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Abstract 

A player starts at s in (0,1) and tries to reach 1. The process 

{Xt• t l OJ of his positions moves according to a diffusion process (or, more 

generally, an Ito process) whose infinitesimal parameters p,o are chosen by the 

player at each instant of time from a set depending on his current po1ition. To 

maximize the probability of reaching 1, the player should ohoose the parameters so 

2 as to maximize p/o, at least when the maximum i1 achieved by bouded, 

measurable functions. This implies that bold (timid) play la optimal for subfair 

(superfalr), continuous-time red-and-black. Furthermore, in superfair 

red-and-black, tho strategy which maximizes the drift coefficient of (log Xt) 

minimizes the expected time to reach 1 • 
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L. Introduction. 

Ono of the most interesting discrete-time. stochastic control problems is the 

, game of Red-and-Black, which inspired Dubins and Savage to write their fundamental 

boot (5) on sequential gambling problems. The game goes as follows: a player 

starts at x a (0,1) and wants to reach 1. The player can state any amount 

s0 , 0 i s0 ix,· and will win the stake with a fixed probability p and lose 

it with probability 1-p. Tho player can then make another stake s1 , 

0 i s1 i x1 where x1 is the position after the first bet. And so on. 

Bore is another description of the game which suggests a continuous-time 

version. Lot t 1, Y2, ••• be independent random variables such that 

P(Yn=l] = p = 1 - P[Yn=--1]. The process x0 ~ x, x1, 12, ••• of the 

gambler's for~unes can be described in terms of its increments 

1n+1 - 1n = 8n1n 

where •n a •n(l0, ••• ,Xn) e [O,X11]. If Yn is regarded as being 

then th increment of a simple random walk, then tho natural continuous-time 

analogue is a stochastic differential 

x0 = x, dXt • s(t)dBt (t l 0) 

where B = {Bt) is a Brownian motion process with drift 1 and a(t) is a 

non-anticipative function restricted to lie in an interval [s1(Xt),a2(It)) 

depending on the current state lt• 

Dubin• and Savage (5) proved that, in discrete-time, subfair (i.e. p < ½> 

Rod-and-Black, the strategy which aaximizos the probability of roaching 1 is 

bold play in which the player makes the maximum possible stake short of 

· overshooting tho aoal (i.e. •n = min(ln,1-ln)). Analogously, if the 

oontinuoua-timo 1111110 is aubfalr ia the sense that 1 < 0, then it is optimal to 
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take s(t) = s2 (Xt)• at least if a2 ia a bounded, Borel measurable function 

on (0,1] with a positive infimum and a1 l O. If 1 > 0 and a1 la.bounded, 

Borel measurable, and has a positive infimum on (0,1], it is optimal to take 

s(t) = s1 (Xt>• Thero i• a comparable reault in discrete-time when the state 

space ia a discrete grid rather than (0,1] (Koss [15]). 

A discrete-time game which is more general than Red-and-Black and much more 

difficult la Roulette. In Roulette a gambler has two choices at each ataao - the 

size of the states and what event to bet on •. Por a given. stake.•• all bets have 

the aamo mean. but they may have different variances. It has been shown (Saith 

[18), Dubins [4)) that, in order to maximize the probability of reaching a goal, 

it is optimal to choose that bet which, for a given stake, has the largest 

variance and then play boldly. Bero is an analogous continuous-time result. 

Suppose the p~ocesses at x s (0,1) satisfy 

where W = {Wt) is standard Brownian motion, 1 ( o. ands and a are 

non-anticipative functions such that 

and 

If 11 and a1 are bounded, Borel, and have positive infiaa, then it is 

optimal to take s(t) = s2 (Xt) and a(t) = o2 (Xt>• 

Continuous-time Red-and-Black and Roulette are special cases of the problem 

of controlling a process {Xt) aiven by a stochastic differential 

dXt • p(t)dt + a(t)dWt 
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where the non-antioipative f11llctlona panda satisfy certain integrability 

requirements together with the condition that (p(t.),a(t)) must lie in a 

control set C(Xt) depending on the current position Xt. The results stated 

above follow from Theorem 1 in section 3 which says that if p0:[0,1]~R. 

a0:(0,1]--+ (O,•) are bo1111ded, Borel f11J1ctions such that inf a0 > O, and 

for alls, 

2 2 Po(s)/a0(s) a sup {p/a: (p,a) a C(s)), 

and 

(p0(x),a0 (x)) a C(x), 

then a process {Xtl for which p(t) • p0(Xt) and a(t) = a0(Xt) 

reaches 1 with maximum probability. 

1 In discrete-time, auperfair (i.e. p > 2) Red-and-Black, it is possible to 

reach 1 with probability 1. An interesting open problem (cf. Breiman (2]) la 

to determine tho stratesy which minimizes the expected time to the goal. In 

continuous-time, suporfair (i.e. 1 > 0) Red-and-Black, it ls also possible to 

reach 1 with probability 1. Furthermore, among all non-anticipative, 

Jt 2 
non-negative s for which 

0
Es(r) dr < • for all t > O, the expected 

time to 1 i1 minimized when s(t) = Ut• This result ia a special case of 

Theorem 4 in section 4 which sivea the optimal strategy to minimize expected time 

to the goal for a class of problems which also includes auperfair, continuou1-tlme 

Roulette. 

The uzt section sivea a careful formulation of the problems to bo treated 

and e1tabli1he1 some verification lemmas. Section 3 studies how to maximize the 

probability of reachin1 a goal: section 4 treats the problem of reaohin1 a goal 

in miala1111 especte4 time. 
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2. Verification lemmas. 

A continuous-time gamblina problem is a triple (P, E ,u) where 

(2.1) the state space Pis Polish (i.e. F can be metrized so as to be 

complete and separable), 

(2.2) the gambling house E is a mapping which assigns to each s a P a 

non-empty collection of processes X = {Xt, t l 0) with state apace F 

such that x0 = z and X has right-continuous path• with left-limits, 

(2.3) the utility function u ia a Borel fuctlon from F to tho real line. 

A process X a E(z) is said to be available at z. Each available Xis defined 

on some probability space ( n , F ,P) and is adapted to an increasing filtration 

{ ~. t l O} of complete sub-sigma fields of F. The probability space and 

filtration may depend on X. (This allows us to use 'weak' solutions to stochastic 

differential equations below.) When there ls a danger of confusion, superscripts 

will be used and, for ezampl e, F ! will be written instead of Ft. 

A player, starting at position z a F, selects a process X a E(z) and 

receives the payoff u(X) defined by 

u(X) = E[limsupt_..u(Xt)]. 

the expectation occurring on tho right is assumed to be well-defined for every 

available process X. 

Tho payoff u(X) is, in view of the Fatou equation (Corollary 2.1, Postien 

[14)), tho continuous-time analogue of the payoff fuotion of Dubin• and Savage 

[5]. Although this payoff may appear to be quite special, moat of tho payoff 

functions studied in control theory can be reduced to this one by a change of· 

coordinates. An example of this occurs in section 4 where tho payoff is tho 
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expected time to reach a goal. 

Tho yalue funotion V ia defined by 

V(s) a aup{u(X): I a t(s)} 

for every s s F. A process X s E(s) is optimal at s if 

u(X) = V(s). 

Bore ls. in outline form. a standard technique for provina optimality which 

goes bact to Dubina and Savage (5). First guess an optimal I at z. (Thia is 

the hard partl) Defino Q(s) = u(X). Obviously Qi V; so what ia needed are 

conditions to guarantee that Q l V. Such conditions will be established in the 

rest of this section. 

Let Q: F~ R be Borel measurable. For every available I. let T (X) be tho 

collection of { F !J-stopp ing times ~ which are almost surely fini to. Tho 

function Q is called excessive if for every s a F. X a t(z). and~ a T(X). 

the expectation of Q(X~) is well-defined and satisfies 

(2.4) EQ(l~) i Q(z). 

Set 

Our first lemma la a descendant of Theorem 2.12.1 of Dubin• and Savage (5) and of 

Theorem 7 of Beath and Sudderth (8). It ls almost a oonaequence of Proposition 

3.4 of Peatien (14). 

Lt-• 1• Suppose Q ia excessive. and for every available x. Q(X) la well-defined 

and Q(l) l u(X). Thon Q(x) l V(x) for every z a F. 
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Proof: For x a P and X a l:(x). 

Q(s) l aup{EQ(X~): ~ s T(X)) 

l Q(X) 

l u(X). 

The first and laat inequalities are true by hypothesis; the middle one ia a 

consequence of Theorem 2.2 of Pestien [14). 

Now take the sup over X a l:(s). O 

If certain natural conditions are imposed on 1:. then Vis excessive and V(X) 

l u(X) for all available X. Thus. by Lemma 1. Vis the smallest function with 

these properties (cf. Proposition 3.4 of Pestien [14)). 

Prom now on. each process X 0 {Xtl 11Dder consideration will have values la 

d a Euclidean space R and will be an Ito process of the form 

(2.5) 

where W = {Wt} is a standard m-dimensional Brownian motion process on ( o. F .P) 

adapted to { ft). Assume also that Ft is independent of (Wt+,-•t• slO} 

and contains all P-null sets. d Tho function u = a(t.~) is to be R -valued. 

jointly measurable. adapted to ( Ft} and such that 

(2.6) for all t. 

Tho function pa p(t.~) has as values real dxm matrices. is jointly measurable. 

adapted to { Ft)• and satisfies 

(2.7) Jt 2 
E 

0
1p(a)I ds < m for all t. 

(Tho notation '1·1• la for the Euclidean norm.) Aa before. the space ( n. F.P) 
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and filtration { Ft} and now alao the Brownian motion Ware allowed to vary 

with X. 

d Por each pair (a,b), where a a R is a dxl vector and bis a dxm 

real-valued matrix, define the differential operator D(a,b) for sufficiently 

d smooth functions Q:R ~ R by 

whore 

D(a,b)Q(y) = 

1~ d 2 d ~(y)a + -2 °xizj(y)(bb')lj· 
iz::1 j=l 

IQ IQ 
<ls = <ax1 .. • • •Dxd>' 

a2Q 
°xizJ = Bx1Szj • 

and b' is the transpose of b. 

Suppose now that the state space F of the gambling problem is a Borel subset 

of Rd and has non-empty inter.ior F
0

• All available processes are assumed to 

be Ito procesaos as in (2.5) and can be specified in terms of tho possible values 

for tho infinitesimal parameters a and p. To mate this specification, suppose 

that, for each x a F, C(x) is a non-empty sot of pairs (a,b) whereas Rd 

and b la a real dxm matrix. (The idea is that C(x) is the set from which a player 

at state z may choose the value of (a,p).) Ass:ame also that every available 

0 prooe111 is absorbed at tho time ~X of it1 first exit from P. These 

conditions define a function EC on P where Ec(z) is the collection of all 

prooeasea 1 having paths in P and satisfying (2.5),(2.,),(2.7) together with 

(2.8) 

(2.9) (a(t,~),J(t,~)) m (0,0) fort ,2_ ~X(M), 
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(2.10) 0 C(x) = ((0,0)} for x a P-F. 

(Bore '0' is used to denote both a zero vector and a zero matrix.) 

Let t be a aambUna house such that t (s) C E c<s) for ever7 s a F'. 

(Recall that each t(x) ia assumed to bo non-empt7. It could happen that, for some 

highly irregular C, tc(s) is empty for some x. We are excludina such 

uninteresting cases.) 

.. In tile nest· two :lemmas, G is .aasumo4 .to· .. be-:-:.u opo•. nl>-aet. of. lt~ .. w-hhJ,. . 

contain• P. 

Lemma i• Suppose Q:~R has continuous second-order derivatives. Assume the 

0 following conditions for every x I P· ncl· nery X a t(x) :· 

(i) D(a,b)Q(s) i O for all (a,b) a C(s), 

( HU there is aa integrable random variable Y suc.h that Q(Xt) l B[YI ft] 

for all- t l O. 

Then Q is excessive. 

Proo·f: Lot's a F, XI J:(s), and,: a T(X). Ifs a F-F0
, then 

P[Xt ax for all t] m 1 aa4, hence, EQ(X,:) a Q(s). 

Ito's Lemma, 

0 So assumes a F. By 

where u and pare as la (2.5). By (i), the first integral oa the right la a 

docreaslag process. By (ii), the second intesral is a martlaaalo. It now follows 

from (ill) that {Q(Xt)} la a supemartinaale to which the optional 1amplln1 
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theorem (cf.·Dollacherie and Moyer [3]. Theorems VI.3 and VI.10) .can be applied to 

yield BQ(X~) i Q(s). a 

The nest lemma aives a verification result that can be uaed for a fllllction Q 

which la not smooth. but can be approximated by smooth factions. 

Lemma 1_. Suppose Q:~R and Qn:~R for n c 1,2.•••. Suppose also that each 

~ has continuous second order derivatives on o. and that 

(i) limn-+CD'1n(s) = Q(s) for every s a F. 

0 Assume the following conditions for every s a F and every X a t(s): 

(ii) limsupzr+cDD(a.b)°n(s) i O for all (a.b) a C(s). 

(iv) there is an integrable random variable Y such that ~(It) l Y for 

all n and all t l 0, 

(v) there is a measurable process Z = {Z
8

) such that 

for all n and all al O, and 

for all t l O. 

Then Q ia esce11ive. 

Proof. Lets I P0
• X a t(s). and~ a T(l). It 1uffice1 to check 

inequality (2.4). (Aa in the proof of Le-a 2, the case thats a P-P0 is 
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trivial.) By oonditions (i) and (iv), Q(Xt) l Y for all t. So, by Fatou'a 

inequality, 

Consequently, it suffices to check (2.4) for a bounded~ a T(X). 

Lot X satisfy (2.5) and use Ito's Lemma to write 

(2.11) 

By (iii), the final term on the right is a martingale. Now calculate. 

T 

c Q(x) + lbaillfn->G>EJ
0
»(u(s),p(a))~(X•)4s 

T 

i Q(x) + EJ
0

111asup,.._D(u(s),p(a))~(X
8

)4s 

i Q(z). 

The sucoo11ive lines are, respectively, by (i) and (iv); by Fatou and (iv); by 

(2.11), (i), and the optional sampling theorem; by Fatou and (v); and by (ii). O 

Remarks. 

1. l'he usual formulations of atochastio control problems, aa, for example, in 

Fleming and Rishel (6) or Erylov (12], use stochastic differential equations 

rather than Ito processes. Of course, solutions to stochaatio differential 

equations of the form 
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" I\ 4Xt c a(t.Xt)dt + P(t.Xt)dWt 

are Ito processes. So the simpler formulation used here allow• for a more aeneral 

class of processes. In the specific problems considered below. the optimal 

processes turn out to be diffusion processes •hich are solutions of atoohastio 

differential equations. 

2. Tb.e usual formulations have the controller select a control function which 

determines tho infinitesimal parameters o and P rather than have. the c:ontroller. 

select a and P directly as we do. This difference is essentially the same as 

the difference between the discrete-time theories of dynamic programming. where a 

player chooses an action which determines the distribution of the next state. and 

gambling. where a player chooses the distribution of the next state direc:tly. For 

most purposes. this difference is of no consequence. but there are some 

measure-theoretic subtleties (cf. Blackwell (1)). 

3. Lemma 2 ia analogous to other verification lemmas in th~ stochastic control 

literature such as Theorem VI.4.1 of Fleming and Rishel (6) and Theorem 1.5.4 of 

Krylov (12). One trivial. but useful. difference la that Lemma 2 applies to 

functions Q which are not solutions of the Bamllton-1acobi-Bellman equation. 

(This is needed in section 4.) Also, no ·assumptions are made that the proces1e1 

0 are non-degenerate or exit from F ln a finite amount of time. Finally, the use 

of Ito processes rather than stochastic differential equations allows us to avoid 

the smoothness assumptions usually made about tho coefficients. 

4. One coul4 try to establish a result similar to Lemma 3 by using Krylov's 

aeneralizatioa ((12], Theorem 2.10.1) of Ito'a Lemma. which applies to certain 

non-•ooth factions Q. However, lr7lov's result requires that the prooesaoa be 

uifonaly non-4eaenerate, which la not a1s11me4 here. 
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3. Maximizing the probability of reaching A goal. 

Consider a aambling problem with state space F = [0,1] and utility function u 

a the indicator faction of {1}. All available processes X a (Xt} will bo 

absorbed at tho endpoints O and 1. and hence, 

(3.1) u(X) a B[lilllsup~mu<Xt)] 

= P(X reaches 1) • 

In tho notation of the previous section, 4 = m = 1 and. for each s a P. C(s) is 

a non-empty subset of RX(O.m). A typical element of C(x) will be written 

(p.o) to emphasize that it is a possible value for tho infinitesimal mean and 

standard deviation of a process starting from x. The assumptions of the previous 

section are in force. and. in particular. by (2.10). C(O) = C(l) • {(O.O)). 

Assume that Ec(z) is non-empty for every z so that Ic is a gambling house. 

Example a:_. Continuous-time Red-and-Black. 

Let 1 a R: let s1:(0.1]--+ (O.m) (i=l.2) be bo111lde4. Borel mappings such 

that a1 i a2• Define 

C(z) • ((11.1): s1(z) i • i •2(z)). 

Example l• Continuous-time roulette. 

let 1,a1.s2 be a, in tho previous example: let a1:[0.1]--+ [O.m) 

(i•l.2) be bounded. Borel mappings auoh that a 1 i a2 • Defino 

C(z) • {(a1,aa): a1(z) i • i a2 (z), a1 (x)_ i o i a2(z)). 



. . 
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Return now to tho general goal problem and define, for O < s < 1, 

(3.2) p(x) • aup{p/a2 : (p,o) a C(s)}. 

(Bore, 0/0 la taken to be -m.) 

Tho ratio p/a2 has a history in discrete-time gamblina theory where it 

provides a measure of superfalrness (cf. Dubins and Savage (5), pp. 167-168). Tho 

function p la crucial here and the follcnrlng assuaption is made. 

Ass1UDption A• The fuction pis of the form 

(3.3) 2 p(s) = p0(s)/a0(s) , 0 ( s ( 1, 

where Po and a0 aro bo11Dded, Borel-measurable fUDctions on (0,1) and 

inf ao > o • 

Consider now a diffusion process X starting at x a (0,1) which is absorbed 

at tho endpoints O and 1 and which solves the .stochastic differential equation 

(3.4) 

It follows from Xrylov ((12), Theorem 2.6.1, p.87) or Ikeda and Watanabe ((9), 

Section IV.4) that such an X exists. 

The probability 

Q(x) • P[X roaches 1) 

depends only on p and x. In fact, let y be any bounded, measurable fuotlon 

on (0,1) and define 

(3.5) o.__(x)_ • Sy(s) 
, Sy(l) 



where 

(3.6) 

Then 

(3.7) Q(x) = G,,(x). 

Thia formula for Q is well-known when the fUDctiona Po and a0 of (3.3) are 

continuous (cf. Karlin and Taylor [10l.- pp.191--1-,S) .... The -proof ·in the general 

case is the same as that in Gihman and Skorohod ([71, Theorem 3.15.4) except that 

Krylov's generalization of Ito's Lemma ((12], Theorem 2.10.1) must be used. 

The process X of (3.4) will belong to Ec(s) under the following 

· assumption. 

Assumption J. (po(x),oo(x)) 8 C(x) , 0 < X < 1. 

Let V be the value function for the problem (F, tc,u> defined in the first 

paragraph of this section. 

Theorem!_. If A holds, then Vi Q. If A and B hold, then V = Q and the diffusion 

process X defined by (3.4) is optimal at x. 

Proof: If B holds, then the process X of (3.4) la an eleaent of Ec(s) and 10 

Q(x) s u(X) i V(x). Thus it suffices to prove the first assertion. 

It follows from tho Vitali-Caratheodory Theorem (Rudin (17], Theorem 2.24) 

that there ia a docreaaing sequence {yn) of boUDded, lower semicontlnuoua 

f11Dctlon1 auoh that y
8

(z) l p(x) for every n and every x a (0,1), and 

yn(x)~ p(s) for Lebo11uo almost every s. By the monotone converaence 

theorem, (3.5), (3.6), and (3.7), Oy (z)~Q,(x) a Q(x) for every 
n 

x a [0,1). Thus, to ahow Q l V, it is enough to prove the followlna lemma: 
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Lemma!• If y is a bo1111ded, lower semicontinuous function defined on (0,1] aad 

y l p on (0,1), then~ 1 V. 

Proof: O., is bounded, Borel-measurable, and O., l u. Thus <t,(X) is 

well-defined and <l.y(X) l u(X) for every available X. By Lemma 1, it is enough 

to show <ly is excessive. We will use Lemma 3, with~ playing the role of Q, 

to establish this last faot. 

Because y is bo1111ded and lower semicontinuous, there is a sequence {pn) 

of .bouded, continuous functions which converse up toy pointwise on [0,1] (cf. 

Roydon [16], Problem 2.49). Let Gu.= Qpn· Notice, because each Pn is 

continuous, that each~ has a continuous second derivative and can be extended 

smoothly to a fixed open interval G containing (0,1]. Furthermore, by (3.5) and 

(3.6), °u satisfies 

(3.8) 
1 
~' + Pn0.:. = 0 

on (0,1). We are now ready to check the conditions of Le~a 3. 

Condition (i). limn~(x) = ~(x) 

convergence theorem. 

for O ix i 1 by the monotone 

Condition (ii). Let O < x < 1 and (p,a) a C(x). Then 

(3.9) 

Benoe, 

1 2 D(p,a)<\i(x) = p~(x) + r' ~'(x) 

1 2 2 1 
= p~(x) + ~ ~'(x) - o [~'(x)+pn(x)~(x)] 

= 
2 

(p-o Pn(x))~(x). 
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2 (p - a y(x))limsupn+-m~(x) 

2 i (p - a p(x))limsupn+m~(x) 

i 0 

by (3.2) and tho fact that~ l O on (0.1) for ever7 n. 

Condition (iii). o:i is continuous and. therefore. bounded on (0.1). So this 

condition is a consequence of (2.7). 

Condition (iv). Tate Y to be the constant o. 

Condition (v). B)' (3.9). for a# o. 

2 i a (p(x) - Pn(x))O.:S(x). 

Now p(x) is bounded b7 assu.mption A: the Pn are uniformly b.ouaded 

above by the bounded function y and below by the boud~d function p1: and 

the~ can bo seen to be uniformly bounded from (3.5) and (3.6). Also. if 

a= 0 and <,.a> e C(x). then pi O. (Otherwise. p(x) = -to.) So. in thia 

case. D(p.a)~(x) = p~(x) i O. Therefore, there is a positive constant 

B such that 

for O ( s < 1 and (p,o) e C(s). Condition (v) now follows from (2.7). 

The proofs of Leaaa 4 and Theorem 1 are now complete. a 

It can eaaily happen that the optlllal prooesa in Theorem 1 ia not uniqeely 
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so. For example, the aupremum in (3.2) oould be achieved by another pair of 

factions ~land a1 • Or, if (0,0) a C(x), there ia no harm in using (0,0) 

as the control for a time and then switching to (p0,a0). 

17 

There are general gambling techniques which mate it possible to characterize 

the class of all optimal prooessos. (For the discrete-time case, aeo Chapter 3 of 

Dubin• and Savage [5) or Sudderth [19].) We plan to write another paper on this 

general subject. 

Example l. (continued). Suppose 1 < 0 so that the game is subfair and suppose 

inf s2 ) O. Then p(x) a aup(1/a: s1(x) is i a2 (x)) a 1/a2(x) and, 

by Theorem 1, the optimal process corresponds to bold play: s(t) a s2(Xt) for 

all t. If 1 > O, and inf s1 > o. a similar araument shows timid play 

(s(t) = s 1(Xt) for all t) is optimal. Tho case when s 1 m O is discussed in 

the next section. 

Example l (continued). Suppose 1 < o. and tho f11Dctions s2 , a2 have 

positive infiaa. Then p(x) ~ 1/(s2 (x)a2(x)) and the optimal controls 

are s(t) = s2(Xt)• a(t) 0 a2(Xt) for all t. Similarly, if 1 > 0 and 

a1 , a1 have positive infiaa, then a(t) a a1 (Xt)• a(t) a 'a1 (Xt) 

are optimal. 

Turn now to the problem of reaching a goal on a half-line. Tate F = -
<-,o] and u a the indicator fUDction of {O}. Let C(x) be a non-empty - -
subset of Rx(O,•) for x < 0 and C(O) = {(0,0)}. Define -

a aup(p/a2: (p,a) a C(x)), x > O. -
Aaapption !• The faction t ia of the fona 

1(x) • Po<s)/ao(x) , -• < x < 0 



where Po and a0 are bounded, Borel-measurable fuactlona on (-m,O) and 

inf CJo > o. 

Assumption!· (po(s),c,o(s)) 8 £(s) , -m ( X ( o. 

Let! be the value function for tho problem<!•!• tc>• For each 
N 

x < o. let X boa diffusion on (-a,,0] which is absorbed at O and satisfies 

U .10) x0 = x, clXt a p0(Xt)dt +·o0 (Xt)dWt• 

Let 

g(z) • P[X reaches O]. 

no next result can be proved directly or derived from Theorem 1. 

Theorem a,. If ! hol.ds, then ! i g. If ! and !, hold, then ! m 9 and 

the process defined b7 (3.10) is optimal at z. o 

Of course, there is nothing special about tho goal being O in Theorem 3. A 

2 process which maximizes the critical ratio p/c, i1 most likely to reach any 

18 

goal to tho right of the initial position. This augge1t1 the following comparison 

result. 

Theorem a_. Consider two diffusion prooe11ea 

i l Xo a X. 
i i l 

dXt • p1(Xt)4t + a1(Xt)4lt 

with pi and oi bounded, Borel-measurable and inf oi > 0 for l • 1,2. If 

2 1 2 2 2 1 s is and p2/o2 i p1/o1 , then auptXt is 1toohaatically smaller than 1uptXt• 



1 Proof. Fix 8 where x i a<~. Consider tho problem: Pa(-,1], u a the 

indicator function of {a}, E O Ee where C(a) = {(0,0)) and 

C(x) = {(µi(x),oi(s)): lml,2) for x < I• By Theorem 2, the optimal process 

at x1 is x1 • It follows that 

1 2 
P[sup Xt l 11 l P[sup Xt l 11 • a 

The comparison theorem of Ikeda and Watanabe .( [9], Section VI.U .. has. the . 

2 1 stronger conclusion that Xt i Xt for every t with probability 

one. It is easy to give examples to aee that this need not follow from the 

hypotheses of Theorem 3. 

19 
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4. Minimizina 1A!. expected .t!e.! !.!! tho goal. 

If arbitrarily small positive stakes are permitted in superfair 

Red-and-Black. then. as is shown below. it is possible to reaoh tho goal with 

probability 1. Tho next problem is how to minimize the expected time to reach the 

goal. 'Ibo theorem of this seotion gives the solution for a class of gambling 

problems which includes superfair Red-and-Black and Roulette when arbitrary 

positive stakes are allowed. 

The formulation uses two-diaoasional processes X c {X(t)} where 

[
X (t)] 

X(t) = x}(t) • 

The first coordinate x1 corresponds to the player's position la (O.l]; the 

second coordinate x2 is tho time, starting from x2 , prior to absorption of 

x1 at 1. 'Ibo state space is 

(Notice that every real number x2 is a possible starting time.) Let c0 be a 

fised, nonempty subset of Rx[O,•) and define, for x a F. 

C(s) = t<[1f].['t]>: (p,a)ac0• 1 l O} 

A prooeaa X a tc(x) can be espreaaed by a stochastic differential 

prior to tho ab1orptioa of x1 at 1. Bore W la a one-dlaeaaional Brownian 

motion. (In tho notation of aeotion 2, da2 and mal.) 

Because tho object la to minimise espectod tiae, set 

.. 



u(s) = - x 2 for x a F. 

(4.1) 

where s 2 is the 1tartin1 time and Ta inf{t l 0: X1(t) a 1}. 

Examples. If cO a {(1,1)), then tho processes x1 correspond to those 

available in continuous-time Red-and-Black when arbitrary non-negaUve ata·kes are 

allowed. If cO = {(1,a): a1 i a i a2), the processes x1 

correspond to those available in a version of continuous-time Roulette. 

Consider now the general problem (F, t c,u). Assume that tho problem is 

superfair in the sense that there ls an element (p,a) 1 cO.for which p > O. · 

Define 

t(x) = {X a tcCx): u(X) > -) 

= {Xa tcCs): BT<•) 

To see that t(s) is not empty, suppose x1 < 1 and fls (µ,a) a c0 with 

p) O. Consider the proportional strategy.!! s based .!!A (p,a) and c for which 

and 

Use Ito•, formula to check that, fort i T, 

m e Y(t) 
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where 

Y(t) = log x1 +mt+ caW(t) 

is a Brownian motion with drift 

This drift coefficient is positive if O < c < ~- So, for 
0 

c in tbia interval, Y reaches O almost surely and, consequently, 11 reaches 1 

almost surely. That is, P[T < •] = 1. Furthermore it is easy to show that ET 

is finite. So, by Wald's identity for Brownian motion (Liptser and Shiryayev 

(13], Lemma 4.8), 

But Y(T) a O a.s •• Thus 

and 

(4.2) 

In particular, X a t(x). 

B W(T) = O • 

O a EY(T) ~ log x1 + mET 

ET = _ log x1 
m • 

22 

Our auesa of an optimal strategy is inspired by the 'Kelly criterion' [11], 

which, as Brelman [2] showed, often leads to good strategies for discrete-time. 

superfair problems. The criterion says to bot ao as to maximise tho expected log 

of your next fortue. There are difficultlo1 with overahootlna when the object la 

to reach a aoal quickly and variable• are discrete. Thus Breiaan conjectured that 

an optimal plan would follow the criterion up to aome point and then switch to 

smaller beta to avoid overshooting the goal. The continuoua prooe11e1 considered 

. . 

.. 

I • 



j ' 

here caDAot overshoot and so it la natural to consider that 1trate11 whioh always 

maslmize1 the drift of log X1(t) prior to reachins the aoal. 

For fised (p,o) e c0 with p > O, 0 < o < ~, m(p,o,o) la a maximum 

when c = p/o2, and m(p,o,p/o2) = p2/2o2• Define 

(4.3) 2 2 M = aup(p /2a: (p,o) a c0, p > O}. 

Let V be the value function for the gamb.llng pr.obi.em (F, -~ ,11) •. 

2 2 If Ba Po /200 for some (~0 ,o0 ) a c0 with p
0 

> O, then the 

2 proportional strategy based on (p0,o0) and ca p0/o0 is optimal at 

every x. 

Proof: Tho aooond assertion follows from (4.1) and (4.2) together with the first. 

So it suffices to prove the equality. Set. 

Q( w) IS log %1 • M - X2 • 

It la olear from (4.1), (4.2), (4.3) and the definition of V that Qi V. It 

remains to prove the opposite inequality. If Mam, the inequality i1 clear. 

So assume II< CD• 

Lot e > 0 and define 

lo will show Q
8 l V. Because Q8

~ Q as a~ O, this will be sufficient. 

Let z • F an4 X a t(x). 8 To see that Q (X) l u(X), calculate: 
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Q8 (X) • E[limsup (log(X,(t)+a) - I (t))] 
t-+-CD I 2 

= 1og(1+a) _ET_ s 
JI 2 

L - BT - x2 

=- u(X) 

8 8 To finish proving that Q l v. it suffices by Lemma 1 to show Q la 

excessive. We now cheot the conditions of Le•a 2:!": .l'a~e- the .. op1~. :a.et G t.o bo 

· 2 1 
{x a R: s 1 > o. x2 a R ). 

Condition (i): Let (a.b) s <['l'].[~a]> a C(x). Then 

[ 1 ][•P] s
2

a
2 

D(a.b)Q
8

(x) = (x +a)JI• -1 l - 2(x
1

+a)2M 

se s2a2 
= (x1+a)M - 1 - 2(z1+s)2M 

/is a s2a2 
i (x +€)Ji - 1 - 2(xl + e:)2M 

1 

s a ,2 
= - c 1 - <x1 + e> ID 

i o. 

The first lnequali ty holds because p i a v'2ii" by ( 4 .3) • 

Condition ( ii) : 

l(<XCt>>P<t>I = 1[ 1 -i][•<t>a<t>]1 (X1 (t)+a)K• 0 
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' ' 

i a~ I s ( t) a ( t ) I 

= alMl,S(t) I. 

The con4ition ia thus a consequence of assumption (2.7). 

Condition (iii): 

, log a T 
~ M - Z2 - • 

The right side is integrable by the definition of t. 

8 Thus Lemma 2 applies. Q is ezoessive. and tho proof of Theorem 4 ia 

complete. a 

Egamples (continued). If, corresponding to Red-and-Black. c0 c {(A,1)} where 

1 > o. then, by Theorem 4, the proportional atrateay given by s(t) m Ut is 

optimal. If, as in roulette, c0 = {(A,o): a1 i o i o2}, then 

2 s(t) a (1/a1)Xt is optimal. 

Consider now the problem of reaching O in minimum expected time from a 

position in (-m.O] when tho control set ia constant. Pormally, take 

Let c0 C Rx[O,G) an4 1uppose p) 0 for some (p,a) a c0 • Define 

25 



Let 

!(x) a (X a EC(x): u(X) ) -co), 
..,, 

and let! be the value function for the problem ([,f,!)• 

Thia problem is essentially the log of the problem considered in Theorem 4. 

So tho next theorem is not surprising. 

Defino 

I!. = sup {p: 3 a .H11,a) a c0). 

Theorem 5. 

then tho process X, for which 

la optimal at x. 

Proof: Apply Le1111Da 2. a 

If tho control set c0 for x1 depends on tho position, the minlmmn 

expected time problem seems to be more difficult. This is because tho optimal 

control at position x1 may depend on other things than just the aet c0(x1). 

To see thla, suppose that c0(x1) = {(0,0)) for z 1 i -1 or x1 = 0 and 

c0cx1) • {(a1,a): s l 0) for -1 < x1 < O. Tho problem of reaching O in 

minlaum time from a starting point in (-1,0) la just tho Red-and-Black problem 

translated to the interval (-1,0). So s(t) a A(Xt+l) ls optimal. However, if 

c0cx1) • {(11,1): 1 l 0) for all x1 < O, Theorem 5 applies to show 

! • -x2 and s(t) should be taken very larae. 
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