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Abstract

We consider several classical models in deterministic inventory theory: the single-item lot-sizing
problem, the joint replenishment problem, and the multi-stage assembly problem. These inventory mod-
els have been studied extensively, and play a fundamental role in broader planning issues, such as the
management of supply chains. For each of these problems, we wish to balance the cost of maintaining
surplus inventory for future demand against the cost of replenishing inventory more frequently. For ex-
ample, in the joint replenishment problem, demand for several commodities is specified over a discrete
finite planning horizon, the cost of maintaining inventory is linear in the number of units held, but the
cost incurred for ordering a commodity is independent of the size of the order; furthermore, there is an
additional fixed cost incurred each time a non-empty subset of commodities is ordered. The goal is to
find a policy that satisfies all demands on time and minimizes the overall holding and ordering cost.

We shall give a novel primal-dual framework for designing algorithms for these models that signifi-
cantly improve known results in several ways: the performance guarantees for the quality of the solutions
improve on or match previously known results; the performance guarantees hold under much more gen-
eral assumptions about the structure of the costs, and the algorithms and their analysis are significantly
simpler than previous known results. Finally, our primal-dual framework departs from the structure of
previously studied primal-dual approximation algorithms in significant ways, and we believe that our ap-
proach may find application in other settings. More specifically, we provide 2-approximation algorithms
to the joint replenishment problem and to the assembly problem, and solve the single-item lot-sizing
problem to optimality. The results for the joint replenishment and the lot-sizing problems also hold for
their generalizations with back orders allowed. As a by product of our work, we prove known and new
upper bounds on the integrality gap of some LP relaxations of the above mentioned problems.
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1 Introduction

In this paper, we consider several classical models in deterministic inventory theory: the single-item lot-
sizing problem, the joint replenishment problem (JRP) and the multi-stage assembly problem. These in-
ventory models have been studied extensively over the years, in a number of different settings, and play a
fundamental role in broader planning issues, such as the management of supply chains (see, e.g., [3, 13]).
We shall consider the variants in which there is a discrete notion of time with a finite planning horizon, and
the demand is deterministic (known in advance) but dynamic, i.e., it varies over the planning horizon.

Each of the inventory models that we consider has the following characteristics. There areN commodi-
ties (or equivalently, items) that are needed over a planning horizon consisting ofT time periods; for each
time period and each commodity, there is a demand for a specified number of units of that commodity. To
satisfy these demands, an order may be placed in each time period. For each commodityi ordered, afixed
ordering costKi is incurred, which is independent of the number of units ordered from that commodity.
The order placed in time periodt may be used to satisfy demand in time periodt or any subsequent point
in time. In addition, the demand in time periodt must be satisfied completely by orders that have been
placed no later than time periodt. (In the inventory literature, these assumptions are usually referred to as
”neither back orders nor lost sales are allowed”.) Since the cost of ordering a commodity is independent of
the number of units ordered, there is an incentive to place large orders, to meet the demand not just for the
current time period, but for subsequent time periods as well. This is balanced by a cost incurred for holding
inventory over time periods. We will lethi

st denote thisholding cost, that is, the cost incurred by ordering
one unit of inventory in periods, and using it to meet the demand for itemi in periodt. We will assume that
hi

st is non-negative and, for each(i, t), is a non-increasing function ofs. (Note that in particular, we do not
require subadditivity; we could have thathi

rt > hi
rs + hi

st for somer < s < t.) The goal is to find a policy
of orders that satisfies all demands on time and minimizes the overall holding and ordering cost.

The details of the three inventory models are as follows. In thesingle-item lot-sizing problem, we have
a single item (N = 1) with specified demands overT time periods (d1, .., dT ). In the joint replenishment
problemwe haveN commodities, where for each commodityi = 1, . . . , N , and for each time period
t = 1, . . . , T , there is a specified non-negative demanddit. In addition to the item ordering costs,Ki,
i = 1, . . . , N , anyorder incurs what we calla joint ordering costK0, independent of the (nonempty) subset
of commodities that are included in the order (and again, independent of the (positive) number of units for
each commodity included). The joint ordering cost creates a dependency between the different commodities
and complicates the structure of the optimal policy. The holding cost follows the same structure described
above.

In the assembly problem, we have a somewhat more involved structure. As part of the input, we also
specify a rooted directed in-tree, where each node in the tree corresponds to an item, and we assume that
the items are indexed so thati > j for each edge(i, j) in the tree. Node (or item) 1, the root of the tree,
is facing external demands overT time periods (d1, .., dT ). A unit of item i is assembled from one unit of
each of its predecessor items in the tree. Thus, any unit of item 1 consists of one unit of each of the other
items. We again have an ordering cost and holding cost for each item.

We note that the way we model the holding cost is much more general than the most common setting,
in which each itemi has a linear holding cost, so that the cost of holding one unit from time periods to
time periodt is equal to(t− s)hi, for some choice ofhi > 0 (or to

∑t
l=s hi

l in the more general case). By
allowing the more general structure described above, we can capture other important phenomena, such as
perishable goods, where the cost of holding an item longer than a specified interval is essentially infinite.
The strength of the general holding cost structure is demonstrated in Section 4.3, where we show how to
apply the algorithm to the more general JRP model with backorders. As for the ordering cost, we note that
our algorithms are applicable also in the presence of time dependent cost parameters as will be specified
later on. Furthermore, in addition to the (fixed) ordering cost that is independent of the order size, one can
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incorporate a per-unit ordering cost into the holding cost term (as long as we preserve the monotonicity).
In this paper, we describe a unified novel primal-dual algorithmic framework that provides optimal and

near-optimal solutions to the three inventory models described above. Our main result is a 2-approximation
algorithm for the joint replenishment problem. By this we mean that for any instance of the problem, our
algorithm computes a feasible solution in polynomial-time, with cost that is guaranteed to be no more than
twice the optimal cost. The joint replenishment problem is NP-hard [2], but it can be solved in polynomial-
time by dynamic programming for a fixed number of commodities, or for a fixed number of time periods [28,
26, 16], (by fixing the times at which joint orders are placed the problem decomposes by item). LP-based
techniques have not previously played a significant role in the design of approximation algorithms for NP-
hard deterministic inventory problems with constant performance guarantee. LP-rounding was applied to a
more general problem by Shen, Simchi-Levi, and Teo [23], but this yielded a guarantee of onlyO(log N +
log T ). This absence of results is particularly surprising in light of the fact that it has long been understood
that these problems admit integer programming formulations with strong linear programming relaxations,
i.e., that provide tight lower bounds (see, e.g., [14, 19, 20]). These formulations are closely related to
formulations that have been studied for the facility location problem, which has also been a source of intense
study for approximation algorithms. Our performance guarantee improves significantly on the results of
Joneja [15], who only considered the case where all the cost parameters are fixed over time. His paper
claims a 3-approximation algorithm for this problem, but it has been pointed out that the proof is flawed
[25]. A somewhat different analysis yields a performance guarantee of 5 [18]. Federgrun and Tzur [9]
proposed an interesting dynamic programming-based heuristic for the joint replenishment problem, but they
assume that cost and demand parameters are bounded by constants.

The single-item lot-sizing problem was shown to be solvable in polynomial time by dynamic program-
ming in the landmark paper of Wagner & Within[27]. Furthermore, Krarup & Bilde [17] showed, in this
case, that the facility location-inspired LP has integer optima by means of a primal-dual algorithm, and
Báŕany. Van Roy, and Wolsey [4] gave yet another proof of this by means of an explicitly generated pair of
primal and dual optima (that are computed, ironically, via a dynamic programming computation). Finally,
Bertsimas, Teo and Vohra [5] gave a proof, which is based on LP rounding. If we consider our joint replen-
ishment algorithm as applied to the special case of the single-item lot-sizing problem (where, since there
is only one item, one can merge the joint ordering cost and the individual item ordering cost into one new
ordering cost), then we obtain a new, extremely simple, primal-dual optimization algorithm that also proves
the integrality of this LP formulation.

Finally, with some modifications, our primal-dual algorithm can also be applied to the assembly problem
to yield a 2-approximation algorithm. Here, we achieve the same approximation ratio as Roundy [21], who
gave a 2-approximation algorithm (again for the case where all cost parameters are fixed over time) using
a non-linear relaxation and ideas borrowed from continuous-time lot-sizing problems. Although we only
match the previous performance guarantee, our approach is much simpler, and it yields the performance
guarantee under a much more general cost structure. In particular, under our assumptions on the cost struc-
ture, it is easy to show that the assembly problem is NP-hard by a reduction from the joint replenishment
problem. However, for the variant of the problem considered by Roundy, it is still not known whether it is
NP-hard or not [6].

As a byproduct of our work, we prove upper bounds on the integrality gap of the corresponding LP
relaxations, the worst-case ratio between the optimal integer and fractional values; for both the JRP and the
assembly problem, we prove an upper bound of 2. In [22], we give a family of instances of the JRP, for
which the integrality gap is asymptotically 1.23.

To understand the relationship between these inventory models and facility location problems, one can
view placing an order as opening a facility; the demand points that this order serves corresponds to demand
points that are served by the open facility. Although these two classes of problems are related, there are
also fundamental distinctions between them. For one, the distances implied by this facility location view
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of inventory problems is asymmetric and does not satisfy the triangle inequality. For facility location prob-
lems, the versions with asymmetric cost metric do not admit constant performance guarantee approximation
algorithms (see, e.g., [1, 11, 7]), and so it is particularly interesting that the additional structure in these
inventory problems is sufficient to obtain good approximation algorithms. Furthermore, we are interested
in multi-commodity models; there has been recent work that considers multi-commodity facility location
problems but, of course, with a symmetric cost metric [24].

We note that our algorithms have their intellectual roots in the seminal paper of Jain & Vazirani [12],
which gives a primal-dual approximation algorithm for the uncapacitated facility location problem. Nonethe-
less our algorithms depart from their approach in rather significant ways, as we shall describe in detail in
the next section. We believe that this new approach may find applications in other settings.

The rest of the paper is organized in the following way. In Section 2 we describe the generic primal-dual
algorithm focusing on the JRP case. Then in Section 3 we first consider the lot-sizing problem as a special
case of the JRP and show that the algorithm provides an optimal solution to this special case. In Section 4
we complete the presentation of the algorithm for the JRP case and describe the worst case analysis. We then
show how to extend the algorithm for the JRP to the more general case in which back orders are allowed.
In Section 5, we describe the modifications in the algorithm and the analysis for the assembly problem. We
conclude with some interesting open questions.

2 A primal-dual framework

In this section, we outline the main ideas in our primal-dual framework. We start by giving a high-level
description, and then give a more detailed presentation. We shall start by focusing on the JRP. It is straight-
forward to give an integer programming formulation in which there are 0-1 decision variables that indicate
whether the demand for a given commodity in a particular time period is supplied from an order at a spe-
cific time period, as well as 0-1 variables that indicate whether an order is placed in a given time period,
and whether a particular commodity is included in that order. We shall defer presenting the details of this
formulation and the dual of its LP relaxation, since the main ideas of the algorithm can be presented without
any explicit reference to the LPs.

Our algorithm works in two phases. In the first phase of the algorithm we simultaneously construct a
feasible dual solution and a feasible primal (integer) solution. Each demand point(i, t) has a dual variable
bi
t, which can be interpreted as a budget. In constructing the dual solution, we use a dual-ascent approach.

Each budget (i.e., dual variablebi
t), is initially 0 and is gradually increased until it is frozen at its final value;

that is, we never decrease its value.
Unlike the primal-dual algorithm of Jain & Vazirani for the facility location problem (or that of Goemans

& Williamson [10] for network design problems), we do not increase the dual variables uniformly. Instead
we use a more sophisticated mechanism, which we call awaveform. Consider a wave that starts to move
from the end of the planning horizon to the beginning (from periodT to 1) and letτ be a variable that
indicates the current location of thewavefront; initially, τ = T . The budget of any unfrozen demand point
is then related to the indicatorτ . More specifically, each demand point(i, t) keeps its budget fixed at 0 until
the wave reaches periodt. Moreover, once the wave crosses timet and as long as the budgetbi

t is not frozen,
we keep the budget of(i, t) equal to the holding cost of providingdit from τ ; that is,bi

t = dit · hi
τt, which,

for notational convenience, we shall denoteH i
τt (see Figure 2.1).

Each demand point is going to offer its budget to all potential orders (i.e., time periods) from which it
can be served. When offered to some potential orders (s = 1, . . . , t), the budgetbi

t is first used to pay for
the holding cost incurred by providingdit from s. The residual budget is then used to pay a share of the item
ordering costKi with respect to the orders. Once the item ordering cost is completely paid for (by this and
other demand points), the residual budget is used to pay a share of the joint ordering costK0 with respect to
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Figure 2.1: The waveform specification of the budgetbi
t and its allocation.

s. Each potential orders collects the budgets of all relevant demand points (i.e., demands at time periods or
later), trying to pay for its cost. The cost of an order consists of the joint ordering costK0, the item ordering
costKi for each itemi included in the order, and the holding cost for each demand point provided by the
order. Note that each demand point is simultaneously making these offers to multiple potential orders, even
though it will ultimately be served by exactly one of them; furthermore, more than one of these orders might
be opened, and the extent to which these multiple offers are simultaneously accepted is directly linked to the
performance guarantee that we will be able to prove.

Once the cost of some joint orders is fully paid for, we are going totemporarily openthis joint order.
This order at time periods will include exactly those items for which the item ordering cost with respect to
s has been fully paid. We then freeze the budgets of all demand points that can be served from that order;
that is, all unsatisfied demands for those items ordered in time periods for all time periodss or later. We
note that the waveform mechanism ensures that the budget of any frozen demand point is enough to pay for
the holding cost incurred by satisfying it from the order at s. This phase ends when all budgets are frozen,
providing a feasible dual solution and a feasible solution to the JRP. However, this initial solution is too
expensive, since the budget of a demand point might be used to pay for the opening of multiple orders.

This leads to the second phase, in which we prune the initial solution to get a cheaper one. For any such
orders, we consider the locationτ of the wavefront whens was temporarily opened; letopen(s) denote
this value. We then say that two orderss andr aredependentif and only if the intervals[open(s), s] and
[open(r), r] intersect. Next we consider the temporarily opened orders from earliest to latest, andperma-
nently openan orders if and only if its associated interval does not intersect with the interval associated with
any order already permanently opened. Because of the specific waveform mechanism we are using, this en-
sures that each demand point is committed to pay for the joint ordering costK0 of at most one permanently
opened order. However, for the JRP, we also need to specify which items are included in each joint order.
Thus, additional work is required. We want to make sure that each demand point(i, t) is provided from a
joint order that includes itemi and such that the holding cost incurred can be paid by the budgetbi

t.
Finally, we introduce acharging schemethat specifies how the cost of the solution constructed to the

JRP is paid for, using the dual budgetsbi
t. We show that for the JRP, one can pay for the cost of the solution

such that no demand point is charged more than twice its budgetbi
t. This implies that the cost of our solution

is within twice the optimal cost.
Next we give the LP formulations that underly this algorithm, and then give the details of the first phase

of the algorithm in a more precise way. The following is the LP relaxation of a natural integer programming
formulation of the JRP:
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minimize
T∑

s=1

y0
sK0 +

N∑

i=1

T∑

s=1

yi
sKi +

N∑

i=1

T∑

t=1

t∑

s=1

xi
stH

i
st (P)

subject to
t∑

s=1

xi
st = 1, i = 1, . . . , N, t = 1, . . . , T, (1)

xi
st ≤ yi

s, i = 1, . . . , N, t = 1, . . . , T, s = 1, . . . , t, (2)

xi
st ≤ y0

s , i = 1, . . . , N, t = 1, . . . , T, s = 1, . . . , t, (3)

xi
st, yi

s, y0
s ≥ 0, i = 1, . . . , N, s = 1, . . . , T, t = s, . . . , T. (4)

The variablexi
st indicates whether the demanddit was provided from periods. The variableyi

s indicates
whether itemi was ordered in periods. The variabley0

s indicates ifany item was ordered in periods. The
constraint (1) ensures that each demand point(i, t) is satisfied from some time periods ≤ t. The constraint
(2) ensures that no demand for itemi can be provided from periods without placing an order for itemi ats.
The constraint (3) ensures that no demand can be provided from periods without placing a joint order ats.
The integer programming formulation is correct because of the well-known property of the JRP that there
exists an optimal solution where each demand point is provided from a single order. The dual (D) of the LP
above is:

maximize
N∑

i=1

T∑

t=1

bi
t (D)

subject to bi
t ≤ H i

st + list + zi
st, i = 1, . . . , N, t = 1, . . . , T, s = 1, . . . , t. (5)

T∑
t=s

list ≤ Ki, i = 1, . . . , N, s = 1, . . . , T. (6)

N∑

i=1

T∑
t=s

zi
st ≤ K0, s = 1, . . . , T, (7)

list, zi
st ≥ 0, i = 1, . . . , N, t = 1, . . . , T, s = 1, . . . , t. (8)

Naturally, (D) provides a lower bound on the cost of any feasible solution to the JRP, since it provides a
lower bound on the optimal value of (P), which is itself a lower bound on the optimal cost of the JRP.

As we have already indicated, we think of the dual variablebi
t as a budget associated with the demand

point(i, t). This budget is offered to the various potential orders (i.e., orderss = 1, . . . , t) so as to be served
by one of them. Each potential orders = 1, . . . , T collects the budgets from different relevant demand
points so as to fully pay for the cost of its opening. This cost consists of a joint ordering costK0, an item
ordering costKi for each itemi included in the order, as well as the holding costH i

st of each demand point
served by the order. When offered to a potential orders, the budgetbi

t is first used to pay for the holding
cost incurred by providingdit from periods, namelyH i

st. Then the residual budget is used to pay some
share of the item ordering costKi. The payment of demand point(i, t) towards the item ordering cost ats is
captured through the dual variablelist. When the item ordering cost is fully paid, demand point(i, t) might
pay some share in the joint ordering costK0 ats. This is captured through the dual variablezi

st. Thus, with
respect to the potential orders, the budgetbi

t is allocated into three different parts,H i
st, list andzi

st.
Next we outline our primal-dual procedure in more detail, and explicitly link the behavior of the algo-

rithm with the LP formulations above. Our procedure is a dual ascent procedure: each dual variablebi
t is

initially equal to 0, and then is only increased until it is frozen at its final value.
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As we indicated above, one of the novel ideas in our algorithm is that we do not increase the dual
variables uniformly over time, but rather use the waveform mechanism described above. We initialize the
wavefront variableτ to T . The algorithm consists of a series of iterations as the value ofτ is (continuously)
decreased through the interval[T, 1]. This parameter controls the values of the budgetsbi

t of each unfrozen
demand point(i, t): we have indicated that the budget is always equal toH i

τt, but this is defined only for
integral values ofτ . We extend this notion forτ ∈ (s − 1, s), for some integers, by simply linearly
interpolating the valuesH i

s−1,t andH i
st.

As the wave moves backward in time, we willtemporarily open joint orders, temporarily add items to
joint ordersand freezebudgets of demand points; as the budgets are increased we identify the following
events:

Event 1 When τ = s (for s = T, T − 1, . . . , 1), we consider all unfrozen demand points(i, t) with
t = s, . . . , T and start increasing the variablelist at the same rate asbi

t. In other words, as long asbi
t is not

frozen (andτ ≤ t), we keepbi
t = H i

τt = H i
st + list; list is the portion in the budgetbi

t that is used to pay
for a share of item ordering cost of itemi at time periods. (Note that as the wavefront reachess and the
budgetbi

t increases toH i
st , the constraint (5) becomes tight. As the budget increases further as the wavefront

“advances” froms towardss − 1, in order to continue increasing the budget and remain dual feasible, we
must also increase the right-hand side of (5).)

Event 2 Suppose that for somei ands, we have that
∑

t≥s list = Ki. (Note that this means that we can
no longer increase any variablelist without violating the constraint (6).) Then one of the following cases
applies:

(a) Suppose that the joint order for time periods is not yet temporarily opened (joint orders will be opened
in Event 3, below). Consider all unfrozen demand points(i, t) with t ≥ s. We freeze the variables
list and instead start increasing the variableszi

st (at the same rate as the budgetbi
t). We then have that

bi
t = H i

τt = H i
st + list + zi

st (wherezi
st accounts for the portion in the budgetbi

t that is used to pay for
the joint ordering cost fors).

(b) The joint order at time periods is already temporarily opened. Then we add itemi to the order ats
and freeze the budgets of all unfrozen demand points(i, t) with t ≥ s.

Event 3 Suppose that for some periods > 1,
∑N

i=1

∑
t≥s zi

st = K0. (Note that we can no longer increase
any variablezi

st without violating the constraint (7).) Then we declare that the joint order in periods is
temporarily opened. In this order ats, we include any itemi such that

∑
t≥s list = Ki. For each such item

i, we freeze the budget of any unfrozen demand point(i, t) with t ≥ s.

Event 4 Supposeτ = 1. We then open a joint order in period 1. We add to this order all the items
i = 1, .., N . We then charge the cost of this order to the dual variables of the demand points(i, 1) by setting
bi
1 := li11 + zi

11, whereli11 := Ki andzi
11 := K0/N (for i = 1, .., N ). Next we freeze all the unfrozen

budgets and terminate.

We note that the various events described above are likely to occur at non-integer wavefront locations
(i.e., for non-integer values ofτ ). The procedure continues until all budgets are frozen (i.e., untilEvent 4
above happens). In case several events happen simultaneously we consider them in an arbitrary order.

Let (b̂, l̂, ẑ) be the dual solution generated at the end of this phase. It is easily seen that this a feasible
dual solution. Moreover, the above procedure also induces a feasible (integer) primal solution. However,
this solution is rather expensive, since the budget of a demand point can be multiply used to pay towards
several orders. Next, we discuss the second phase of the algorithm, in which we prune the solution to get a
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cheaper one in which this overpayment is bounded. We first discuss the simpler special case of the lot-sizing
problem (in Section 3) and then discuss the more general model of the JRP (in Section 4). n 4).

3 The single-item lot-sizing problem

In this section, we show that the primal-dual framework produces an optimal solution to the single-item
lot-sizing problem. We start with this model, rather than the JRP, since this allows us highlight the main
ideas of the algorithm and its analysis. This lot-sizing problem can be viewed as the special case of the JRP
in which N = 1 andK0 = 0. To simplify our notation, we will only have an ordering costK and holding
costshst, where we now omit the item index. The primal and dual LPs are also simpler, as follows:

minimize
T∑

s=1

ysK +
T∑

t=1

t∑

s=1

xstHst (P1)

subject to
t∑

s=1

xst = 1, t = 1, . . . , T, (9)

xst ≤ ys, t = 1, . . . , T, s = 1, . . . , t, (10)

xst, ys ≥ 0, s = 1, . . . , T, t = s, . . . , T. (11)

We also get similar dual:

maximize
T∑

t=1

bt (D1)

subject to bt ≤ Hst + lst, t = 1, . . . , T, s = 1, . . . , t. (12)
T∑

t=s

lst ≤ K, s = 1, . . . , T. (13)

lst ≥ 0, t = 1, . . . , T, s = 1, . . . , t. (14)

If one considers the primal-dual framework applied to this setting, the budgetbt of any demand pointt
is allocated (with respect to any orders) to pay for the cost of holding the demanddt from s to t, and then
the leftover amountlst is used to pay a share of the ordering cost ats, K.

We apply the procedure described in Section 2, but now an orders is temporarily opened as soon as its
ordering costK is fully paid, i.e., when

∑
t≥s lst = K. Let (b̂, l̂) be the dual feasible solution at the end of

the first phase. We next describe the pruning phase.
Let R = {s1 = 1 < s2 < · · · < sm} be the set of the time periods of all temporarily opened orders.

For eachs ∈ R, let open(s) be the location of the wavefront when the order ats was temporarily opened.
We say that the interval[open(s), s] is theshadow intervalof s. Furthermore,r ands in R are said to
bedependentif and only if their shadow intervals intersect. We consider the periodssi, i = 1, . . . , m, in
increasing order ofsi, and permanently open an ordersj whenever its associated shadow interval does not
intersect the shadow interval of any earliersi, i = 1, . . . , j − 1, that has already been permanently opened.
Let R′ ⊆ R be the set of time periods of the permanently opened orders. Given the setR′, we get a feasible
solution to the lot-sizing problem by satisfying each demand from the latest possible orderR′. Let (x̂, ŷ)
denote this solution.
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3.1 Analysis of the lot-sizing algorithm

We next show that our algorithm finds an optimal solution to the single-item lot-sizing problem. The main
idea is to show that we can pay for the cost of(x̂, ŷ) using the feasible dual budgetsb̂t, in such a way that
any demand pointt is charged exactly its budgetb̂t, t = 1, . . . , T .

By the construction of the algorithm we know that for eachs ∈ R′ we have
∑

t≥s lst = K. We will
say that a demand pointt contributestowards an orders ∈ R′ if lst > 0. In addition, each demand point
should pay for its holding cost. We usêHt to denote the holding cost incurred by demand pointt in (x̂, ŷ),
i.e.,

∑t
s=1 Hstx̂st.

For each demand pointt = 1, . . . , T , let freeze(t) be the location of the wavefrontτ when its budget
was frozen, i.e.,̂bt = Hfreeze(t),t. We call the interval[freeze(t), t] the active intervalof t. This is the
interval along which we increased the budgetbt. Clearly, the demand pointt can contribute only towards
orders within its active interval only.

Lemma 3.1 For any demand pointt = 1, .., T , there exists a single orders ∈ R′ that is within its active
interval.

Proof : We first show that there exists an orders ∈ R′ within the active interval oft. Let s′ ∈ R be the
order that caused the budget oft to be frozen. By definition of the specific waveform mechanism we are
using, we have thatopen(s′) = freeze(t). If s′ ∈ R′, then sinces′ is in the active interval oft, we are done.
Otherwise, there must be somes ∈ R′, with s < s′, whose shadow interval intersects the shadow interval of
s′. Thus, we have thatfreeze(t) = open(s′) ≤ s < s′ ≤ t. But this implies thats ∈ [freeze(t), t], i.e.,s
is in the active interval oft.

Next we show that at most one orders ∈ R′ is within [freeze(t), t]. Let s now denote the latest order
within [freeze(t), t] ∩ R′. Clearly,open(s) ≤ freeze(t), since if the demandt was not frozen untils
was temporarily opened, it must have been frozen then. However, sinces ∈ R′, it must be the case that
R′ ∩ [open(s), s) = ∅, since otherwise we would not permanently opens. Sinceopen(s) ≤ freeze(t), we
see thatR′ ∩ [freeze(t), s) = ∅, which implies the lemma.

As a corollary of this lemma, we get the following theorem:

Theorem 3.2 The primal-dual algorithm finds an optimal solution to the single-item lot-sizing problem.

Proof : Lemma 3.1 implies that any demand pointt contributes towards exactly one orders ∈ R′. More
specifically, the share that demand pointt contributes towards this orders is exactlyl̂st. Moreover, in(x̂, ŷ),
the demanddt will be satisfied by the order in time periods, and so the holding cost it incurs is equal to
Hst. Recall that̂bt = Hst + l̂st. We get that̂bt is sufficient to pay for botht’s contributionl̂st to the order at
s and the holding cost̂Ht = Hst incurred byt in (x̂, ŷ). As a result, we get that the cost of(x̂, ŷ) is equal to∑

t b̂t, which implies the theorem.

It is important to note that if we generalized the input to allow that the cost of placing an order in period
s is a time-dependent parameterKs, the identical algorithm and analysis yield the the same theorem in this
more general setting. etting.

4 The joint replenishment problem

We now describe the second phase of the primal-dual algorithm for the JRP, and give its analysis. This
pruning phase is more involved for the JRP than for the lot-sizing problem, since we need to determine not
only the time periods at which orders are placed, but also which items are included in each joint order.
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Let R := {s1 = 1 < s2 < · · · < sm} be the set of time periods of all temporarily opened joint orders.
We extend the terminology introduced in the previous section, to again defineopen(s) (for orderss ∈ R),
freeze(i, t) (for demand points(i, t)) as well as the corresponding shadow and active intervals. In addition,
we say that itemi is acontributor to an orders ∈ R, if it pays a share of the joint ordering cost ats (i.e.,∑

t≥s ẑi
st > 0). Let C(s) be the set of contributor items for somes ∈ R.

We start by applying the same procedure as for the lot-sizing problem to get a subsetR′ ⊆ R of
permanently opened joint orders (i.e., we process the orders inR from earliest to latest, retaining the next
only if its shadow interval does not intersect the shadow interval of any order already inR′). Initially, for
any joint orders ∈ R′, we include all of its contributor itemsi ∈ C(s). We call these ordersregular orders.

Again using the properties of the waveform mechanism, it is straightforward to show that each demand
point (i, t) has at least one joint orders ∈ R′ within its active interval (by a proof nearly identical to this
part of Lemma 3.1). However, there is no guarantee that there is a regular order within the active interval of
(i, t) that includes itemi. As a result, more work is required.

Focus on one itemi, and find the latest demand point(i, t) such that there does not exist a regular order
of item i within its active interval. We have already observed that there does exist at least one permanently
opened joint orders ∈ R′ within its active interval. Hence, we can add anextra orderof itemi to theearliest
joint orders ∈ R′ ∩ [freeze(i, t), t]. We shall say that(i, t) is the initiator of the extra order of itemi in
periods. This process is repeated on the remaining time horizon[1, s), and continues until each demand
point (i, t) can be served, by either a regular or extra order, within its active interval. The same procedure is
repeated for each itemi.

After all the orders are specified, each demand point(i, t) is then satisfied from the latest possible period
s ∈ R′ containing itemi. Let (x̂, ŷ) denote the solution found for the JRP.

4.1 Analysis of the JRP algorithm

We will show that the cost of(x̂, ŷ) can be paid using the dual feasible budgets(b̂, l̂, ẑ) such that each
demand point(i, t) is charged at most2b̂i

t. For this, we need to introduce a somewhat more involved
charging scheme.

For the regular orders and the joint ordering cost, we use the contributor items to pay for both their joint
and item ordering cost. The ordering cost of any regular orders ∈ R′ isK0+

∑
i∈C(s) Ki =

∑
i∈C(s)

∑
t≥s(l̂

i
st+

ẑi
st). This follows from the construction of the algorithm.

Now consider an extra order of itemi in periods ∈ R′, and let(i, t) be the initiator of this extra order.
Let s′ be the freezing order of(i, t), and sofreeze(i, t) ≤ open(s′). By definition,s is the earliest order
within R′ ∩ [freeze(i, t), t]. Also observe thatR′ ∩ [open(s′), s′] 6= ∅, since eithers′ ∈ R′, or it was
eliminated by some earlier orders′′ ∈ R′, such thatopen(s′) ≤ s′′ < s′. Consequently,s ≤ s′. Sinces′ is
the freezing order of demand point(i, t), it follows that

∑
t≥s′ l̂

i
s′t = Ki; we can use this to pay for the cost

of the extra order of itemi at s. To indicate this connection, we will denotes′ by Ni(s). Here we use the
fact that the item ordering costKi is the same for each time period.

Consider any demand point(i, t); we will say that(i, t) contributes towards some regular orders ∈ R′

if i ∈ C(s) and ẑi
st + l̂ist > 0. In addition, we will say that(i, t) contributes towards some extra orderof

item i in periods ∈ R′ if l̂iNi(s),t
> 0. Thus, we charge demand point(i, t) with what it contributes towards

different orders inR′ as well as the holding cost it incurs in(x̂, ŷ). Denote this holding cost bŷH i
t .

We now show that, using the above charging scheme, one can pay for the cost of(x̂, ŷ) such that no
demand point is charged more than2b̂i

t. We first state and prove the following lemma, which is central to
our result:

Lemma 4.1 Consider any demand point(i, t) and letr1 ∈ R′ be the latest order inR′, regular or extra,
towards which(i, t) contributes. Then, eitherr1 /∈ [freeze(i, t), t] or it is the earliest order inR′ ∩

9



[freeze(i, t), t].

Proof : Assumer1 ∈ [freeze(i, t), t] and consider the following two possible cases:

Case 1. The order in periodr1 is a regular order of itemi. We will argue thatopen(r1) ≤ freeze(i, t).
We know thati ∈ C(r1), and so

∑
u≥r1

ẑi
r1,u > 0. By the construction of the waveform, we know that

the demand points of an item can start paying a share of the joint ordering cost only after the item ordering
cost is fully paid. Thus, when the order atr1 was temporarily opened, we immediately added itemi to
that order. Consider the wavefront positionτ when the orderr1 is opened (i.e., the wavefront is located
in open(r1)); if the demand point(i, t) is not frozen prior to this point in the execution of the algorithm
(i.e., whenτ is larger), it must become frozen now. In other words,open(r1) ≤ freeze(i, t). By the
choice ofr1, we know that its shadow interval[open(r1), r1] does not contain another orderr ∈ R′. Since
[freeze(i, t), r1] ⊆ [open(r1), r1], this implies thatr1 is the earliest order inR′ ∩ [freeze(i, t), t].

Case 2. The order inr1 is an extra order of itemi. This order has some initiator(i, t∗) with a freezing order
Ni(r1) such thatr1 ≤ Ni(r1) ≤ t. In particular, by the waveform properties we know thatfreeze(i, t∗) ≤
freeze(i, t), since(i, t) was frozen no later than(i, t∗) was (asNi(r1) ≤ t). However, from the way we
add extra orders, we know that the order atr1 is the earliest inR′ within the active interval of the initiator
(i, t∗). In other words,R′ ∩ [freeze(i, t∗), r1) = ∅. Given that we already concluded thatfreeze(i, t∗) ≤
freeze(i, t), the lemma follows.

The above lemma has several immediate corollaries:

Corollary 4.2 Any demand point(i, t) can contribute towards at most two orders inR′.

Proof : Suppose that(i, t) contributes towards more than one order inR′, and letr1 > r2 be the two latest
such orders.

Suppose thatr1 < freeze(i, t); in that case,r1 andr2 must both be extra orders of itemi (since they
do not lie in the active interval of(i, t)), and we will argue that(i, t) cannot contribute to both. If(i, t)
contributes tor2, then we must have thatl̂iNi(r2),t > 0, and sor1 < freeze(i, t) ≤ Ni(r2). But the initiator
of r2 is earlier thanr1 and hence earlier thanNi(r2), which is its freezing order. Clearly, it is impossible for
this to be true. Hence,(i, t) cannot contribute to more than one extra order that precedes its active interval.

Hence,r1 ∈ [freeze(i, t), t]. By Lemma 4.1, it follows thatr1 is the earliest permanent order in
[freeze(i, t), t] ∩ R′. Hence, no other order that(i, t) contributes to is within its active interval. Any order
to which (i, t) contributes that precedes its active interval is an extra order. But we have already seen that
there is at most one such order (namelyr2), which completes the proof.

Corollary 4.3 Consider a demand point(i, t) and letr1 be the latest order towards which(i, t) contributes
some positive share. Then the holding cost that(i, t) incurs in(x̂, ŷ) is at mostH i

r1,t (i.e.,Ĥ i
t ≤ H i

r1,t).

Proof : Since the algorithm ensures that each demand point(i, t) is satisfied from some orderr ∈ R′

within its active interval, the claim follows immediately from Lemma 4.1, sincer1 is either the earliest in
[freeze(i, t), t] ∩R′ or r1 < freeze(i, t).

We now ready to prove the main theorem:

Theorem 4.4 The primal-dual framework yields a 2-approximation algorithm for the JRP.
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Proof : Consider any demand point(i, t) and letr1 ∈ R′ again be the latest order in(x̂, ŷ) towards which
(i, t) contributes a positive share. If the order in periodr1 is a regular order of itemi, then(i, t) contributes
l̂ir1,t + ẑi

r1,t > 0. If the order atr1 is an extra order of itemi, then(i, t) contributeŝliNi(r1),t > 0, where

freeze(i, t) ≤ Ni(r1) ≤ t. In either case, this is clearly bounded byb̂i
t.

Now assume that(i, t) also contributes towards a second (earlier) orderr2. By Lemma 4.1,r2 must
be an extra order of itemi such thatr2 /∈ [freeze(i, t), t]. Hence,(i, t) contributeŝliNi(r2),t > 0 towards
r2, wherefreeze(i, t) ≤ Ni(r2) < r1. The latter inequality follows from the fact that since itemi is
included inr1, the initiator ofr2 is earlier thanr1, and hence so is its freezing order,Ni(r2). We have
b̂i
t = H i

Ni(r2),t+ l̂iNi(r2),t+ ẑi
Ni(r2),t ≥ H i

Ni(r2),t+ l̂iNi(r2),t ≥ H i
r1,t+ l̂iNi(r2),t; the first inequality follows from

ẑi
Ni(r2),t ≥ 0, and the second inequality follows from the monotonicity of the holding costs andNi(r2) < r1.

From Corollary 4.3, we get thatb̂i
t ≥ Ĥ i

t + l̂iNi(r2),t. Corollary 4.2 also implies that(i, t) does not contribute
towards any other orderr ∈ R′ other thanr1 andr2. As a result, we get that the sum of the holding cost
incurred by(i, t) and its contributions towards ordering costs is bounded by2b̂i

t. This proves the theorem.

We note that the above analysis remains valid if we allow the joint ordering cost (K0) to be time-
dependent. We can also allow time-dependent item ordering costs provided that they are non-decreasing
over time. If we allow arbitrary cost parameters, then there exists a simple reduction from the set cover
problem, and hence, one can not hope for a constant performance guarantee.

4.2 The JRP With Back Orders

In this section, we consider the extension of the JRP in which back orders are allowed. More specifically,
demands in periodt canbe satisfied from orders later in time (i.e., from orders in periodss > t). Given a
demanddit, we letBi

st be the back order cost of providing this demand from an order in periods, where
s > t. As before, we will assume thatBi

st is non-negative, linear indit and non-decreasing ins ≥ t for any
fixed(i, t). We will show that our general assumptions on the holding cost imply that this more general case
with back orders can be reduced to the previous variant without back orders.

Consider now any two consecutive orders of itemi, say, in periodss1 < s2. It is easy to compute the
optimal policy to minimize the overall holding and back order cost of itemi over the interval[s1, s2). The
monotonicity assumptions imply that each demand point(i, t′) with t′ ∈ [s1, s2) will be served either from
s1 or from s2 as a back order. LetGi

st denote the optimal holding and back order cost of itemi over [s, t),
given that we have two consecutive orders ins < t. Observe thatG can be computed efficiently for each
item i and pairs < t. More specifically, for eacht′ ∈ [s, t) we only need to considermin{H i

s,t′ , B
i
t,t′}.

We now letH̄ i
st := Gi

s,t+1 − Gi
st for eachs < t, and letH̄ i

ss := H i
ss = Bi

ss. The parameter̄H i
st

accounts for the difference in the overall holding and back order cost if instead of ordering itemi in s and
then int, we orderi in s and next int + 1. Because of the monotonicity assumptions, we know that theH̄
parameters are non-negative. Using this, we consider the LP in Section 2 havingH̄ as the objective function
coefficients of thexi

st variables (instead of theH parameters). The variablexi
st would now indicate thats is

the order of itemi closest tot in the interval[1, t]. We associate the cost̄H i
st with it, since it is clear that if

xi
st = 1, then we will have no orders of itemi over(s, t].

Next we show that for any fixed(i, t), H̄ i
st is non-increasing ins, i.e., it has the same monotonicity

property assumed throughout this paper. Hence, we establish the correctness of the new formulation (with
theH̄ parameters) for the JRP with back orders. Since this monotonicity property was the only assumption
needed for the execution of the algorithm and its analysis, we obtain a 2-approximation for this more general
model as well. Naturally, this extends the optimality result for the lot-sizing case as described in Section 3.
We believe that this is the first primal-dual algorithm for this variant of the lot-sizing problem.
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Lemma 4.5 Consider some demand point(i, t) and some1 < s < t. ThenH̄ i
st ≤ H̄ i

s−1,t.

Proof : For each demand point(i, t′) and somes1 ≤ t′ < s2, we let∆it′
s1,s2

be the difference between
the cheaper of the holding or back order costs for(i, t′) for the interval[s1, s2) (i.e., min{H i

s1,t′ , B
i
s2,t′}),

and the cheaper of the holding or back order costs for the interval[s1, s2 + 1). In other words,H̄ i
s1,s2

=∑
t′∈[s1,s2) ∆it′

s1,s2
. Focus now on some demand point(i, t′) with t′ ∈ [s, t]. By the monotonicity assumption

we know that∆it′
st ≥ 0. It is sufficient to show that∆it′

st ≤ ∆it′
s−1,t. Consider the optimal solutions for(i, t′)

for the intervals[s, t) and[s, t + 1) respectively. There are only three possible cases:

Case 1. Demand point(i, t′) is served froms in the optimal solutions for both intervals.In this case, we
have∆it′

st = 0, and the claim follows immediately.

Case 2. Demand point(i, t′) is served as a back order in the optimal solutions for both intervals.Ob-
serve that the monotonicity assumption implies that(i, t′) is served as a back order also in the optimal
solutions for the intervals[s− 1, t) and[s− 1, t + 1), respectively. Hence,∆it′

st = ∆it′
s−1,t = Bi

t+1,t′ −Bi
tt′ ,

and again the claim follows.

Case 3. Demand point(i, t′) is served as a back order in the optimal solution for[s, t) and froms in
the optimal solution for[s, t + 1). Using again the monotonicity assumptions, we conclude that(i, t′) is
served as a back order in the optimal solution for[s− 1, t). In addition, we know thatH i

st′ < Bi
t+1,t′ , since

otherwise(i, t′) would not switch tos in the optimal solution for[s, t + 1). We get that∆it′
s−1,t is equal to

Bi
t+1,t′ −Bi

tt′ or toH i
s−1,t′ −Bi

tt′ . In either cases∆it′
s−1,t ≥ ∆it′

s−1,t = H i
st′ −Bi

tt′ .

This completes the proof.

Corollary 4.6 The primal-dual algorithm provides a 2-approximation algorithm for the JRP with back
orders.

Corollary 4.7 The primal-dual algorithm solves optimally the single-item lot-sizing problem with back or-
ders.

4.3 The JRP With Back Orders

In this section, we consider the extension of the JRP in which back orders are allowed. More specifically,
demands in periodt canbe satisfied from orders later in time (i.e., from orders in periodss > t). Given a
demanddit, we letBi

st be the back order cost of providing this demand from an order in periods, where
s > t. As before, we will assume thatBi

st is non-negative, linear indit and non-decreasing ins ≥ t for any
fixed(i, t). We will show that our general assumptions on the holding cost imply that this more general case
with back orders can be reduced to the previous variant without back orders.

Consider now any two consecutive orders of itemi, say, in periodss1 < s2. It is easy to compute the
optimal policy to minimize the overall holding and back order cost of itemi over the interval[s1, s2). The
monotonicity assumptions imply that each demand point(i, t′) with t′ ∈ [s1, s2) will be served either from
s1 or from s2 as a back order. LetGi

st denote the optimal holding and back order cost of itemi over [s, t),
given that we have two consecutive orders ins < t. Observe thatG can be computed efficiently for each
item i and pairs < t. More specifically, for eacht′ ∈ [s, t) we only need to considermin{H i

s,t′ , B
i
t,t′}.

We now letH̄ i
st := Gi

s,t+1 − Gi
st for eachs < t, and letH̄ i

ss := H i
ss = Bi

ss. The parameter̄H i
st

accounts for the difference in the overall holding and back order cost if instead of ordering itemi in s and
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then int, we orderi in s and next int + 1. Because of the monotonicity assumptions, we know that theH̄
parameters are non-negative. Using this, we consider the LP in Section 2 havingH̄ as the objective function
coefficients of thexi

st variables (instead of theH parameters). The variablexi
st would now indicate thats is

the order of itemi closest tot in the interval[1, t]. We associate the cost̄H i
st with it, since it is clear that if

xi
st = 1, then we will have no orders of itemi over(s, t].

Next we show that for any fixed(i, t), H̄ i
st is non-increasing ins, i.e., it has the same monotonicity

property assumed throughout this paper. Hence, we establish the correctness of the new formulation (with
theH̄ parameters) for the JRP with back orders. Since this monotonicity property was the only assumption
needed for the execution of the algorithm and its analysis, we obtain a 2-approximation for this more general
model as well. Naturally, this extends the optimality result for the lot-sizing case as described in Section 3.
We believe that this is the first primal-dual algorithm for this variant of the lot-sizing problem.

Lemma 4.8 Consider some demand point(i, t) and some1 < s < t. ThenH̄ i
st ≤ H̄ i

s−1,t.

Proof : For each demand point(i, t′) and somes1 ≤ t′ < s2, we let∆it′
s1,s2

be the difference between
the cheaper of the holding or back order costs for(i, t′) for the interval[s1, s2) (i.e., min{H i

s1,t′ , B
i
s2,t′}),

and the cheaper of the holding or back order costs for the interval[s1, s2 + 1). In other words,H̄ i
s1,s2

=∑
t′∈[s1,s2) ∆it′

s1,s2
. Focus now on some demand point(i, t′) with t′ ∈ [s, t]. By the monotonicity assumption

we know that∆it′
st ≥ 0. It is sufficient to show that∆it′

st ≤ ∆it′
s−1,t. Consider the optimal solutions for(i, t′)

for the intervals[s, t) and[s, t + 1) respectively. There are only three possible cases:

Case 1. Demand point(i, t′) is served froms in the optimal solutions for both intervals.In this case, we
have∆it′

st = 0, and the claim follows immediately.

Case 2. Demand point(i, t′) is served as a back order in the optimal solutions for both intervals.Ob-
serve that the monotonicity assumption implies that(i, t′) is served as a back order also in the optimal
solutions for the intervals[s− 1, t) and[s− 1, t + 1), respectively. Hence,∆it′

st = ∆it′
s−1,t = Bi

t+1,t′ −Bi
tt′ ,

and again the claim follows.

Case 3. Demand point(i, t′) is served as a back order in the optimal solution for[s, t) and froms in
the optimal solution for[s, t + 1). Using again the monotonicity assumptions, we conclude that(i, t′) is
served as a back order in the optimal solution for[s− 1, t). In addition, we know thatH i

st′ < Bi
t+1,t′ , since

otherwise(i, t′) would not switch tos in the optimal solution for[s, t + 1). We get that∆it′
s−1,t is equal to

Bi
t+1,t′ −Bi

tt′ or toH i
s−1,t′ −Bi

tt′ . In either cases∆it′
s−1,t ≥ ∆it′

s−1,t = H i
st′ −Bi

tt′ .

This completes the proof.

Corollary 4.9 The primal-dual algorithm provides a 2-approximation algorithm for the JRP with back
orders.

Corollary 4.10 The primal-dual algorithm solves optimally the single-item lot-sizing problem with back
orders.
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5 Assembly Problem

In this section, we present the required modifications in order to apply the primal-dual method to the assem-
bly problem. Recall that the assembly problem can be presented as a rooted directed in-tree, where each
node in the tree corresponds to an item. We also assume that the items are indexed so thati > j for each
edge(i, j) in the tree. Item 1, the root of the tree, is facing external demand overT time periods (d1, .., dT ).
The idea is that any unit of itemi is assembled from one unit of each of its direct predecessor items in the
tree. We letP(i) andS(i), respectively, be the set ofall predecessors and successors of itemi within the
in-tree (both including itemi). Furthermore, letP ′(i) denote the direct predecessors of itemi, and we let
σ(i) be its direct successor. Finally, for each itemi and each itemk ∈ P(i), we letpathki be the path from
k to i (k > i) in the tree defined above.

5.1 A Linear Program

We start by explaining how one can formulate the assembly problem as an integer program with a structure
similar to that exploited for the JRP. For this, we need to introduce some well-known results from inventory
theory. In multi-stage models such as the assembly problem, it is often more convenient to consider the
echelon inventory level, as opposed to theconventional inventory leveldiscussed previously. The echelon
inventory level of itemi is defined to be the overall number of units of that item in the system, which includes
units that are assembled into other items. Thus, the echelon inventory level of itemi is equal to the sum of
the conventional inventory levels of all items inS(i). Given the conventional holding cost parametershi

st,
one can compute the echelon holding cost parameters ash̄i

st := hi
st −

∑
k∈P ′(i) hk

st, i.e., as the marginal

additional conventional holding cost due to assembling itemi. We again assume thath̄i
st is non-negative

and monotone ins for any fixed(i, t).
One well-known result on the assembly problem is the optimality of what is called the class ofnested

policies (see [8]). In a nested policy, whenever we place an order of itemi, we simultaneously place an
order for its direct successor item in the tree,σ(i). In other words, we can assume that we place an order
for item i at time periods only if we also place an order for every itemj ∈ S(i) at the same time period.
Finally, the assembly problem is also known to have an optimal policy such that each demand is provided
from a single order.

By relying on the properties stated above, it is straightforward to adapt the linear programming relax-
ation given in Section 2 to the assembly problem:

minimize
N∑

i=1

T∑

s=1

yi
sKi +

N∑

i=1

T∑

t=1

t∑

s=1

xi
stH̄

i
st (P2)

subject to
t∑

s=1

xi
st = 1, i = 1, . . . , N, t = 1, . . . , T, (15)

xi
st ≤ yj

s, i = 1, . . . , N, t = 1, . . . , T, s = 1, . . . , t, j ∈ S(i) (16)

xi
st, yi

s ≥ 0, i = 1, . . . , N, s = 1, . . . , T, t = s, . . . , T. (17)

There no longer is a joint ordering cost, so the variablesy0
s are eliminated, along with their terms in

the objective function, as well as the constraints (3). The objective function coefficient of the assignment
variablesxi

st is the corresponding echelon holding costH̄ i
st. Finally, one has the constraint thatxi

st ≤ yj
s for

eachj ∈ S(i) (and for each periods ≤ t). This implies the nestedness property. Note that in the above LP
there are many redundant constraints. However, since we are not going to solve the LP, it does not have any
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impact. On the other hand we get a ”nicer” dual problem:

maximize
N∑

i=1

T∑

t=1

bi
t (D2)

subject to bi
t ≤ H̄ i

st +
∑

j∈S(i)

zij
st, i = 1, . . . , N, t = 1, . . . , T, s = 1, . . . , t. (18)

∑

k∈P(i)

∑

t≥s

zki
st ≤ Ki, i = 1, . . . , N, s = 1, . . . , T. (19)

zij
st ≥ 0, i = 1, . . . , N, t = 1, . . . , T, s = 1, . . . , t, (20)

j ∈ S(i)

5.2 Primal-Dual Procedure

We use a similar procedure to construct the dual solution and the initial feasible (integer) primal solution. In
particular, we use again the waveform mechanism and keep any unfrozen budgets for periodst ≥ τ so that
they satisfybi

t = H̄ i
τt. We note that here a demand point(i, t) corresponds to providingdt units of itemi to

node1 (i.e., item1), so as to satisfy the external demanddt. Given a potential orders, the budgetbi
t will be

allocated toH̄ i
st+

∑
j∈S(i) zij

st. More specifically, it will be used to pay for the echelon holding cost incurred
by holdingdt units of itemi in the system from periods to t, as well as to possibly contribute a share of
the item ordering cost ats of itemsj ∈ S(i) (through the variableszij

st). Of course, we must also maintain,
for each itemi and each ordering periods, that the total of the shares contributed,

∑
t≥s

∑
k∈P(i) zki

st ≤ Ki.
We will temporarily open an order in periods only when the ordering cost of item 1 ats is fully paid. We
will add itemi to this order only if each item on the path fromi to item 1 (i.e., eachj ∈ pathi1) has already
fully paid for its item ordering cost with respect tos.

We now describe the first phase of the algorithm in detail, focusing on the different events that may occur:

Event 1 When τ = s (for s = T, T − 1, . . . , 2), we consider all unfrozen demand points(i, t) with
t = s, . . . , T and start increasing the variablezii

st at the same rate asbi
t (keepingbi

t := H̄ i
τt = H̄ i

st + zii
st).

Event 2 Suppose that for some itemi > 1 and some periods > 1, we have that
∑

k∈P(i)

∑
t≥s zki

st = Ki.

(Note that this means that we can no longer to continue to increase any of the variableszki
st without violating

the constraint (19) of itemi.) Then one of the following cases applies:

(a) Suppose that the order in time periods is already temporarily opened (see Event 3 below) and includes
all itemsj ∈ S(i) \ {i}. Then we add to this order each itemk ∈ P(i) with a positive contribution
towards the item ordering cost of itemi at s, i.e., the set of items{k ∈ P(i) :

∑
t≥s zki

st > 0}.
Note that all of these items have the property that eachj ∈ pathki has already fully paid for its item
ordering costKj with respect tos. For each such itemk, we then freeze the budget of any unfrozen
demand point(k, t) with t ≥ s.

(b) Otherwise, consider the itemj ∈ S(i) with highest index, such that its item ordering cost is not yet
fully paid. Let j′ be that item. Each item that has a positive contribution towards the item ordering
cost of itemi ats will now start to contribute towards the item ordering cost of that itemj′ ats. More
precisely, letj′ := max{j ∈ S(i) :

∑
k∈P(j)

∑
t≥s zkj

st < Kj}; clearly,1 ≤ j′ < i. Then, for each

item k ∈ P(i) with
∑

t≥s zki
st > 0, consider each unfrozen demand point(k, t) with t ≥ s: freeze
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the variablezki
st and instead start increasing the variablezkj′

st (at the same rate as the budgetbi
t). The

variablezkj′
st accounts for the portion in the budgetbk

t that is used to pay a share towards the ordering
costKj′ of item j′ with respect tos.

Event 3 Suppose that for some periods > 1,
∑N

k=1

∑
t≥s zk1

st = K1. (Note that we can no longer increase
any variablezk1

st without violating the constraint (19) with respect to item 1, the root of the tree.) Then we
declare that the order in periods is temporarily opened. We add to this order ats any itemi such that each
item j ∈ S(i) has fully paid for their item ordering costKj at s, i.e., that for each itemj ∈ S(i), we have∑

k∈P(j)

∑
t≥s zkj

st = Kj . For each such itemi, we freeze the budget of each unfrozen demand point(i, t)
with t ≥ s.

Event 4 Supposeτ = 1. We then open the order in period 1. We add to this order all of the items
i = 1, .., N . We then charge the cost of this order to the dual variables of the demand points(i, 1) by setting
bi
1 := zii

11 := Ki (for i = 1, .., N ). Next we freeze all of the unfrozen budgets and terminate.

The solution(b̂, ẑ) at the end of this phase is clearly dual feasible with respect to (D2). However, the
initial (primal) solution for the assembly problem is again potentially too expensive, so we need again to
prune it.

5.3 The Pruning Phase

We perform the pruning phase in an iterative way, starting at item 1 and then considering its predecessors.
We treat itemi only when all of the orders of its successor items are already permanently determined. Let
R := {s1 = 1 < s2.. < sm} be the set of the time periods of all temporarily opened orders at the end of
the first phase. For the presentation of the pruning phase and the analysis of the algorithm, we introduce an
extended notion of thecontributor items. Consider an order of itemi at time periods; we will say that item
k ∈ P(i) is a contributor item to this order if

∑
t≥s ẑki

st > 0. We will denote the set of contributor items by
C(i, s). We again useopen(s) and the corresponding shadow interval (for anys ∈ R) andfreeze(i, t) and
the corresponding active interval (for any(i, t)).

We start with item 1, and perform the same greedy procedure as before to compute a subsetR′ ⊆ R of
permanently opened orders; i.e., we process the orders inR from earliest to latest, retaining the next only if
its shadow interval does not intersect the shadow interval of any order already inR′. For each orders ∈ R′,
we initially add all of the contributor itemsi ∈ C(1, s), and call theseregular orders.

Next we consider the rest of the itemsi = 2, .., N in a way such that each itemi is considered only after
σ(i) was considered. Focus now on some itemi > 1, we perform a similar procedure to the one described
for the JRP in Section 4. We start atT and look for the first demand point, say(i, t), such that there does not
exist an order (either regular or extra) of itemi within its active interval,[freeze(i, t), t]. Let s′ ∈ R be its
freezing order. We now consider the earliest order inR′ ∩ [freeze(i, t), t] with itemσ(i), says, and add to
this order all of the contributor items of the order ofi at s′, k ∈ C(i, s′). Observe that for eachk ∈ C(i, s′),
it is also the case that each itemk′ on the path fromk to i (i.e.,k′ ∈ pathki) is also a contributor item (i.e.,
k′ ∈ C(i, s′)). We call these ordersextra orders. We say that(i, t) andi are theinitiator and theinitiator
item, respectively, of these extra orders ins. As before, denotes′ := Ni(s). We then continue iteratively on
[1, s), until each demand point(i, t) has a permanently open order with itemi within its active interval.

We now argue why the above procedure is well defined, and moreover thats ≤ s′. Observe that for item
i such thatσ(i) = 1, the arguments are identical to the ones in the JRP case (see Section 4). So, for each
i, we can assume by induction that the procedure is well defined forσ(i). Consider now the demand point
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(σ(i), s′); we claim thatfreeze(i, t) ≤ freeze(σ(i), s′). Recall that(i, t) was frozen just when itemi was
added to the order ats′; hence itemσ(i) must have been added tos′ either with itemi, or perhaps earlier. In
particular,(σ(i), s′) was frozen either with(i, t) or even earlier, i.e.,freeze(i, t) ≤ freeze(σ(i), s′). By
induction, we know that when(i, t) is considered, we have already ensured that there exists a permanently
open order inR′ ∩ [freeze(σ(i), s′), s′] with itemσ(i). Since[freeze(σ(i), s′), s′] ⊆ [freeze(i, t), t], we
conclude that the procedure described above is indeed well-defined ands ≤ s′.

It is now clear that at the end of the pruning phase, we have a feasible nested solution to the assembly
problem. Let(x̂, ŷ) be this solution. Next we will show that the cost of the solution is no more than twice
the optimal cost.

5.4 Analysis of The Assembly Problem

We start by describing a charging scheme of how the cost of(x̂, ŷ) can be paid using the feasible dual
budgets(b̂, ẑ). For any orders ∈ R′, let I(s) be the set of the initiator items of the extra orders included
in s in (x̂, ŷ). We pay for the ordering cost of the regular orders ats, i.e., of itemsi ∈ C(1, s), using∑

i∈C(1,s)

∑
j∈S(i)

∑
t≥s ẑij

st =
∑

i∈C(1,s) Ki. The equality is correct based on the observation that if for
somek ∈ P(i) andj ∈ S(i) we havek ∈ C(i, s) andi ∈ C(j, s), then we also havek ∈ C(j, s).

As for the extra orders ins, we can partition them according to their initiator item inI(s). Thus, we
have

∑
i∈I(s)

∑
k∈C(i,Ni(s))

∑
l∈pathki

∑
t≥Ni(s)

ẑkl
Ni(s),t

=
∑

i∈I(s)

∑
k∈C(i,Ni(s))

Kk. This is correct based
on the construction of the algorithm and the same argument used above for the regular orders.

For each demand point(i, t) we say that it contributes towards a regular order in periods ∈ R′ if
i ∈ C(1, s) and

∑
j∈S(i) ẑij

st > 0. We say that(i, t) contributes towards extra orders at somes ∈ R′, if

i ∈ C(j, Nj(s)) for some1 < j ∈ I(s) and
∑

k∈pathij
ẑik
Nj(s),t

> 0. In addition, each demand point is

charged with the echelon holding cost that it incurs in(x̂, ŷ); denote this cost bŷH i
t . An important obser-

vation is that any demand point(i, t) can only contribute to the opening of orderss ∈ R′ that include itemi
(either as regular or extra orders).

We are now ready to show that, as in the case of the JRP, one can use the above charging scheme to pay
for the cost of(x̂, ŷ) in a way such that no demand point(i, t) is charged more than twice its budgetb̂i

t.
The following are the analogous results to Lemma 4.1 and Corollaries 4.2 and 4.3:

Lemma 5.1 Consider any demand point(i, t) and letr1 ∈ R′ be the latest order inR′, regular or extra,
towards which(i, t) contributes. Then, eitherr1 /∈ [freeze(i, t), t] or it is the earliest order inR′ ∩
[freeze(i, t), t] with itemi.

Proof : Assumer1 ∈ [freeze(i, t), t] and consider again the following two possible cases:
Case 1. The order of itemi in period r1 is a regular order. In particular, we know thati ∈ C(1, r1),
and so itemi was added to the order ats at the moment it was temporarily opened. Thus,(i, t) was
frozen atopen(r1) or perhaps earlier. This implies thatopen(r1) ≤ freeze(i, t). We also know that
R′ ∩ [open(r1), r1) = ∅ (since we permanently openedr1) and that[freeze(i, t), r1) ⊆ [open(r1), r1).
This concludes the proof of the lemma for this case.

Case 2. The order of itemi in periodr1 is an extra order.We know that the extra order atr1 has some initiator
(j∗, t∗), wherej∗ ∈ S(i) is the initiator item. ConsiderNj∗(r1), the freezing order of(j∗, t∗). In particular,
we have already seen thatr1 ≤ Nj∗(r1) ≤ t. We claim thatfreeze(j∗, t∗) ≤ freeze(i, t). Observe that
(j∗, t∗) was frozen when itemj∗ was added to the order atNj∗(r1). However, sincei ∈ C(j∗, Nj∗(r1)),
it follows that itemi was added to the order atNj∗(r1) together with itemj∗. Thus, (i, t) was frozen
together with(j∗, t∗) or perhaps earlier, so indeedfreeze(j∗, t∗) ≤ freeze(i, t). By the construction
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of the algorithm, we know that there does not exist an order with itemj∗ in R′ ∩ [freeze(j∗, t∗), r1).
Since the solution is nested (i.e., if we order itemi, we must also order itemj∗), there does not exist any
order with itemi in R′ ∩ [freeze(j∗, t∗), r1). Since we have already concluded that[freeze(i, t), r1) ⊆
[freeze(j∗, t∗), r1), we see that the lemma holds.

Corollary 5.2 Any demand point(i, t) can contribute towards at most two orders inR′.

Proof : Suppose that(i, t) contributes towards more than one order inR′, and letr1 > r2 be the two latest
such orders. We will show that it can not be the case thatr1 < freeze(i, t). The rest of the proof is identical
to that of Corollary 4.2.

Suppose that indeedr1 < freeze(i, t); in that case, the orders of itemi at r1 andr2 must both be extra
orders (since they do not lie in the active interval of(i, t)). Let j∗ ∈ P(i) be the initiator item of the order
at r2 and letNj∗(r2) be the freezing order of the initiator(j∗, t∗). To show a contradiction it’s sufficient to
show thatt∗ < r1 (since we must also haver1 < freeze(i, t) < Nj∗(r2)). Recall that since the solution is
nested, we have included all of the itemsj ∈ S(i) in the order atr1 (either as a regular or as an extra order),
including itemj∗. Sincefreeze(j∗, t∗) ≤ r2 < r1, we must have thatt∗ < r1 (since otherwise(t∗, j∗)
could not have been an initiator). We now complete the proof exactly along the lines of Corollary 4.2.

Corollary 5.3 Consider a demand point(i, t) and letr1 be the latest order towards which(i, t) contributes
some positive share. Then the holding cost that(i, t) incurs in(x̂, ŷ) is at mostH̄ i

r1,t (i.e.,Ĥ i
t ≤ H̄ i

r1,t).

Proof : Same as in Corollary 4.3.

Theorem 5.4 The primal-dual framework provides a 2-approximation algorithm to the assembly problem.

Proof : Consider any demand point(i, t) and letr1 ∈ R′ again be the latest order in(x̂, ŷ) towards which
(i, t) contributes a positive share. If the order of itemi in periodr1 is a regular order, then(i, t) contributes∑

j∈S(i) ẑij
r1,t > 0. If the order of itemi atr1 is an extra order, then(i, t) contributes

∑
j∈pathi,j∗ ẑij

Nj∗ (r1),t >

0, wherej∗ ∈ S(i) is the corresponding initiator item, andfreeze(i, t) ≤ Nj∗(r1) ≤ t. In either case, this
is clearly bounded bŷbi

t.
Now assume that(i, t) also contributes towards a second (earlier) orderr2. By Lemma 5.1, the or-

der of item i at r2 must be an extra order, such thatr2 /∈ [freeze(i, t), t]. If j′ ∈ S(i) is the cor-
responding initiator item of this order, then(i, t) contributes

∑
j∈pathij′

ẑij
Nj′ (r2),t > 0 towardsr2, and

freeze(i, t) ≤ Nj′(r2) < r1 (see Corollary 5.2). We shall argue that:

b̂i
t = H̄ i

Nj′ (r2),t +
∑

j∈S(i) ẑij
Nj′ (r2),t ≥ H̄ i

Nj′ (r2),t +
∑

j∈pathij′
ẑij
Nj′ (r2),t ≥ H̄ i

r1,t +
∑

j∈pathij′
ẑij
Nj′ (r2),t.

The first inequality follows from̂zij
Nj′ (r2),t ≥ 0 (∀j ∈ S(i)), and the second inequality follows from

the monotonicity of the holding costs andNj′(r2) < r1. From Corollary 5.3, we get that̂bi
t ≥ Ĥ i

t +∑
j∈pathij′

ẑij
Nj′ (r2),t. Corollary 5.2 and the fact that each demand point can contribute only towards orders

r ∈ R′ with item i also imply that(i, t) does not contribute towards any orderr ∈ R′ other thanr1 andr2.
As a result, we get that the sum of the holding cost incurred by(i, t) and its contributions towards ordering
costs is bounded by2b̂i

t. This proves the theorem.

We note that the analysis will go through even if we allow the item ordering cost parameter of item 1
(K1) to vary arbitrarily over time. We can also allow the item ordering cost of each itemi > 1 to be a
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non-decreasing function of the ordering time.

We end the discussion on the assembly problem by mentioning that under our general assumptions on
the cost parameters, the variant of the assembly problem we consider is NP-Hard. This can be shown by a
simple reduction from the JRP to the 2-stage assembly problem. Given an instance of the JRP, we rescale
the demand and the holding cost parametershi

st of the items (by inversely proportionate value) so that for
each periodt (t = 1, .., T ), there is a uniform demandDt = dit . Each of the items is the predecessor of
a common dummy item 0 with ordering cost equal to the joint ordering costK0, demandDt, and echelon
holding cost equal to 0. This yields an instance of a 2-stage assembly problem, and since we can restrict to
nested policies, it is equivalent to the original JRP instance.

6 Conclusions

In this paper we have shown a general algorithmic framework of how to generate optimal and near-optimal
solutions to a class of classical deterministic inventory models.

Although the method is based on LP relaxations, our approximation algorithms do not require the LP’s
to be solved. They are used only in the analysis of the algorithms. The algorithms are clearly polynomial-
time but there is still work to do so as to get the most efficient implementations. We believe that it would
be interesting to test the typical quality of the solutions that our algorithms generate on different inputs and
compare them to other known heuristics.

A very interesting theoretical open question is related to the approximability of the JRP. The problem is
NP-hard but we know of no approximability hardness result and one can not even exclude the existence of
a polynomial-time approximation scheme (i.e., one might be able to design aρ−approximation algorithm
for anyρ > 1). We mention again that for the assembly network problem with the traditional holding cost
structure, it is not known whether it is NP-hard. A more specific open question is related to the tightness of
the LP relaxations considered in this paper. We have constructed [22] an example in which the integrality
gap is 1.21. This implies that using the LP as the only lower bound, one can not hope to prove a performance
guarantee better than 1.21. However, there still exists a significant gap between the upper bound of 2 and
the lower bound of 1.21.
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