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Abstract

We consider several classical models in deterministic inventory theory: the single-item lot-sizing
problem, the joint replenishment problem, and the multi-stage assembly problem. These inventory mod-
els have been studied extensively, and play a fundamental role in broader planning issues, such as the
management of supply chains. For each of these problems, we wish to balance the cost of maintaining
surplus inventory for future demand against the cost of replenishing inventory more frequently. For ex-
ample, in the joint replenishment problem, demand for several commodities is specified over a discrete
finite planning horizon, the cost of maintaining inventory is linear in the number of units held, but the
cost incurred for ordering a commodity is independent of the size of the order; furthermore, there is an
additional fixed cost incurred each time a non-empty subset of commodities is ordered. The goal is to
find a policy that satisfies all demands on time and minimizes the overall holding and ordering cost.

We shall give a novel primal-dual framework for designing algorithms for these models that signifi-
cantly improve known results in several ways: the performance guarantees for the quality of the solutions
improve on or match previously known results; the performance guarantees hold under much more gen-
eral assumptions about the structure of the costs, and the algorithms and their analysis are significantly
simpler than previous known results. Finally, our primal-dual framework departs from the structure of
previously studied primal-dual approximation algorithms in significant ways, and we believe that our ap-
proach may find application in other settings. More specifically, we provide 2-approximation algorithms
to the joint replenishment problem and to the assembly problem, and solve the single-item lot-sizing
problem to optimality. The results for the joint replenishment and the lot-sizing problems also hold for
their generalizations with back orders allowed. As a by product of our work, we prove known and new
upper bounds on the integrality gap of some LP relaxations of the above mentioned problems.
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1 Introduction

In this paper, we consider several classical models in deterministic inventory theory: the single-item lot-
sizing problem, the joint replenishment problem (JRP) and the multi-stage assembly problem. These in-
ventory models have been studied extensively over the years, in a number of different settings, and play a
fundamental role in broader planning issues, such as the management of supply chains (see, e.g., [3, 13]).
We shall consider the variants in which there is a discrete notion of time with a finite planning horizon, and
the demand is deterministic (known in advance) but dynamic, i.e., it varies over the planning horizon.

Each of the inventory models that we consider has the following characteristics. Théfecamnmodi-
ties (or equivalently, items) that are needed over a planning horizon consistingroé periods; for each
time period and each commodity, there is a demand for a specified number of units of that commodity. To
satisfy these demands, an order may be placed in each time period. For each commaidited, dixed
ordering costKj; is incurred, which is independent of the number of units ordered from that commodity.
The order placed in time periadmay be used to satisfy demand in time periaat any subsequent point
in time. In addition, the demand in time periodnust be satisfied completely by orders that have been
placed no later than time periad (In the inventory literature, these assumptions are usually referred to as
"neither back orders nor lost sales are allowed”.) Since the cost of ordering a commodity is independent of
the number of units ordered, there is an incentive to place large orders, to meet the demand not just for the
current time period, but for subsequent time periods as well. This is balanced by a cost incurred for holding
inventory over time periods. We will lét’, denote thisholding cost that is, the cost incurred by ordering
one unit of inventory in period, and using it to meet the demand for itéin periodt. We will assume that
ki, is non-negative and, for ea¢h t), is a non-increasing function ef (Note that in particular, we do not
require subadditivity; we could have thigt, > hi, + hi, for somer < s < t.) The goal is to find a policy
of orders that satisfies all demands on time and minimizes the overall holding and ordering cost.

The details of the three inventory models are as follows. Irsthgle-item lot-sizing problenwe have
a single item (V. = 1) with specified demands ovér time periods {1, .., dr). In thejoint replenishment

problemwe have N commodities, where for each commodity= 1,..., N, and for each time period
t = 1,...,T, there is a specified non-negative demahd In addition to the item ordering cost&;,
i=1,...,N,anyorder incurs what we ca#l joint ordering costK, independent of the (nonempty) subset

of commodities that are included in the order (and again, independent of the (positive) number of units for

each commodity included). The joint ordering cost creates a dependency between the different commodities
and complicates the structure of the optimal policy. The holding cost follows the same structure described
above.

In the assembly problerwe have a somewhat more involved structure. As part of the input, we also
specify a rooted directed in-tree, where each node in the tree corresponds to an item, and we assume that
the items are indexed so that> j for each edg€i, j) in the tree. Node (or item) 1, the root of the tree,
is facing external demands oVErtime periods {1, .., dr). A unit of item i is assembled from one unit of
each of its predecessor items in the tree. Thus, any unit of item 1 consists of one unit of each of the other
items. We again have an ordering cost and holding cost for each item.

We note that the way we model the holding cost is much more general than the most common setting,
in which each item has a linear holding cost, so that the cost of holding one unit from time period
time periodt is equal to(t — s)h;, for some choice ok; > 0 (or to Zfzs hf in the more general case). By
allowing the more general structure described above, we can capture other important phenomena, such as
perishable goods, where the cost of holding an item longer than a specified interval is essentially infinite.
The strength of the general holding cost structure is demonstrated in Section 4.3, where we show how to
apply the algorithm to the more general JRP model with backorders. As for the ordering cost, we note that
our algorithms are applicable also in the presence of time dependent cost parameters as will be specified
later on. Furthermore, in addition to the (fixed) ordering cost that is independent of the order size, one can



incorporate a per-unit ordering cost into the holding cost term (as long as we preserve the monotonicity).

In this paper, we describe a unified novel primal-dual algorithmic framework that provides optimal and
near-optimal solutions to the three inventory models described above. Our main result is a 2-approximation
algorithm for the joint replenishment problem. By this we mean that for any instance of the problem, our
algorithm computes a feasible solution in polynomial-time, with cost that is guaranteed to be no more than
twice the optimal cost. The joint replenishment problem is NP-hard [2], but it can be solved in polynomial-
time by dynamic programming for a fixed number of commaodities, or for a fixed number of time periods [28,
26, 16], (by fixing the times at which joint orders are placed the problem decomposes by item). LP-based
techniques have not previously played a significant role in the design of approximation algorithms for NP-
hard deterministic inventory problems with constant performance guarantee. LP-rounding was applied to a
more general problem by Shen, Simchi-Levi, and Teo [23], but this yielded a guarantee 6f(bsdyV +
log T'). This absence of results is particularly surprising in light of the fact that it has long been understood
that these problems admit integer programming formulations with strong linear programming relaxations,
i.e., that provide tight lower bounds (see, e.g., [14, 19, 20]). These formulations are closely related to
formulations that have been studied for the facility location problem, which has also been a source of intense
study for approximation algorithms. Our performance guarantee improves significantly on the results of
Joneja [15], who only considered the case where all the cost parameters are fixed over time. His paper
claims a 3-approximation algorithm for this problem, but it has been pointed out that the proof is flawed
[25]. A somewhat different analysis yields a performance guarantee of 5 [18]. Federgrun and Tzur [9]
proposed an interesting dynamic programming-based heuristic for the joint replenishment problem, but they
assume that cost and demand parameters are bounded by constants.

The single-item lot-sizing problem was shown to be solvable in polynomial time by dynamic program-
ming in the landmark paper of Wagner & Within[27]. Furthermore, Krarup & Bilde [17] showed, in this
case, that the facility location-inspired LP has integer optima by means of a primal-dual algorithm, and
Barany. Van Roy, and Wolsey [4] gave yet another proof of this by means of an explicitly generated pair of
primal and dual optima (that are computed, ironically, via a dynamic programming computation). Finally,
Bertsimas, Teo and Vohra [5] gave a proof, which is based on LP rounding. If we consider our joint replen-
ishment algorithm as applied to the special case of the single-item lot-sizing problem (where, since there
is only one item, one can merge the joint ordering cost and the individual item ordering cost into one new
ordering cost), then we obtain a new, extremely simple, primal-dual optimization algorithm that also proves
the integrality of this LP formulation.

Finally, with some modifications, our primal-dual algorithm can also be applied to the assembly problem
to yield a 2-approximation algorithm. Here, we achieve the same approximation ratio as Roundy [21], who
gave a 2-approximation algorithm (again for the case where all cost parameters are fixed over time) using
a non-linear relaxation and ideas borrowed from continuous-time lot-sizing problems. Although we only
match the previous performance guarantee, our approach is much simpler, and it yields the performance
guarantee under a much more general cost structure. In particular, under our assumptions on the cost struc-
ture, it is easy to show that the assembly problem is NP-hard by a reduction from the joint replenishment
problem. However, for the variant of the problem considered by Roundy, it is still not known whether it is
NP-hard or not [6].

As a byproduct of our work, we prove upper bounds on the integrality gap of the corresponding LP
relaxations, the worst-case ratio between the optimal integer and fractional values; for both the JRP and the
assembly problem, we prove an upper bound of 2. In [22], we give a family of instances of the JRP, for
which the integrality gap is asymptotically 1.23.

To understand the relationship between these inventory models and facility location problems, one can
view placing an order as opening a facility; the demand points that this order serves corresponds to demand
points that are served by the open facility. Although these two classes of problems are related, there are
also fundamental distinctions between them. For one, the distances implied by this facility location view



of inventory problems is asymmetric and does not satisfy the triangle inequality. For facility location prob-
lems, the versions with asymmetric cost metric do not admit constant performance guarantee approximation
algorithms (see, e.g., [1, 11, 7]), and so it is particularly interesting that the additional structure in these
inventory problems is sufficient to obtain good approximation algorithms. Furthermore, we are interested
in multi-commodity models; there has been recent work that considers multi-commaodity facility location
problems but, of course, with a symmetric cost metric [24].

We note that our algorithms have their intellectual roots in the seminal paper of Jain & Vazirani [12],
which gives a primal-dual approximation algorithm for the uncapacitated facility location problem. Nonethe-
less our algorithms depart from their approach in rather significant ways, as we shall describe in detail in
the next section. We believe that this new approach may find applications in other settings.

The rest of the paper is organized in the following way. In Section 2 we describe the generic primal-dual
algorithm focusing on the JRP case. Then in Section 3 we first consider the lot-sizing problem as a special
case of the JRP and show that the algorithm provides an optimal solution to this special case. In Section 4
we complete the presentation of the algorithm for the JRP case and describe the worst case analysis. We then
show how to extend the algorithm for the JRP to the more general case in which back orders are allowed.
In Section 5, we describe the modifications in the algorithm and the analysis for the assembly problem. We
conclude with some interesting open questions.

2 A primal-dual framework

In this section, we outline the main ideas in our primal-dual framework. We start by giving a high-level
description, and then give a more detailed presentation. We shall start by focusing on the JRP. It is straight-
forward to give an integer programming formulation in which there are 0-1 decision variables that indicate
whether the demand for a given commodity in a particular time period is supplied from an order at a spe-
cific time period, as well as 0-1 variables that indicate whether an order is placed in a given time period,
and whether a particular commodity is included in that order. We shall defer presenting the details of this
formulation and the dual of its LP relaxation, since the main ideas of the algorithm can be presented without
any explicit reference to the LPs.

Our algorithm works in two phases. In the first phase of the algorithm we simultaneously construct a
feasible dual solution and a feasible primal (integer) solution. Each demand pejntas a dual variable
bi, which can be interpreted as a budget. In constructing the dual solution, we use a dual-ascent approach.
Each budget (i.e., dual variatig), is initially 0 and is gradually increased until it is frozen at its final value;
that is, we never decrease its value.

Unlike the primal-dual algorithm of Jain & Vazirani for the facility location problem (or that of Goemans
& Williamson [10] for network design problems), we do not increase the dual variables uniformly. Instead
we use a more sophisticated mechanism, which we oathaeform Consider a wave that starts to move
from the end of the planning horizon to the beginning (from pefiotb 1) and letr be a variable that
indicates the current location of theavefront initially, = = T". The budget of any unfrozen demand point
is then related to the indicater More specifically, each demand po(itt) keeps its budget fixed at 0 until
the wave reaches periedMoreover, once the wave crosses titread as long as the budgzéﬁs not frozen,
we keep the budget @f, ¢) equal to the holding cost of providing; from 7; that is,bi = d;; - hi,, which,
for notational convenience, we shall denéfé, (see Figure 2.1).

Each demand point is going to offer its budget to all potential orders (i.e., time periods) from which it
can be served. When offered to some potential osder= 1, ... ,t), the budgeb: is first used to pay for
the holding cost incurred by providing; from s. The residual budget is then used to pay a share of the item
ordering cost; with respect to the order. Once the item ordering cost is completely paid for (by this and
other demand points), the residual budget is used to pay a share of the joint orderifig watt respect to
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Figure 2.1: The waveform specification of the budgednd its allocation.

s. Each potential order collects the budgets of all relevant demand points (i.e., demands at time period
later), trying to pay for its cost. The cost of an order consists of the joint orderindsGos$he item ordering
costK; for each itemi included in the order, and the holding cost for each demand point provided by the
order. Note that each demand point is simultaneously making these offers to multiple potential orders, even
though it will ultimately be served by exactly one of them; furthermore, more than one of these orders might
be opened, and the extent to which these multiple offers are simultaneously accepted is directly linked to the
performance guarantee that we will be able to prove.

Once the cost of some joint ordeiis fully paid for, we are going téeemporarily operthis joint order.
This order at time period will include exactly those items for which the item ordering cost with respect to
s has been fully paid. We then freeze the budgets of all demand points that can be served from that order;
that is, all unsatisfied demands for those items ordered in time pefimdall time periodss or later. We
note that the waveform mechanism ensures that the budget of any frozen demand point is enough to pay for
the holding cost incurred by satisfying it from the order at s. This phase ends when all budgets are frozen,
providing a feasible dual solution and a feasible solution to the JRP. However, this initial solution is too
expensive, since the budget of a demand point might be used to pay for the opening of multiple orders.

This leads to the second phase, in which we prune the initial solution to get a cheaper one. For any such
orders, we consider the location of the wavefront whers was temporarily opened; lepen(s) denote
this value. We then say that two ordersandr aredependenif and only if the intervaldopen(s), s] and
[open(r),r] intersect. Next we consider the temporarily opened orders from earliest to late e rana-
nently operan orders if and only if its associated interval does not intersect with the interval associated with
any order already permanently opened. Because of the specific waveform mechanism we are using, this en-
sures that each demand point is committed to pay for the joint orderindsgastat most one permanently
opened order. However, for the JRP, we also need to specify which items are included in each joint order.
Thus, additional work is required. We want to make sure that each demandpojris provided from a
joint order that includes itemand such that the holding cost incurred can be paid by the béfiget

Finally, we introduce a&harging scheméhat specifies how the cost of the solution constructed to the
JRP is paid for, using the dual budgétsWe show that for the JRP, one can pay for the cost of the solution
such that no demand point is charged more than twice its bifigehis implies that the cost of our solution
is within twice the optimal cost.

Next we give the LP formulations that underly this algorithm, and then give the details of the first phase
of the algorithm in a more precise way. The following is the LP relaxation of a natural integer programming
formulation of the JRP:
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minimize ZysKO + ZZysK + Zl‘@tH (P)

=1 s=1 i=1 t=1 s=1

subject to > al =1, i=1,...,N, t=1,...,T, 1)
Tl <y, i=1,...,N,t=1,....,T, s=1,....t, )

:(:Stgys, i=1,....,N,t=1,...,T, s=1,...,t, 3)

xit,yi7y220, i1=1,...,.N,s=1,....T, t=s,...,T. 4)

The variablez?, indicates whether the demadg was provided from period. The variabley’ indicates
whether itemi was ordered in periog. The variable,? indicates ifanyitem was ordered in period The
constraint (1) ensures that each demand p@ir} is satisfied from some time periad< ¢. The constraint

(2) ensures that no demand for itérman be provided from periadwithout placing an order for itemat s.

The constraint (3) ensures that no demand can be provided from pesibldout placing a joint order &t

The integer programming formulation is correct because of the well-known property of the JRP that there
exists an optimal solution where each demand point is provided from a single order. The dual (D) of the LP
above is:

N T
maximize » ) b} (D)

=1 t=1

subject to Vi< HYL, 41,42, i=1,...,N,t=1,....,T, s=1,...,t. (5)
T .
YL <K, i=1,...,N,s=1,...,T. (6)
N T '
ZZZ;tSKO, s=1,...,T, @)
=1 t=s
I, 24, >0, i=1,...,N, t=1,....T, s=1,...,t (8)

Naturally, (D) provides a lower bound on the cost of any feasible solution to the JRP, since it provides a
lower bound on the optimal value of (P), which is itself a lower bound on the optimal cost of the JRP.

As we have already indicated, we think of the dual varidblas a budget associated with the demand
point(i,t). This budget is offered to the various potential orders (i.e., orderd, ..., t) so as to be served
by one of them. Each potential order= 1,...,T collects the budgets from different relevant demand
points so as to fully pay for the cost of its opening. This cost consists of a joint ordering{gpah item
ordering costk; for each itemi included in the order, as well as the holding cB4t of each demand point
served by the order. When offered to a potential orgehe budgeb: is first used to pay for the holding
cost incurred by providing;; from periods, namelyH?,. Then the residual budget is used to pay some
share of the item ordering coAt;. The payment of demand poift ¢) towards the item ordering costais
captured through the dual varialilg. When the item ordering cost is fully paid, demand pdint) might
pay some share in the joint ordering cé&f at s. This is captured through the dual variablg. Thus, with
respect to the potential orderthe budgeb is allocated into three different part&;,, I{, andzi,.

Next we outline our primal-dual procedure in more detail, and explicitly link the behavior of the algo-
rithm with the LP formulations above. Our procedure is a dual ascent procedure: each dual vaigble
initially equal to 0, and then is only increased until it is frozen at its final value.

5



As we indicated above, one of the novel ideas in our algorithm is that we do not increase the dual
variables uniformly over time, but rather use the waveform mechanism described above. We initialize the
wavefront variable to T'. The algorithm consists of a series of iterations as the valudéofcontinuously)
decreased through the interVl 1]. This parameter controls the values of the budgets each unfrozen
demand pointi, t): we have indicated that the budget is always equdltg but this is defined only for
integral values ofr. We extend this notion for € (s — 1,s), for some integew, by simply linearly
interpolating the valuesl} , , andH,.

As the wave moves backward in time, we wi@mporarily open joint ordergemporarily add items to
joint ordersandfreezebudgets of demand points; as the budgets are increased we identify the following
events:

Event 1 Whenrt = s (for s = 7,7 — 1,...,1), we consider all unfrozen demand poirtist) with
t = s,..., T and start increasing the varialilg at the same rate &é. In other words, as long s is not
frozen (andr < t), we keepb; = H., = H}, + l%;; I, is the portion in the budgéf, that is used to pay

for a share of item ordering cost of iteivat time periods. (Note that as the wavefront reacheand the
budget! increases tdf’, , the constraint (5) becomes tight. As the budget increases further as the wavefront
“advances” froms towardss — 1, in order to continue increasing the budget and remain dual feasible, we

must also increase the right-hand side of (5).)

Event 2 Suppose that for someands, we have thad . . I, = K;. (Note that this means that we can

no longer increase any variablg without violating the constraint (6).) Then one of the following cases
applies:

(a) Suppose that the joint order for time perio not yet temporarily opened (joint orders will be opened
in Event 3, below). Consider all unfrozen demand poitts) with ¢ > s. We freeze the variables
I:, and instead start increasing the variablggat the same rate as the budggt We then have that
bi = Hi, = H, + 1%, + 2%, (Wherez!, accounts for the portion in the buddgéthat is used to pay for
the joint ordering cost fos).

(b) The joint order at time period is already temporarily opened. Then we add iteto the order at
and freeze the budgets of all unfrozen demand pdintg with ¢ > s.

Event 3 Suppose that for some peried> 1, Zfil Y. 24 = Ko. (Note that we can no longer increase
any variablez!, without violating the constraint (7).) Then we declare that the joint order in perisd
temporarily opened. In this order atwe include any iteni such thaf)",. I, = K;. For each such item
i, we freeze the budget of any unfrozen demand p@inth with ¢ > s.

Event 4 Supposer = 1. We then open a joint order in period 1. We add to this order all the items
i =1,.., N. We then charge the cost of this order to the dual variables of the demand (@ointsy setting

bi =11, + 2%, wherelt; := K; andzi, := K/N (fori = 1,..,N). Next we freeze all the unfrozen
budgets and terminate.

We note that the various events described above are likely to occur at non-integer wavefront locations
(i.e., for non-integer values of). The procedure continues until all budgets are frozen (i.e., Bught 4
above happens). In case several events happen simultaneously we consider them in an arbitrary order.

Let (13, l, %) be the dual solution generated at the end of this phase. It is easily seen that this a feasible
dual solution. Moreover, the above procedure also induces a feasible (integer) primal solution. However,
this solution is rather expensive, since the budget of a demand point can be multiply used to pay towards
several orders. Next, we discuss the second phase of the algorithm, in which we prune the solution to get a



cheaper one in which this overpayment is bounded. We first discuss the simpler special case of the lot-sizing
problem (in Section 3) and then discuss the more general model of the JRP (in Section 4). n 4).

3 The single-item lot-sizing problem

In this section, we show that the primal-dual framework produces an optimal solution to the single-item
lot-sizing problem. We start with this model, rather than the JRP, since this allows us highlight the main
ideas of the algorithm and its analysis. This lot-sizing problem can be viewed as the special case of the JRP
in which N = 1 andKy = 0. To simplify our notation, we will only have an ordering cdstand holding
costshg:, Wwhere we now omit the item index. The primal and dual LPs are also simpler, as follows:

T T ot
minimize > uK + > waHa (P1)
s=1 t=1 s=1
t
subjectto > xy =1, t=1,...,T, 9)
=1
° Tst < Ys, t=1,...,7, s=1,...,t, (10)
Tty Ys > 0, s=1,....T, t=s,...,T. (12)

We also get similar dual:

T

maximize th (D1)
t=1

SUbjeCttO by < Hg + g, t=1,...,7T, s=1,...,t. (12)
T

Y la <K, s=1,...,T. (13)
t=s

Ly >0, t=1,....,T,s=1,...,t (14)

If one considers the primal-dual framework applied to this setting, the bgdgétny demand point
is allocated (with respect to any ordérto pay for the cost of holding the demadgdfrom s to ¢, and then
the leftover amounk; is used to pay a share of the ordering cost,dt .

We apply the procedure described in Section 2, but now an eridggiemporarily opened as soon as its
ordering cost¥ is fully paid, i.e., wherd_,. .l = K. Let (b, 1) be the dual feasible solution at the end of
the first phase. We next describe the pruning phase.

LetR = {s; =1 < 53 < --- < sy} be the set of the time periods of all temporarily opened orders.
For eachs € R, letopen(s) be the location of the wavefront when the ordeg atas temporarily opened.
We say that the intervgbpen(s), s] is the shadow intervabf s. Furthermore; ands in R are said to
be dependenif and only if their shadow intervals intersect. We consider the perigds= 1,...,m, in
increasing order of;, and permanently open an ordgrwhenever its associated shadow interval does not
intersect the shadow interval of any earligri = 1,...,j — 1, that has already been permanently opened.
Let R’ C R be the set of time periods of the permanently opened orders. Given tRg se get a feasible
solution to the lot-sizing problem by satisfying each demand from the latest possibleRSrdeet (, 7))
denote this solution.



3.1 Analysis of the lot-sizing algorithm

We next show that our algorithm finds an optimal solution to the single-item lot-sizing problem. The main
idea is to show that we can pay for the cost{®fy) using the feasible dual budgéts in such a way that
any demand pointis charged exactly its budgét ¢ = 1,...,T.

By the construction of the algorithm we know that for eaclk R’ we have),. s = K. We will
say that a demand pointcontributestowards an ordes € R’ if I; > 0. In addition, each demand point
should pay for its holding cost. We ugg to denote the holding cost incurred by demand point(z, 3),
i.e., ZZ:l Hg 2.

For each demand point= 1,...,T, let freeze(t) be the location of the wavefrontwhen its budget
was frozen, i.e.b, = Hipeeze(t) - We call the interval freeze(t), t] the active intervalof ¢. This is the
interval along which we increased the budget Clearly, the demand poiritcan contribute only towards
orders within its active interval only.

Lemma 3.1 For any demand point = 1, .., T, there exists a single order ¢ R’ that is within its active
interval.

Proof : We first show that there exists an ordee R’ within the active interval ot. Lets’ € R be the
order that caused the budgetiatfo be frozen. By definition of the specific waveform mechanism we are
using, we have thatpen(s’) = freeze(t). If s € R’, then since&’ is in the active interval of, we are done.
Otherwise, there must be some R’, with s < s’, whose shadow interval intersects the shadow interval of
s'. Thus, we have thaftreeze(t) = open(s’) < s < s’ < t. But this implies that € [freeze(t),t], i.e.,s

is in the active interval of.

Next we show that at most one ordee R’ is within [freeze(t),t]. Let s now denote the latest order
within [freeze(t),t] N R'. Clearly,open(s) < freeze(t), since if the demand was not frozen untik
was temporarily opened, it must have been frozen then. However, siac&’, it must be the case that
R’ N [open(s), s) = 0, since otherwise we would not permanently opeSinceopen(s) < freeze(t), we
see thatk?’ N [freeze(t), s) = 0, which implies the lemma. ]

As a corollary of this lemma, we get the following theorem:

Theorem 3.2 The primal-dual algorithm finds an optimal solution to the single-item lot-sizing problem.

Proof : Lemma 3.1 implies that any demand pairtontributes towards exactly one ordee R’. More
specifically, the share that demand painbntributes towards this ordeis exactlyfst Moreover, in(z, ),

the demandi; will be satisfied by the order in time periog and so the holding cost it incurs is equal to
H;. Recall tha‘bt Hst + lst We get tha’bt is sufficient to pay for botl's contrlbutlonlst to the order at

s and the holding costl; = H,; incurred byt in (z,9). As aresult, we get that the cost(df, ) is equal to
S, by, which implies the theorem. n

It is important to note that if we generalized the input to allow that the cost of placing an order in period
s is a time-dependent paramefg, the identical algorithm and analysis yield the the same theorem in this
more general setting. etting.

4 The joint replenishment problem

We now describe the second phase of the primal-dual algorithm for the JRP, and give its analysis. This
pruning phase is more involved for the JRP than for the lot-sizing problem, since we need to determine not
only the time periods at which orders are placed, but also which items are included in each joint order.



LetR:={s1 =1 < s2 < --- < s, } be the set of time periods of all temporarily opened joint orders.
We extend the terminology introduced in the previous section, to again defng¢s) (for orderss € R),
freeze(i, t) (for demand pointéi, ¢)) as well as the corresponding shadow and active intervals. In addition,
we say that item is acontributorto an orders € R, if it pays a share of the joint ordering costsafi.e.,

s 24 > 0). LetC(s) be the set of contributor items for some R.

'We start by applying the same procedure as for the lot-sizing problem to get a gtibsetR of
permanently opened joint orders (i.e., we process the orddgsfiom earliest to latest, retaining the next
only if its shadow interval does not intersect the shadow interval of any order alredgly. imitially, for
any joint orders € R’, we include all of its contributor itemise C(s). We call these orderggular orders

Again using the properties of the waveform mechanism, it is straightforward to show that each demand
point (i,t) has at least one joint orderc R’ within its active interval (by a proof nearly identical to this
part of Lemma 3.1). However, there is no guarantee that there is a regular order within the active interval of
(i,t) that includes item. As a result, more work is required.

Focus on one item and find the latest demand poirt¢) such that there does not exist a regular order
of item ¢ within its active interval. We have already observed that there does exist at least one permanently
opened joint ordes € R’ within its active interval. Hence, we can addextra orderof itemj to theearliest
joint orders € R' N [freeze(i,t),t]. We shall say thati, ¢) is theinitiator of the extra order of iten in
periods. This process is repeated on the remaining time horjzos), and continues until each demand
point (i, ¢) can be served, by either a regular or extra order, within its active interval. The same procedure is
repeated for each item

After all the orders are specified, each demand poim} is then satisfied from the latest possible period
s € R’ containing itemi. Let (Z, §) denote the solution found for the JRP.

4.1 Analysis of the JRP algorithm

We will show that the cost ofz, ) can be paid using the dual feasible budgets, 2) such that each
demand point(i, ¢) is charged at mos2bi. For this, we need to introduce a somewhat more involved
charging scheme.

For the regular orders and the joint ordering cost, we use the contributor items to pay for both their joint
and item ordering cost. The ordering cost of any regular ord@er?’ is Ko+3_,cc(s) Ki =2 iec(s) ths(lzfr
#4.). This follows from the construction of the algorithm.

Now consider an extra order of iteinin periods € R’, and let(¢, t) be the initiator of this extra order.
Let s’ be the freezing order dfi, ¢), and sofreeze(i,t) < open(s’). By definition, s is the earliest order
within R’ N [freeze(i,t),t]. Also observe thaR?’ N [open(s’),s’] # 0, since eithers’ € R/, or it was
eliminated by some earlier ordef € R’, such thavpen(s') < s” < s'. Consequentlys < s’. Sinces’ is
the freezing order of demand poifitt), it follows thaty",~ . I*,, = K;; we can use this to pay for the cost
of the extra order of item at s. To indicate this connection, we will denateby N;(s). Here we use the
fact that the item ordering cosf; is the same for each time period.

Consider any demand poifit, t); we will say that(i, ¢) contributes towards some regular ordee R’
if i € C(s)andzi, + I, > 0. In addition, we will say that:, t) contributes towards some extra ordefr
item in periods € R’ if Zﬁli(s)’t > (. Thus, we charge demand pofitt) with what it contributes towards

different orders ink’ as well as the holding cost it incurs i, ). Denote this holding cost .

We now show that, using the above charging scheme, one can pay for the ¢osypsuch that no
demand point is charged more th2#j. We first state and prove the following lemma, which is central to
our result:

Lemma 4.1 Consider any demand poifi, ¢t) and letr; € R’ be the latest order iR/, regular or extra,
towards which(i, t) contributes. Then, either; ¢ [freeze(i,t),t] or it is the earliest order inR' N



[freeze(i,t),t].
Proof : Assumer; € [freeze(i,t),t] and consider the following two possible cases:

Case 1. The order in period, is a regular order of item. We will argue thabopen(r) < freeze(i,t).
We know thati € C(r1), and soy_,-,. %, > 0. By the construction of the waveform, we know that

the demand points of an item can start paying a share of the joint ordering cost only after the item ordering
cost is fully paid. Thus, when the orderat was temporarily opened, we immediately added iteto

that order. Consider the wavefront positiorwhen the order; is opened (i.e., the wavefront is located

in open(ry)); if the demand pointi, t) is not frozen prior to this point in the execution of the algorithm
(i.e., whenr is larger), it must become frozen now. In other wordgen(r1) < freeze(i,t). By the

choice ofr;, we know that its shadow intervalpen(r1), r1| does not contain another ordee R’. Since

[freeze(i,t),r1] C [open(r1), 1], this implies that-; is the earliest order i’ N [freeze(i, t), t].

Case 2. The order in; is an extra order of item. This order has some initiatdi, ¢*) with a freezing order
N;(r1) such that; < N;(r1) < ¢. In particular, by the waveform properties we know tliateze(i, t*) <
freeze(i, t), since(i, t) was frozen no later thaft, t*) was (asN;(r1) < t). However, from the way we
add extra orders, we know that the orderats the earliest in?’ within the active interval of the initiator
(i,t*). In other words R’ N [freeze(i,t*),r1) = (. Given that we already concluded thateeze(i, t*) <
freeze(i,t), the lemma follows. |

The above lemma has several immediate corollaries:

Corollary 4.2 Any demand poin(i, t) can contribute towards at most two ordersih.

Proof : Suppose thati, t) contributes towards more than one ordeRipand letr; > r; be the two latest
such orders.
Suppose that; < freeze(i,t); in that caser; andr, must both be extra orders of iten{since they
do not lie in the active interval ofi, t)), and we will argue thati, ¢) cannot contribute to both. Ifi,¢)
contributes ta-y, then we must have théﬁ,-(m),t > 0, and sor; < freeze(i,t) < N;(r2). But the initiator
of o is earlier tharr; and hence earlier thaw; (r2), which is its freezing order. Clearly, it is impossible for
this to be true. Hencej, t) cannot contribute to more than one extra order that precedes its active interval.
Hence,r; € [freeze(i,t),t]. By Lemma 4.1, it follows that, is the earliest permanent order in
[freeze(i,t),t] N R'. Hence, no other order thét ¢) contributes to is within its active interval. Any order
to which (i, t) contributes that precedes its active interval is an extra order. But we have already seen that
there is at most one such order (namely, which completes the proof. ]

Corollary 4.3 Consider a demand poittt, ¢) and letr; be the latest order towards whigh, ¢) contributes
some positive share. Then the holding cost that) incurs in(, 4) is at mostH?. , (i.e., H} < H! ).

r1,t T1,

Proof : Since the algorithm ensures that each demand fgain} is satisfied from some order € R’
within its active interval, the claim follows immediately from Lemma 4.1, sincés either the earliest in
[freeze(i,t),t]N R orry < freeze(i,t). |

We now ready to prove the main theorem:

Theorem 4.4 The primal-dual framework yields a 2-approximation algorithm for the JRP.
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Proof : Consider any demand poifit, t) and letr; € R’ again be the latest order (&, §) towards which
(4 t) contrlbutes a positive share. If the order in perigds a regular order of item then(i, ) contributes
ll .+ > 0. If the order atry is an extra order of iten, then(i, ) contrlbutesl,l\I )t > 05 where

freeze(i t) < N;(r1) < t. In either case, this is clearly boundedily

Now assume thati, t) also contributes towards a second (earlier) orderBy Lemma 4.1, must
be an extra order of itemsuch thaty ¢ [freeze(i,t),t]. Hence,(i,t) contrlbutesl,l\I A(ra) > 0 towards
r2, Where freeze(i,t) < N;(r2) < ri. The latter inequality follows from the fact that since iténs

mcluded inry, the initiator ofry is earlier thanrl, and hence so is its freezing orddk;(r2). We have
bi = HY (ro) +lN i), t+ZN (o)t = HY J(r) +lN J(ra) t r t+l N;(rp),¢» (e firstinequality follows from

zN (o)t = 05 and the second inequality follows from the monotonicity of the holding costslaind) < r.

From Corollary 4.3, we get tha; > Ht + lN (ra) " . Corollary 4.2 also implies that, t) does not contribute

towards any other order € R’ other thanr; andr,. As a result, we get tpat the sum of the holding cost
incurred by(i, t) and its contributions towards ordering costs is bounde2bhyThis proves the theorerm.

We note that the above analysis remains valid if we allow the joint ordering &qgttp be time-
dependent. We can also allow time-dependent item ordering costs provided that they are non-decreasing
over time. If we allow arbitrary cost parameters, then there exists a simple reduction from the set cover
problem, and hence, one can not hope for a constant performance guarantee.

4.2 The JRP With Back Orders

In this section, we consider the extension of the JRP in which back orders are allowed. More specifically,
demands in period canbe satisfied from orders later in time (i.e., from orders in periodst). Given a
demandd;;, we let B, be the back order cost of providing this demand from an order in periadere

s > t. As before, we will assume that, is non-negative, linear it; and non-decreasing in> ¢ for any

fixed (i, t). We will show that our general assumptions on the holding cost imply that this more general case
with back orders can be reduced to the previous variant without back orders.

Consider now any two consecutive orders of iteray, in periods; < ss. It is easy to compute the
optimal policy to minimize the overall holding and back order cost of iteswer the intervals, s2). The
monotonicity assumptions imply that each demand p@irit) with ¢’ € [sy, s2) will be served either from
s1 or from s, as a back order. Lef?, denote the optimal holding and back order cost of itemaer [s, ),
given that we have two consecutive ordersir t. Observe thalz can be computed efficiently for each
item i and pairs < ¢. More specifically, for eacH ¢ [s, ) we only need to considenin{H_ ,, B; ,,}.

We now letH}, := G, ., — G, for eachs < t, and letH}; := H}, = B, The parametefl},
accounts for the difference in the overall holding and back order cost if instead of orderingirtenand
then int, we orderi in s and next int + 1. Because of the monotonicity assumptions, we know thafthe
parameters are non-negative. Using this, we consider the LP in Section 2 Basithe objective function
coefficients of ther’, variables (instead of thH parameters). The variabié, would now indicate that is
the order of itemi closest ta in the interval[1, t]. We associate the co&t!, with it, since it is clear that if
zl, = 1, then we will have no orders of iteirover (s, ¢].

Next we show that for any fixe¢i, t), H:, is non-increasing i, i.e., it has the same monotonicity
property assumed throughout this paper. Hence, we establish the correctness of the new formulation (with
the H parameters) for the JRP with back orders. Since this monotonicity property was the only assumption
needed for the execution of the algorithm and its analysis, we obtain a 2-approximation for this more general
model as well. Naturally, this extends the optimality result for the lot-sizing case as described in Section 3.
We believe that this is the first primal-dual algorithm for this variant of the lot-sizing problem.
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Lemma 4.5 Consider some demand poiitt) and somd < s < t. ThenH}, < H. , ,.

Proof : For each demand poirft, ¢') and somes; < ¢ < s9, we let A" _ be the diﬁerence between

S1,82

the cheaper of the holding or back order costs(iot’) for the intervals, s2) (i.e., min{H{, ,, 22 o1
and the cheaper of the holding or back order costs for the intérval, + 1). In other words,H! . =

51,82
Zt, Els1,52) A’fjl’ s,- FOcus now on some demand pdintt’) with ¢’ € [s, t]. By the monotonicity assumption
we know thatA% > 0. It is sufficient to show thaf?, < A 1+~ Consider the optimal solutions f6i, ')
for the intervalgs, t) andls, t + 1) respectively. There are onIy three possible cases:

Case 1. Demand poitit, t') is served frons in the optimal solutions for both intervalk this case, we
haveA?, = 0, and the claim follows immediately.

Case 2. Demand poirit, ¢') is served as a back order in the optimal solutions for both intervals-
serve that the monotonicity assumption implies that') is served as a back order also in the optimal
solutions for the intervalss — 1,t) and[s — 1, + 1), respectively. Henced’, = A™' | = BtJrl o — Bl
and again the claim follows.

Case 3. Demand poirtt, t') is served as a back order in the optimal solution fart) and froms in
the optimal solution fofs, ¢ 4+ 1). Using again the monotonicity assumptions, we conclude(bhdt) is
served as a back order in the optimal solution[for 1,¢). In addition, we know thatf?,, < BtJrl » Since

otherwise(i, t') would not switch tos in the optimal solution fo{s t+1). We get thata®’ 1+ Is equal to

) i i it/
Bi, s — BjyortoH! , , — Bj,. Ineither cased’ , , > A = H.y —Bj,.

This completes the proof. [ |

Corollary 4.6 The primal-dual algorithm provides a 2-approximation algorithm for the JRP with back
orders.

Corollary 4.7 The primal-dual algorithm solves optimally the single-item lot-sizing problem with back or-
ders.

4.3 The JRP With Back Orders

In this section, we consider the extension of the JRP in which back orders are allowed. More specifically,
demands in period canbe satisfied from orders later in time (i.e., from orders in periodst). Given a
demandd;;, we let B, be the back order cost of providing this demand from an order in periadere

s > t. As before, we will assume thﬁgt is non-negative, linear id;; and non-decreasing > t for any

fixed (i, t). We will show that our general assumptions on the holding cost imply that this more general case
with back orders can be reduced to the previous variant without back orders.

Consider now any two consecutive orders of itereay, in periods; < so. It is easy to compute the
optimal policy to minimize the overall holding and back order cost of iteswer the intervals;, s2). The
monotonicity assumptions imply that each demand p@irit) with ¢’ € [s1, s2) will be served either from
s1 or from s, as a back order. Let?, denote the optimal holding and back order cost of iteuer s, t),
given that we have two consecutive ordersir. t. Observe thalz can be computed efficiently for each
item and pairs < ¢. More specifically, for eactf € [s,) we only need to considenin{H ,,, B} . }.

We now letH, := G, ., — G, for eachs < t, and letd., := H., = Bi,. The parameteﬂgt
accounts for the difference in the overall holding and back order cost if instead of orderingiitenand
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then int, we orderi in s and next int + 1. Because of the monotonicity assumptions, we know thafthe
parameters are non-negative. Using this, we consider the LP in Section 2 aesithe objective function
coefficients of ther’, variables (instead of th parameters). The variabté, would now indicate that is
the order of itemi closest ta in the interval[1, t]. We associate the cost!, with it, since it is clear that if
x%, = 1, then we will have no orders of item)ver(s t].

Next we show that for any fixe@, t), H’, is non-increasing ir, i.e., it has the same monotonicity
property assumed throughout this paper. Hence, we establish the correctness of the new formulation (with
the H parameters) for the JRP with back orders. Since this monotonicity property was the only assumption
needed for the execution of the algorithm and its analysis, we obtain a 2-approximation for this more general
model as well. Naturally, this extends the optimality result for the lot-sizing case as described in Section 3.
We believe that this is the first primal-dual algorithm for this variant of the lot-sizing problem.

Lemma 4.8 Consider some demand poifitt) and somd < s < t. ThenH!, < ﬁ;,u.

Proof : For each demand poirtt, t') and somes; < ¢/ < sy, we IetN; s, be the diﬁerence between
the cheaper of the holding or back order costs(fot’) for the interval[sq, .92) (i.e. mm{Hs1 i By 411,
and the cheaper of the holding or back order costs for the inténval, + 1). In other words H;, ,, =
Dovelsi,se) Af}l’ s,- Focus now on some demand pdintt’) with ¢’ € [s, t]. By the monotonicity assumption
we know thatA? > 0. It is sufficient to show that?) < A% 1+~ Consider the optimal solutions f6i, ')

for the mtervals[s t) and[s,t + 1) respectively. There are only three possible cases:

Case 1. Demand poitit, t') is served frons in the optimal solutions for both intervalk this case, we
haveA?”, = 0, and the claim follows immediately.

Case 2. Demand poirit, ¢’) is served as a back order in the optimal solutions for both intervals-
serve that the monotonicity assumption implies that') is served as a back order also in the optimal
solutions for the intervals — 1,¢) and[s — 1,¢ + 1), respectively. Hence)?, = A" 14 = =Bl — B
and again the claim follows.

t+1,t tt'

Case 3. Demand poirti, t') is served as a back order in the optimal solution fart) and froms in
the optimal solution fofs, ¢ + 1). Using again the monotonicity assumptions, we conclude (th&?) is
served as a back order in the optimal solution[for- 1,¢). In addition, we know thatf}, < B;,, ., since

otherwise(4, t') would not switch tos in the optimal solution fofs, ¢ 4 1). We get thatA?’ | 1+ Is equal to

7 ) H it! it _ 7 7
BHW Btt, or to Hs 1L — Bj,. In either caseﬁssfu > Asq,t = H., — Bj,.

This completes the proof. [ |

Corollary 4.9 The primal-dual algorithm provides a 2-approximation algorithm for the JRP with back
orders.

Corollary 4.10 The primal-dual algorithm solves optimally the single-item lot-sizing problem with back
orders.
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5 Assembly Problem

In this section, we present the required modifications in order to apply the primal-dual method to the assem-
bly problem. Recall that the assembly problem can be presented as a rooted directed in-tree, where each
node in the tree corresponds to an item. We also assume that the items are indexed soiliat each
edge(i, 7) in the tree. Item 1, the root of the tree, is facing external demanditiene periods s, .., dr).

The idea is that any unit of iterhis assembled from one unit of each of its direct predecessor items in the
tree. We letP(i) andS(i), respectively, be the set afl predecessors and successors of itemithin the

in-tree (both including itemi). Furthermore, leP’(i) denote the direct predecessors of itgrand we let

o (1) be its direct successor. Finally, for each itéand each itenk € P(i), we letpathy; be the path from

ktoi (k > i) in the tree defined above.

5.1 A Linear Program

We start by explaining how one can formulate the assembly problem as an integer program with a structure
similar to that exploited for the JRP. For this, we need to introduce some well-known results from inventory
theory. In multi-stage models such as the assembly problem, it is often more convenient to consider the
echelon inventory levels opposed to theonventional inventory leveliscussed previously. The echelon
inventory level of item is defined to be the overall number of units of that item in the system, which includes
units that are assembled into other items. Thus, the echelon inventory level afigequal to the sum of
the conventional inventory levels of all items&{i). Given the conventional holding cost parameters
one can compute the echelon holding cost parameteti$, as- hi, — 2_keP (i) Rk, i.e., as the marginal
additional conventional holding cost due to assembling itetWe again assume that, is non-negative
and monotone i for any fixed(i, t).

One well-known result on the assembly problem is the optimality of what is called the classtefi
policies(see [8]). In a nested policy, whenever we place an order of iteme simultaneously place an
order for its direct successor item in the tre€;). In other words, we can assume that we place an order
for item ¢ at time periods only if we also place an order for every itejne S(i) at the same time period.
Finally, the assembly problem is also known to have an optimal policy such that each demand is provided
from a single order.

By relying on the properties stated above, it is straightforward to adapt the linear programming relax-
ation given in Section 2 to the assembly problem:

N T T t
minimize SN YK+ YD Al Hy (P2)

i=1 s=1 i=1 t=1 s=1

t

subjectto ) "xl, =1, i=1,...,N, t=1,...,T, (15)
=1 . .
Tt <y, i=1,...,N,t=1,....,T,s=1,....t, j €S  (16)
aly, yl >0, i=1,...,N,s=1,....,.T, t=s,...,T. (17)

There no longer is a joint ordering cost, so the variabfeare eliminated, along with their terms in
the objective function, as well as the constraints (3). The objective function coefficient of the assignment
variablesr’, is the corresponding echelon holding cégt. Finally, one has the constraint thdt < y2 for
eachj € S(i) (and for each period < t). This implies the nestedness property. Note that in the above LP
there are many redundant constraints. However, since we are not going to solve the LP, it does not have any
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impact. On the other hand we get a "nicer” dual problem:

N T

maximize ) "> bl (D2)
=1 t=1

subject to G<Hy+ > 2, i=1... N t=1..T s=1...t (18)

JeSs(i)

> M<K, i=1,...,N,s=1,...,T. (19)
keP(3) t>s

24 >0, i=1,...,N,t=1,....,T,s=1,...,t, (20)

5.2 Primal-Dual Procedure

We use a similar procedure to construct the dual solution and the initial feasible (integer) primal solution. In
particular, we use again the waveform mechanism and keep any unfrozen budgets fortperiods that
they satisfyb! = H:,. We note that here a demand pajitt) corresponds to providing; units of itemi to
nodel (i.e., iteml), so as to satisfy the external demafdGiven a potential ordey, the budgeb: will be
allocated taf ¢, + ZjeS(i) z:2. More specifically, it will be used to pay for the echelon holding cost incurred
by holdingd; units of itemi in the system from period to ¢, as well as to possibly contribute a share of
the item ordering cost atof items; € S(i) (through the variables.}). Of course, we must also maintain,
for each item and each ordering period that the total of the shares contribut®d, .., >-.cp i) M < K;.
We will temporarily open an order in periodonly when the ordering cost of item 1 ais fully paid. We
will add item: to this order only if each item on the path frarto item 1 (i.e., each € path;;) has already
fully paid for its item ordering cost with respect o
We now describe the first phase of the algorithm in detail, focusing on the different events that may occur:

Event 1 Whenrt = s (for s = 7,7 — 1,...,2), we consider all unfrozen demand poirtist) with
t = s,...,T and start increasing the variablg at the same rate & (keepingb: := H:, = H!, + 2%).

S

Event 2 Suppose that for some itein> 1 and some period > 1, we have thad ;o) > > K= K.

(Note that this means that we can no longer to continue to increase any of the varfallighout violating
the constraint (19) of item) Then one of the following cases applies:

(a) Suppose that the order in time perio already temporarily opened (see Event 3 below) and includes
allitems;j € S(7) \ {¢}. Then we add to this order each itdme P(i) with a positive contribution
towards the item ordering cost of iteimat s, i.e., the set of itemgk € P(i) : > o, 2% > 0}.
Note that all of these items have the property that gaetpath;,; has already fully paid for its item
ordering costK; with respect tos. For each such iterh, we then freeze the budget of any unfrozen
demand pointk, t) with ¢ > s.

(b) Otherwise, consider the itegfne S(i) with highest index, such that its item ordering cost is not yet
fully paid. Letj’ be that item. Each item that has a positive contribution towards the item ordering
cost of item; at s will now start to contribute towards the item ordering cost of that ijeat s. More
precisely, letj’ := max{j € S(i) : X yep(j) 2i>s M < K;}; clearly,1 < j' < i. Then, for each
item k € P(i) with >",-, 2% > 0, consider each unfrozen demand pdiktt) with ¢ > s: freeze
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the variablez® and instead start increasing the variabj,é (at the same rate as the budggt The
variablezfgl accounts for the portion in the budgdétthat is used to pay a share towards the ordering

costK;, of item ;" with respect tos.

Event 3 Suppose that for some peried> 1, Z]kvzl > s 28 = K. (Note that we can no longer increase
any variablez! without violating the constraint (19) with respect to item 1, the root of the tree.) Then we
declare that the order in periads temporarily opened. We add to this ordes @ny item: such that each
item j € S(7) has fully paid for their item ordering co#{; ats, i.e., that for each item € S(i), we have
DokeP(j) 2t>s zfg = K. For each such item) we freeze the budget of each unfrozen demand gaint

with ¢t > s.

Event 4 Supposer = 1. We then open the order in period 1. We add to this order all of the items
i =1,.., N. We then charge the cost of this order to the dual variables of the demand (polntsy setting
bl =2t .= K, (fori = 1,.., N). Next we freeze all of the unfrozen budgets and terminate.

The solution(?), ) at the end of this phase is clearly dual feasible with respect to (D2). However, the
initial (primal) solution for the assembly problem is again potentially too expensive, so we need again to
prune it.

5.3 The Pruning Phase

We perform the pruning phase in an iterative way, starting at item 1 and then considering its predecessors.
We treat itemi only when all of the orders of its successor items are already permanently determined. Let
R :={s1 =1 < s2.. < s, } be the set of the time periods of all temporarily opened orders at the end of
the first phase. For the presentation of the pruning phase and the analysis of the algorithm, we introduce an
extended notion of theontributor items Consider an order of iterat time periods; we will say that item

k € P(i) is a contributor item to this order - . 25 > 0. We will denote the set of contributor items by
C(i,s). We again usepen(s) and the corresponding shadow interval (for any R) and freeze(i, t) and

the corresponding active interval (for afyt)).

We start with item 1, and perform the same greedy procedure as before to compute &$ubgenf
permanently opened orders; i.e., we process the ordétdriom earliest to latest, retaining the next only if
its shadow interval does not intersect the shadow interval of any order alre&iyRior each ordes € R/,
we initially add all of the contributor itemse C(1, s), and call theseegular orders

Next we consider the rest of the iterhs- 2, .., N in a way such that each itefis considered only after
o (i) was considered. Focus now on some item 1, we perform a similar procedure to the one described
for the JRP in Section 4. We startAtand look for the first demand point, séyt), such that there does not
exist an order (either regular or extra) of itémwithin its active interval]freeze(i, t),t]. Lets’ € R be its
freezing order. We now consider the earliest ordeRim [freeze(i, t), t] with itemo (i), says, and add to
this order all of the contributor items of the orderiadts’, k € C(, s’). Observe that for each € C(i, s),
it is also the case that each itérhon the path fronk to i (i.e., k' € pathy;) is also a contributor item (i.e.,

k' € C(i,s")). We call these ordersxtra orders We say thaf, t) and: are theinitiator and theinitiator
item, respectively, of these extra orderssinAs before, denote’ := N;(s). We then continue iteratively on
[1, s), until each demand poitit, t) has a permanently open order with itémwithin its active interval.

We now argue why the above procedure is well defined, and moreover that. Observe that for item
i such thatr (i) = 1, the arguments are identical to the ones in the JRP case (see Section 4). So, for each
i, we can assume by induction that the procedure is well defineg(ipr Consider now the demand point
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(o(i),s"); we claim thatfreeze(i, t) < freeze(o(i),s'). Recall that(i, t) was frozen just when iterhwas
added to the order at; hence itemv (i) must have been added ¢oeither with itemi, or perhaps earlier. In
particular,(o (%), s') was frozen either witlji, t) or even earlier, i.e.freeze(i,t) < freeze(o(i),s’). By
induction, we know that whefi, ¢) is considered, we have already ensured that there exists a permanently
open order inR' N [freeze(o(i), s'), s'] with itemo (7). Since[freeze(o(i),s'),s'| C [freeze(i,t),t], we
conclude that the procedure described above is indeed well-defined<art

It is now clear that at the end of the pruning phase, we have a feasible nested solution to the assembly
problem. Let(Z, g) be this solution. Next we will show that the cost of the solution is no more than twice
the optimal cost.

5.4 Analysis of The Assembly Problem

We start by describing a charging scheme of how the cost:of) can be paid using the feasible dual
budgets(b, 2). For any ordes € R, let I(s) be the set of the initiator items of the extra orders included
in s in (z,7). We pay for the ordering cost of the regular orders aie., of itemsi € C(1,s), using
DicC(Ls) 2ojes(i) 2utms fat = 2uicc(1s) Hi- The equality is correct based on the observation that if for
somek € P(i) andj € S(i) we havek € C(i, s) andi € C(j, s), then we also have € C(j, s).

As for the extra orders in, we can partition them according to their initiator item/ifs). Thus, we
have e 1o Dkec(iNg () Dtcpathy, 2o1>N,(s) N, () = 2oici(s) Sukec(iNg(s) Kk Tis is correct based
on the construction of the algorithm and the same argument used above for the regular orders.

For each demand poirii, t) we say that it contributes towards a regular order in pesiod R’ if
i € C(1,s) and} s z4 > 0. We say thaf(i, t) contributes towards extra orders at some R/, if

i € C(j,N;(s)) for somel < j € I(s) and} ;. o, 2@,";(8” > 0. In addition, each demand point is

charged with the echelon holding cost that it incursiny); denote this cost bﬁt’ An important obser-
vation is that any demand poifi ¢) can only contribute to the opening of orders R’ that include item
(either as regular or extra orders).

We are now ready to show that, as in the case of the JRP, one can use the above charging scheme to pay
for the cost of(Z, §) in a way such that no demand poiitt) is charged more than twice its budgét
The following are the analogous results to Lemma 4.1 and Corollaries 4.2 and 4.3:

Lemma 5.1 Consider any demand poifi, ¢t) and letr; € R’ be the latest order iR/, regular or extra,
towards which(i, t) contributes. Then, either; ¢ [freeze(i,t),t] or it is the earliest order inR' N
[freeze(i,t),t] with items.

Proof : Assumer; € [freeze(i,t),t] and consider again the following two possible cases:

Case 1. The order of itemin period r; is a regular order In particular, we know that € C(1,71),
and so itemi was added to the order atat the moment it was temporarily opened. Th(s¢) was
frozen atopen(ry) or perhaps earlier. This implies thapen(r;) < freeze(i,t). We also know that
R’ N [open(r1),r1) = ( (since we permanently opened) and that[freeze(i,t),r1) C [open(ri),r1).
This concludes the proof of the lemma for this case.

Case 2. The order of iterin periodr; is an extra orderWe know that the extra orderat has some initiator
(j*,t*), wherej* € S(7) is the initiator item. ConsideX ;- (1), the freezing order ofj*, t*). In particular,
we have already seen that < N;-(r;) < t. We claim thatfreeze(j*,t*) < freeze(i,t). Observe that
(j*,t*) was frozen when iterp* was added to the order Bitj- (). However, since € C(j*, N;=(r1)),

it follows that item: was added to the order &k;-(r1) together with item;*. Thus, (i,t) was frozen
together with(j*,¢*) or perhaps earlier, so indegfdecze(j*,t*) < freeze(i,t). By the construction
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of the algorithm, we know that there does not exist an order with iferm R’ N [freeze(j*,t*),71).
Since the solution is nested (i.e., if we order itémve must also order iteni*), there does not exist any
order with itemi in R’ N [freeze(j*,t*),r1). Since we have already concluded thateeze(i, t),r1) C
[freeze(5*,t*),r1), we see that the lemma holds. |

Corollary 5.2 Any demand poinfi, t) can contribute towards at most two ordersih.

Proof : Suppose thati, t) contributes towards more than one ordeRinand letr; > r be the two latest
such orders. We will show that it can not be the caserthat freeze(i, t). The rest of the proof is identical
to that of Corollary 4.2.

Suppose that indeed < freeze(i, t); in that case, the orders of itenatr; andr, must both be extra
orders (since they do not lie in the active intervaloft)). Let j* € P(i) be the initiator item of the order
atry and letN;«(r2) be the freezing order of the initiaty*, ¢*). To show a contradiction it's sufficient to
show thatt* < r; (since we must also have < freeze(i,t) < N;«(r2)). Recall that since the solution is
nested, we have included all of the itegns S(7) in the order at; (either as a regular or as an extra order),
including itemyj*. Sincefreeze(5*,t*) < ro < 71, we must have that* < r; (since otherwisét*, j*)
could not have been an initiator). We now complete the proof exactly along the lines of Corollary 42.

Corollary 5.3 Consider a demand poilit, t) and letr; be the latest order towards whigh, ¢) contributes
some positive share. Then the holding cost that) incurs in(z, ) is at mostH. , (i.e., H; < H} ).

T1,

Proof : Same as in Corollary 4.3. ]

Theorem 5.4 The primal-dual framework provides a 2-approximation algorithm to the assembly problem.

Proof : Consider any demand poifit, ¢) and letr; € R’ again be the latest order i, ) towards which
(¢,t) contributes a positive share. If the order of itém periodr; is a regular order, thefi, ) contributes
> jes(i) ém« > 0- Ifthe order of itemi atry is an extra order, the, t) contributesy .., . élej*(n),t >
0, wherej* € S(i) is the corresponding initiator item, arfateeze(i,t) < Nj«(r1) < t. In either case, this
is clearly bounded by

Now assume thati, t) also contributes towards a second (earlier) onger By Lemma 5.1, the or-
der of itemi at 7, must be an extra order, such that ¢ [freeze(i,t),t]. If 7/ € S(i) is the cor-

responding initiator item of this order, then ¢) contributesy ", ... , 2N )t > 0 towardsr,, and
ij Vi 3

freeze(i,t) < Nj(ra) < ry (see Corollary 5.2). We shall argue that:

i 5ij 5ij

b= B ) 2280 (o) Z FIN (o) T Diepatny AN 2y 2 Hivi & Xepatny 2 ()
The first inequality follows from%ﬁ/(m)t > 0 (Vj € S(i)), and the second inequality follows from
J ’
the monotonicity of the holding costs amy:(r2) < r;. From Corollary 5.3, we get thaf > H; +

> icpath.., lej (ra)+ COrOllary 5.2 and the fact that each demand point can contribute only towards orders
ij Vi )

r € R' with item also imply that(i, t) does not contribute towards any ordee R’ other than- andrs.
As aresult, we get that the sum of the holding cost incurreti kyy and its contributions towards ordering
costs is bounded b#:. This proves the theorem. [ |

We note that the analysis will go through even if we allow the item ordering cost parameter of item 1
(K7) to vary arbitrarily over time. We can also allow the item ordering cost of eachiteml to be a
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non-decreasing function of the ordering time.

We end the discussion on the assembly problem by mentioning that under our general assumptions on
the cost parameters, the variant of the assembly problem we consider is NP-Hard. This can be shown by a
simple reduction from the JRP to the 2-stage assembly problem. Given an instance of the JRP, we rescale
the demand and the holding cost parametéyof the items (by inversely proportionate value) so that for
each period (¢t = 1,..,7), there is a uniform demanB; = d;; . Each of the items is the predecessor of
a common dummy item O with ordering cost equal to the joint ordering EgstlemandD;, and echelon
holding cost equal to 0. This yields an instance of a 2-stage assembly problem, and since we can restrict to
nested policies, it is equivalent to the original JRP instance.

6 Conclusions

In this paper we have shown a general algorithmic framework of how to generate optimal and near-optimal
solutions to a class of classical deterministic inventory models.

Although the method is based on LP relaxations, our approximation algorithms do not require the LP’s
to be solved. They are used only in the analysis of the algorithms. The algorithms are clearly polynomial-
time but there is still work to do so as to get the most efficient implementations. We believe that it would
be interesting to test the typical quality of the solutions that our algorithms generate on different inputs and
compare them to other known heuristics.

A very interesting theoretical open question is related to the approximability of the JRP. The problem is
NP-hard but we know of no approximability hardness result and one can not even exclude the existence of
a polynomial-time approximation scheme (i.e., one might be able to degigrapproximation algorithm
for anyp > 1). We mention again that for the assembly network problem with the traditional holding cost
structure, it is not known whether it is NP-hard. A more specific open question is related to the tightness of
the LP relaxations considered in this paper. We have constructed [22] an example in which the integrality
gapis 1.21. This implies that using the LP as the only lower bound, one can not hope to prove a performance
guarantee better than 1.21. However, there still exists a significant gap between the upper bound of 2 and
the lower bound of 1.21.
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