Continuous-Time Red and Black:
 How to Control a Diffusion to a Goal
 Victor C. Pestien
 University of Miami and
 William D. Sudderth ${ }^{*}$
 University of Minnesota

Technical Report No. 426
*Research supported by National Science Foundation Grant MCS8100789

Abstract

A player starts at x in (0,1) and tries to reach 1. The process [$X_{t}, t \geq 0$) of his positions moves according to a diffusion process (or, more generally, an Ito process) whose infinitesimal paramoters μ, σ are chosen by the player at each instant of time from a set depending on his current position. To maximize the probability of reaching 1 , the player should choose the parameters so as to maximize μ / σ^{2}, at least when the maximum is achieved by bounded, measurable functions. This implies that bold (timid) play is optimal for subfair (superfair), continuous-time red-and-black. Furthermore, in superfair red-and-black, the strategy which maximizes the drift coofficient of $\left\{\log X_{t}\right\}$ minimizes the expected time to reach 1.

Koy words: Stochastic control, gambling theory, Red-and-Black.

American Mathomatical Society 1980 subject classification. 60G40, 60J60, 93E20.

1. Introduction.

One of the most interesting discrete-time, stochastic control problems is the game of Red-and-Black, Which inspired Dubins and Savage to write their fundamental book [5] on sequential gambling problems. The game goes as follows: a player starts at x (0,1) and wants to reach 1. The player can stake any amount $s_{0}, 0 \leq s_{0} \leq \mathrm{x}$, and will win the stake with a fixed probability p and lose it with probability $1-p$. The player can then make another stake ${ }^{1}{ }^{\prime}$ $0 \leq s_{1} \leq X_{1}$ where X_{1} is the position after the first bet. And so on.

Here is another description of the game which suggests a continuous-time version. Let Y_{1}, Y_{2}, \ldots be independent random variables such that $P\left[Y_{n}=1\right]=p=1-P\left[Y_{n}=1\right]$. The process $X_{0}=x, X_{1}, X_{2}, \ldots$ of the gambler's fortunes can be described in terms of its increments

$$
X_{n+1}-X_{n}=s_{n} Y_{n}
$$

where $\delta_{n}=s_{n}\left(X_{0}, \ldots, X_{n}\right) \in\left[0, X_{n}\right]$. If Y_{n} is regarded as being the nth increment of a simple random walk, then the natural continuous-time analogue is a stochastic differentisl

$$
X_{0}=x, \quad d X_{t}=s(t) d B_{t} \quad(t \geq 0)
$$

where $B=\left\{B_{t}\right\}$ is a Brownian motion process with drift λ and $s(t)$ is a non-anticipative function restricted to lie in an interval $\left[s_{1}\left(X_{t}\right), s_{2}\left(X_{t}\right)\right]$ dopending on the current state X_{t}.

Dubins and Savage [5] proved that, in discretentime, subfair (i.o.p $\frac{1}{2}$) Red-and-Black, the strategy which maximizes the probability of reaching 1 is bold play in which the player makes the maximum possible stake short of overshooting the goal (i.e. $s_{n}=m i n\left(X_{n}, 1-X_{n}\right)$). Analogousiy, if the continnons-time game is subfair in the sense that $\lambda<0$, then it is optimal to
take $s(t)=s_{2}\left(X_{t}\right)$, at least if s_{2} is a bounded, Borel measurable function on [0,1] with positive infimum and $s_{1} \geq 0$. If $\lambda>0$ and s_{1} is bounded, Borel measurable, and has a positive infimum on [0,1], it is optimal to take $s(t)=s_{1}\left(X_{t}\right)$. There is a comparable result in discrete-time when the state space is a discrete grid rather than [0,1] (Ross [15]).

A discrete-time game which is more general than Red-and-Black and much more difficult is Roulette. In Ronlette a gambler has two choices at each stage - the sizo of the stake s and what event to bot on. For a given. stake. s, all bets have the same mean, but they may have different variances. It has been shown (Smith [18], Dubins [4]) that, in order to maximizo the probability of reaching a goal, it is optimal to choose that bet which, for a given stake, has the largest Variance and then play boldly. Here is an analogons continuons-time result. Suppose the processes at $\times(0,1)$ satisfy

$$
X_{0}=x, \quad d X_{t}=s(t)\left(\lambda d t+\sigma(t) d Y_{t}\right)
$$

where $W=\left\{W_{t}\right\}$ is standard Brownian motion, $\lambda<0$, and s and σ are non-anticipative functions such that

$$
0 \leq s_{1}\left(X_{t}\right) \leq s(t) \leq s_{2}\left(X_{t}\right)
$$

and

$$
0 \leq \sigma_{1}\left(X_{t}\right) \leq \sigma(t) \leq \sigma_{2}\left(X_{t}\right)
$$

If s_{1} and σ_{1} are bonnded, Borel, and have positive infima, then it is optimal to take $8(t)=\delta_{2}\left(X_{t}\right)$ and $\sigma(t)=\sigma_{2}\left(X_{t}\right)$.

Continuous-time Red-and-Black and Ronlette are special cases of the problem of controlling a process $\left\{X_{t}\right\}$ given by a stochastic differential

$$
X_{0}=I_{0} \quad d X_{t}=\mu(t) d t+\sigma(t) d W_{t}
$$

where the non-anticipative functions μ and σ satisfy cortain integrability requirements together with the condition that $(\mu(t), \sigma(t))$ must lie in a control set $C\left(X_{t}\right)$ depending on the current position X_{t}. The results stated above follow from Theorem 1 in section 3 which says that if $\mu_{0}:[0,1] \longrightarrow R_{\text {, }}$ $\sigma_{0}:[0,1] \longrightarrow(0, \infty)$ are bounded, Borel functions such that inf $\sigma_{0}>0$, and for all x ,

$$
\mu_{0}(x) / \sigma_{0}(x)^{2}=\sup \left\{\mu / \sigma^{2}:(\mu, \sigma) \& C(x)\right\} .
$$

and

$$
\left(\mu_{0}(x), \sigma_{0}(x)\right) \in C(x),
$$

then a process $\left\{X_{t}\right\}$ for which $\mu(t)=\mu_{0}\left(X_{t}\right)$ and $\sigma(t)=\sigma_{0}\left(X_{t}\right)$ reaches 1 with maximum probability.

In discrete-time, superfair (i.e. $p>\frac{1}{2}$) Red-and-Black, it is possible to reach 1 with probability 1. An interesting open problem (cf. Breiman [2]) is to determine the strategy which minimizes the expected time to the goal. In continuons-time, superfair (i.e. $\lambda>0$) Red-and-Black, it is also possible to reach 1 with probability 1. Furthermore, among all non-anticipative, non-negative s for which $\int_{0}^{t} E s(x)^{2} d x<\omega$ for all $t \geqslant 0$, the expected time to 1 is minimized when $s(t)=\lambda X_{t}$. This result is a special case of Theorem 4 in section 4 which gives the optimal strategy to minimize expected time to the goal for a class of problems which also includes snperfair, continuous-time Roulette.

The next section gives a careful formulation of the problems to be treated and establishes some verification lemas. Section 3 studies how to maximize the probability of reaching a goal: section 4 treats the problem of reaching a goal in minimum expectod tiec.

2. Vorification 1ommas.

(2.1) the state space F is Polish (i.e. F can be metrized so as to be complete and separable).
(2.2) the gambling house \sum is mapping which assigns to each $x 8$ a non-ompty collection of processes $X=\left\{X_{t}, t 20\right\}$ with state space F such that $X_{0}=x$ and X has right-continuous paths with left-limits,
(2.3) the utility function u is a Borel function from F to the real line.

A process $X 8 \Sigma(x)$ is said to be ayailable at x. Each available X is defined on some probability space (Ω, F, P) and is adapted to an increasing filtration $\left\{F_{t}, t \geq 0\right\}$ of complete sub-sigma fields of F. The probability space and filtration may depend on X. (This allows ns to use 'weak' solutions to stochastic differential equations below.) When there is a danger of confusion, superscripts will be used and, for example, F_{t}^{X} will be written instead of F_{t}.

A player, starting at position $x \in F$, selects a process $X \varepsilon \mathcal{L}(x)$ and receives the payoff $u(X)$ defined by

$$
u(X)=E\left[1 \lim _{\sup _{t \rightarrow \infty}} u\left(X_{t}\right)\right] .
$$

The oxpectation occurring on the right is assumed to be vell-defined for every available process X.

The payoff $u(X)$ is, in view of the Fatou equation (Corollary 2.1, Pestien [14]). the continuous-time analogue of the payoff function of Dubins and Savage [5]. Although this payoff may appear to be quite special, most of the payoff functions studied in control theory can be reduced to this one by a change of coordinates. An example of this occurs in section 4 where the payoff is the
expected time to reach a goal.

The valne function V is defined by

$$
V(x)=\sup \{n(X): X \in \Sigma(x)\}
$$

$$
\mathfrak{u}(X)=V(x)
$$

Here is, in ontline form, a standard technique for proving optimality which goes back to Dubins and Savage [5]. First guess an optinal x at x (This is the hard partl) Define $Q(x)=u(X)$. Obviously $Q \leq V$; so what is needed are conditions to guaranteo that $Q \geq V$. Such conditions will be established in the rest of this section.

Let $Q: F \rightarrow R$ be Borel measurable. For every available X, let $T(X)$ be the collection of $\left\{F_{t}^{X}\right\}$-stopping times τ which are almost surely finite. The function Q is called excessive if for every $x \in F, X \in \Sigma(X)$, and $\tau \in(X)$, the expectation of $Q\left(X_{\tau}\right)$ is well-defined and satisfies

$$
\begin{equation*}
\mathbf{E Q}\left(\mathbf{x}_{\tau}\right) \leq \mathbf{Q}(x) \tag{2.4}
\end{equation*}
$$

Sot

$$
Q(X)=E\left[1 \lim _{\sin } p_{t \rightarrow \infty} Q\left(X_{t}\right)\right] .
$$

Our first leman is a doscendant of Theorem 2.12 .1 of Dubins and Savage [5] and of Theorem 7 of Heath and Sudderth [8]. It is almost a consequence of Proposition 3.4 of Pestien [14].

Loman 1. Suppose Q is excessive, and for overy available $X, Q(X)$ is veli-defined and $Q(X) \geq n(X)$. Then $Q(x) \geq V(x)$ for every $x \& P_{\text {. }}$

Proof: For x \& F and $X \in \Sigma(x)$,

$$
\begin{aligned}
Q(x) & \geq \sup \left\{E Q\left(X_{\tau}\right): \tau \in T(X)\right\} \\
& \geq Q(X) \\
& \geq u(X)
\end{aligned}
$$

The first and last inequalities are trae by hypothesis; the middle one is a consequence of Theorem 2.2 of Pestien [14].

Now take the sup over $X \&(x)$.

If cortain natural conditions are imposed on Σ, then V is excessive and $V(X)$ $\geq n(X)$ for all available X. Thus, by Lemma $1, V$ is the smallest function $\begin{aligned} & \text { ith }\end{aligned}$ these properties (cf. Proposition 3.4 of Pestien [14]).

From now on, each process $X=\left\{X_{t}\right\}$ under consideration will have values in a Euclidean space R^{d} and $\begin{aligned} & \text { will be an Ito process of the form }\end{aligned}$

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} \alpha(s) d s+\int_{0}^{t} \beta(s) d w_{s} \tag{2.5}
\end{equation*}
$$

where $W=\left\{W_{t}\right\}$ is a standard m-dimensional Brownian motion process on (Ω, F, P) adapted to $\left\{F_{t}\right\}$. Assume also that F_{t} is independent of $\left\{W_{t+s}-W_{t}, s \geq 0\right\}$ and contains all P-null sets. The function $a=a(t, \omega)$ is to be $R^{d}-\nabla a l u e d$, jointly measnrable, adapted to $\left\{F_{t}\right.$) and such that

$$
\begin{equation*}
\int_{0}^{t}|a(s)| d s<\infty \quad \text { a.s. for } \mathrm{all} t \tag{2.6}
\end{equation*}
$$

The function $\beta=\beta(t, \infty)$ has as values roal dxm matrices, is jointly measurable. adapted to $\left\{F_{t}\right\}$, and satisfies

$$
\begin{equation*}
E \int_{0}^{t}|\beta(s)|^{2} d s<\infty \text { for } a 11 t \tag{2.7}
\end{equation*}
$$

(The notation $|\cdot|$ ' is for the Enciidean norm.) As before, the space (Ω, F, P)
and filtration $\left\{F_{t}\right\}$ and now also the Brownian motion ware allowed to vary with X.

For each pair (a, b), where a $\varepsilon \mathbb{R}^{d}$ is $a d \times 1$ vector and b is $a d \times m$ real-valued matrix, define the differential operator $D(a, b)$ for sufficiently smooth functions $Q: R^{d} \longrightarrow R$ by

$$
\begin{aligned}
& D(a, b) Q(y)= \\
& \quad Q_{z}(y) a+\frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} Q_{x_{i} x_{j}}(y)\left(b b^{\prime}\right)_{i j}
\end{aligned}
$$

Where

$$
\begin{aligned}
& Q_{z}=\left(\frac{\partial Q}{\partial z_{1}}, \ldots, \frac{\partial Q}{\partial z_{d}}\right), \\
& Q_{x_{i} z_{j}}=\frac{\partial^{2} Q}{\partial x_{i} \partial z_{j}},
\end{aligned}
$$

and b^{\prime} is the transpose of b.
Suppose now that the state space F of the gambling problem is a Borel subset of R^{d} and has non-empty interior F^{o}. All available processes are assmed to be Ito processes as in (2.5) and can be specified in terms of the possible values for the infinitesimal parameters a and β. To make this specification, suppose that, for each $x \& F, C(x)$ is a non-empty set of pairs (a, b) vere a $e R^{d}$ and b is a real dxm matrix. (The idea is that $C(x)$ is the set from which a player at state x may choose the value of (α, β).) Assume also that every available process X is absorbed at tho time τ_{X} of its first exit from F^{0}. These conditions define a function Σ_{C} on P where $\Sigma_{C}(x)$ is the collection of all processes X having paths in F and satisfying (2.5),(2.6),(2.7) together with
$(\alpha(t, \omega), \beta(t, \omega)) \in C\left(X_{t}(\omega)\right)$ for all $(t,(t)$.

$$
\begin{equation*}
\left(a(t,(\infty), \beta(t, \infty))=(0,0) \text { for } t 2 \tau_{X}(\infty)\right. \text {. } \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
C(x)=\{(0,0)\} \text { for } x \in R-F^{0} \tag{2.10}
\end{equation*}
$$

(Here ' O^{\prime} is used to denote both a zero vector and a zero matrix.)

Let Σ be a gambling house such that $\Sigma(x) \subset \Sigma_{C}(x)$ for every $x \in \mathbb{F}$. (Recall that cach $\Sigma(x)$ is assumed to be non-empty. It could happen that. for some highly irregalar $C, \mathcal{L}_{C}(x)$ is empty for some x. We are excluding such uninteresting cases.)

In the next two lemas, G is assumed ta be opon subset. of. R^{d} which contains F.

Lemma 2. Suppose $Q: G \longrightarrow R$ has continuous second-order derivatives. Assume the following conditions for every $x \in F^{0}$ and every $X \& E(x)$:
(i) $D(a, b) Q(x) \leq 0$ for $a 11(a, b) \& C(x)$.
(ii) $E \int_{0}^{t}\left|Q_{2}\left(X_{s}\right) \beta(s)\right|^{2} d s<\infty$ for all $t \geq 0$,
(iii) there is an integrable random variable Y such that $Q\left(X_{t}\right) \geq E\left[Y \mid F_{t}\right]$ for all $t \geq 0$.

Then Q is excessive.

Proof: Let: $x \in \mathcal{F}, X \in E(x)$, and $\tau \in T(X)$. If $x \in R-F^{0}$, then $P\left[X_{t}=x\right.$ for all $\left.t\right]=1$ and, hence, $B Q\left(X_{\tau}\right)=Q(x)$. So assume $x \in F^{0}$. By Ito's Lomma,

$$
Q\left(X_{t}\right)=Q(x)+\int_{0}^{t} D(\alpha(s), \beta(s)) Q\left(X_{s}\right) d s+\int_{0}^{t} Q_{2}\left(X_{s}\right) \beta(s) d X_{s} .
$$

where a and β are as in (2.5). By (i), the first integral on the right is a decreasing process. By (il). the second integral is martingale. It now follows fron (iii) that $\left\{Q\left(X_{t}\right)\right\}$ is smpermartingale to which tho optional sampling
theorem (cf. Dellacheric and Meyer [3]. Theorems VI. 3 and VI.10) can be applied to yield $E Q\left(X_{\tau}\right) \leq Q(x) . \quad 0$

The next lema gives a verification result that can be used for a function Q Which is not smooth, bnt can be approximated by smooth functions.

Lomma 3. Suppose $Q: G \longrightarrow R$ and $Q_{n}: G \longrightarrow R$ for $n=1,2, \ldots$. Suppose also that each Q $_{n}$ has continnous second order derivatives on G, and that
(i) $\lim _{n \rightarrow \infty} Q_{n}(x)=Q(x)$ for every $x \& F$.

Assume the following conditions for every $x \in F^{0}$ and every $X \varepsilon(x)$:
(ii) $\operatorname{limsip_{n\rightarrow \infty }} D(a, b) Q_{n}(x) \leq 0$ for $a 11(a, b)$ \& $C(x)$.
(iii) $\mathrm{E} \int_{0}^{t}\left|\left(\mathcal{Q}_{\mathrm{n}}\right)_{\mathrm{I}}\left(\mathrm{X}_{\mathrm{s}}\right) \beta(\mathrm{s})\right|^{2} \mathrm{ds}<\infty$ for all n ,
(iv) there is an integrable random variable Y such that $Q_{n}\left(X_{t}\right) \geq Y$ for $a 11 \mathrm{n}$ and all $\mathrm{t} \geq 0$,
(v) there is a measurable process $Z=\left\{Z_{8}\right\}$ such that

$$
D(\alpha(s), \beta(s)) Q_{n}\left(X_{s}\right) \leq Z_{s}
$$

for all n and all s ≥ 0, and

$$
E \int_{0}^{t}\left|z_{s}\right| d s<\infty
$$

for all t 20 .

Then Q is excessive.

Proof. Let $x \in F^{0}, X \in \Sigma(x)$, and $\tau \in T(X)$. It suffices to check inequality (2.4). (As in the proof of Loma 2 , the case that $x \in R-\mathbb{F}^{0}$ is
trivial.) By conditions (i) and (iv), $Q\left(X_{t}\right) \geq Y$ for all t. So, by Fator's inequality.

$$
E Q\left(X_{\tau}\right) \leq 1 i m i n f_{n \rightarrow \infty} E Q\left(X_{\tau \wedge n}\right)
$$

Consequently, it suffices to check (2.4) for bounded $\tau \in(X)$.
Lot X satisfy (2.5) and nse Ito's Lemma to wite

$$
\begin{equation*}
Q_{n}\left(X_{t}\right)=Q_{n}(x)+\int_{0}^{t} D(\alpha(s), \beta(s)) Q_{n}\left(X_{s}\right) d s+\int_{0}^{t}\left(Q_{n}\right)_{z}\left(X_{s}\right) \beta(s) d V_{s} \tag{2.11}
\end{equation*}
$$

By (iii), the final term on the right is a martingale. Now calculate.

$$
\begin{aligned}
E Q\left(X_{\tau}\right) & =E\left[1 \lim _{n \rightarrow \infty} Q_{n}\left(X_{\tau}\right)\right] \\
& \leq \operatorname{liminf_{n\rightarrow \infty }EQ_{n}(X_{\tau })} \\
& =Q(x)+1 i m i n f_{n \rightarrow \infty} E \int_{0}^{\tau} D(\alpha(s), \beta(s)) Q_{n}\left(X_{s}\right) d s \\
& \leq Q(x)+E \int_{0}^{\tau} 1 i m \sup _{n \rightarrow \infty} D(\alpha(s), \beta(s)) Q_{n}\left(X_{s}\right) d s \\
& \leq Q(x) .
\end{aligned}
$$

The successive lines are, respectively, by (i) and (iv): by Fator and (iv): by (2.11), (i), and the optional sampling theorem; by Fator and (v); and by (ii). 0

Remarks.

1. The usual formulations of stochastic control problems, as, for example, in Fleming and Rishel [6] or Krylov [12]. uso stochastic differontial equations rather than Ito processes. Of course, solntions to stochastic differential equations of the form

$$
\mathbf{X}_{0}=x
$$

$$
d X_{t}=\hat{\alpha}\left(t, X_{t}\right) d t+\hat{\beta}\left(t, X_{t}\right) d W_{t}
$$

are Ito processes. So the simpler formulation used here allows for more general class of processes. In the specific problems considered below, the optimal processes turn ont to be diffusion processes which are solutions of stochastic differential equations.
2. The usual formulations have the controller select a control function which determines the infinitesimal parameters a and β rether than have the controller select α and β directly as we do. This difference is essentially the same as the difference between the discrete-time theories of dynamic programming, where a player chooses an action which determines the distribution of the next state, and gambling, where a player chooses the distribution of the next state directly. For most purposes, this difference is of no consequence, but there are some measure-theoretic subtleties (cf. Blackwell [1]).
3. Lemma 2 is anslogons to other verification lemms in the stochastic control Iiteratnre such as Theorem VI.4.1 of Fleming and Rishel [6] and Theorem 1.5 .4 of Krylov [12]. One trivial, bet useful, difference is that Lema 2 applies to functions Q which are not solntions of the Hamilton-Jacobi-Bellman equation. (This is needed in section 4.) Also, no assumptions are made that the processes are non-degenerate or exit from F^{0} in a finite amount of time. Finally, the use of Ito processes rather than stochastic differential equations allows us to avoid the smoothness assumptions usually made about the coefficients.
4. Onc could try to establish a result similar to Lemas 3 by using Krylov's generalization ([12]. Theorem 2.10.1) of Ito's Lema, which applies to certain non-smooth functions Q. However, Krylov's reselt requires that the processes be nniformly non-degenerste, which is not assumed here.
3. Masimizing tho probability of reaching a goal.

Considor a gambling problea with state space $F=[0,1]$ and utility function u $=$ the indicator function of $\{1\}$. All available processes $X=\left\{X_{t}\right\}$ will be absorbed at the endpoints 0 and 1 , and hence,
(3.1)

$$
\begin{aligned}
\mathfrak{n}(X) & =\mathrm{E}\left[1 \text { insug }_{t \rightarrow \infty} \mathrm{n}\left(X_{t}\right)\right] \\
& =P[X \text { reaches } 1] .
\end{aligned}
$$

In the notation of the previons section, $d=m=1$ and, for each $x \varepsilon B, C(x)$ is a non-empty subset of $\mathrm{R} \times[0, \infty)$. A typical element of $C(x)$ will be written (μ, σ) to emphasize that it is a possible value for the infinitesimal mean and standard deviation of a process starting from x. The assumptions of the previons section are in force, and, in particular, by (2.10), $C(0)=C(1)=\{(0,0)\}$. Assume that $\mathcal{L}_{C}(x)$ is non-empty for every x so that Σ_{C} is a gambling honse.

Exampla 1. Continnons-time Red-and-B1ack.

Let $\lambda \in \operatorname{R} ;$ let $s_{i}:[0,1] \longrightarrow[0, \infty)(i=1,2)$ be bornded, Borel mappings such that $s_{1} \leq s_{2}$. Dofine

$$
C(x)=\left\{(s \lambda, s): s_{1}(x) \leq s \leq s_{2}(x)\right\}
$$

Examplo 2. Continnons-time roulette.
let $\lambda, s_{1}, 8_{2}$ be as in the previons example; let $\sigma_{i}:[0,1] \longrightarrow[0, \infty)$
(i=1,2) be bounded, Borel mappings such that $\sigma_{1} S \sigma_{2}$. Dofine

$$
C(x)=\left\{\left(s \lambda_{,} s \sigma\right): s_{1}(x) \leq s \leq s_{2}(x), \sigma_{1}(x) \leq \sigma \leq \sigma_{2}(x)\right\}
$$

Rotrin now to the general goal problem and dofine, for $0<1<1$,

$$
\begin{equation*}
\rho(x)=\sup \left\{\mu / \sigma^{2}:(\mu, \sigma) \varepsilon C(x)\right\} \tag{3.2}
\end{equation*}
$$

(Here, $0 / 0$ is taken to be $-\infty$.)

The ratio μ / σ^{2} has a history in discrete-time gambling theory where it provides a measure of superfairness (cf. Dubins and Savage [5], pp. 167-168). The fnnction p is crucial here and the following assumption is made.

Assumption A. The function ρ is of the form

$$
\begin{equation*}
p(x)=\mu_{0}(x) / \sigma_{0}^{2}(x), 0<x<1, \tag{3.3}
\end{equation*}
$$

Where μ_{0} and σ_{0} are bounded, Bore1-measurable functions on $(0,1)$ and inf $\sigma_{0}>0$.

Consider now a diffusion process X starting at x (0,1) which is absorbed at the endpoints 0 and 1 and which solves the stochastic differential equation

$$
\begin{gather*}
X_{0}=x \tag{3.4}\\
d X_{t}=\mu_{0}\left(X_{t}\right) d t+\sigma_{0}\left(X_{t}\right) d \bar{E}_{t}
\end{gather*}
$$

It follows from Krylov ([12]. Theorem 2.6.1. p.87) or Ikeda and Vatanabe ([9]. Soction IV.4) that such an X oxists.

The probability

$$
Q(x)=P[X \text { reaches } 1]
$$

dopends only on p and x. In fact, let γ be any bounded, measurable function on $(0,1)$ and define

$$
\begin{equation*}
a_{\gamma}(x)=\frac{S \gamma(x)}{S \gamma(1)} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{\gamma}(x)=\int_{0}^{x} \xi_{\gamma}(y) d y, \quad \xi_{\gamma}(x)=\exp \left\{-2 \int_{0}^{x} \gamma(y) d y\right\} \tag{3.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
Q(x)=Q_{p}(x) \tag{3.7}
\end{equation*}
$$

This formula for Q is well-known when the functions μ_{0} and σ_{0} of (3.3) are continuons (cf. Earlin and Taylor [10]. pp.191-1.95). . The proof in the general case is the same as that in Gihman and Skorohod ([7], Theorem 3.15.4) except that Krylov's generalization of Ito's Lemma ([12]. Theorem 2.10.1) must be nsed.

The process X of (3.4) vill belong to $\Sigma_{C}(x)$ under the following assumption.

Assumption B. $\quad\left(\mu_{0}(x), \sigma_{0}(x)\right) \varepsilon C(x), 0<x<1$.

Let V be the value function for the problem (F, Σ_{C}, n) defined in the first paragraph of this section.

Theorem 1. If A holds, then $V \leq Q$. If A and B hold, then $V=Q$ and the diffusion process X defined by (3.4) is optimal at x.

Proof: If B holds, then the process X of (3.4) is an element of $\Sigma_{C}(x)$ and so $Q(x)=u(X) \leq V(x)$. Thus it suffices to prove the first assertion.

It follows from the Vitali-Caratheodory Theorem (Rudin [17], Theorem 2.24) that there is a decreasing sequence $\left\{\gamma_{n}\right\}$ of bounded, lower semicontinuous functions such that $\gamma_{n}(x) \geqslant p(x)$ for overy n and every $x \varepsilon(0,1)$, and $\gamma_{n}(x) \longrightarrow \rho(x)$ for Lobesgue almost every x. By the monotone convergence theorem, (3.5), (3.6), and (3.7), $Q_{\gamma_{n}}(x) \longrightarrow Q_{p}(x)=Q(x)$ for every x \& $[0,1]$. Thns, to show $Q 2 V$, it is enongh to prove the following 1 ema:

Lomag 4. If γ is a bounded, lower semicontinuous function defined on [0,1] and $\gamma \geq \rho$ on $(0,1)$, then $Q_{\gamma} \geq v$.

Proof: Q_{γ} is bounded, Borel-measurable, and $Q_{\gamma} \geq u_{\text {. Thus }} Q_{\gamma}(X)$ is well-defined and $G_{\gamma}(X) \geq n(X)$ for every available X. By Lemma 1 , it is onough to show Q_{γ} is excessive. We will use Lemma, with Q_{γ} playing the role of Q, to establish this last fact.

Because γ is bounded and lower semicontinnous, there is a sequence $\left\{p_{n}\right\}$ of bounded, continuous functions which converge up to γ pointwise on [0,1] (cf. Royden [16], Problem 2.49). Let $Q_{n}=Q_{\rho_{n}}$. Notice, because each p_{n} is continuons, that each Q_{n} has a continuons second derivative and can be extended smoothly to a fired open interval G containing [0,1]. Furthermore, by (3.5) and (3.6), Q_{n} satisfies

$$
\begin{equation*}
\frac{1}{2} Q_{n}^{\prime \prime}+\rho_{n} Q_{n}^{\prime}=0 \tag{3.8}
\end{equation*}
$$

on (0,1). We are now ready to check the conditions of Lemma 3 .

Condition (i). $\quad \lim _{n} Q_{n}(x)=Q_{\gamma}(x) \quad$ for $0 \leq x \leq 1$ by the monotone convergence theorem.

Condition (ii). Let $0<x<1$ and (μ, σ) \& $C(x)$. Then

$$
\begin{align*}
D(\mu, \sigma) Q_{n}(x) & =\mu Q_{n}^{\prime}(x)+\frac{1}{2} \sigma^{2} Q_{n}^{\prime}(x) \tag{3.9}\\
& =\mu Q_{n}^{\prime}(x)+\frac{1}{2} \sigma^{2} Q_{n}^{\prime}(x)-\sigma^{2}\left[\frac{1}{2} Q_{n}^{\prime \prime}(x)+\rho_{n}(x) Q_{n}^{\prime}(x)\right] \\
& =\left(\mu-\sigma^{2} \rho_{n}(x)\right) Q_{n}^{\prime}(x) .
\end{align*}
$$

Hence,

$$
\begin{aligned}
1 i m \sup _{n \rightarrow \infty} D(\mu, \sigma) Q_{n}(x) & =\left(\mu-\sigma^{2} \gamma(x)\right) 1 i m s n p_{n \rightarrow \infty} Q_{n}^{\prime}(x) \\
& \leq\left(\mu-\sigma^{2} \rho(x)\right) 1 \operatorname{monp}_{n \rightarrow \infty} Q_{n}^{\prime}(x) \\
& \leq 0
\end{aligned}
$$

by (3.2) and tho fact that $Q_{n}^{\prime} \geq 0$ on $(0,1)$ for every n_{0}

Condition (iii). Q_{i}^{\prime} is continuous and, therefore, bounded on [0,1]. So this condition is a consequence of (2.7).

Condition (iv). Take I to be the constant 0 .

Condition (v). By (3.9), for $\sigma \neq 0$,

$$
\begin{aligned}
D(\mu, \sigma) Q_{n}(x) & =\sigma^{2}\left(\frac{\mu}{\sigma^{2}}-\rho_{n}(x)\right) Q_{n}^{\prime}(x) \\
& \leq \sigma^{2}\left(\rho(x)-\rho_{n}(x)\right) Q_{n}^{\prime}(x) .
\end{aligned}
$$

Now $\rho(x)$ is bounded by assumption A; the ρ_{n} are uniformly bounded above by the bounded function γ and below by the bounded function p_{1}; and the Q_{n}^{\prime} can be seen to be uniformly bounded from (3.5) and (3.6). Also, if $\sigma=0$ and (μ, σ) \& $C(x)$, then $\mu \leq 0$. (Otherwise, $\rho(x)=+\infty$) So, in this case, $D(\mu, \sigma) Q_{n}(x)=\mu Q_{n}^{\prime}(x) \leq 0$. Therefore, there is a positive constant B such that

$$
D(\mu, \sigma) Q_{n}(x) \leq B \sigma^{2}
$$

for $0<x<1$ and (μ, σ) \& $C(x)$. Condition (v) now follows from (2.7).

The proofs of Loman 4 and Theorem 1 are now complete.

It can easily happen that the optimal process in Theorea 1 is not miquely
80. For example, the supremum in (3.2) could be achieved by another pair of functions μ_{1} and σ_{1}. $0 x$, if $(0,0)$ s $C(x)$, there is no harm in using $(0,0)$ as the control for a time and then switching to (μ_{0}, σ_{0}).

There are general gambling techniques which make it possible to characterize the class of all optimal processes. (For the discrete-time case, sec Chapter 3 of Dubins and Savage [5] or Sudderth [19].) Wo plan to wite another paper on this general subject.

Bxample 1 (continued). Suppose $\lambda<0$ so that the game is subfair and suppose inf $s_{2}>0$. Then $\rho(x)=\sup \left\{\lambda / s: s_{1}(x) \leq s \leq s_{2}(x)\right\}=\lambda / s_{2}(x)$ and, by Theorem 1, the optimal process corresponds to bold play: $s(t)=s_{2}\left(X_{t}\right)$ for all t. If $\lambda>0$, and inf $s_{1}>0$, sinilar argument shows timid play $\left(s(t)=s_{1}\left(X_{t}\right)\right.$ for all t) is optimal. Tho case when $s_{1}=0$ is discrssed in the next section.

Example 2 (contineed). Suppose $\lambda<0$, and the functions s_{2}, σ_{2} have positive infima. Then $\rho(x)=\lambda /\left(s_{2}(x) \sigma_{2}(x)\right)$ and the optimal controls are $s(t)=\delta_{2}\left(X_{t}\right), \sigma(t)=\sigma_{2}\left(X_{t}\right)$ for all t. Similarly, if $\lambda>0$ and s_{1}, σ_{1} have positive infima, then $s(t)=s_{1}\left(X_{t}\right), \sigma(t)=\sigma_{1}\left(X_{t}\right)$ are optimal.

Turn now to the problem of reaching a goal on a half-line. Take $\underset{\sim}{\mathrm{F}}=$ $(-\infty, 0]$ and $\underset{\sim}{a}=$ the indicator function of $\{0\}$. Let $\underset{\sim}{C}(x)$ be a non-empty srbset of $R \times[0, \infty)$ for $\Sigma<0$ and $\underset{\sim}{C}(0)=\{(0,0)\}$. Define

$$
R(x)=\sup \left\{\mu / \sigma^{2}:(\mu, \sigma) \& \underset{\sim}{C}(x)\right\}, \quad x>0
$$

Assnoption A. The function R is of the form

$$
e^{(x)}=\mu_{0}(x) / \sigma_{0}(x),-\infty<x<0
$$

where μ_{0} and σ_{0} are bounded, Borel-measurable functions on $(-\infty, 0)$ and $\inf \sigma_{0}>0$.

Assumption B. $\left(\mu_{0}(x), \sigma_{0}(x)\right) \& \underset{\sim}{C}(x),-\infty<x<0$.
 $x<0$, 1et X be a diffusion on $(-\infty, 0]$ which is absorbed at 0 and satisfies

$$
\begin{equation*}
X_{0}=x_{0} \quad d X_{t}=\mu_{0}\left(X_{t}\right) d t+\sigma_{0}\left(X_{t}\right) d W_{t} \tag{3.10}
\end{equation*}
$$

Let

$$
Q(x)=P[X \text { reaches } 0] .
$$

The next result can be proved directly or derived from Theorem 1.

Theorem 2. If $\underset{\sim}{A}$ holds, then $\underset{\sim}{V} \leq \underset{\sim}{Q}$. If $\underset{\sim}{A}$ and $\underset{\sim}{B}$ hold, then $\underset{\sim}{V}=\mathbb{Q}$ and the process defined by (3.10) is optimal at $x .0$

Of conrse, there is nothing special about the goal boing 0 in Theorem 3. A process which maximizes the critical ratio μ / σ^{2} is most likely to reach any goal to the right of the initial position. This suggests the following comparison result.

Theorem 3. Consider two diffusion processes

$$
x_{0}^{i}=x^{i}, \quad d x_{t}^{i}=\mu_{i}\left(x_{t}^{i}\right) d t+\sigma_{i}\left(x_{t}^{i}\right) d W_{t}
$$

with μ_{i} and σ_{i} bounded, Borcl-measurable and inf $\sigma_{i}>0$ for $i=1,2$. If $x^{2} \leq x^{1}$ and $\mu_{2} / \sigma_{2}^{2} \leq \mu_{1} / \sigma_{1}^{2}$, then sup x_{t}^{2} is stochastically smallot than sup t_{t}^{1}.

Proof. Fiz g where $x^{1} \leq g<\infty$. Consider the problem: Fa($\left.-\infty, 8\right]$, u is the indicator function of $\{g\}, \Sigma=\mathcal{E}_{C}$ where $C(g)=\{(0,0)\}$ and $C(x)=\left\{\left(\mu_{i}(x), \sigma_{i}(x)\right): i=1,2\right\}$ for $x<8$. By Theorem 2, the optimal process at x^{1} is X^{1}. It follows that

$P\left[\sup X_{t}^{1} \geq g\right] \geq P\left[\operatorname{sip} X_{t}^{2} \geq g\right]$.

The comparison theorem of Ikeda and Fatanabe ([9], Section VI.1). has the stronger conclusion that $X_{t}^{2} \leq X_{t}^{1}$ for every t with probability one. It is easy to give examples to seo that this need not follow from the hypotheses of Theorem 3.
4. Minimizing the oxpoctod time to tho soal.

If arbitrarily small positive stakes are permitted in superfair
Red-and-Black, then, as is shown below, it is possible to reach the goal with probability 1. The next problem is how to minimize the expected time to reach the goal. The theorem of this section gives the solution for a class of gambling problems which includes superfair Red-and-Black and Roulette whon arbitrary positive stakes are allowed.

The formalation uses tro-dimensional processes $X=\{X(t)\}$ where

$$
X(t)=\left[\begin{array}{l}
X_{1}(t) \\
X_{2}(t)
\end{array}\right] .
$$

The first coordinate X_{1} corresponds to the player's position in (0,1]; the second coordinate X_{2} is the time, starting from x_{2}, prior to absorption of X_{1} at 1. The state space is

$$
F=\left\{x \in \mathbb{R}^{2}: 0<x_{1} \leq 1, x_{2} \in \mathbb{R}^{1}\right\}
$$

(Notice that every real number x_{2} is a possible starting time.) Let C_{0} be a fixed, nonempty subset of $\mathrm{R} \times[0, \infty)$ and define, for $\mathrm{x} \boldsymbol{\mathrm { F }}$,

$$
\begin{gathered}
C(x)=\left\{\left(\left[\begin{array}{c}
s \mu \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
s \sigma \\
0
\end{array}\right]\right):(\mu, \sigma) e C_{0}, \quad \& 0\right\} \quad \text { if } x_{1}<1, \\
=\left\{\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)\right\} \quad \text { if } x_{1}=1 .
\end{gathered}
$$

A process $X \in \Sigma_{C}(x)$ can be expressed by a stochastic differential

$$
X(0)=x, \quad d X(t)=\left[\begin{array}{c}
s(t) \mu(t) d t+s(t) \sigma(t) d W(t) \\
d t
\end{array}\right]
$$

prior to the absorption of X_{1} at 1 . Hore ∇ is a one-dimensional Brownian motion. (In the notation of section 2, $d=2$ and m=1.)

Becense the object is to minimize oxpected time, set

$$
u(x)=-x_{2} \text { for } x \varepsilon F
$$

Then, for $X \in \Sigma_{C}(x)$,

$$
\begin{equation*}
u(X)=-E T-x_{2} \text {. } \tag{4.1}
\end{equation*}
$$

where x_{2} is the starting time and $T=$ inf $\left\{t \geq 0: X_{1}(t)=1\right\}$.

Examples. If $C_{0}=\{(\lambda, 1)\}$, then the processes X_{1} correspond to those available in continuous-time Red-and-Black vhen arbitrary non-negative stakes are allowed. If $C_{0}=\left\{(\lambda, \sigma): \sigma_{1} \leq \sigma \leq \sigma_{2}\right\}$, the processes X_{1} correspond to those available in a version of continuous-time Roulette.

Consider now the general problem ($F, \mathcal{L}_{\mathrm{C}}^{\mathrm{C}} \mathrm{u}$). Assume that the problem is suporfaix in the sense that there is an element $(\mu, \sigma)=C_{0}$ for which $\mu>0$. Define

$$
\begin{aligned}
\Sigma(x) & \left.=\left\{X \in \Sigma_{C}(x): \square(X)\right\rangle-\infty\right\} \\
& =\left\{X \in \Sigma_{C}(x): E T<\infty\right\}
\end{aligned}
$$

To see that $\Sigma(x)$ is not empty, suppose $x_{1}<1$ and $f i x(\mu, \sigma) \& C_{0}$ with $\mu>0$. Consider the proportional strategy at x basod on (μ, σ) and c for which

$$
s(t)=c X_{1}(t)
$$

and

$$
d X_{1}(t)=c \mu X_{1}(t) d t+c \sigma X_{1}(t) d W(t)
$$

Use Ito's formula to check that, for $t \leq T$,

$$
X_{1}(t)=0^{Y(t)}
$$

where

$$
Y(t)=\log x_{1}+m t+\operatorname{col}(t)
$$

is a Brownian motion with drift

$$
m=m(\mu, \sigma, c)=c \mu-\frac{1}{2} c^{2} \sigma^{2}
$$

This drift coefficient is positive if $0<c<\frac{2 \mu}{\sigma^{2}}$. So, for c in this interval, Y reaches 0 almost surely and, consequently, X_{1} reaches 1 almost surely. That is, $P[T<\infty]=1$. Furthermore it is easy to show that ET is finite. So, by Mald's identity for Browaian motion (Liptser and Shiryayev [13], Lemma 4.8).

$$
E \Pi(T)=0
$$

But $Y(T)=0$ a.s.. Thus

$$
0=E Y(T)=\log x_{1}+m E T
$$

and

$$
\begin{equation*}
E T=-\frac{\log x_{1}}{m} \tag{4.2}
\end{equation*}
$$

In particular, $X \& \Sigma(x)$.
Our guess of an optimal strategy is inspired by the "Kelly criterion' [11]. Which, as Breiman [2] showed, often leads to good strategies for discrete-time, superfair problems. The critexion says to bet so as to maximize the expected log of your next fortuno. There are difficulties with overshooting when the object is to reach a goal quickly and variables are discrete. Thus Breiman conjectured that an optimal plan would follow the criterion up to some point and then switch to smaller bets to avoid overshooting the goal. The continuous processes considered
here cannot overshoot and so it is natural to consider that strategy which always maximizes the drift of $\log X_{1}(t)$ prior to reaching the goal.

For fixed $(\mu, \sigma) \& C_{0}$ with $\mu>0,0<\sigma<\infty, \quad m(\mu, \sigma, c)$ is maximum when $c=\mu / \sigma^{2}$, and $m\left(\mu, \sigma, \mu / \sigma^{2}\right)=\mu^{2} / 2 \sigma^{2}$. Define

$$
\begin{equation*}
M=\operatorname{sap}\left\{\mu^{2} / 2 \sigma^{2}:(\mu, \sigma) \in C_{0}, \mu>0\right\} \tag{4.3}
\end{equation*}
$$

Let V be the velve function for the gambling problem ($F, \mathcal{F}, \boldsymbol{R}$).

Theorem 4. $V(x)=\frac{108 x_{1}}{h}-x_{2}$.
If $H=\mu_{0}^{2} / 2 \sigma_{0}^{2}$ for some $\left(\mu_{0}, \sigma_{0}\right) \& C_{0}$ with $\mu_{0}>0$, then the proportional strategy based on $\left(\mu_{0}, \sigma_{0}\right)$ and $c=\mu_{0} / \sigma_{0}{ }^{2}$ is optimal at every 5.

Proof: The second assertion follows from (4.1) and (4.2) together with the first. So it suffices to prove the equality. Set

$$
Q(x)=\frac{\log x_{1}}{M}-x_{2} .
$$

It is clear from (4.1), (4.2), (4.3) and the definition of V that $Q \leq V$. It remains to prove the opposite inequality. If $H=\infty$, the inequality is clear. So assume \boldsymbol{H} く $\boldsymbol{\infty}_{\text {。 }}$

Lot $\varepsilon>0$ and define

$$
Q^{8}(x)=\frac{\log \left(x_{1}+\varepsilon\right)}{M}-x_{2}
$$

Wo vill show $Q^{8} \geq$ V. Becanse $Q^{8} \rightarrow Q$ as $B \rightarrow 0$, this will be sufficient. Lot $x \in R$ and $X \in \Sigma(x)$. To sec that $Q^{8}(X) \sum n(X)$, calculate:

$$
\begin{aligned}
Q^{8}(X) & =E\left[1 \operatorname{imsup}_{t \rightarrow \infty}\left(\frac{\log \left(X_{1}(t)+8\right)}{H}-X_{2}(t)\right)\right] \\
& =\frac{10 g(1+8)}{W}-E T-x_{2} \\
& \geq-E T-x_{2} \\
& =u(X)
\end{aligned}
$$

To finish proving that $Q^{8} \sum^{2}$, it suffices by Lemma 1 to show Q^{8} is excessive. We now check the conditions of Lemma 2. Take the opon set G to be $\left\{x \in R^{2}: x_{1}>0, x_{2} \in \mathbb{R}^{1}\right\}$.

Condition (i): Let $(a, b)=\left(\left[\begin{array}{c}s \mu \\ 1\end{array}\right]\left[\begin{array}{c}s \sigma \\ 0\end{array}\right]\right)$ \& $C(x)$. Then

$$
\begin{aligned}
D(a, b) Q^{8}(x) & =\left[\frac{1}{(x+8) M},-1\right]\left[\begin{array}{c}
s \mu \\
1
\end{array}\right]-\frac{s^{2} \sigma^{2}}{2\left(x_{1}+8\right) 2 M} \\
& =\frac{s \mu}{\left(x_{1}+\varepsilon\right) M}-1-\frac{s^{2} \sigma^{2}}{2\left(x_{1}+\varepsilon\right)^{2} M} \\
& \leq \frac{\sqrt{2} s \sigma}{\left(x_{1}+\varepsilon\right) \sqrt{M}}-1-\frac{s^{2} \sigma^{2}}{2\left(x_{1}+\varepsilon\right)^{2} M} \\
& =-\left(1-\frac{s \sigma}{\left.\left(x_{1}+\varepsilon\right) \sqrt{2 R}\right)^{2}}\right. \\
& \leq 0 .
\end{aligned}
$$

The first inequality holds because $\mu \leq \sigma \sqrt{2 \pi}$ by (4.3).

Condition (ii):

$$
\left|Q_{2}^{\varepsilon}(X(t)) \beta(t)\right|=\left\lvert\,\left[\frac{1}{\left(X_{1}(t)+8\right) X},-1\right]\left[\begin{array}{c}
s(t) \sigma(t) \\
0
\end{array}\right]\right.
$$

$$
\begin{aligned}
& \leq \frac{1}{8 M}|s(t) \sigma(t)| \\
& =\frac{1}{8 M}|\beta(t)| .
\end{aligned}
$$

The condition is thus a consequence of assumption (2.7).

Condition (iii):

$$
\begin{aligned}
Q^{g}(X(t))= & \frac{\log \left(X_{1}(t)+8\right)}{M}-X_{2}(t) \\
& 2 \frac{\log 8}{M}-x_{2}-T
\end{aligned}
$$

The right side is integrable by the definition of \mathcal{E}.

Thus Lemma 2 applies, Q^{B} is excessive, and the proof of Theorem 4 is complete.

Ezamples (continued). If, corresponding to Red-and-Black, $\mathbf{C}_{0}=\{(\lambda, 1)\}$ where $\lambda>0$, then, by Theorem 4, the proportional strategy given by $s(t)=\lambda x_{t}$ is optimal. If, as in roulette, $C_{0}=\left\{(\lambda, \sigma): \sigma_{1} \leq \sigma \leq \sigma_{2}\right\}$, then $s(t)=\left(\lambda / \sigma_{1}^{2}\right) X_{t}$ is optimal.

Consider now the problem of reaching 0 in minimum expected time from a position in $(-\infty, 0]$ when the control set is constant. Formally, take

$$
\begin{gathered}
\underset{\sim}{\mathbb{R}}=\left\{x \in \mathbb{R}^{2}: x_{1} \leq 0, x_{2} \in \mathbb{R}^{1}\right\}, \\
\underset{\sim}{n}(x)=-x_{2} .
\end{gathered}
$$

Let $C_{0} \subset \mathrm{R} \times[0, \infty)$ and suppose $\mu>0$ for some $(\mu, \sigma) \in C_{0}$. Define

$$
\begin{gathered}
\underset{\sim}{C}(x)=\left\{\left(\left[\begin{array}{l}
\mu \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right):(\mu, \sigma) \& C_{0}\right\} \quad \text { if } x_{1}<0 \\
=\left\{\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)\right\} \quad \text { if } x_{1}=0
\end{gathered}
$$

Let

$$
\sum_{\sim}(x)=\left\{\begin{array}{lll}
X & 8 & \sum_{\underset{\sim}{C}}(x): u(x)>-\infty
\end{array}\right]
$$

1
and let $\underset{\sim}{V}$ be the value function for the problem ($\underset{\sim}{\mathcal{F}}, \underset{\sim}{\mathcal{E}}, \underset{\sim}{\underline{\sim}}$).
This problem is essentially the 108 of the problem considered in Theorem 4 . So the next theorem is not surprising.

Define

$$
\mu=\sup \left\{\mu: \exists \sigma \exists(\mu, \sigma) \& C_{0}\right\}
$$

Theorem_5. $\quad \underset{\sim}{\text { 5 }}(x)=x_{1} / \mu-x_{2}$. If ($\left.\mu, \sigma\right)$ \& C_{0} for some g, then the process X, for which

$$
X_{1}(t)=x_{1}+\mu t+g W(t)
$$

is optimal at x.

Proof: Apply Lemma 2.

If the control set C_{0} for X_{1} depends on the position, the minimum expected time problem seems to be more difficult. This is becanse the optimal control at position x_{1} may depend on other things than just the set $C_{0}\left(x_{1}\right)$. To see this, suppose that $C_{0}\left(x_{1}\right)=\{(0,0)\}$ for $x_{1} \leq-1$ or $x_{1}=0$ and $C_{0}\left(x_{1}\right)=\{(s \lambda, s): 8 \geq 0\}$ for $-1<x_{1}<0$. The problem of reaching 0 in minimum time from a starting point in $(-1,0)$ is just the Rod-and-Black problem translated to the interval $(-1,0)$. So $g(t)=\lambda\left(X_{t}+1\right)$ is optimal. However, if $C_{0}\left(x_{1}\right)=\{(s \lambda, s): s 20\}$ for all $x_{1}<0$, Theorem 5 applies to show $\underset{\sim}{V}=-x_{2}$ and $s(t)$ should be taken very large.

Reforences

[1] Blackwell, David (1976). The stochastic processes of Borel gambling and dynamic programing. Annals of Statistics 4 370-374.
[2] Breiman, Loo (1961). Optimal gambling systems for favorable games. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press. Berkeley. 1 65-78.
[3] Dellacherie, Claude and Keyer, Panl-Andre (1982). Probabilitios and Potontial B: Theory of Martingalog. North-Holland, Amsterdam.
[4] Dubins, Lester E. (1968). A simpler proof of Smith's roulette theorem. Annals of Mathomatical Statistics 39 390-393.
[5] Dabins, Lestor E. and Savage, Leonard J. (1965.1976). Hor to Gamble If You Most: Inegralitios for Stochastic Processos. Dover, Now York.
[6] Fleming, Wendell H. and Rishe1, Raymond M. (1975). Deterministic and Stochastio Optimal Control. Springer-Verlag, New York.
[7] Gihman, I.I. and Skorohod, A.V. (1972). Stochastic Difforontial Equations. Springer-Verlag, New York.
[8] Heath, David C. and Sudderth, William D. (1974). Continuous-time gambling problems. Advances in Applied Probability 6 651-665.
[9] Ikeda, Nobuy口ki and Watanabe, Shinzo (1981). Stochastic Diffocontial Eqzations and Diffasion Processos. Kodansha Ltd., Tokyo.
[10] Karlin, Samuel and Taylor, Howard M. (1981). A Second Conrse in Stochastic Processos. Acadomic Press, Now York.
[11] Eelly, J.L. Jr. (1956). A new interpretation of information rate. Boll Systom Tochnical Journal 35 917-926.
[12] Krylov. N.V. (1980). Controllod Diffusion Processos. Springer-Vorlag, Now York.
[13] Liptser, R.S. and Shiryayev, A.N. (1977). Statistics of Randon Processos I. Springer-Vorlag, Now York.
[14] Pestien, Victor C. (1982). An oxtended Fatou equation and continnous-time gambling. Adyances in Applied Probability 14 309-323.
[15] Ross, Sholdon M. (1974). Dynamic programming and gambling models. Advancos in Applied Probability 6 593-606.
[16] Royden, H.L. (1972). Real Analysis, second odition. MacMillan, Now York.
[17] Rudin, Valter (1966). Real and Complex Analysis. McGraw-Hil1, Now York.
[18] Smith, Gerald (1967). Optimal strategy at roulette. Zoitschrift fur Wehrschoinlichkeitstheorie na Verwandte Gebiete 8 91-100.
[19] Sudderth, Villiam D. (1972). On the Dubins and Savage characterization of optimal strategies. Annals of Mathomatical Statistics 43 498-507.

