that we would prefer an estimate of g, say ¢, that is a
bit larger than g, rather than one that is a bit smaller
than g—because if N; is too small, then we may not
achieve the desired probability of correct selection
and confidence interval coverage, while N; too large
makes the procedure conservative. We cannot guar-
antee that our simulation estimate ¢ is greater than or
equal to g, but we can find an estimator ¢ with the
property that
Pr{g < g} <pB

for some small, prespecified value of 8. In this section
we show that the following procedure yields such an
estimator:

Procedure (g, i) Bound

Step 1. Select positive integers m;, and m,, and con-
fidence levels B, and B, such that 8, + 8, = B.

Step 2. Find the smallest integers u;, and u, such

that

- my, €, my—L
Z ¢ (1 - C!) o = Bhl

{=uy,
Mg

2 (") a-ere<p,
—ug

Step 3. Generate H;, H,, ...
and set /1 = Hg,)-

Step 4. Generate @1, 62, e, émg, iid. copies of @,
where G = max{M, +h, My, ..., M}.

Step 5. Return /i and § = é(ug).

To prove that the procedure works, we address a
somewhat more general case: For continuous cdfs Fy
and F;, define h = F;'(1—-a,) and g = F;'(1—a,; h).
Suppose that F;! is a nondecreasing function of the
parameter /. Suppose also that we have a procedure
@), that provides an estimator h with the property that
Pr{fz < h} < B,,. Further, we have a procedure @g(lAi)
that takes as input h, and returns as output an esti-
mator ¢ with the property that

Pr{g < gl = h} < B,.

,H,,,iid. copies of H,
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THEOREM 2. If § is defined by procedures @, and @g(fz),
then Pr{g < g} <B.

Proor.

Pr($ < g} = Pr{$ < g|h = h)Pr{h > h)
+Pr(g < glh < h)Pr{i < h)
< Bg+Br=8, (13)
where (13) follows from properties of @, and
Go(h). O
It is straightforward to verify that Procedure (g, 1)
Bound satisfies the conditions of Theorem 2, since

Pr{H,, < h} = Pr{#{H; < h} > u,,}

-y (") a- e

{=uy,

= Bh/

Uy

where the second line follows from the definition of
h and the last line follows from our choice of u;,. A
similar argument holds for Pr{é(ug) < g|iz > h}.
CoMMENT. Many ranking, selection, and multiple
comparison procedures, and in particular the proce-
dures of Nelson and Matejcik (1995) and Matejcik and
Nelson (1995) for selecting the best, require a single
critical value similar to our 4. Thus, a one-sided upper
confidence interval for h that holds with probability
greater than or equal to 1 — 8, can be achieved by
stopping at Step 3 in Procedure (g, 1) Bound.
ExAaMPLE. Suppose that we want an overall con-
fidence level of 1 —a =0.9 and a 95% upper con-
fidence bound on the critical value, implying that
Pr{¢ < g} < B =0.05. If we set B, = B, = 0.025 and
m, = m, = 1,000 observations, then to three decimal

g
places

1000
3 (10@00) (0.9)4(0.1)"°%~* = 0.023 < 0.025
=919

so that u), = u, =919.

Tables 1 and 2 give (g, h) values when the num-
ber of first-stage observations is 10 and the desired
overall confidence level is 0.90 or 0.95, respectively,
for various numbers of alternative systems k. Notice
that even with as few as 20,000 observations, the
99% upper confidence bounds are quite close to
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Table 1 Critical Values h above g for ny =10 and 1 —a =0.90
Case
k A B C D
2 1.817 2.588 (2.637) 1.650 (1.680) 1.833
3.345 (3.381) 4.652 (4.697) 3.026 (3.063) 3.251
3 2.064 2.922 (2.966) 1.786 (1.814) 2.086
3.622 (3.660) 5.023 (5.070) 3.156 (3.195) 3.514
4 2.238 3.158 (3.200) 1.881 (1.905) 2.262
3.860 (3.894) 5.240 (5.291) 3.253 (3.285) 3.697
5 2.373 3.299 (3.354) 1.959 (1.991) 2.398
4.010 (4.047) 5.375 (5.427) 3.304 (3.338) 3.837

Note. When the critical value is estimated via simulation, a 99% upper con-
fidence bound is given next to the estimate in parentheses. Estimates are
based on 20,000 observations.

Table 2 Critical Values h above g for ny =10 and 1 —a =0.95

Case
k A B C D
2 2.254 3.182 (3.251 2.055 (2.102) 2.262

4.174 (4.222) 5.850 (5.918 3.855 (3.900) 4112

( ) (

( ) (
3 2.499 3.506 (3.585) 2.147 (2.188) 2.510
4.437 (4.489) 6.216 (6.289)  3.924 (3.965)  4.366
4 2.673 3.740 (3.800) 2.228 (2.264) 2.685
4.648 (4.702) 6.422 (6.501)  3.968 (4.007) 4545
( ) (
( ) (

5 2.809 3.852 (3.924 2.234 (2.358) 2.821
4.829 (4.868) 6.569 (6.643 4.047 (4.087) 4.684

Note. When the critical value is estimated via simulation, a 99% upper con-
fidence bound is given next to the estimate in parentheses. Estimates are
based on 20,000 observations.

the point estimates. One way to choose m, and
m, is to increase them until the estimates ¢ and
h are sufficiently close to their upper confidence
bounds. S-Plus code (MathSoft, Inc.) to obtain crit-
ical values for all four cases can be obtained from
(http:/ /www.iems.nwu.edu/“nelsonb/NSE/).

5. Empirical Evaluation

To evaluate the robustness of the Case C version of
the procedure to departures from sphericity, and to
evaluate the conservatism of the Case D version of
the procedure in general, we performed an empiri-
cal study. Since it is not possible to control the extent
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to which system-simulation examples depart from
sphericity, we focused instead on the space of nor-
mally distributed output vectors with nonnegative
covariances (the assumed effect of CRN). We esti-
mated the probability of correct selection (PCS) over
this space, but did not estimate confidence-interval
coverage separately since it is implied by the correct-
selection guarantee.

We considered only the equal means configuration
(EMC), pg =y =--- =y, and the slippage configura-
tion (SC), py — 6 = My = Yy_p = - -+ = W, because the
minimum PCS should occur at these configurations.
In the EMC, a “correct selection” means retaining the
standard, while in the SC it means selecting system k.

We fixed 6 = %, 1, and 2 in units of the average
standard error of the first-stage sample means; specif-
ically, 6 = (1/2/ny), (1//1y), or (2//n,), where the
average variance of an observation across all k+1
systems was always fixed to be 1. When & = ; there
will be a large second-stage sample; 6 =1 implies
that there will usually be a modest second-stage sam-
ple; while 6 =2 implies that second-stage sampling is
rarely required.

In addition to varying &, we considered different
configurations of the systems’ variances, a'g, a?, ...,
0',?, where 0'1.2 is the variance of an observation from
system i. Specifically, we considered equal variances
across all systems, the best system having 20% larger
variance than all other systems, and the best system
having 20% smaller variance than all other systems
(in the EMC the best system is the standard, while
in the SC the best system is system k). We chose not
to investigate drastically unequal variances because
comparisons based on mean performance only make
sense when differences in variances do not dominate
differences in means. Note, however, that the Case D
procedure is valid no matter what the variances are.
In all cases (k+1)~' Y¥ 02 = 1. Finally, to assess the
impact of nonnormality, we also generated data from
lognormal distributions whose skewness and kurto-
sis (standardized third and fourth moments) differed
from those of the normal distribution.

The experiments were conducted as follows:

1. Fix the number of systems, k, number of first-
stage replications from each system, 7, and confi-
dence level 1 —a. We considered k =3 and 5 systems
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(which implies k+1 =4 or 6 systems, including the
standard), 1, = 10 replications, and 1 —a = 0.95. Fix
D, a (k+1) x (k+1) matrix with off-diagonal elements
0 and diagonal (oy, 0y, ..., 7).

2. Generate a random k-dimensional correlation
matrix = using the method of Marsaglia and Olkin
(1984). This method transforms a randomly generated
point on the k-dimensional unit sphere into a cor-
relation matrix. We modified the method to gener-
ate a point on the unit sphere with all nonnegative
coordinates, which leads to a correlation matrix with
all nonnegative elements. Set % = DED to obtain a
covariance matrix with variances (o3, 07, ..., 07) and
implied correlation matrix =.

3. Generate n, iid. random vectors X; ~ (dis-
tributed as) N(0, 2), for j=1,2, ..., n,.

4. Compute the total sample size N; = max{n,
[(£S;/6)*]}, where g and S; depend on the procedure
being evaluated. (For Cases C and D, Ny=N, =--- =
N.=N)

5. Generate N —1n, iid. random vectors X; ~
N(0, 2), for j=ny+1,ny+2,... ,N.

6. (a) In the EMC, our simulation sets the mean
for every system to zero. Here we wish to select the
standard, and so we score a correct selection if {X,+
c>X;, Vi)

(b) In the SC, our simulation sets the mean
for system m, exactly 6 higher than all of the oth-
ers. Thus, we score a correct selection if {X; +8 >
X;,Viy 15 X +8>X,+c).

7. Repeat Steps 3-6 a total of 2,000 times to obtain
an estimate of PCS for the covariance matrix 3, (2,000
replications give two significant digits of precision).

8. Repeat Steps 2-7 a total of 5,000 times to estimate
the distribution of PCS over the space of covariance
matrices, .

The experiments bypass one problem that affects
all parametric multiple-comparison procedures—
nonnormal data—and instead focus on the effect
of positive correlation and unequal variances. The
results are therefore optimistic in the same way
that any parametric multiple-comparison procedure is
optimistic with regard to the normality assumption.
The results are pessimistic in the sense that we sel-
dom encounter the EMC or SC in practice.
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Before presenting some illustrative results, we sum-
marize our conclusions from the complete set of
experiments:
¢ Case C, the procedure based on assuming spheric-
ity, achieved an average PCS of approximately 0.95
across the 5,000 randomly generated covariance
matrices for each combination of k, §, and (of,
g}, ..., 0f) considered. However, probabilities of cor-
rect selection as low as 0.83, although rare, were
observed in the SC because the standard was selected
when the best was in fact system k. This is less
robust performance than that observed by Nelson
and Matejcik (1995) for a similar two-stage procedure
designed only to select the best. Therefore, the Case C
procedure performs as desired on average, but has a higher
than advertised risk of retaining the standard when one of
the alternatives is exactly & better than the standard.

* Case D, the procedure based on the Bonferroni
inequality, achieved a PCS of at least 0.95 for each ran-
domly generated covariance matrix over all combi-
nations of k, 8, and (03, 07, ..., 0}?) considered. This
was expected, since the procedure has been proven to
achieve the PCS for normally distributed data. How-
ever, the average PCS can be significantly higher than
0.95, particularly as k is increased from 3 to 5 sys-
tems. Therefore, the Case D procedure assures that the
desired PCS is attained at the risk of delivering a higher
than requested PCS by taking a larger total sample than is
actually required.

e Neither 6 nor (07, 07,...,07) had a noticeable
effect on the results. Therefore, neither procedure is sig-
nificantly affected by mild differences in systems’ variances.

Figures 1 and 2 present illustrative results for the
Case C and D procedures, respectively. Each his-
togram summarizes the estimated PCS for 5,000 ran-
domly generated covariance matrices, and there is one
histogram for each value of 6 and each configura-
tion of the means. Common random numbers were
employed in each figure.

In Figure 1, consider the SC with 6 = 2. Although
the average PCS is 0.95, the minimum observed is
0.84, and there is a 7% chance of PCS less than 90%.
This illustrates the risk in using Case C, with the
reward being greatly reduced sample sizes.

In Figure 2, consider the EMC with 6 = % Notice
that the average PCS is 0.99, and the minimum
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observed PCS is 0.98, even though the nominal PCS
is 0.95. This illustrates the conservatism inherent in
using a procedure based on the Bonferroni inequality.

To assess the impact of nonnormal data on the
procedures, we applied the Case C and D versions
to lognormally distributed data with increasing lev-
els of skewness and kurtosis, relative to the normal
distribution (which has skewness 0 and kurtosis
3). The data were generated by transforming mul-
tivariate normal data obtained as described above;
specifically, if X is normal, then e* is lognormally
distributed. Therefore, the data are still positively cor-
related across systems, but with correlations slightly
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Estimated Probability of Correct Selection for Case C with K =5 Systems and 1, = 10 Replications over the Space of Randomly Generated
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altered by the exponential transformation. Parameters
of the underlying normal distribution were chosen
to obtain the desired skewness and kurtosis, then
the distribution was shifted and scaled to place the
means in the EMC or SC and make the variances 1. In
every other respect the experiments were conducted
as described above.

Table 3 shows the average of the 5,000 estimated
PCS values for three lognormal models, with the cor-
responding normal model included for comparison,
for Case C with k =5. When skewness and kurto-
sis differ somewhat from normality (1.78, 9.10), the
procedure still maintains an average PCS near 0.95.

459



NELSON AND GOLDSMAN
Comparisons with a Standard

Figure 2
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Table 3 The Effect of Nonnormality on Average PCS for Case C
6=2 6=1 6=1/2
EMC SC EMC SC EMC SC

Distribution (Skewness, Kurtosis) PCS PCS PCS PCS PCS PCS

normal (0,3) 0.95 095 094 095 0.94 0.95
lognormal (1.78,9.10) 0.94 0.95 0.93 0.94 092 0.94
lognormal (4.00,41.00) 0.94 095 0.89 092 0.87 091
lognormal (6.168,113.173)  0.95 0.96 0.87 0.91 0.84 0.89

Note. In all cases k =5, ¢? =1 for all i, n, = 10, § is measured in units of
1/4/My, and nominal PCS is 0.95.
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Estimated Probability of Correct Selection for Case D with k = 3 Systems and 1, = 10 Replications over the Space of Randomly Generated
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However, as the departure becomes more dramatic,
the average PCS drops below the nominal level. The
PCS values stayed closer to 0.95 when k = 3. Thus, the
procedure should be applied with caution when data
are expected or known to differ substantially from
the normal model; mild departures, however, should
present no difficulty.

Table 4 shows the average of the 5,000 estimated
PCS values for the same three lognormal models for
Case D with k =3. In no case did the average PCS
drop below 0.95. However, unlike the normal case, for
certain correlation matrices the estimated PCS was as
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Table 4 The Effect of Nonnormality on Average PCS for Case D Table 5 Service and Cost Parameters for the Agile Manufacturing
Example
§=2 5=1 §=1/2
EMC SC EMC SC EMC SC Processing rate Set-up rate

Distribution (Skewness, Kurtosis) PCS PCS PCS PCS PCS PCS Station (jobs/hr) (jobs/hr) Holding cost
normal (0,3) 099 0.99 0.99 0.98 0.99 0.98 Station 1 4 4 $1/job/hr
lognormal (1.78,9.10) 0.99 0.98 0.98 0.98 0.98 0.98 Station 2 6 6 $1/job/hr
lognormal (4.00,41.00) 099 0.98 0.97 0.97 0.96 0.96
lognormal (6.168,113.173)  0.98 0.98 0.96 0.96 0.95 0.95

Note. In all cases k =3, ¢? =1 forall i, n, = 10, § is measured in units of
1/4/My, and nominal PCS is 0.95.

low as 0.87, although this was very rare. Performance
was better (less chance of being below the nominal
PCS) when k =5.

6. Example

The following question arose in research on agile
manufacturing systems. Suppose a portion of such a
system consists of two stations in tandem, Station 1
and Station 2, but just one operator. Jobs come into
the system at Station 1 at the rate of A per hour
After arrival a job needs to be set up at the station by
the operator. After setting up the job, the station pro-
cesses it to completion without requiring any assistance
by the operator. Following completion at Station 1, the
job needs to be set up by the operator at Station 2,
and then is processed at Station 2 without requiring
any assistance from the operator. After completion at
Station 2, the job leaves the system. The processing
rate and the set-up rate at the two machines are u,,
B, and u,, B,, respectively. Assume that there is no
walking time between the two stations. Holding costs
of ¢; and ¢, per job per unit time are incurred while
the jobs are in Stations 1 and 2, respectively. The oper-
ator has to decide which station to set up first when
there are jobs waiting at both stations. The question is,
what policy for the operator minimizes the expected
holding cost of the system? (For further details, see
Nelson and Banerjee 2001.)

We considered the following seven policies, some
of which have been examined previously in Desruelle
and Steudel (1996) and Nakade et al. (1997): The
worker sets up the jobs on a first-come-first-serve
basis (FIFO); this policy is considered to be the stan-
dard. The worker gives priority to Station 1 (SEIZE 1)
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or Station 2 (SEIZE 2). The worker immediately sets
up any job that needs it at Station 1 (PREEMPT1) or
at Station 2 (PREEMPT2), preempting any set up they
are doing at the other station. Or, finally, the operator
follows the FIFO policy until the number of jobs in
Buffer 1 (respectively, 2) reaches 1, at which point she
switches to the PREEMPT1 (respectively, PREEMPT 2)
policy, and switches back to FIFO when the number
of jobs in the buffer falls below n. For this example
we used n = 3. These policies are called TH1(3) and
TH2(3), respectively.

Interarrival, service, and set-up distributions are
taken to be exponential. The arrival rate is fixed at
A =2 jobs/hour; the service distribution parameters
are shown in Table 5 with the holding costs. Notice
that with the cost in both buffers being equal, mini-
mization of the total holding cost is equivalent to the
minimization of the total work in process in the sys-
tem; our goal is to find the policy with the lowest
expected holding cost per unit time, if it is lower than
the standard (FIFO).

A cost reduction of more than $1 was considered
significant, so we set 6 = 1. Using confidence level
1—a =09 and n, = 10 initial replications for the
k+1 =7 policies, the critical values for Case D are
h =2.510 and g =3.951; Case D critical values were
employed because we simulated all systems using
CRN. Because smaller expected cost is better, an alter-
native must have ¢ = hé/g = $0.64 lower sample mean
cost than the FIFO policy in order to replace it.

Let S, denote the sample variance of the differ-
ence between systems i and {. The first-stage exper-
iment gave the sample variances shown in Table 6.
The dramatic effect of CRN can be seen by looking at
Table 7, which shows the marginal sample variances
S? of each system. If CRN were not employed, or if
a procedure were used that did not account for CRN,
then the variance of the difference between systems i
and ¢ would be approximately the sum S?+ S.
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Table 6  Sample Variances of the Differences, S?, Based on the Initial
ny = 10 Observations

SEIZE1 SEIZE2 TH1(3) TH2(3) PREEMPT1 PREEMPT2
FIFO 062 327 043 036 3.80 0.71
SEIZE1 6.60 2.01 0.05 7.36 0.02
SEIZE2 145 574 0.04 6.91
TH1(3) 1.54 1.82 217
TH2(3) 6.45 0.07
PREEMPT1 7.68

Since $* = max; ..., S, = 7.682, the second-stage
sample size is

N = max{lO, {W—H =100.

12

Therefore, the total sample size from all systems is 700
observations, giving the second-stage sample means
shown in Table 8.

Since X, =4.69 < X, —0.64 = 5.15, we conclude that
PREEMPT? is better (has smaller expected cost) than
the standard, FIFO. But we can say more. Table 8
also displays the 90% MCB upper and lower con-
fidence bounds (UCB and LCB, respectively). These
indicate the FIFO, SEIZE2, TH1(3), and PREEMPT1
can with high confidence be declared inferior to the
best, because the LCB on w; —min,_; u, is 0. However,
SEIZE1 and TH2(3) might in fact be the best, because
their confidence intervals for difference from the best
contain 0. We are assured (with 90% confidence) that
even if PREEMPT?2 is not the best, its expected cost is
within $0.79 of the least expected cost.

To compare these results to an existing proce-
dure that does not account for CRN, we applied
Dudewicz’s and Dalal’s (1983) two-stage proce-
dure for forming two-sided, fixed-width-6 confidence
intervals for u; — o, i=1,2,...,k (another similar
option is the procedure of Bofinger and Lewis 1992).
This procedure could be used to discover all poli-
cies whose expected cost is more than 6 = $1 differ-
ent from FIFO’s expected cost. Their procedure only

Table 7 Marginal Sample Variances, S?, Based on the Initial n, = 10
Observations

FIFO SEIZE1  SEIZE2 TH1(3) TH2(3) PREEMPT1 PREEMPT2

6.87  3.48 19.57 10.60 412 20.82 3.26
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Table 8 Second-Stage Sample Means, X,, Based on 100 Observations
i 0 1 2 3 4 5 6
policy FIFO SEIZE1 SEIZE2 TH1(3) TH2(3) PREEMPT1 PREEMPT2
X; _ 579 490 779 629 536 819 4.69
X;—min_; X, 110 021 310 1.60 0.67 3.50 —0.21
MCB UCB 210 121 410 260 167 450 0.79
MCB LCB 0 -079 0 0 -0.33 0 -1.21

makes use of the marginal variances in Table 7. When
applying the procedure to this example we found that
981 observations were required—281 more than our
procedure. Further, this procedure provides inference
on the difference between each policy and FIFO, but
not direct inference about the best policy.

7. [Extensions

We have presented procedures for comparisons with a
standard that generalize procedures due to Bechhofer
and Turnbull (1978) and Paulson (1952) so that they
are more useful for the types of data encountered
in simulation experiments. Our procedures also add
confidence bounds on certain differences, bounds that
were not present in the earlier procedures.

While we do generalize the procedures of
Bechhofer and Turnbull (1978) with respect to the
types of data to which they apply, Bechhofer and
Turnbull consider a more general decision problem
than ours. Specifically, they derive procedures that
guarantee that

Pr{select 7y} > 1— @, whenever u, > puy+ 8, and

Pr{select my} > 1—a; whenever wy > py_q+ 901,
and pupy = po+ 8,.

Notice that this formulation allows for three
indifference-zone parameters and a different proba-
bility requirement for retaining the standard versus
selecting the best alternative. Our procedures can all
be extended to cover this more general case.
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