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Abstract

We study properties of systems of linear constraints that are minimally infea-
sible with respect to some subset S of constraints (i.e. systems that are infeasible,
but become feasible upon removal of any constraint in S). We then apply these
results and a theorem of Conforti, Cornuéjols, Kapoor, and Vušković, to a class
of 0, 1 matrices, for which the linear relaxation of the set partitioning polytope
LSP (A) = {x |Ax = 1, x ≥ 0} is integral. In this way we obtain combinatorial
properties of those matrices in the class that are minimal (w.r.t. taking row subma-
trices) with the property that the set partitioning polytope associated with them
is infeasible.

1 Introduction

Determining if a system Ax = 1 has a 0, 1 solution, where A is a 0, 1 matrix (i.e.
finding a feasible solution for the set partitioning problem) is NP-complete in general.
When the matrix A is balanced, however, the problem can be formulated as a linear
program [2], and is therefore polynomial. Furthermore, under the assumption that A is
balanced, if the set partitioning problem is infeasible, this fact can be shown by a simple
combinatorial certificate [6], which is an extension of Hall’s condition for the existence of
a perfect matching in a bipartite graph. It is therefore natural to look for a combinatorial
algorithm that either finds a solution to a given set partitioning problem with balanced
constraints, or the certificate of infeasibility for such problem. Finding such an algorithm,
however, seems to be difficult.
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In order to achieve a better understanding of those balanced matrices for which the set
partitioning problem is infeasible, we characterize the matrices which are minimal with
such property, meaning that they do not admit a solution to the set partitioning problem,
while all proper row-submatrices do (we call such matrices minimally non partitionable).

Since, in the balanced case, finding a solution to the set partitioning problem is
equivalent to finding a basic solution to a linear program, we start by looking at general
systems of linear constraints which are infeasible. If a system of linear constraints has
no feasible solution, obviously there exists a subset of constraints that is still infeasible,
and is minimal with such property. More generally, in Section 2 we study systems of
linear constraints which are not feasible, but that admit a solution whenever we remove a
constraint from a specified subset S of the rows (we call such systems minimally infeasible

with respect to S).
In Section 3, we apply results from the previous section and a theorem of Conforti,

Cornuéjols, Kapoor, and Vušković [6] to obtain combinatorial properties of minimally non
partitionable balanced matrices. We also show that these matrices essentially characterize
all systems of constraints of the form Ax ∼ 1, x ≥ 0 (where Ax ∼ 1 denotes a system
of equations and inequalities with constraint matrix A and right hand side 1) that are
minimally infeasible with respect to the rows of A, when A is balanced.

2 Infeasible systems of linear inequalities

We study linear systems of equations and inequalities that are infeasible.
Given an integer n, we denote by [n] the set {1, . . . , n}. Given an m × n matrix A

with entries aij, i ∈ [m], j ∈ [n], we will denote by ai the ith row of A, and by aj the jth
column of A. Also, for any i ∈ [m] we will denote with Ai the (m−1)×n submatrix of A
obtained by removing the ith row. Given a subset S of [m], we will denote S̄ = [m] \ S,
and by AS the row-submatrix of A induced by the rows in S.

Given a matrix A and a vector b we denote by Ax ∼ b a system






aix ≤ bi i ∈ S1

aix ≥ bi i ∈ S2

aix = bi i ∈ S3

for some partition S1, S2, S3 of the rows of A.
Given a system Ax ∼ b, if Ā is a submatrix of A and b̄ is the restriction of b to

the rows of Ā, we denote by Āx ∼ b̄ a system where the direction of the inequalities is
consistent with the direction in Ax ∼ b.

Given a system Ax ∼ b and a subset S of the rows of A, we say that Ax ∼ b is
minimally infeasible with respect to S if Ax ∼ b has no solution, but Aix ∼ bi is feasible
for every row index i ∈ S; a solution of such system is a mate of row ai. When S = [m]
we say that the system is minimally infeasible.

An orientation of Ax ∼ b with respect to S is obtained from Ax ∼ b by substituting
every equation aix = bi, i ∈ S, with either aix ≤ bi or aix ≥ bi.
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A restriction with respect to S of Ax ∼ b is a system obtained from Ax ∼ b by
substituting some of the inequalities aix ≤ bi or aix ≥ bi, i ∈ S, with aix = bi.

Theorem 2.1 Let Ax ∼ b be a minimally infeasible system with respect to S.

(i) Every restriction w.r.t. S of Ax ∼ b is also minimally infeasible w.r.t. S.

(ii) Ax ∼ b admits a unique orientation w.r.t. S, say Ax
∗
∼ b, that is infeasible. Fur-

thermore, Ax
∗
∼ b is minimally infeasible w.r.t. S.

(iii) rk(AS) ≥ |S| − 1. In particular rk(AS) = |S| − 1 if and only if ASx ∼ bS is

minimally infeasible, while rk(AS) = |S| if and only if ASx ∼ bS is feasible.

Proof: (i) Let R ⊆ S be the set of constraints that are set to equality. The proof is by
induction on |R|, the case |R| = 0 being trivial. We only need to show that, for any
h ∈ R, the system Ahx ∼ bh, ahx = bh, denoted by Ax ∼′ b, is minimally infeasible w.r.t.
S, since we can then apply induction to Ax ∼′ b and R \ {h}. Consider the case where
the hth constraint in Ax ∼ b is of the form ahx ≤ bh (the case ahx = bh is trivial, while
the case ahx ≥ bh is analogous).

Since Ax ∼ b is infeasible, also Ax ∼′ b is infeasible. Thus we only need to show that
Aix ∼′ bi has a solution for every i ∈ S. Let xi and xh be solutions to Aix ∼ bi and
Ahx ∼ bh, respectively. Clearly, xh is a solution for Ahx ∼′ bh and ahxh > bh, and if
ahxi = bh, then xi is a solution for Aix ∼′ bi. Thus we may assume i 6= h and ahxi−bh < 0.
Given α = ahxh − bh > 0 and β = bh − ahxi > 0, the vector y = α

α+β
xi + β

α+β
xh, is a

solution to Aix ∼′ bi.

(ii) Let I ⊆ S be the set of constraints of Ax ∼ b with index in S that are of the form
aix = bi, i ∈ I. For every i ∈ I, let xi be a mate of ai. Clearly, for every i ∈ I, aixi 6= bi,
else xi would be a solution for Ax ∼ b. Denote by Ax

∗
∼ b the orientation of Ax ∼ b

obtained by substituting, for every i ∈ I, the equation aix = bi with the inequality
aix ≤ bi if aixi > bi, and with the inequality aix ≥ bi if aixi < bi. We show that Ax

∗
∼ b

is infeasible.
Suppose not and let x̄ be a solution. Let J be the set containing all i ∈ I such that

λi = aix̄ − bi 6= 0. For every i ∈ J , let µi = |aixi − bi|. Thus aixi = bi − µi
λi

|λi|
for every

i ∈ J , by construction of Ax
∗
∼ b and since x̄ is a solution to such system. One may

readily verify that

y =
x̄ +

∑

i∈J
|λi|
µi

xi

1 +
∑

i∈J
|λi|
µi

satisfies Ay ∼ b, a contradiction. Since, for every i ∈ S, xi satisfies Aix
∗
∼ bi, Ax

∗
∼ b is

minimally infeasible w.r.t. S.
For the uniqueness, suppose there exist two distinct orientations Ax ∼′ b and Ax ∼′′ b

of Ax ∼ b that are infeasible. W.l.o.g., there exists j ∈ S such that the jth constraint of
Ax ∼′ b is ajx ≤ bj, while the jth constraint of Ax ∼′′ b is ajx ≥ bj. Thus both systems
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ajx ≤ bj, Ajx = bj and ajx ≥ bj, Ajx = bj are infeasible, which is a contradiction, since
xj must satisfy one of them.

(iii) Let T be a set of constraints such that AT x ∼ bT is minimally infeasible. Thus
S ⊆ T . Also, by (i), AT x = bT is minimally infeasible. For every i ∈ T , Ai

T x = bi
T has a

solution, thus rk(Ai
T |b

i
T ) = rk(Ai

T ). Therefore, for every i ∈ T , we have

rk(AT |bT ) ≤ rk(Ai
T |b

i
T ) + 1 = rk(Ai

T ) + 1 ≤ rk(AT ) + 1. (1)

Since AT x = bT has no solution, rk(AT |bT ) = rk(AT ) + 1, and equality holds throughout
in (1). In particular, the rows of (AT , bT ) are linearly independent, thus rk(AT ) = |T |−1
and rk(AS) ≥ |S| − 1. To conclude, if ASx ∼ bS is minimally infeasible, then S = T and
rk(AS) = |S| − 1, while if ASx ∼ bS is feasible, then rk(AS) = rk(AS|bS) = |S|. 2

As an aside, Theorem 2.1 (i) yields the following elementary proof of Farkas Lemma.

Lemma 2.2 (Farkas Lemma) The system Ax ≤ b is infeasible if and only if the system

uA = 0, ub < 0, u ≥ 0 is feasible.

Proof: For the necessity, assume uA = 0, ub < 0, u ≥ 0 is feasible: then 0 = uAx ≤
ub < 0 for every x such that Ax ≤ b, a contradiction.

For the sufficiency, let Ax ≤ b be an infeasible system. We assume that Ax ≤ b is
minimally infeasible. (Our assumption is justified since we may consider a minimally
infeasible subsystem of Ax ≤ b, and set to 0 all the ui’s corresponding to the other
inequalities.)

Since Ax ≤ b is minimally infeasible, then by Theorem 2.1(i) Ax = b is minimally
infeasible so, by elementary linear algebra, uA = 0, ub < 0 is feasible. Let u be such a
vector. It suffices to show u ≥ 0. Suppose I = {i : ui < 0} is nonempty. This shows
that the system AIx ≥ bI , AĪx ≤ bĪ is infeasible, since the vector u′ defined by u′

i = |ui|,
i ∈ [n], satisfies u′

(

−AI

AĪ

)

= 0, u′
(

−bI

bĪ

)

< 0, u′ ≥ 0. But by Theorem 2.1 (ii) Ax ≤ b is the

unique orientation of Ax = b that is infeasible, a contradiction. 2

Lemma 2.3 Let Ax ∼ b be a minimally infeasible system w.r.t. S. For every i ∈ S,

let xi be a solution to Aix ∼ bi satisfying Ai
Sx = bi

S. The vectors xi, i ∈ S are affinely

independent.

Proof: By Theorem 2.1 (i), the system ASx = bS, AS̄x ∼ bS̄ is minimally infeasible w.r.t.
S, thus vectors xi, i ∈ S as in the statement exist. W.l.o.g., assume S = {1, . . . , s}. Let
λ1, . . . , λs be multipliers, not all zeroes, such that

∑s

i=1 λi = 0. Let y =
∑s

i=1 λix
i. It

suffices to show y 6= 0. Clearly

ASy =
s

∑

i=1

λiASxi =







λ1(a
1x1 − b1) + b1(

∑s

i=1 λi)
...

λs(a
sxs − bs) + bs(

∑s

i=1 λi)






=







λ1(a
1x1 − b1)

...
λs(a

sxs − bs)






.

Since aixi − bi 6= 0 for every i ∈ S, and λj 6= 0 for some j ∈ S, then Ay 6= 0, therefore
y 6= 0. Thus x1, . . . , xs are affinely independent. 2
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A system Ax ∼ b is irreducible if it is minimally infeasible and for every proper column
submatrix A′ of A the system A′x ∼ b is not minimally infeasible. This means that there
exists a constraint that can be removed from A′x ∼ b and the system thus obtained is
still infeasible.

Theorem 2.4 If Ax ∼ b is minimally infeasible, then every m × (m − 1) submatrix of

A with full column rank is irreducible.

Thus, if Bx ∼ b is irreducible, then B is an m× (m− 1) matrix. Furthermore, every

submatrix Bi, i ∈ [m], is nonsingular.

Proof: From the proof of Theorem 2.1(iii), rk(Ai) = m − 1 for every i ∈ [m]. From
standard linear algebra, if Ā is a column submatrix of A formed by m − 1 linearly
independent columns, then Āi is square and nonsingular for every i ∈ [m], therefore
Āix = bi has a (unique) solution. Since Ax ∼ b is infeasible, Āx ∼ b is infeasible, thus
Āx ∼ b is minimally infeasible. Since rk(Ā) = m − 1, then by Theorem 2.1(iii) Ā is
irreducible. 2

The reverse system Ax
r
∼ b of Ax ∼ b is obtained by substituting, for every i ∈ S,

each inequality aix ≤ bi with aix ≥ bi, and each inequality aix ≥ bi with aix ≤ bi

Corollary 2.5 If the system Ax ∼ b is irreducible then the reverse system of its unique

minimally infeasible orientation defines a full dimensional simplex whose vertices are the

unique mates of Ax = b. Conversely, if Ax ≤ b is a system with no redundant constraints

that defines a full dimensional simplex, then Ax ≥ b is an irreducible system.

Proof: Let Ax
∗
∼ b be the unique orientation of Ax ∼ b that is minimally infeasible

and let Ax
r
∼ b be the reverse system of Ax

∗
∼ b. Let x1, . . . , xm be vectors satisfying

Aixi = bi, i ∈ [m]. By the construction of Ax
∗
∼ b in the proof of Theorem 2.1 (ii),

x1, . . . , xm satisfy Ax
r
∼ b. By Theorem 2.4, x1, . . . , xm are the unique vertices of the

polytope defined by Ax
r
∼ b. By Lemma 2.3, x1, . . . , xm are affinely independent, thus

Ax
r
∼ b is a full-dimensional simplex.

The converse of the statement is obvious. 2

3 Some infeasible set partitioning systems

Given a 0, 1 matrix A, the set partitioning polytope is

SP (A) = conv{x |Ax = 1, x ≥ 0, x integral}.

Its linear relaxation is the polytope

LSP (A) = {x |Ax = 1, x ≥ 0}
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Figure 1: An irreducible system and the associated simplex

An m × n 0, 1 matrix A is partitionable if SP (A) is nonempty, non-partitionable

otherwise. A is minimally non-partitionable (MNP) if A is non-partitionable, but Ai is
partitionable for every i ∈ [m]. Clearly, a matrix is non-partitionable if and only if it
contains a row submatrix that is MNP.

Since determining if A is partitionable is an NP-complete problem, it appears to be
hard to give a short certificate for non-partitionability. We restrict ourselves to a class
of matrices for which SP (A) is an integer polytope, i.e. SP (A) = LSP (A), and admits
a combinatorial certificate for non-partitionability.

3.1 Balanced matrices

We say that a 0, 1 matrix A is balanced if no square submatrix of A of odd order has
precisely two ones in each row and in each column. The following theorem is due to
Berge [2].

Theorem 3.1 Let A be an m × n balanced matrix, and let (S1, S2, S3) be a partition of

[m]. Then

P (A) = {x ∈ R
n : aix ≤ 1 for i ∈ S1

aix ≥ 1 for i ∈ S2

aix = 1 for i ∈ S3

x ≥ 0}

is an integral polytope.

It follows from Theorem 3.1 that SP (A) = LSP (A) for every balanced matrix A.
Therefore a balanced matrix A is minimally non-partitionable if and only if LSP (A) is
empty but LSP (Ai) is nonempty for every i ∈ [m], that is, if Ax = 1, x ≥ 0 is minimally
infeasible w.r.t. the rows of A.
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Conforti, Cornuéjols, Kapoor and Vušković [6] showed the following certificate that
characterizes non-partitionable balanced matrices and extends Hall’s condition for the
existence of a perfect matching in a bipartite graph.

Theorem 3.2 Let A be a balanced matrix. Ax = 1, x ≥ 0 is infeasible if and only if the

rows of A contain two disjoint subsets R and B such that |R| < |B| and every column of

A contains at least as many 1s in the rows of R as in the rows of B.

In order to give the reader some intuition on the result, we show the “easy direction”
of the statement, namely that if the rows of A admit sets R and B with the above
properties, then Ax = 1, x ≥ 0 is infeasible. Let u be the vector satisfying ui = 1
if i ∈ R, ui = −1 if i ∈ B, ui = 0 otherwise If x satisfies Ax = 1, x ≥ 0, then
0 ≤ uAx = u1 < 0, a contradiction.

Note that if A is a 0, 1 matrix that contains disjoint subsets satisfying the condition
of Theorem 3.2, then LSP (A) = SP (A) = ∅.

Using Theorems 3.1 and 3.2, we give properties of MNP balanced matrices.

Corollary 3.3 Let A be an MNP balanced matrix. Then the rows of A can be partitioned

into sets R and B such that |B| = |R| + 1 and every column of A contains at least as

many 1s in the rows of R as in the rows of B. In particular, A has an odd number of

rows.

Proof: Let m be the number of rows of A. Since A is MNP, [m] contains disjoints subsets
R and B as in the statement of Theorem 3.2. Suppose [m]\ (R∪B) 6= ∅ or |B| ≥ |R|+2.
In the former case, choose i ∈ [m] \ (R ∪ B), else choose i ∈ B. Let B′ = B \ i. Clearly,
|B′| > |R| and every column of Ai contains at least as many ones in the rows of R as in
the rows of B′, thus, by Theorem 3.2, Aix = 1, x ≥ 0 is infeasible, a contradiction. 2

Throughout the rest of the paper, whenever A is an m×n balanced MNP matrix, we
always denote by B and R the two subsets of the rows satisfying the properties stated
in Corollary 3.3 (we will in fact show that R and B are unique). We call the rows in B
the blue rows of A, and the rows in R the red rows of A. Given any entry aij of A, we
say that aij is blue (resp. red), if ai is blue (resp. red).

3.2 Mates of MNP balanced matrices

Given an MNP matrix A and a row ai of A, a 0, 1 vector x̄ is a mate of ai if x̄ satisfies
Aix̄ = 1. If x̄ is a mate of some row of A, we say that x̄ is a mate for A. By definition,
each row of A has at least one mate. If A is balanced, we say that x̄ is a blue mate (resp.
red mate) if ai is a blue row (resp. red row). (It should be noted that this definition
of mate is more restrictive than the definition we gave in Section 2 for general systems,
since here x̄ is required to be integral.)
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We will identify the mate x̄ with the subset of columns whose characteristic vector
is x̄. Thus we will view mates indifferently as vectors or sets, and when we say that a
column is contained in the mate x̄, we mean that x̄ has a nonzero entry in that column.

Throughout the rest of the paper, we assume that the matrix A has no columns with
all zeroes.

Lemma 3.4 Let A be a balanced MNP matrix, and x̄ be a mate of row ai. The following

hold:

(i) If ai is blue, then aix̄ = 0 and every column in x̄ contains as many red 1s as blue

1s.

(ii) If ai is red, then aix̄ ≥ 2. Furthermore, equality holds if and only if every column

in x̄ contains as many red 1s as blue 1s.

Proof: (i) The following chain of inequalities holds

n
∑

j=1

aijx̄j ≤
n

∑

j=1

(
∑

h∈R

ahj −
∑

h∈B\i

ahj)x̄j =
∑

h∈R

ahx̄ −
∑

h∈B\i

ahx̄ = |R| − |B| + 1 = 0

where the first inequality holds since each column of A has at least as many red ones as
blue ones. Thus equality holds throughout and the columns in x̄ contain as many red 1s
as blue 1s.
(ii) Similarly to (i), we have

n
∑

j=1

aijx̄j ≥
n

∑

j=1

(
∑

h∈B

ahj −
∑

h∈R\i

ahj)x̄j =
∑

h∈B

ahx̄ −
∑

h∈R\i

ahx̄ = |B| − |R| + 1 = 2

where equality holds throughout if and only if the columns in x̄ contain as many red 1s
as blue 1s. 2

Proposition 3.5 Let A be an MNP balanced matrix. The sets R and B are unique with

the properties in the statement of Corollary 3.3.

Proof: By Lemma 3.4, B must be the set of rows that are orthogonal to their mates. 2

We say that a mate x̄ of a red row ai is good if aix̄ = 2.

Lemma 3.6 Let A be an MNP balanced matrix, S be a subset of R, and y be a nonneg-

ative integral vector such that

aiy = |S| for i ∈ [m] \ S

aiy = |S| + 1 for i ∈ S. (2)

Then there exist |S| good mates of distinct rows of S, x1, . . . , x|S|, such that y =
∑|S|

i=1 xi.
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Proof: The proof is by induction on s = |S|. If s = 0, then y = 0, since Ay = 0 and each
column of A has at least a nonzero entry. Assume s ≥ 1. Let

P (S) =







x ∈ R
n :

aix = 1 for i ∈ [m] \ S
aix ≥ 1 for i ∈ S

x ≥ 0







(3)

By definition, y/s ∈ P (S), hence y/s is the convex combination of vertices of P (S);
that is, there exist vertices y1, . . . , yt of P (S) and positive coefficients λ1, . . . , λt, such that
y/s =

∑t

i=1 λiy
i and

∑t

i=1 λi = 1. We will prove that the y1, . . . , yt are good mates of
rows of S. By Theorem 3.1, P (S) is an integral polyhedron, hence y1, . . . , yt are integral
vectors.

For any x ∈ P (S), define the excess of x, ε(x), as

ε(x) = 1T ASx − s.

Clearly, ε(y/s) = 1. Also, since A is non-partitionable, ε(yi) ≥ 1 for i = 1, . . . , t. Thus

1 = ε(y/s) =
t

∑

i=1

λiε(y
i) ≥

t
∑

i=1

λi = 1,

hence equality holds throughout, and ε(yi) = 1 for every i = 1, . . . , t. This means that
y1, . . . , yt are good mates of rows in S.

Let z = y − y1 and ah be the row of which y1 is mate. Since y is integral and
nonnegative, and y1 is a 0, 1 vector, y1 ≤ y, thus z ≥ 0. Also, aiz = s − 1 for any
i ∈ [m]\ (S \{h}), and aiz = s for any i ∈ S \{h}. By applying the inductive hypothesis
to S \{h} and z, there exist |S|−1 good mates of distinct rows of S \{h}, x2, . . . , xs such
that z = x2 + . . . + xs. Therefore, given x1 = y1, x1, . . . , xs are good mates of pairwise
distinct rows of S, and y =

∑s

i=1 xi. 2

The following is an analogous of Lemma 3.6

Lemma 3.7 Let A be an MNP balanced matrix, S be a subset of B, and y be a nonneg-

ative integral vector such that

aiy = |S| for i ∈ [m] \ S

aiy = |S| − 1 for i ∈ S.

Then there exist |S| mates of distinct rows of S, x1, . . . , x|S|, such that y =
∑|S|

i=1 xi.

Proof: The proof is by induction on s = |S|. If s = 0, then y = 0, since Ay = 0 and each
column of A has at least a nonzero entry. Assume s ≥ 1. Let

P (S) =







x ∈ R
n :

aix = 1 for i ∈ [m] \ S
aix ≤ 1 for i ∈ S

x ≥ 0
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By definition, y/s ∈ P (S), hence y/s is the convex combination of vertices of P (S);
that is, there exist vertices y1, . . . , yt of P (S) and positive coefficients λ1, . . . , λt, such
that y/s =

∑t

i=1 λiy
i and

∑t

i=1 λi = 1. We will prove that the y1, . . . , yt are mates of
rows of S. By Theorem 3.1, P (S) is an integral polyhedron, hence y1, . . . , yt are integral
vectors.

For any x ∈ P (S), define the deficiency of x, δ(x), as

δ(x) = s − 1T ASx.

Clearly, δ(y/s) = 1. Also, since A non-partitionable, δ(yi) ≥ 1 for i = 1, . . . , t. Thus

1 = δ(y/s) =
t

∑

i=1

λiδ(y
i) ≥

t
∑

i=1

λi = 1,

hence equality holds throughout, and δ(yi) = 1 for every i = 1, . . . , t. This means that
y1, . . . , yt are mates of rows in S. Let z = y − y1 and ah be the row of which y1 is mate.
Since y is integral and nonnegative and y1 is a 0, 1 vector, y1 ≤ y, thus z ≥ 0. Also,
aiz = s− 1 for any i ∈ [m] \ (S \ {h}), and aiz = s− 2 for any i ∈ S \ {h}. By applying
the inductive hypothesis to S \ {h} and z, there exist |S|− 1 good mates of distinct rows
of S \ {h}, x2, . . . , xs such that z = x2 + . . . + xs. Therefore, given x1 = y1, x1, . . . , xs

are mates of pairwise distinct rows of S, and y =
∑s

i=1 xi. 2

From now on, whenever A is a balanced MNP matrix, we assume B = {b1, . . . , bk+1},
and R = {r1, . . . , rk}. Also, we denote by n the number of columns.

Theorem 3.8 Let A be an MNP balanced matrix.

Let xb1 , . . . , xbk+1 be arbitrarily chosen mates of ab1 , . . . , abk+1. Then there exist good

mates xr1 , . . . , xrk of ar1 , . . . , ark , respectively, such that
∑k+1

i=1 xbi =
∑k

i=1 xri. In partic-

ular, every red row of A has a good mate contained in xb1 ∪ . . . ∪ xbk+1.

Let xr1 , . . . , xrk be arbitrarily chosen good mates of ar1 , . . . , ark . Then there exist mates

xb1 , . . . , xbk+1 of ab1 , . . . , abk+1, respectively, such that
∑k

i=1 xri =
∑k+1

i=1 xbi.

Proof: Let β =
∑k+1

i=1 xbi . By Lemma 3.4(i),

aiβ = k for i ∈ B

aiβ = k + 1 for i ∈ R (4)

thus, by Lemma 3.6, there exist good mates xr1 , . . . , xrk of ar1 , . . . , ark , respectively, such
that β =

∑k

i=1 xri .
A similar argument, using Lemma 3.7, shows the second part of the statement. 2

Corollary 3.9 Let A be an MNP balanced matrix and A′ be the column submatrix of

A induced by the columns of A with as many red 1s as blue 1s. Then A′ is MNP,

rk(A′) = 2k, while rk(A) = 2k + 1 if and only if A contains a column with more red 1s
than blue 1s. In particular, Ax = 1 has a solution if and only if rk(A) = 2k + 1.
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Proof: Since A is MNP, A′ is non-partitionable. For every bi ∈ B, there is a mate xbi

of abi . Lemma 3.4(i) implies that xbi does not contain any column with more red than
blue nonzero entries, hence ∪k+1

i=1 xbi is included in the columns of A′. By Theorem 3.8,
every red row of A has a good mate contained in ∪k+1

i=1 xbi ⊆ A′. Thus the restrictions of
xb1 , . . . , xbk+1 , xr1 , . . . , xrk to the columns of A′ are mates of A′, hence A′ is MNP.

By Theorem 2.1 (iii), rk(A′) ≥ 2k. Since the sum of the blue rows of A′ minus the sum
of the red rows of A′ is zero, then rk(A′) = 2k. If a column of A has more red 1s than blue
1s, then the sum of the red 1s minus the sum of the blue 1s of such column is nonzero,
therefore rk(A) > rk(A′) = 2k, thus rk(A) = 2k + 1. Finally, by Theorem 2.1 (iii), since
Ax = 1, x ≥ 0 is minimally infeasible w.r.t. the rows of A, Ax = 1 has a solution if and
only if rk(A) = 2k + 1. 2

Theorem 3.10 Let A be an MNP balanced matrix such that the sum of the red rows

equals the sum of the blue rows. Then

P =







x :
ABx ≤ 1
ARx ≥ 1

x ≥ 0







= conv{m : m is a mate of A}

Proof: Let x̄ be a vertex of P . Since every column of A has as many red 1s as blue 1s,

k ≤
∑

i∈R

aix̄ =
∑

i∈B

aix̄ ≤ k + 1, (5)

where the first inequality follows from ARx ≥ 1, while the last follows from ABx ≤ 1.
Since A is balanced, x̄ is a 0, 1 vector, so one of the two inequalities in (5) is satisfied

at equality, so Aix̄ = 1 for some row i. 2

Notice, however, that Theorem 3.10 does not hold in general, when A contains a
column with strictly more red 1s than blue 1s. For example, the matrix

A =













1 0 0 1 0
1 1 0 1 1
0 1 1 0 1
0 1 1 1 1
0 1 0 1 0













B
R
B
R
B

is balanced and MNP, but (0, 0, 0, 0, 1) is a vertex of the polytope P , as defined in the
statement, that is not a mate of A.

3.3 Critical MNP balanced matrices

We say that a 0, 1 matrix A is critical if A is MNP, but any column submatrix of A is
not MNP.

Theorem 3.11 Let A be a critical balanced matrix. The following hold:
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(i) The sum of the blue rows of A equals the sum of the red rows of A.

(ii) All red mates for A are good.

(iii) Each row of A has a unique mate.

(iv) Each column of A is contained in as many red mates as blue mates.

Proof: (i) Follows immediately from Corollary 3.9.
(ii) Follows immediately from (i) and from Lemma 3.4.
(iii) Choose an integral nonnegative vector β = (β1, . . . , βn) such that

aiβ = k for i ∈ B

aiβ = k + 1 for i ∈ R,

so that β1, . . . , βn is highest possible in the lexicographical order. (Notice that such a
choice of β exists, since the vector

∑k+1
i=1 xbi , where xb1 , . . . , xbk+1 are mates of ab1 , . . . , abk+1 ,

satisfies the above system.)
By Lemma 3.7, there exist mates of ab1 , . . . , abk+1 , say xb1 , . . . , xbk+1 , respectively,

such that β =
∑k+1

i=1 xbi . Also, by Theorem 3.8, there exist good mates xr1 , . . . , xrk of

ar1 , . . . , ark , respectively, such that β =
∑k

i=1 xri . Observe that all components of β are
strictly positive, else the submatrix of A induced by the columns in which β is positive
would be MNP, contradicting the fact that A is critical.

Suppose that there exists a row of A, say ah, that has a mate x̄ 6= xh. Suppose h is
chosen so that the index j such that x̄j 6= xh

j is smallest possible.
If x̄j = 1 and xh

j = 0, let β′ = β − xh + x̄, else let β′ = β − x̄ + xh. Since β is strictly
positive, β′ ≥ 0, furthermore βi = β′

i for every i < j (since j is smallest possible), and
βj < β′

j. Therefore β′ contradicts the maximality assumption on β.
(iv) By Theorem 3.8 and part (iii), the sum of the red mates equals the sum of the blue
mates. 2

If A is a balanced critical matrix, by Theorem 3.11 (iii) we may univocally define the
vectors m1, . . . ,m2k+1 to be the unique mates of rows a1, . . . , a2k+1. Let M(A) = (mij)
be the (2k + 1) × n matrix where mij = mi

j. We call M(A) the mate matrix of A. Also,
we say that mi is a blue (resp. red) row of M(A) if i ∈ B (resp. i ∈ R).

One might wonder whether it is true that, provided that A is balanced, M(A) is
balanced as well. However, this is false, as shown by the following example.
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A =





























1 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 1 0 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0









































B









R

; M(A) =





























0 0 1 1 1 0 0 0
1 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0
0 0 1 1 0 1 1 0
0 0 1 1 0 1 0 1
0 0 1 1 0 1 1 1
0 0 1 1 1 1 0 0
1 0 1 1 1 0 0 0
0 1 1 1 1 0 0 0





























(6)

In the example, A is a 9 × 8 matrix, |R| = 4, and |B| = 5. The sum of the red rows
equals the sum of the blue rows, thus Ax = 1 is infeasible. Also, the rows of M(A) are
mates of the rows of A, and A is full column rank, thus A is critical. It is easy to check
that A is balanced, whereas M(A) is not balanced, since it contains a 3 × 3 unbalanced
submatrix.

Theorem 3.12 Let A be a critical balanced matrix.

(i) The sum of the blue rows of M(A) equals the sum of the red rows of M(A).

(ii) For every j ∈ [n], aj · mj = 1. For every j 6= h ∈ [n],
∑

i∈B aijmih =
∑

i∈R aijmih.

(iii) A consists of 2k linearly independent columns.

(iv) M(A) is critical and the rows of A are its unique mates.

Proof: (i) Follows directly from Theorem 3.11(iv).

(ii) Let Bj = {i ∈ B | aij = 1} and Rj = {i ∈ R | aij = 1}. By Theorem 3.11(i),
|Rj| = |Bj|. Clearly, mij = 0 for every i ∈ Bj, since ai · mi = 0.
Let γ =

∑

i∈Bj
mi +uj, where uj is the vector with 1 in the jth entry, and zero elsewhere.

Thus γj = 1 and

aiγ = |Rj| for i /∈ Rj

aiγ = |Rj| + 1 for i ∈ Rj.

By Lemma 3.6 and Theorem 3.11(iii), γ =
∑

i∈Rj
mi.

In particular, since γj = 1, there exists exactly one s ∈ Rj such that msj = 1, while
mij = 0 for every i ∈ Rj \ {s}. Thus aj · mj = 1. Finally, for every h 6= j in [n],
∑

i∈B aijmih =
∑

i∈Bj
mih = γh =

∑

i∈Rj
mih =

∑

i∈R aijmih.

(iii) The following chain of equalities holds:

n =
n

∑

j=1

2k+1
∑

i=1

aijmij =
2k+1
∑

i=1

ai · mi =
∑

i∈R

2 = 2k
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where the first equality follows from (ii) and the third equality follows from the fact that
ai · mi = 0 for i ∈ B, and ai · mi = 2 for i ∈ R. Since, by Corollary 3.9, rk(A) = 2k, A
has full column rank.

(iv) By (i), M(A)x = 1 is infeasible, so it is minimally infeasible, thus, by Theo-
rem 2.1 (iii), rk(M(A)) ≥ 2k. Since M(A) has 2k columns, M(A) must be critical.
2

Theorem 3.13 Let A be a critical balanced matrix. Then both systems ABx ≥ 1, ARx ≤
1 and M(A)Bx ≥ 1, M(A)Rx ≤ 1 are irreducible.

Furthermore, ABx ≤ 1, ARx ≥ 1 defines a simplex whose vertices are m1, . . . ,m2k+1,

and M(A)Bx ≤ 1, M(A)Rx ≥ 1 defines a simplex whose vertices are a1, . . . , a2k+1.

Proof: By Farkas Lemma, ABx ≥ 1, ARx ≤ 1 (resp. M(A)Bx ≥ 1, M(A)Rx ≤ 1) is
infeasible, since 1T

(

−AB

AR

)

= 0 (resp. 1T
(

−M(A)B

M(A)R

)

= 0) and 1T
(

−1B

1R

)

= |R| − |B| < 0.

Since A and M(A) are critical, ABx ≥ 1, ARx ≤ 1 and M(A)Bx ≥ 1, M(A)Rx ≤ 1 are
minimally infeasible. Since A and M(A) are (2k + 1)× 2k matrices, by Theorem 2.1(iii)
ABx ≥ 1, ARx ≤ 1 and M(A)Bx ≥ 1, M(A)Rx ≤ 1 are irreducible.
The second part of the statement follows immediately from Corollary 2.5. 2

Recall from Theorem 2.4 that if Ax ∼ b is a minimally infeasible system, where A is
an m×n matrix, then rk(A) = m− 1 and, for every m× (m− 1) submatrix A′ of A with
full column rank, A′x ∼ b is an irreducible system.

If A is a (2k+1)×n MNP balanced matrix, Theorem 3.12 shows that we can choose a
(2k +1)×2k submatrix A′ of A, with full column rank, such that A′ is critical. However,
not every (2k + 1) × 2k submatrix of A with full column rank is critical, even if its
columns have as many blue 1s as red 1s. For example, consider the following MNP (but
not critical) balanced matrix.

A =













1 0 0 0 0
1 1 0 0 1
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1













B
R
B
R
B

By Corollary 3.9, the system Ax = 1 is infeasible, therefore it is minimally infeasible.
The submatrices obtained by removing columns 2 or 5 are critical matrices, while if we
remove column 3 we obtain the submatrix Ā with full column rank which is not critical
but for which the system Āx = 1 is irreducible. Indeed, if Ā was critical, then the system
Āix = 1 would have a nonnegative solution for every row i, however the only solution of
Ā5x = 1 is (1, 1, 1,−1). The same happens if we remove column 4.

14



Proposition 3.14 Let A be a critical balanced matrix, and j ∈ [2k].
If S = {i ∈ [2k+1] |mij = 0}, then the matrix Ā obtained from AS by deleting column

j is MNP.

If T = {i ∈ [2k + 1] | aij = 0}, then the matrix M̄ obtained from M(A)T by deleting

column j is MNP.

Proof: By Theorem 3.11(i) and Theorem 3.12(ii), the sum of the blue rows of Ā equals
the sum of the red rows of Ā, thus Āx = 1 is infeasible. On the other hand, if we denote
by m̄i the vector obtained from mi by removing the jth component, then, for every i ∈ S,
Āim̄i = Ai

Smi = 1.
The argument for the second part of the statement is analogous. 2

3.4 Minimal infeasibility of more general systems

In this section, we consider general systems of the form Ax ∼ 1, x ≥ 0, where A is a
balanced matrix. We show that systems of this form that are minimally infeasible w.r.t.
the rows of A are essentially characterized in terms of MNP matrices.

Theorem 3.15 Let A be an m×n balanced matrix and (S1, S2, S3) be a partition of [m].
The system

aix ≤ 1 i ∈ S1

aix ≥ 1 i ∈ S2

aix = 1 i ∈ S3

x ≥ 0

denoted by Ax ∼ 1, x ≥ 0, is minimally infeasible w.r.t. the rows of A if and only if A
is MNP, S1 ⊆ R, and S2 ⊆ B.

Proof: By Theorem 2.1 (i), Ax = 1, x ≥ 0 is minimally infeasible w.r.t. the rows of A,

therefore A is MNP. By Theorem 2.1 (ii), there exists a unique orientation Ax
∗
∼ 1 of

Ax ∼ 1 such that Ax
∗
∼ 1, x ≥ 0 is minimally infeasible w.r.t. the rows of A. By the

construction of such orientation in the proof of Theorem 2.1 (ii), Ax
∗
∼ 1 is the system

ABx ≥ 1, ARx ≤ 1, thus S1 ⊆ R, and S2 ⊆ B. 2

4 Questions, examples, and counterexamples

Question 4.1 Give a combinatorial algorithm that, given a 0, 1 matrix A, determines,

in polynomial time, one of the following outcomes:

1. A is not balanced.

2. Two subsets R and B satisfying the conditions of Theorem 3.2.

3. A 0, 1 vector x such that Ax = 1.
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Note that outcomes 2 and 3 are mutually exclusive, while Theorems 3.1 and 3.2 ensure
that, if A is balanced, one of 2 or 3 must occur (however, such an algorithm may produce
outcomes 2 or 3 even if the matrix is not balanced).

The following argument yields a polynomial time algorithm that correctly produces
one of the above outcomes.

Given a 0, 1 matrix A, find a vertex v of Ax = 1, x ≥ 0. If v exists and is fractional, A
is not balanced, otherwise, if v exists and is integral, outcome 3 holds. If v does not exist,

repeat iteratively the above procedure to matrices obtained from A by removing one row

at the time, until eventually we obtain a row submatrix Ā of A such that Āx = 1, x ≥ 0
is minimally infeasible w.r.t. the rows of Ā.

For every row i of Ā, let vi be a vertex of Āix = 1, x ≥ 0. If vi is fractional for

some i, A is not balanced. Otherwise, let B be the set of rows i such that aivi = 0, and

R be the set of rows i such that aivi ≥ 2. Check if R and B satisfy the conditions of

Theorem 3.2. If so, outcome 2 holds, otherwise, by Lemma 3.4, A is not balanced.

By “combinatorial algorithm” we mean an algorithm that uses only addition, sub-
traction and comparison, so in particular we do not allow general purpose algorithms to
solve systems of linear inequalities.

It is observed in [7] that, using an algorithm of Cameron and Edmonds [3], one can
construct an easy, polynomial time, combinatorial algorithm that takes as input a 0, 1
matrix A and a positive integer k, and outputs one of the following:

1. A square submatrix of A of odd order with two ones per row and per column (hence
a certificate that A is not balanced).

2. A partition of the columns of A into k sets, such that, for each row i, if row i has
less than k 1s, then row i has at most a 1 in each of the k sets, otherwise row i has
at least a 1 in each of the k sets.

Note that, if A is a balanced matrix with exactly k ones in each row, such an algorithm
partitions the columns of A into k sets whose incidence vectors are solutions of Ax = 1.

It would be interesting to have an algorithm of the same type to solve Question 4.1.

Question 4.2 Let A be a MNP balanced matrix. Is it true that the support of every good

mate of A is contained in the column set of some critical column submatrix of A?

The following are all the critical balanced matrices with at most 5 rows, up to per-
muting rows and columns.





1 0
1 1
0 1

















1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

























1 0 0 0
1 1 0 0
0 1 1 0
0 1 1 1
0 1 0 1

























1 0 0 1
1 1 0 1
0 1 1 0
0 1 1 1
0 1 0 1
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Question 4.3 Provide a construction that generates all critical balanced matrices.

Question 4.4 Let A be a critical balanced matrix. Is it true that A has a column with

exactly two ones?

In general, it is not true that, if A is balanced and critical, M(A) has a column with
exactly two 1s, as shown in the following example. Notice that A is balanced, but M(A)
is not, since the submatrix of M(A) indexed by rows 1, 6, 8 and columns 2, 5, 6 is a 3×3
matrix with two 1s per row and column.

A =







































1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0 1







































B

R

B

R

B

R

B

R

B

R

B

M(A) =







































0 1 0 1 0 1 0 0 1 0
1 1 0 1 0 1 0 0 1 0
1 0 0 1 0 1 0 0 1 0
1 0 1 1 0 1 0 0 1 0
1 0 1 0 0 1 0 1 0 1
1 0 1 0 1 1 0 1 0 1
1 0 1 0 1 0 0 1 0 1
0 1 0 0 1 0 1 1 0 1
0 1 0 0 1 0 1 0 0 1
0 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 1 0 1 0







































(7)

Question 4.5 Is it true that every (2k + 1) × 2k critical balanced matrix contains a

(2k − 1) × (2k − 2) submatrix which is critical?

Let A be the matrix in (7). The only critical 9 × 8 critical submatrix of A is the
following submatrix Ā, obtained removing rows 4 and 8 (which are both red), and columns
3 and 8. Notice that the bicoloring of Ā is not the restriction of the bicoloring of A

Ā =





























1 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 1





























B
R
B
R
B
R
B
R
B

This disproves the conjecture that the rows and columns of every critical (2k+1)×2k
balanced matrix can be ordered so that, for every 1 ≤ h ≤ k, the submatrix Ah induced
by the first 2h + 1 rows and the first 2h columns is critical and the bicoloring of Ah is
the restriction of the bicoloring of A. Notice that this conjecture, if true, would have
provided a strengthening of the statement in Question 4.5.
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[1] C. Berge, Sur certains hypergraphes généralisant les graphes bipartites, in Combina-

torial Theory and its Applications I (P. Erdös, A. Rényi and V. Sós, eds.), Colloquia

Mathematica Societatis János Bolyai, Vol. 4, North Holland, Amsterdam (1970),
119-133.

[2] C. Berge, Balanced Matrices, Mathematical Programming 2 (1972), 19-31.

[3] K. Cameron and J. Edmonds, Existentially Polynomial Theorems, DIMACS Series in

Discrete Mathematics and Theoretical Computer Science 1, American Mathematical
Society, Providence, RI (1990) 83-100.
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