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Abstract

In this paper we introduce the notion of smoothed com-
petitive analysis of online algorithms. Smoothed analysis
has been proposed by Spielman and Teng [20] to explain
the behaviour of algorithms that work well in practice while
performing very poorly from a worst case analysis point of
view. We apply this notion to analyze the Multi-Level Feed-
back (MLF) algorithm to minimize the total flow time on
a sequence of jobs released over time when the processing
time of a job is only known at time of completion.

The initial processing times are integers in the range
[1,2K]. We use a partial bit randomization model, where
the initial processing times are smoothened by changing the
k least significant bits under a quite general class of prob-
ability distributions. We show that MLF admits a smoothed
competitive ratio of O((2¥/0)® + (2% /0)?2K=F%), where
o denotes the standard deviation of the distribution. In
particular, we obtain a competitive ratio of O(2K~F) if
o = O(2%). We also prove an Q(25~*) lower bound
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for any deterministic algorithm that is run on processing
times smoothened according to the partial bit randomiza-
tion model. For various other smoothening models, in-
cluding the additive symmetric smoothening model used by
Spielman and Teng [20], we give a higher lower bound of
Q(2K).

A direct consequence of our result is also the first av-
erage case analysis of MLF. We show a constant expected
ratio of the total flow time of MLF to the optimum under
several distributions including the uniform distribution.

1. Introduction

Smoothed analysis was proposed by Spielman and Teng
[20] as a hybrid between average case and worst case anal-
ysis to explain the success of algorithms that are known to
work well in practice while presenting poor worst case per-
formance. The basic idea is to randomly perturb the initial
input instances and to analyze the performance of the algo-
rithm on the perturbed instances. The smoothed complex-
ity of an algorithm as defined by Spielman and Teng is the
maximum over all input instances of the expected running
time on the perturbed instances. Intuitively, the smoothed
complexity of an algorithm is small if the worst case in-
stances are isolated in the (instance X running time) space.
Spielman and Teng’s striking result was to show that the
smoothed complexity of the simplex method with a certain
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pivot rule and by perturbing the coefficients with a nor-
mal distribution is polynomial. In a series of later papers
[6, 9, 17, 22, 21], smoothed analysis was successfully ap-
plied to characterize the time complexity of other problems.
Competitive analysis [19] measures the quality of an
online algorithm by comparing its performance to that of
an optimal offline algorithm that has full knowledge of
the future. Competitive analysis often provides an over-
pessimistic estimation of the performance of an algorithm,
or fails to distinguish between algorithms that perform dif-
ferently in practice, due to the presence of pathological bad
instances that rarely occur. The analysis of online algo-
rithms seems to be a natural field for the application of the
idea of smoothed analysis. Several attempts along the line
of restricting the power of the adversary have already been
taken in the past. A partial list of these efforts includes the
access graph model to restrict the input sequences in online
paging problems to specific patterns [8] and the resource
augmentation model for analyzing online scheduling algo-
rithms [11]. More related to our work is the diffuse adver-
sary model of Koutsoupias and Papadimitriou [12], a refine-
ment of competitive analysis that assumes that the actual
distribution of the input is a member of a known class of
possible distributions chosen by a worst case adversary.

Smoothed Competitive Analysis. In this paper we intro-
duce the notion of smoothed competitiveness. The compet-
itive ratio ¢ of an online deterministic algorithm A for a
cost minimization problem is defined as the supremum over
all input instances of the ratio between the algorithm and
the optimal cost, i.e., ¢ = sup;(A;/OPTj). Following
the idea of Spielman and Teng [20], we smoothen the input
instance according to some probability distribution f. We
define the smoothed competitive ratio as
— E - AI
c= Sl}P Ie;N(I) OPT, |

where the supremum is taken over all input instances I, and
the expectation is taken over all instances [ that are obtain-
able by smoothening the input instance I according to f in
the neighborhood N (I). The notion of smoothed competi-
tive analysis provides a framework unifying the concepts of
worst case and average case analysis of online algorithms.
Observe that we might alternatively define the smoothed
competitive ratio as the ratio of the expectations in the ex-
pression above. We also address this issue in the paper.
This kind of analysis results in having the algorithm and
the smoothening process together play a game against an
adversary. In a way similar to the analysis of randomized
online algorithms [7], we define different types of adver-
saries. The oblivious adversary constructs the input se-
quence only on the basis of the knowledge of the algo-
rithm and of the smoothening function f. We also define a

stronger adversary, the adaptive adversary, that constructs
the input instance revealed to the algorithm after time ¢ also
on the basis of the execution of the algorithm up to time ¢.
This means that the choices of the adversary at some time
t only depend on the state of the algorithm at time ¢. Both
adversaries are charged with the optimal offline cost on the
input instance. Considering the instance space, in the obliv-
ious case N (I) is defined at the beginning, once the adver-
sary has fixed I, while in the adaptive case N(I) is itself
a random variable, since it depends on the evolution of the
algorithm.

Smoothed competitive analysis is substantially different
from the diffuse adversary model. In this latter model the
probability distribution of the input instances is selected by
a worst case adversary, while in the model we use in this
paper the input instance is chosen by a worst case adversary
and later perturbed according to a specific distribution.

The Multi-Level Feedback Algorithm. One of the most
successful online algorithms used in practice is the Multi-
Level Feedback algorithm (MLF) for processor scheduling
in a time sharing multitasking operating system. MLF is a
non-clairvoyant scheduling algorithm, i.e., scheduling de-
cisions are taken without knowledge of the time a job needs
to be executed. Windows NT [16] and Unix [23] have MLF
at the very basis of their scheduling policies. The obvious
goal is to provide a fast response to users. A widely used
measure for the responsiveness of the system is the average
flow time of the jobs, i.e., the average time spent by jobs in
the system between release and completion. Job preemp-
tion is also widely recognized as a key factor to improve the
responsiveness of the system. The basic idea of MLF is to
organize jobs into a set of queues (Qg, @1, - - -. Each job is
processed for 2! time units, before being promoted to queue
Qi+1 if not completed. At any time, MLF processes the job
at the front of the lowest queue.

While MLF turns out to be very effective in practice, it
behaves poorly with respect to worst case analysis. As-
suming that processing times are chosen in [1,2%], Mot-
wani et al. [15] showed a lower bound of Q(2%) for any
deterministic non-clairvoyant preemptive scheduling algo-
rithm. The next step was then to use randomization. A
randomized version of the Multi-Level Feedback algorithm
(RMLF) was first proposed by Kalyanasundaram and Pruhs
[10] for a single machine achieving an O(logn loglogn)
competitive ratio against the online adaptive adversary,
where n is the number of jobs that are released. Bec-
chetti and Leonardi present a version of RMLF achieving an
O(log nlog ) competitive result on m parallel machines
and a tight O(log n) competitive ratio on a single machine
against the oblivious adversary, therefore matching for a
single machine the randomized lower bound of [15].
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Contribution of this paper. In this paper, we apply
smoothed competitive analysis to the Multi-Level Feedback
algorithm. For smoothening the initial integral processing
times we use the partial bit randomization model. The idea
is to replace the k least significant bits by some random
number in [1,2*]. A similar model was used by Beier et
al. [5] and Banderier et al. [2]. Our analysis holds for a
wide class of distributions that we refer to as well-shaped
distributions, including the uniform, the exponential sym-
metric and the normal distribution. In [5] and [2] only the
uniform distribution was considered. For %k varying from 0
to K we “smoothly” move from worst case to average case
analysis.

(i) We show that MLF admits a smoothed competitive
ratio of O((2% /)3 + (2 /o)?2K~*), where o denotes the
standard deviation of the underlying distribution. The com-
petitive ratio therefore improves exponentially with k£ and as
the distribution becomes less sharply concentrated around
its mean. In particular, if we smoothen according to the
uniform distribution, we obtain an expected competitive ra-
tio of O(2X—*). We remark that our analysis holds for both
the oblivious and the adaptive adversary. However, for the
sake of clarity, we first concentrate on the oblivious adver-
sary and outline the differences for the adaptive adversary
later.

We have defined the smoothed competitive ratio as the
supremum, over the set of possible input instances, of the
expected ratio between the cost of the algorithm and the op-
timal cost. An alternative is to define it as the ratio between
the expected costs of the algorithm and of the optimum, see
also [18]. We point out that we obtain the same results un-
der this alternative, weaker, definition.

(i) As a consequence of our analysis we also obtain an
average case analysis of MLE. As an example, for k = K
our result implies an O(1) expected ratio between the flow
time of MLF and the optimum for all distributions with
o = O(2F), therefore including the uniform distribution.
To the best of our knowledge, this is the first average case
analysis of MLF. Recently, Scharbrodtet al. [18] performed
the analysis of the average competitive ratio of the Short-
est Expected Processing Time First heuristic to minimize
the average completion time where the processing times of
the jobs follow a gamma distribution. Our result is stronger
in the following aspects: (a) the analysis of [18] applies
when the algorithm knows the distribution of the process-
ing times, while in our analysis we require no knowledge
about the distribution of the processing times, and (b) our
result applies to average flow time, a measure of optimality
much stronger than average completion time. Early work
by Michel and Coffman [14] only considered the problem
of synthesizing a feedback queue system under Poisson ar-
rivals and a known discrete probability distribution on pro-
cessing times so that pre-specified mean flow time criteria

are met.

(iiiy We prove a lower bound of Q(2K~F) against
an adaptive adversary and a slightly weaker bound of
Q(2K/6=k/2) for every k < K /3, against an oblivious ad-
versary for any deterministic algorithm when run on pro-
cessing times smoothened according to the partial bit ran-
domization model. We therefore conclude that a limited
amount of smoothening is not sufficient to obtain a compet-
itive deterministic algorithm against the adaptive adversary.

(iv) Spielman and Teng [20] used an additive symmet-
ric smoothening model, where each input parameter is
smoothened symmetrically around its initial value. A natu-
ral question is whether this model is more suitable than the
partial bit randomization model to analyze MLF. In fact, we
prove that MLF admits a poor competitive ratio of (2(2%)
under various other smoothening models, including the ad-
ditive symmetric, the additive relative symmetric and the
multiplicative smoothening model.

2. Problem Definition and Smoothening Mod-
els

The adversary releases a set J = {1,...,n} of n jobs
over time. Each job j has a release time r; and an initial
processing time p;. We assume that the initial processing
times are integers in [1,2%]. We allow preemption of jobs,
i.e., a job that is running can be interrupted and resumed
later on the machine. The algorithm decides which uncom-
pleted job should be executed at each time. The machine
can process at most one job at a time and a job cannot be
processed before its release time. For a generic schedule S,
let C’f denote the completion time of job j. Then, the flow
time of job j is given by F¥ = C¥ —r;, i.e., the total time
that j is in the system. The total flow time of a schedule S
is given by F$ = Y jed Ff. A non-clairvoyant schedul-
ing algorithm knows about the existence of a job only at the
release time of the job and the processing time of a job is
only known when the job is completed. The objective is to
find a schedule that minimizes the total flow time.

The input instance may be smoothened according to dif-
ferent smoothening models. We discuss four different
smoothening models below. We only smoothen the process-
ing times of the jobs. One could additionally smoothen the
release dates. However, for our analysis to hold it is suffi-
cient to smoothen the processing times only. Furthermore,
from a practical point of view, each job is released at a cer-
tain time, while processing times are estimates. Therefore,
it is more natural to smoothen the processing times and to
leave the release dates intact.

Additive Symmetric Smoothening Model. In the additive
symmetric smoothening model the processing time of each
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job is smoothened symmetrically around its initial process-
ing time. The smoothed processing time p; of a job j is
drawn independently at random according to some proba-
bility function f from a range [—L, L], for some L. Here,
L is the same for all processing times. A similar model is
used by Spielman and Teng [20].

p; = max(1l,p; +¢€;), where ¢; L [-L,L].

The maximum is taken in order to assure that the smoothed
processing times are at least 1.

Additive Relative Symmetric Smoothening Model. The
additive relative symmetric smoothening model is similar to
the previous one. Here, however, the range of the smoothed
processing time of j depends on its initial processing time
D;. More precisely, for ¢ < 1, the smoothed processing time
p; of j is defined as

p; = max(1,p; + ¢€;), where ¢ L [—=(P;)°, (§;)°]-

Multiplicative Smoothening Model. In the multiplica-
tive smoothening model the processing time of each job
is smoothened symmetrically around its initial processing
time. The smoothed processing times are chosen indepen-
dently according to f from the the range [(1 — €)p;, (1 +
€)p;] for some € > 0. This model is also discussed but not
analyzed by Spielman and Teng [20].

p; = max(1,p; +¢;), where ¢; & [—ep;, epy].

Partial Bit Randomization Model. The initial processing
times are smoothened by changing the k least significant
bits at random according to some probability function f.
More precisely, the smoothed processing time p; of a job j
is defined as

_ ok | Pi—
pj =2 { o

1 3
J +€;, where €; L [1,2%].

Note that ¢; is at least 1 and therefore 1 is subtracted from
p; before applying the modification. For k£ = 0, this assures
that the smoothed processing times are equal to the initial
processing times. For k& = K, the processing times are
randomly chosen from [1,2%] according to the underlying
distribution. A similar model is used by Beier et al. [5] and
Banderier et al. [2].

As will be seen later, MLF is not competitive at all under
any of the first three models: MLF may admit a smoothed
competitive ratio of (2%). Therefore, these models are
not suitable to explain the success of MLF in practice. The
model we use is the partial bit randomization model.

Our analysis holds for any well-shaped distribution f
over [1,2¥]. A probability density function f is well-shaped
if it satisfies the following conditions: (i) f is symmetric
around its mean, (i) the mean y of f is centered in [1,2*]
and (iii) f is non-decreasing in the range [1, u]. In the se-
quel, we denote by o the standard deviation of f. We em-
phasize that the distribution may be discrete as well as con-
tinuous.

We discuss some features of the smoothed processing times.
Let ¢; be defined as ¢; = 2’“[”"2—;”. Then, p; = ¢; + €.
Consider a job j with initial processing time in [1,2*].
Then, the initial processing time of j is completely replaced
by some random processing time in [1,2*] chosen accord-
ing to the probability distribution f.

Fact 1. Let p; € [1,2*]. Then, ¢; = 0and thus p; € [1,2*].
Moreover, Plp; < x] = Ple; < x] for each x € [1,2*].

Next, consider a job j with initial processing time p; €
(281,21, for some i > k. Then, the smoothed processing
time p; is randomly chosen from a subrange of (2¢=!, 27|
according to the probability distribution f.

Fact 2. Let p; € (20°1,2% for some i, k < i < K. Then,
2071 < ¢; < 20 — 2% and thus p; € (2171, 21).

3. The Multi-Level Feedback Algorithm

In this section we describe the Multi-Level Feedback
(MLF) algorithm. We say that a job is alive or active at
time ¢ in a schedule S, if it has been released but not com-
pleted at this time, i.e., 7; <t < C’f. Denote by ;1:}9 (t) the
amount of time that has been spent on processing job j in
schedule S up to time ¢. We define yf (t) =pj — xf (t) as
the remaining processing time of job j in schedule S at time
t. In the sequel, we denote by A the schedule produced by
MLE

The set of active jobs is partitioned into a set of priority
queues Qo, @1, . ... Within each queue, the priority is de-
termined by the release dates of the jobs: the job with small-
est release time has highest priority. For any two queues ),
and Q;, we say that (), is lower than @); if h < 7. At any
time ¢, MLF behaves as follows.

1. Job j released at time ¢ enters queue Qp.

2. Schedule on the machine the alive job that has highest
priority in the lowest non-empty queue.

3. For a job j in a queue Q; at time ¢, if z7(t) = pj,
assign C;“ = t and remove the job from the queue.

4. Forajob j in a queue Q; at time ¢, if :z:;-“ (t) =2¢ < pj,
job j is moved from Q; to Q41
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4. Smoothed Analysis
4.1. Preliminaries

We classify jobs into classes according to their process-
ing times: a job j is of class i > 0, if p; € (211,27
Observe that a job of class ¢ will end in queue ();. Since
all processing times are in [1,2%], the maximum class of a
job is K. Moreover, during the execution of the algorithm
at most K + 1 queues are created. We denote by §°(t)
the number of jobs that are active at time ¢ in S. We use
SS(t) to refer to the set of active jobs at time ¢. We use A
and OPT to denote the schedule produced by MLF and by
an optimal algorithm, respectively. We state the following
facts.

Fact3 ((13]). FS = Y, FS = [,65(1)dt.
Factd. F° > ., pj.

Fact 5. At any time t and for any i, at most one job, alive
at time t, has been executed in queue (Q; but has not been
promoted to QQ;41.

A lucky job is a job that still has a reasonably large
remaining processing time when it enters its final queue.
More precisely, a job j of class ¢ is called lucky if p; —
2i=1 > ~; 211 otherwise, it is called unlucky. Here, ~j,
depends on £ and the standard deviation ¢ of the distribu-
tion and is defined as y;, = min(%(%‘i1 ), 2E7K). We use
By to refer to the fraction 1/7;. We use 6'(t) to denote the
number of lucky jobs that are active at time ¢ in MLF. At
time ¢, the job with highest priority among all jobs in queue
Q; (if any) is said to be the head of );. A head job of
queue Q; is ending if it will be completed in ();. We denote
by h(t) the total number of head jobs that are ending.

We define the following random variables. For each job
7, le- has value 1 if job j is lucky, while le- =0if jis
unlucky. We use C1; € [0, k] to denote the class of a job j.
Note that the class of a job with p; € (2!, 2%, for some
1 > k, is not a random variable. Moreover, for each job j
and for each time ¢, two binary variables are defined: X ()
and le. (t). The value of X;(¢) is 1 if job j is alive at time ¢,
and 0 otherwise. X(t) is defined in terms of X! and X (t),
namely, X!(t) = X! - X;(t).

Let Z be a generic random variable. For an input in-
stance I, Z; denotes the value of Z for this particular in-
stance . Note that Z; is uniquely determined by the execu-
tion of the algorithm.

We prove our main result in Subsection 4.2. The proof uses
a high probability argument which, for the sake of clarity,
is given in Subsection 4.3. Due to lack of space most of the
proofs are only sketched. The proofs can be found in the
full paper [4].

4.2. Smoothed Competitiveness of MLF

In this section we prove that MLF is O((2%/0)® +
(2% /o)22K—k)_competitive.

Lemma 1 provides a deterministic bound on the number
of lucky jobs in the schedule of MLF for a specific instance
I. The proof is similar to the one given in [3] and can be
found in Appendix A.

Lemma 1. For any input instance I, at any time t, §4(t) <
hi(t) + 610777 (b).

In the sequel, we exploit the fact that two events A and B
are correlated: A and B are positively correlated if P[A N
B] > P[A] P[B], while A and B are negatively correlated
if P[A N B] < P[A]P[B]. In the book by Alon and
Spencer [1, Chapter 6] a technique to show that two events
are correlated, is described.

The following lemma gives a bound on the expected
number of ending head jobs at time ¢.

Lemma 2. Arany time t, E[h(t)] < K — k + 2.

Proof. Let h'(t) denote the number of ending head jobs in
the first k& queues. Then, clearly E[h(t)] < K — k+ 1+
E[R/(t)], since the last K — k + 1 queues can contribute at
most K — k + 1 to the expected value of h(t).

We next consider the expected value of h'(t). Let H (t)
denote the ordered sequence (qo, . - ., gi—1) of jobs that are
at time ¢ at the head of the first & queues Qo, . .., Qk_1, re-
spectively. We use ¢; = X to denote that (); is empty at time
t. We define a binary variable H;(t) as follows: H;(t) = 1
if g; # X and ¢; is in its final queue; H;(t) = 0 otherwise.
Let H € (J U x)* denote any possible configuration for
H(t). Observe that by definition P[H;(t) = 1| H(t) =
H] =0if ¢; = x. Let g; # x, then

P[H,(t) = 1| H(t) = H] = Plp,, <2'| H(t) = H].

Since the two events (p,, < 2%) and (H(t) = H) are nega-
tively correlated, we have that P[p,, < 2!|H(t) = H] <
P[p(Ii < Qi] :

Now, if a job g; is of class larger than k we have P[p,, <
21] = 0. Otherwise, since the underlying probability distri-
bution is well-shaped, we have (i) P[p,, _, < 2*¥71] < 1/2,
and (i) P[p,, < 2] < iP[p,,,, < 21, forall 0 <i <
k — 1. As a consequence, we obtain Plp,, < 2] < 5
forall0 <¢ < k — 1. Thus,

k-1
E[h’(t)lH(t)ZH]ZZP[Hi(t)leH(t)ZH]
R L |
<2_kZ:Zl: 2"3 <]..
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And therefore,
E['()]= Y E[R()|H(t) = H]P[H() = H]
He(Jux)k
< Y PH®t=H =1
He(Jux)k

O

We also need the following bound on the probability that
the sum of the random parts of the processing times exceeds
a certain threshold value.

Lemma3. P(Y" . ¢ > n(2’;+1) >1—e T

jeJ

Proof (sketch). The lemma follows from applying a Cher-
noff bound on 3= (€ > 2571 + ). O

We are now ready to prove Theorem 1. For the sake of
conciseness, we introduce the following notation. Let o =
(0/2%)2. For an instance I, we define Dy = {t : SA(t) <
254 (t)} and Dy = {t : 67'(t) > 265(t)}. Moreover, we
define the event

k
&= (Ejpj >0+ %)
and use & to refer to the complement of &.

Theorem 1. For any instance I and any well-shaped prob-
ability distribution function f,

26\® RN L
:o(<_) H(Z) ).
o o
Proof. In the following we omit that the expectation is
taken over a distribution f in N(I).

FA

Eie,n) | ForT

FA FA FA _ _
FA n

where the inequality follows from Lemma 3. Let ¢ =
then ne~16 < ¢. We partition the flow time FA =
ft §“(t)dt into the contribution of time instants ¢+ € D and
teD ie, FA = [, _,0A(t)dt+ [, 507 (t)dt, and bound
these contributions separately.

5A(t)d
hep 10 H Ple] <

16
e

E}

g | Jiep 29 (B)dt

E F(’)PT

g| Jeep 2RO + fiep & 685977 (dt |
- FOPT

fteD h(t)dt ‘ PE] + 2 - 66y,

FOPT

where we use the deterministic bound of Lemma 1 on &' (#)
and the fact that FOPT > [, 6977 (t)dt. We continue
by exploiting the fact that given £, FOPT > 3" p; >

Z d)j +1)

g POUIT
J

_A(E - k+2)E oy 268

DI

where we use Lemma 2 together with the fact that, for any
input instance, h(t) contributes only in those time instants
where at least one job is in the system so at most Y i Dj-

Since E[; p;] =2, ¢; + H) , we obtain,
§A(t)dt ‘ ‘
E ftegT(T)‘ P[£] <2 -4(K—k+2)+ 266

For t € D, by the fact that given £, FOPT > >0+
w, and by exploiting Lemma 4, which is given below,
we obtain

E[f,cp 67 (t)dt | E]P[E]

Jicp 04(t)dt
B|forr |¢] P < S S
§E[Z'pj] 32
Z 6+ n(2* +1) a

Putting everything together, we obtain

FA
B| | < 24K~k 42)+ 20+ 2k

FOPT
2k 2\ ”
-o((5) + (5) =),
o (2
where the last equality follows from the definition of a and
Bk O

To finalize the proof we are left to show that the following
lemma holds.

Lemma 4. E[[,_554(t)dt| €] PE] < & E[szj].
4.3. Proof of Lemma 4

We only provide an overview of the proof of Lemma 4
here. The complete proof requires a number of additional
techniques and lemmas that are provided in the full paper

[4].
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The following two lemmas bound the probability that a
job is lucky. In the first one, we prove that a job j with

€ (2¢=1,2%, for some i > k, is lucky with probability at
least 1.

Lemma 5. For each job j with p; € (211, 2¢), for some i,

k<i<K PX!=1] >3

Proof (sketch). Follows directly from the definition of well-
shaped distributions. O

We now show that the probability of a job j being lucky
given that it is of class i, i < k, is at least a = (o /2%)2.

Lemma 6. For each job j with p; € [1,2¥] and each class
i, 0<i<kPX,=1|Cl; =i] >a.

Proof (sketch). The only difficult part is for Cl; = k. For
Tk S % (7&t). we can show an “Inverse Chebyshev” in-
equality, from which the lemma follows. |

It is easy to see that Lemma 6 can be tightened so that we
achieve probability at least % on the uniform distribution.

In the rest of this section we only consider properties of
the schedule A produced by MLF. We therefore omit the
superscript A in the notation below.

Let S C J. In the following, we will condition on the
event that (i) the set of active jobs at time ¢ is equal to .S, i.e.,
(S(t) = S), and (ii) the processing times of all jobs not in S
are fixed to values that are described by a vector x g, which
we denote by (pg = xg). For the sake of conciseness,
we define the event F (¢, S,x5) = ((S(¢t) = S) N (ps =
Xg5)). Observe that P[X}(t) = 1| F(t,S,x5)] = 0if j ¢
S, since j is not alive at time t. Moreover, P[X J’(t) =

1| F(t,S,x5)] =P[X} =1|F(t,5,xg)] if j € S. Thus,
E[5'(t) | F(t,5,x5)] = > P[X}(t) = 1| F(t, S, x3)]
jeJ
=Y P[X!=1|F(t5,%3)].
JES

Conditioned on F(t,S,xg), we first show that the ex-
pected number of jobs that are lucky and alive at time ¢ is at
least a good fraction of the number of jobs that are alive at
that time.

Lemma 7. Forevery j € S, P| ; =1|F(tS,x5)] >
Therefore, E[0'(t) | F(t,S,x35)] > a|S|.

Proof. Let p; € (2t=1,2%, for some i, k < i < K. The
events (X! = 1) and (F(t, S,x3)) are positively correlated
and thus,

P[X} = 1| F(t,S,x5)] > PIX} =1].

Next, let j; € [1,2"]. The events (X} = 1|Cl; = 9
and (F(t,S,x3) | Cl; = i) are positively correlated for all
i,0<i<kie,

P[X! =1nF(t S x35)|Cl; =]
> P[X} = 1|Cl; =i]P[F(t,S5,x5) | Cl; = i].

Thus,

P[X! =1NF(t,S,x3)]

k
=Y P[X! =1nF(t,5,x5)|Cl; =] P[Cl; =]
i=0
k

Xi=1|Cl;=1] -
P[f(t,S,X§)|Clj :i]

P[F(t,5,x5)].

P[Cl; = i]
X =1|Cl; =]
And therefore,

P[ c=1|F(t,S,x3)] > min P[X

IRERE)

'_1|C’lj—z]

The lemma follows from Lemmas 5 and 6. O

We use the previous lemma to prove that, with high prob-
ability, at any time ¢ the number of lucky jobs is also a good
fraction of the overall number of jobs in the system.

Lemma 8. For any S C J, at any time t, P[§'(t) <
N

%aé(t)|]—'(t,5,x5~)] <e “s .

Proof (sketch). Given F(t,S,xg), we will first show that
the variables (X}|F(t,S,x5)), j € S, are indepen-
dent. The proof follows by applying a Chernoff bound to
> ies (X5 F(t,S,x5)), and by using Lemma 7 to bound

the expected value of the sum. O
Corollaryl For any s = 1,...,n, at any time t,
P[o'(t) < 5ad(t)|6(t) =s] <e ¥

We are now ready to prove Lemma 4.

Proof.

#lJ.

5 (t)dt‘g} P[&] < E[/

. 6A(t)dt}
teD

vl

52(t) |t € D] Pt € D]dt

vV
o

Il
\;/\ v
M- =

L)
I
-

sP[0A(t) = s|t € D] P[t € D]dt

sP[t € D|64(t) = s] P[6A(t) = 5] dt

[l
NE

2l
Il
=
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g/ > se ¥ PPA(t) = s]dt
t20 51

n

8 A — g
<= /tZO 32:1 P67 (t) = s]dt

8 A 8 .
= — /tZOP[(S (t) > 1]dt = —E[}_; pjl,

where the fifth inequality is due to Corollary 1 and the sixth
inequality follows since e™* < %, forx > 0. |

4.4. Adaptive Adversary

Recall that an adaptive adversary may change its input
instance on the basis of the outcome of the random process.
Lemmas 2 and 7 are those in which an adaptive adversary
might change the analysis with respect to an oblivious one.
In the full paper [4] we discuss why these lemmas also hold
for an adaptive adversary. Thus, the upper bound on the
smoothed competitive ratio given in Theorem 1 also holds
against an adaptive adversary.

5. Lower Bounds

The first bound is an Q(2%/%-%/2) one on the smoothed
competitive ratio for any deterministic algorithm against an
oblivious adversary.

Theorem 2. Any deterministic algorithm A has smoothed
competitive ratio Q(25/5=%/2) for every k < K/3 against
an oblivious adversary in the partial bit randomization
model.

As mentioned in the introduction, the adaptive adversary
is stronger than the oblivious one, as it may construct the
input instance revealed to the algorithm after time ¢ also
on the basis of the execution of the algorithm up to time
t. The next theorem gives an Q(2%~*) lower bound on the
smoothed competitive ratio of any deterministic algorithm
under the partial bit randomization model, thus showing that
MLF achieves up to a constant factor the best possible ratio
in this model. The lower bound uses ideas introduced by
Motwani et al. in [15] for an Q(2%) non-clairvoyant deter-
ministic lower bound.

Theorem 3. Any deterministic algorithm A has smoothed
competitive ratio (25 %) against an adaptive adversary
in the partial bit randomization smoothening model.

For other smoothening models, we only provide lower
bounds on the performance of MLFE. The models, as de-
fined in Section 2, can all be captured using the sym-
metric smoothening model according to ¢. Consider a
function ¢ : R™ — RT, which is continuous and non-
decreasing. The symmetric smoothening model according

to ¢ smoothens the original processing times as follows:
p; = max(1,p; + €;), where €; is chosen randomly from
[—¢(Pj)/2,¢(P;)/2] according to the uniform probability
distribution f.

Theorem 4. Let ¢ : RY — RT be function such that
o(y) < 2572 for all y, and let a > 1 such that there exist
r € R satisfying x +p(x)/2 = 2K-1 + a. Then, there ex-
ists an Q(2X /a) lower bound on the smoothed competitive
ratio of MLF against an oblivious adversary in the symmet-
ric smoothening model according to .

The additive symmetric smoothening model is equiva-
lent to the above defined model with p(y) = ¢, for ¢ <
oK—2 1f €; is drawn using a uniform distribution, we can
seta = 1 and z = 2K~ 4+ 1 — ¢/2. This way, we obtain
an 2(25) lower bound for this model against an oblivious
adversary.

For the additive relative symmetric smoothening model,
we define p(z) = z¢, for ¢ < 10g(3§+23+1). Choosing x
such that z + %mc = 2K-1 4 1 and a = 1 and drawing
¢; from the uniform distribution, we have an Q(2%) lower
bound for this model.

For the multiplicative model, we define p(z) = ez, for
e € [0, %] Drawing €; from the uniform distribu-
tion, we have fora = 1, z = (25 +2)/(2 + ¢€). Thus, there
is an (2K) lower bound for this smoothening model.

Obviously, Theorem 4 also holds for the adaptive adver-
sary. Finally, we remark that we can generalize the theorem
to the case that f is a well-shaped function.

6. Concluding Remarks

In this paper, we analyzed the performance of the Multi-
Level Feedback algorithm using the novel approach of
smoothed analysis. Smoothed competitive analysis pro-
vides a unifying framework for worst case and average
case analysis of online algorithms. We considered several
smoothening models, including the additive symmetric one,
which adapts to our case the model introduced by Spielman
and Teng [20]. The partial bit randomization model yields
the best upper bound.

In particular, we proved that the smoothed compet-
itive ratio of MLF using this model is O((2%/0)? +
(2% /o)22K~k), where o is the standard deviation of the
probability density function for the random perturbation.
The analysis holds for any well-shaped probability distri-
bution. For distributions with o = ©(2*), e.g., for the uni-
form distribution, we obtain a smoothed competitive ratio
of O(2K—*). By choosing k = K, the result implies a
constant upper bound on the average competitive ratio of
MLF. We also proved that any deterministic algorithm must
have a smoothed competitive ratio of Q(25~*). Hence,
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MLF is optimal up to a constant factor in this model. For
the other proposed smoothening models we have obtained
lower bounds of 2(2%). Thus, these models do not seem to
capture the good performance of MLF in practice.

As mentioned in the introduction, one could alternatively
consider a weaker definition of smoothed competitiveness
as the ratio between the expected costs of the algorithm and
of the optimum, see also [18], rather than the expected com-
petitive ratio. We remark that from Lemmas 1, 2, 5 and 6
we obtain the same bound under this alternative definition,
without the need for any high probability argument.

Interesting open problems are the analysis of MLF when
the release times of the jobs are smoothened, and to improve
the lower bound against the oblivious adversary in the par-
tial bit randomization model. It can also be of some interest
to extend our analysis to the multiple machine case. Follow-
ing the work of Becchetti and Leonardi [3], we can extend
Lemma 1 having an extra factor of K, which will also be in
the smoothed competitive ratio. Finally, this framework of
analysis could be extended to other online problems.
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A. Proof of Lemma 1

We introduce some additional notation. The volume
VS(t) is the sum of the remaining processing times of the
jobs that are active at time ¢. L°(t) denotes the total work
done prior to time ¢, that is the overall time the machine has
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been processing jobs until time ¢. For a generic function f
(6, V or L), we define Af(t) = fA(t) — fOP7(t). For f
(6, V, AV, L or AL), the notation f_(¢) will denote the
value of function f at time ¢ when restricted to jobs of class
exactly k. We use f>j < (t) to denote the value of f at time
t when restricted to jobs of classes between h and k.

Proof of Lemma 1. In the following we omit I when clear
from the context. Denote by k; and k, respectively the low-
est and highest class such that at least one job of that class
is in the system at time . We can bound &' (¢) as follows

ko A
() <ht)+5 Y =D M

i=k1

The bound follows, since every job that is lucky at time ¢
is either an ending head job or not. The number of ending
head jobs is h(t). For all other lucky jobs we can bound the
remaining processing time from below: a job of class ¢ has
remaining processing time at least 2¢~! /3. We continue
with

EVAWL) A VIOPT() + AVi(1)
Z 2i—1 2i—1

i=kq1 i=kq1

ko ]
)+ > —A;/ffft)

op
< 25219121@2 (t

i=ky
k2
AVei(t) — AV<i_1 (t)
0T, 02y AV AV
1=k
AV el Av
<k <i
= 2090, (1) + 2 W)y o 57 ATl
i= kl
AV(t
<2090 Ty, (8) + 0287 (¢ +4Z 21:1
= ]»1
AV.
OPT (¢ st
SQ‘SSkz +4Z 2z+ll ’ (2)

lk)1

where the second inequality follows since a job of class ¢
has size at most 2?, while the fourth inequality follows since
AV<p,—1(t) = 0, by definition.

We are left to study the sum in (2). Forany t; < ¢, <,
for a generic function f, denote by f[*1-*21(¢) the value of
function f at time ¢ when restricted to jobs released between
t; and to, e.g., L[tl’tz]( t) is the work done by time ¢ on jobs
of class at most ¢ released between time ¢; and ¢». Denote
by t; < t the maximum between 0 and the last time prior
to time ¢ in which a job was processed in queue ();41 or
higher in this specific execution of MLF. Observe that, for
i=ki,... ko, [tiz1,t) D [ti,t).

At time t;, either the algorithm was processing a job
in queue ();41 or higher, or £; = 0. Thus, at time ¢; no

jobs were in queues Qo,...,Q;. Therefore, AV;(t) <
AVEA (@) < L2 () - LT T (1) = ALY (1), Tn
the following we adopt the convention ¢;, 1 = ¢. From the
above, we have

k i) k Al(ti, OPT(t:,
22 ALE @) 22 L) — LS )
2i+1 B 241
i=k1 i=k1
ke i1 A(t1+17tj](t) [OPT (i1t ]( t)

Z Z 21+1>l

i= ’»1 j kl 1
ka—1 k2 A(tJJrl!tj](t) LOPT(t]+1,t ]( )

Z Z 2er1>z ’

j=k1—1li=j+1

where the second equality follows by partitioning the work

done on the jobs released in the interval (¢;, ¢] into the work
done on the jobs released in the intervals (¢j41,t;], j =
ki —1,...,i— 1. Leti(j) € {j+1,...,k2} be the index
that maximizes LA(t]“’t | Lgfﬂt”l’tj]. Then,

ko—1 ko A(t1+1¥t ](t) OPT (tjy1,t; ]( )

Z Z >’(J 2Z+1>1(J)

j=k1—-1i=j+1
ka—1 LA_(tj+17tj](t) OPT (tj+1,t; ]( t)

>i(j) >1(j)
< > S

(’)'PT J4+1,.t5] OPT (tky,t]
< > ety < a9
j=k1—-1

< QLT (t). 3)

To prove the third inequality observe that every job of class
larger than 4(j) > j released in the time interval (¢;41, ;]
is processed by MLF in the interval (¢;41,¢] for at most
27%1 time units. Order the jobs of this specific set by in-
creasing x;“(t). Now, observe that each of these jobs has
initial processing time at least 2¢() > 2/+1 at their re-
lease and we give to the optimum the further advantage that
it finishes every such job when processed for an amount

A(t) < 27F1. To maximize the number of finished jobs

T
OPT (tj41,t5]

the optimum places the work L>z ) on the jobs with

smaller m;“(t). The optimum is then left at time ¢ with a
number of jobs
A(tj+1 7tj] (t)

OPT (tj+1,t5] >i(j)
6>l(]) i ( ) Z

OPT(tj+1,t; ]( )
>i(j)
2Jj+1

Altogether, from (1), (2) and (3) we obtain:
0'(t) < h(t) +2Bk8207 (1) + 4Bk02% T (1)
h(t) + 65,077 ().
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