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Abstract

A player starts at x in (0,1) and tries to reach 1. The process
(Xt. t 2 0) of his positions moves according to a diffusion process (or, more
generally, an Ito process) whose infinitesimal parameters p,o are chosen by the
player at each instant of time from a set depending on his current position. To
maximize the probability of reaching 1, the player should choose the parameters so
as to maximize p/cz. at least when the meximum is achieved by bounded,
measurable functions. This implies that bold (timid) play is optimal for subfair
(superfair), continunous—-time red-and-black. Furthermore, in superfair
red-and-black, the strategy which maximizes the drift coefficient of (log xt}

minimizes the expected time to reach 1,
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1, Introduction.

One of the most interesting discrete-time, sfochastic control problems is the
game of Red-apd-Blaok. which inspired Dubins and Savage to write their fundamental
book [5] on sequential gambling problems. The game goes as follows: a player
starts at x ¢ (0,1) and wants to reach 1. The player can stake any amount
sg» 0 £ 89 £ x, and will win the stake with a fixed probability p and lose
it with probsbility 1-p. The player can then make another stake 84

0« s S,Xl where X1 is the position after the first bet. And so on.

Hore is another description of the game which suggests a continuous-time
version. Let Yl. Yz. «ss be independent random variables such that
P[¥,=1] = p = 1 = P[Y;=-1]. The process Xo = %, X4, X5, ... of the

gambler’s fortunes can be described in terms of its increments
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where s, = s (X5, ... ,X;) e [0,X;]. If Y is regarded as being
the n th increment of a simple random walk, then the natural coantinuous—time

analogue is a stochastic differentisl

where B = {B,] is a Brownian motion process with drift A and s(t) is a
non-anticipative function restricted to lie in an interval [s;(X,),s,(X,)]
depending on the curreant state X,.

Dubins and Savage [5] proved that, in discrete—time, subfair (i.e. p ¢ %)
Rod—and-Black, the strategy which maximizes the probability of reaching 1 is
bold play in which the player makes the maximum possible stake short of

‘overshooting the goal (i.e. s, = min(X ,1-X )). Analogously, if the

continunous—-time game is subfair in the senmse that A < 0, then it is optimal to



take s(t) = s5,(X,), at least if s, is a bounded, Borel measurable function
on [0,1] with a positive infimum and $20. If A > 0 and s; is bounded,
Borel measurable, and has a positive infimum on [0.1]; it is optimal to take
s(t) = s;(X,). There is a comparable result in discrete—time when the state
space is a discrete grid rather than [0,1] (Ross [15]).

A discrete—time game which is more general than Red-and-Black and much more
difficult is Roulette. In Roulette a gambler has two choices at each stage — the
size of the stake s and what event to bet on. For a given stake s, all bets have
the same mean, but they may have different variances, It has been shown (Smith
[18], Dubins [4]) that, in order to maximize the probability of reaching a goal,
it is optimal to choose that bet which, for a given stake, has the largest
variance and then play boldly. Here is an analogous continuous—time result,

Suppose the processes at x ¢ (0,1) satisfy
Xo = X, dX, = s(t)(Adt + o(t)avW,)

where W = {Wt} is standard Brownian motion, A {( 0, and s and o are

non-anticipative functions such that

0 < 84(X,) < 8(t) £ 3,5(X,)
and

0 < 0(X,) < alt) < 0y(X,).

If s, and oy are bounded, Borel, and have positive infima, then it is
optimal to take s(t) = 8,(X,) and o(t) = o,(X,).
Cont inuous—time Red-and-Black and Roulette are special cases of the problem

of controlling a process (X ] given by a stochastic differential

Xg = X, dX, = p(t)dt + o(t)dw,



where the non—anticipative functions p and o satisfy certain integrability
requirements together with the condition that (p(t),o(t)) must lie in a
control set C(xt) depending on the current position xt. The results stated
above follow from Theorem 1 in section 3 which says that if po:[o.1l-—>x.
00:[0.1]-; (0,2) are bounded, Borel functions such that inf ¢y > 0, and

for all x,
po(x)/co(x)2 = sup {nlczz (p,0) 8 C(x)},
and
(ro(x),04(x)) & C(x),

then a process {X.)} for which p(t) = py(X,) and o(t) = gy(X,)
reaches 1 with maximum probability.

In discrete—time, superfair (i.e. p > %J Red—-and-Black, it is possible to
reach 1 with probability 1. An interesting open problem (cf. Breiman [2]) is
to determine the strategy which minimizes the expected time to the goal. 1In
continuous-time, superfair (i.e. A > 0) Red—-and-Black, it is also possible to
reach 1 with probability 1. Furthermore, among all non—anticipative,
non-negative s for which I;Es(t)zdr (o for all t > O.Vthe expected
time to 1 is minimized when s(t) = Axt. This result is a special case of
Theorem 4 in section 4 which gives the optimal strategy to minimize expected time
to the goal for a class of problems which also includes superfair, continuous-time
Roulettes.

- The next section gives a careful formulation of the problems to be treated
and establishes some verification lemmas, Section 3 studies how to maximize the
probability of tecchin‘ a goal; section 4 treats the problem of reaching a goal

in minimum expected time.



2. Verification lemmas.

A continuous—time gambling problem is a triple (F, I ,u) where

(2.1) the state space F is Polish (i.e. F can be metrized so as to be

complete and separable),

(2.2) the gambling house I is 8 mapping which assigns to each x s F a

non—empty collection of processes X = {X,, t 2 0} with state space F

such that xo = x and X has right-continuous paths with left—-limits,
(2.3) the utility function u is a Borel function from F to the real line.

A process X g I(x) is said to be ayailable at x. Each available X is defined
on some probability space (92, F ,P) and is adapted to an increasing filtration
{ R, t 20} of complete sub-sigma fields of F. The probability space and
filtration may depend on X. (This allows us to use ’‘weak’ solutions to stochastic
differential equations below.) When there is a danger of confusion, superscripts
will be used and, for example, Ff will be written instead of F.

A player, starting at position x e F, selects a process X ¢ I(x) and

recoives the payoff u(X) defined by
u(X) = Ellimsup, u(X,)].

The expectation occurring on the right is assumed to be well-defined for every
available process X,

The payoff u(X) is, in view of the Fatou equation (Corollary 2.1, Pestien
{14]), the continnous-time analogue of the payoff function of Dubins and Savage
[5]. Although this payoff may appear to be quite special, most of the payoff
functions studied in control theory can be reduced to this onme by a change of

coordinates. An example of this occurs in section 4 where the payoff is the
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expected time to reach a goal.
The yalue function V is defined by
V(x) = sup{u(X): X & Z(x)}
for every x e F. A process X g Z(x) is optimal at x if
u(X) = V(x).

Hero is, in outline form, a standard technique for proving optimality which
goes back to Dubins and Savage [5]. First guess an optimal X at x. (This is
the hard partl]) Define Q(x) = u(X). Obviously Q ¢ V: so what is needed are
conditions to guarantee that Q > V. Such conditions will be established in the
rest of this seotion,

Let Q: F— R bo Borel measurable. For every available X, let 7 (X) be the
collection of (3:§}—stopping times t which are almost surely fimite. The
function Q is called excessive if for every x ¢ F, X g Z(x), and © & T(X),

the expectation of Q(X,) is well-defined and satisfies
(2.4) EQ(x.) £ a(x).
Set
Q(X) = E[limsup, ,Q(X,)].

Our first lemma is a descendant of Theorem 2.12.1 of Dubins and Savage [5] and of
Theorem 7 of Heath and Sudderth [8]. It is almost a consequence of Proposition

3.4 of Pestion [14].

Lemma 1. Suppose Q is excessive, and for every available X, Q(X) is well-defined

and Q(X) ) u(X). Then Q(x) ) V(x) for every x s F,



Proof: For x ¢ F and X & I(x),
Q(x) 2 sup{EQ(X_): t & T(X)}
2 a(X)
2 u(X).

The first and last inequalities are true by hypothesis; the middle one is a
consequence of Theorem 2.2 of Pestien [14].

Now take the sup over X & I(x). O

If certain natural conditions are imposed on I, then V is excessive and V(X)
2 u(X) for all available X. Thus, by Lemma 1, V is the smallest function with
these properties (cf. Proposition 3.4 of Pestien [14]).
. From now on, each process X = {xt} under consideration will have values in

8 Euclidean space Rg and will be an Ito process of the form
t t
(2.5) X, =x + Ioa(s)ds + Ioﬂ(s)dws

where W = {Wt] is a standard m—dimensional Brownian motion process on ( R, F,p)

adapted to { Ft]. Assume also that Ft is independent of [wt+,-wt. 80}

and contains all P-null sets. The function a = a(t,0) is to be Rd-valnod.

jointly measurable, adapted to { F} and such that
t
(2.6) Iola(s)lds (o a,s, for all t.

The function B = B(t,w) has as values real dxm matrices, is jointly measurable,

adapted to { Fi}. snd satisfies
t
(2.7) EJolﬁ(s)lzds { © for all t,

(The notation '|+}’ is for the Euclidean norm.) As before, the space ( @, F,P)
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and filtration { F;] and now also the Browniasn motion W are allowed to vary
with X,

For each pair (a,b), where a s Rd is a dx1 vector and b is a dxm
real-valued matrix, define the differential operator D(a,b) for sufficiently

smooth functions Q:kd—-)k by

D(a,b)Q(y) =

iv dcd ,
Q (y)s + 5§1=1§j=1q, jay P00 4y

where

O = (Gore-eobzg)s
a2a
%2y ~ TRy

and b’ is the transpose of b,

Suppose now that the state space F of the gambling problem is a Borel subset
of Rq and has non-empty interior F°. All available processes are assumed to
be Ito processes as in (2.5) and can be specified in terms of the possible values
for the infinitesimal parameters a and B. To make this specification, suppose
that, for each x s F, C(x) is a non-empty set of pairs (a,b) vhere a ¢ Rd
and b is a real dxm matrix. (The idea is that C(x) is the set from which a player
at state x may choose the value of (a,p).) Assume also that every available
process X is abgsorbed at the time Ty of its first exit from F°. These
conditions define a function I, on F where In(z) is the collection of all

processes X having paths in F and satisfying (2.5),(2.6),(2.7) together with
(2.8) (a(t,0),B(t,0)) & C(X,(w)) for all (t,0),

(2.9) (a(t,w),p(t,0)) = (0,0) for t z,tx(u).



(2.10) C(x) = {(0,0)} for x & F-F°.
(Here '0’ is used to denote both a zero vector and a zero matrix.)

Let I be a gambling house such that I(x) C Lo(x) for every x & F.
(Recall that each I(x) is assumed to be non—empty. It could happen that, for some
highly irregular C, Xc(x) is empty for some x, We are excluding such
uninteresting cases.)

-In ﬁe-next-tvo lemmas, G is assumed to.be:-an open subset. of. R.d..v-hich Cee

contains F.

Lemma 2. Suppose Q:G—>R has continuous second-order dorivatives. Assume the

following conditions for every x ¢ F° and every X & I(x):
(i) D(a,b)Q(x) ( 0 for all (a,b) e C(x),
t 2 . A
(1) Ef la (x,)8(s)1%as < ® for a11 ¢ 1 0,
)

(1ii) there is an integrable random variable Y such that Q(X,) X ELY] Ftl

for all t 2 0.
Then @ is excessive.

Proof: Let- x e F, X ¢ L(x), and vt e T(X). If x ¢ F-Fo. then
PIX, = x for all t] =1 and, hence, BQ(X.) = Q(x). So assume x ¢ F'. By

Ito’s Lomma,
t t
ax,) = atx) + jon(a(s).s(s))c(x,)ds + joa,(x,)pmav,.

where a and § are as in (2.5). By (i), the first integral on the right is a
docreasing process, By (ii), the second integral is a martingale. It now iollqn

from (iii) that (Q(X;))} is a supermartingale to which the optional sampling



thoorem (cf. Dollacherie and Meyer [3], Theorems VI.3 and VI.10) can be applied to

yield EQ(X.)  Q(x). O

The next lemma gives a verification result that can be used for a function Q

which is not smooth, but can be approximated by smooth functionms.

Lemma 3, Suppose Q:G—>R and Q,:6G—>R for n = 1,2,°+*. Suppose also that each

Qn has continuous second order derivatives on G, and that
(1) lim , @ (x) = Q(x) for every x 8 F.
Assume the following conditions for every x ¢ F° and every X & I(x):
(ii) limsup,,, D(a,b)Q (x) £ 0 for all (a,b) s C(x),
“lq, 12
(i1) Ef 1400, ®,)p(s)1%8 ¢ = for a1 m,

(iv) there is an integrable random variable Y such that Qn(xt) 2 Y for

a1l n and all t 20,
(v) there is a measurable process Z = {Z,) such that
D{a(s),B(s))Q,(X;) £ Z,
for all n and all s > 0, and
EJ';Iz,Id. T
for all t ) O.

Then Q is excessive,

Proof. Let x & Fo. X e Z(x), and v & T(X). It suffices to check

inequality (2.4). (As in the proof of Lemma 2, the case that x & F-F° is
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trivial.) By conditions (i) and (iv), Q@(X,) 2 Y for all t. So, by Fatou’s

inequality,

EQ(X.) < liminf  BQ(X_ ).

TAR

Consequently, it suffices to check (2.4) for a bounded t & T(X).

Lot X satisfy (2.5) and use Ito’s Lemma to write
: t t
24D qEy) = qu) + [ Dlate).blaNa xas + [ (@), xBaI,.

By (iii), the final term on the right is a martingale. Now calculate,

EQ(X) = Ellim, 0 (X))

I~

liminf FQ (X_)
T
= Q) + uninfwnjon(a(s).p(:))qn(x,)as
T
< ata) + Ef 1imsnp,, Dla(s).p(s))0(X,)ds
£ Q(x).
The sucoessive lines are, respectively, by (i) and (iv); by Fatou and (iv); by

(2.11), (i), and the optional sampling theorem; by Fatou and (v); and by (ii). O

Romarks.

1, The usual formulations of stochastic control problems, as, for example, in
Fleming and Rishel [6] or Krylov [12], use stochastic differential equations
rather then Ito processes. Of course, solutions to stochastic differential

equations of the form

x°°x
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dx, = &(t,X,)dt + B(t,X, )W,

are Ito processes. So the simpler formulation used here allows for a more general
class of processes. In the specific problems considered below, the optimal
processes turm out to be diffusion processes which are solutions of stochastic

differential equations,

2. The usual formulations have the controller select a coantrol function which
dotermines the infinitesimal parameters a and f rether than have. the controller.
select a and B directly as we do. This difference is essentially the same as

the difference between the discrete—time theories of dynamic programming, where a
player chooses an action which determines the distribution of the next state, and
gambling, where a player chooses the distribution of the next state directly. For
most purposes, this differemce is of no consequence, but there are some

measure—theoretic subtleties (cf. Blackwell [1]).

3. Lemma 2 is anslogous to other verification lemmas in the stochastic control
literature such as Theorem VI.4.1 of Fleming and Rishel [6] and Theorem 1.5.4 of
Krylov [12]. One trivial, but useful, difference is that Lemma 2 applies to
functions Q@ which are not solutions of the Hamilton-Jacobi-Bellman equation.
(This is needed in section 4.) Also, no assumptions are made that the processes
are non—degenerate or exit from F® in a finite amount of time. Finally, the use
of Ito processes rather than stochastic differeantial equations allows us to avoid

the smoothness assumptions usually made about the coefficients.

4. One could try to establish a result similar to Lemma 3 by using Krylov's
goneralization ([12), Theorem 2.10.1) of Ito’s Lemma, which applies to certain
non—smooth functions Q. However, Krylov's result requires that the processes be

uniformly non-degenerate, vhich is not assumed here.
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3. Maximizing the probability of reaching a goal.

Consider a gambling problem with state space F = [0,1] and utility function u
= the indicator function of {1}. All available processes X = {X,]) will be

absorbed at the endpoints 0 and 1, and hence,
(3.1) v(X) = E[limsup,,,u(X,)]
= P[X reaches 1] .

In the notation of the previous section, d = m = 1 and, for each x ¢ F, C(x) is
a non-empty subset of R*[0,»). A typical element of C(x) will be written

(p,0) to emphasize that it is a possible value for the infinitesimal mean and
standard deviation of a process starting from x. The assumptions of the previous
section are in force, amnd, in particular, by (2.10), C(0) = é(l) = {(0,0)).

Assume that I,(x) is non-empty for every x so that I is a gambling house.

Example 1. Continuous—time Red-and-Black.

Let A & R; let s;:[0,1]— [0,®) (i=1,2) be bounded, Borel mappings such

that s; < s,. Dofine

C(x) = {(sh,s): s4(x) < s £ 3,(x)}.

g;ang';e 2. Continuous—time roulette.

lot A,8;,8, bo as in the previous example; let oizlo.ll—) [0,=)

(i=1,2) be bounded, Borel mappi:igs such that o £ Gy Define

C(x) = {((sA,s0): ol(x) £s S sy(x), cl(x)’ Lo £ oyx)).
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Return now to the general goal problem and defime, for 0 ¢( x ¢ 1,
(3.2) p(x) = sup{p/o®: (n.0) & C(x)).
(Hoxe, 0/0 is takem to be -o,)

The ratio plc2 has a history in discrete—time gambling theory where it
provides a measure of superfairmess (cf. Dubins and Savage [5], pp. 167-168). The

function p is crucial here and the following assumption is made.
Assumption A, The function p is of the form
(3.3) plx) = polx)/ad(x) , 0 <x <1,

where p, and oy are bounded, Borel-measurable functions on (0,1) and

inf oy > 0.

Consider now a difiﬁsion process X starting at x ¢ (0,1) which is absorbed
at the endpoints 0 and 1 and which solves the stochastic differential equation
X, x

0

(3.4)
X, = uo(xt)dt + co(xt)d!t .

It follows from Krylov ([12], Theorem 2.6.1, p.87) or Ikeda and Watanabe ([9],
Section IV.4) that such an X exists.

The probability
Q(x) = P[X reaches 1]

depends only on p and x. In fact, let y be any bounded, measuvrable function

on (0,1) and define

- Sy(x)
(3.5) Q(x) §¥TIT
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where
'X p 4
(3.6) 5, (x) = _[og7<y)dy. 8,02 = exp{—zjoy(y)dy}.
Then
(3.7) Q(x) = Qp(x).

This formula for Q is well-known when the functions py and oy of (3.3) eare
continuous (cf. Earlin and Taylor [10], pp.191-195).. .The proof in the general
case is the same as that in Gibman and Skorohod ([7], Theorem 3.15.4) except that
Krylov's generalization of Ito’s Lemma ([12], Theorem 2.10.1) must be used.

The process X of (3.4) will belong to IZ,(x) under the following

" assumption.
Assumption B, (pg(x),0p5(x)) &8 C(x) , 0 < x <1,
Let V be the value function for the problem (F, Zc,n) defined in the first
paragraph of this section,
Theorem 1, If A holds, then V ( Q. If A and B hold, then V = Q and the diffusion

process X defined by (3.4) is optimal at x,

Proof: If B holds, then the process X of (3.4) is an element of Zc(x) and so

Q(x) = u(X) { V(x). Thus it suffices to prove the first assertion,

It follows from the Vitali-Caratheodory Theorem (Rudin [17], Theorem 2.24)
that there is a decreasing sequence {7n] of bounded, lower semicontinuous
functions such that y,(x) 2 p(x) for every n and every x & (0,1), and
1n(x)-9 p(x) for Lobesgue aslmost every x. By the monotome convergence
theorem, (3.5), (3.6), and (3.7), Qvn(x)-—)ﬂ5(x) = Q(x) for every

x ¢ [0,1]., Thus, to show Q 2 V, it is enough to prove the following lemma:
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emma 4. If y is a bounded, lower semicontinuous function defined on [0,1] and

vy 2p on (0,1), then QY 2 V.

Proof: QY is bounded, Borel-measurable, and Q_r 2 u. Thus QY(X) is
well-defined and QY(X) 2 u(X) for every available X. By Leqna 1, it is enough
to show QY is excessive., Ve will use Lemma 3, with QY playing the role of Q,
to establish this last fact,

Because Yy is bounded and lower semicontinuous, there is a sequence {pn}
of bounded, continuous functions which converge up to y pointwise on [0,1] (cf.
Royden [16], Problem 2.49). Let Q, = Qpn. Notice, beéause each p is
continuous, that each Q, has a continuous second derivative and can be extended
smoothly to a fixed open interval G containing [0,1]. Furthermore, by (3.5) and

(3.6), Q, satisfies

(3.8) 39+ 900 = 0

on (0,1). We are now ready to check the conditions of Lemma 3.

Condition (i). 1limQ (x) = Qv(x) for 0 { x {1 by the monotone
convergence theorem.
Condition (ii). Let 0 < x < 1 and (u,0) e C(x). Then

pas(x) + 2o?a’ (x)

(3.9) D(p,0)Q,(x)

[ &)

nQ (x) + Z6704° (x) = 0’130}’ (x)4p,(x)Q}(x)]

4

(n—czpn(x))aé(x).

Hence,



limsup,D(p,0)Qy(x) = (u - o’y(x))Llimsup_, Q! (x)
< (- &p(x)) Limsup_, Q! (x)
£ 0

by (3.2) and the fact that @ 2 0 on (0,1) for every n.

Condition (iii). Q; is continuous and, therefore, bounded on [0,1]. vSo this

condition is a consequence of (2.7).
Condition (iv). Take Y to be the constant O.
Condition (v). By (3.9), for ¢ # 0,
D(p,a)Q (x) = a®(Br ~ p (x))Q!(x)
< P plx) - p (xNQx).

Now p(x) is bounded by assumption A; the p  are uniformly bounded
above by the bounded function y and below by the bonndqd function Py’ and
the Q) can be seen to be uniformly bounded from (3.5) and (3.6). Also, if
o =0 and (p,0) 8 C(x), then p { 0. (Otherwise, p(x) = +=,) So, in this
case, D(p,0)Q (x) = p@y(x) < 0. Therefore, there is a positive comstant

B such that
2
D(n,0)Q,(x) £ Bo
for 0 { x < 1 and (p,0) & C(x). Condition (v) now follows from (2.7).

The proofs of Lemma 4 and Theorem 1 are now complete. O

It can easily happen that the optimal process in Theorem 1 is not uniquely

16
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so, For example, the supremum in (3.2) could be achieved by anmother pair of
functions p; and oy. Or, if (0,0) & C(x), there is no harm in using (0,0)
as the control for a time and then switching to (po.co).

There are general gambling techniques which make it possible to characterize
the class of all optimal processes. (For the discrete—time case, see Chapter 3 of
Dubins and Savage [5] or Sudderth [19].) We plan to write another paper on this

general subjeot.

Example 1 (continued). Suppose A ¢ 0 so that the game is subfair and suppose
inf s, > 0. Then p(x) = sup{A/s: s4(x) s ¢ 5,(x)} = A/s,(x) end,

by Theorem 1, the optimal process corresponds to bold play: s(t) = sz(xt) for
ill te If A > 0, and inf 84 > 0, a sihilar argument shows timid play

(s(t) = sl(xt) for all t) is optimal. The case when s; = 0 is discussed in

the next section,

Example 2 (continued). Suppose A < 0, and the functions s,, o, have
positive infima. Then p(x) = l/(sz(x)cQ(x)) and the optimal controls
are s(t) = 8,(X;), o(t) = 0p(X,) for all t. Similarly, if A > 0 and
84, 0y have positive infima, then s(t) = s,(X;), a(t) = gy (X,)

are optimal.

Torn now to the problem of reaching a goal on 2 half-line., Take F =
(-=,0] and u = the indicator function of {0}. Let C(x) be a non-empty

subset of Rx[0,®) for x < 0 and C(0) = {(0,0)). Define

pix) = tnp(ulazz (n,0) & C(x)}, x> 0.

Assumption A. »Tho function p is of the form

p(x) = po(x)/og(z) , == <x <0
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where p, and oy axe bounded, Borel-measurable functions on (-=,0) and

Assumption B. (uo(x).co(x)) e C(x) , -»<x <0,
Let Y be the value function for the problem (F,u, Ze). For each
x ¢ 0, let X be a diffusion on (-»,0] which is absorbed at O and satisfies
(3010) xO =X, dxt = uo(xt)dt +‘60(Xt)dwt.
Let
Q(z) = P[X reaches 0].
The next result can be proved directly or derived from Theorem 1.

Theorem 2. If A holds, thean ¥ { Q. If A and B hold, then ¥ = Q and

the process defined by (3.10) is optimal at x. O

Of course, there is nothing special about the goal being 0 in Theorem 3. A
process which maximizes the critical ratio u/o'2 is most likely to reach any
goal to the right of the initial position. This suggests the following comparison

tcsnlto

Theogem 3. Consider two diffusion processes

i i i i i

with By and o, bounded, Borel-measurable and inf o; >0 for 1 = 1,2, If

xz $_81 and uzlag £ pllai. then snptxi is stochastically smaller than suptxt.



Proof. Fix g where x1 £ 8 ¢ ° Consider the problem: F=(-=»,g], uw = the
indicator function of {g}, I = I, where C(g) = {(0,0)) and
C(x) = {(p;(x),04(x)): i=1,2) for x < g. By Theorem 2, the optimal process

at x! is X}, It follows that

Plsup Xy 2 g] 2 Plsup X2 > gl . O

The comparison theorem of Ikeda and Watanabe ([9]), Section VI.1) has the .

stronger conclusion that X% 5,8: for every t with probability
one, It is easy to give examples to see that this need not follow from the

hypotheses of Theorem 3.
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4, Minimizing the expected time to the goal.

If arbitrarily small positive stakes are permitted in superfair

Red—-and-Black, then, as is shown below, it is possible to reach the goal with

20

probability 1., The next problem is how to minimize the expected time to reach the

goal. The theorem of this section gives the solution for a class of gambling
problems which includes superfair Red-and-Black and Roulette when arbitrary
positive stakes are allowed.

The formulation uses two—dimensional processes X = {X(t)} where
_ [X4(¢)
The first coordinate X1 corresponds to the player’s position in (0,1]; the

second coordinate xz is the time, starting from X9, prior to absorption of

x1 at 1. The state space is

Feoixe Rzz 0<xy; <1, 258 RI}.

(Notice that every real number x, is a possible starting time.) Let Co be a

fixed, nonempty subset of Rx[0,») and define, for x ¢ F,
c) = ([PL[T]: woorecy, s 20 1fx; <1,

UHIH IR

A process X ¢ 2c(x) can be expressed by a stochastic differential

X(0) = x, dx(t) = [s(t)n(t>d:t+ s(t)o(t)dw(t)

prior to the absorption of 11 et 1, Hore W is a one-dimensional Brownian

motion. (In the notation of section 2, d=2 and m=1,)

Bocause the object is to minimize expected time, set



u(x) = ~ x, for x ¢ F.
Then, for X & Ln(x),
(4.1) u(X) = - ET - X5
where x, is the starting time and T = inf{t ) 0: X,(t) = 1},

Examples. If Cy = {(A,1)]), then the processes X, correspond to those
available in continuous—-time Red—and-Black when arbitrary non-negative stakes are
allowed. If C, = {(r,0): 03 Lo ¢ cz}. the processes X,

correspond to those available in a version of continuous—-time Roulette.

Consider now the genmeral problem (F.i:c.n). Assume that the problem is '
superfair in the sense that there is an element (p,0) &8 Cy for which p > 0.

Define
I(x) = {X & Zp(x): u(X) O el
= {Xe Ip(x): ET < =}

To see that I(x) is not empty, suppose xy < 1 and fix (p,0) & Co vith

p > 0. Consider the proportional strategy at x based onm (u,0) and ¢ for which

s(t) = cX4(t)
and
dX,(t) = opX,(t)dt + coX,(t)dW(t).
Use Ito’s formula to check that, for t ( T,

11(t) = OY(t)

21



22

where

Y(t) = log x; + mt + co¥(t)

is & Brownian motion with drift

n = mn(p,0,0) = cp ~ %czaz.

This drift coefficient is positive if 0 < ¢ < 2§, So, for

¢ in this interval, Y reaches 0 slmost surely and, consequently, Xy reaches 1
almost surely. That is, P[T ¢ ] = 1, Furthermore it is easy to show that ET
is finite., So, by Wald’s identity for Brownian motion (Liptser and Shiryayev

(13], Lemma 4.8),
EWT) =0 .
But Y(T) =0 a.s.. Thus
0 = EY(T) = log xy + mET

and

(4.2) ET = - 108 %,

In particular, X & I(x).

Our guess of an optimal strategy is inspired by the ’Kelly criterion’ [11],
which, as Breiman [2] showed, often leads to good strategies for discrete—time,
suporfair problems, The criterion says to bet so as Fo maximize the expected log
of your next fortune. There are difficulties with overshooting when the object is
to reach a goal quickly and variables are discrete, Thus Breiman conjectured that
an optimal plan would follow the criterion up to some point and them switch to

smaller bets to avoid overshooting the goal. The continvous processes considered



here cannot overshoot and so it is natural to consider that strategy which always

maximizes the drift of log Xl(t) prior to reaching the goal,

For fized (p,0) e Cy with p > 0, 0 < o < =, m(p,0,0) is a maximum

when ¢ = ulcz. and n(u.c.p/cz) = nZIZcz. Define
2,, 2
(4.3) M= sap(p®/2c”: (p,0) ¢ Co» b > 0}.

Lot V be the value function for the gambling problem (F, I ,u). .

Theorem 4., V(x) = 12%_5; - x5,

If K= n02/2002 for some (uo.ao) 8 Cy with p, > 0, then the
proportional strategy based on (pj,0,) and ¢ = po/obz is optimal at

every x.

Proof: The second assertion follows from (4.1) and (4.2) together with the first.

So it suffices to prove the equality. Set

Qlx) = 32-8-.—51

M -xz .
It is clear from (4.1), (4.2), (4.3) and the definition of V that @ { V. It
remains to prove the opposite inequality, If M = o, the inequality is clear.

So assume M ¢ o,

Let ¢ > 0 and define

Qa(x) = -l-gﬂxi‘l-ﬁ- xz .

We will show Q% > V. Because Q°—> Q as e—> 0, this will be sufficient.

Lot x ¢ F and X & L(x). To see that Q°(X) 2 u(X), calculate:

23
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log(X,(t)+e)

Q®(X) = E[limsup,, . ( - X,(t))]

= log(;+a) - ET - x,

Z —El‘-xz
= u(X)

To finish proving that Q° ) V, it suffices by Lemma 1 to show Q° is
excessive. Weo now check the conditions of Lemma 2. Take the open set G to be

{x s'Rzz x4 20, 25 8 R1].
Condition (1): Let (a,b) = ([??].[%f]) 8 C(x). Then

D(a,b)a’(x) = [-(;—%;;ﬁ ‘1][31"] - ﬁ%%i'ﬂi

4 8202

= 3B ___ 3 -
(x+08 ~ 17 e
/Es g 8262

S vo® 1T I rom
=-(1—Gﬁ-‘g—)7ﬁ)2
£0.

The first inequality holds because u £ ov2N by (4.3).

Condition (ii):

lQG(x()p(e)l = l[ﬁf(%m' A][# 05
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1
$ Filsre(v)l
1
= ﬁ'ﬂ(t)l .
The condition is thus a consequence of assumption (2.7).

Condition (iii):
0®(x(1)) = 208E1L0)TE) _ g ()
2 12%_5 - x5 - T.
The right side is integrable by the definition of I.
Thus Lemma 2 applies, Q® is excossive, and the proof of Theorem 4 is

complete. O

Examples (continued). If, corresponding to Red-and-Black, Cy = {(A,1)} where
A > 0, then, by Theorem 4, the proportional strategy giveam by s(t) = xxt is
optimal. If, as in roulette, Cy = ((X,0): 05 {0 ¢ oz). then

s(t) = (x/«%)xt is optimal,
Consider now the problem of reaching 0 in minimum expected time from a
position in (-=,0] when the control set is constant., Formally, take
F={xzs r?: 2 £0, x5 ¢ e,
n(x) = -x,.
Let Cy C Rx[0,2) and suppose p > 0 for some (p,o) ¢ Cy. Dofine
C(x) B'I([g].[g]):(u.o)aco) if x5 <O

= tfo)[opy 1%, =o.
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Lot
I(x) = (X & I4(x): u(X) > —=},

and let V be the value function for the problem (F,Z,u).

~

-

This problem is essentially the log of the problem considered in Theorem 4.
So the next theorem is not surprising.
Define

g = sup{p: 3o >(p,0) ¢ Col-
Theozen 3. V(x) = x;/p - x5. If (g,g) & Cy for some g,
then the process X, for which
Xl(t) = x4 +put+ aW(t),
is optimal at x.

Proof: Apply Lemma 2. O

If the control set Co for xl depends on the position, the minimum
expected time problem seems to be more difficult. This is because the optimal
control at position x; may depend on other things than just the set C,(x,).

To seo this, suppose that Cy(x,) = {(0,0)) for x; { -1 or xy = 0 and

Colxq) = {(sr,s): s > 0} for -1 < x; < 0. The problem of reaching 0 in
minimum time from a starting point in (-1,0) is just the Red-and-Black problem
translated to the interval (-1,0). So s(t) = A(X,+1) is optimal. However, if

Colxq) = ((sa,s): s 2 0} for all x; < 0, Theorem 5 applies to show

"

AL -x, and s(t) should be taken very large. '
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