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Abstract

We consider a generalization of the model of stochastic search in an out-forest, introduced and
studied by Denardo, Rothblum, and Van der Heyden [1]. We provide a simple proof of the
optimality of index-based policies.

1 Introduction

Motivated by the issue of investing in a research-and-development project, Denardo, Rothblum,

and Van der Heyden [1] introduced and studied a stochastic search problem in an out-forest,

which we will be referring to as the DRV model. In particular, they established the optimality of

“index” policies for either linear or exponential utility functions.

While their main result is simple and is reminiscent of similar results on multi-armed bandit

problems, their proof is not, and relies on a “triply nested” induction argument. In fact, the

authors note that standard lines of analysis in the bandit literature do not seem to yield their

results. In this paper, we show that a short and simple proof is possible for a suitable generalization

of the DRV model, using the approach of Tsitsiklis [2] for the classical multi-armed bandit problem.

The reason for introducing a more general model is precisely that it enables the simpler proof.

The rest of the paper is organized as follows. Section 2 presents the model and the problem

formulation; Section 3 provides the proof of the main result; Section 4 discusses indexability and

computational issues; and Section 5 deals with various extensions.
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2 The Model

Model. Let G = (N,E) be an out-forest, that is, a directed acyclic graph in which every node

has in-degree zero or one. For each edge e ∈ E, A(e) denotes the (possibly empty) set of immediate

successors of edge e. More precisely, if e = (i, j), then A(e) contains all edges of the form (j, k)

for some k. We say that an edge e′ is a successor of e (and that e is a predecessor of e′) if there

is a sequence of edges e = e1, e2, . . . , ek = e′ such that each ei+1 is a successor of ei. An edge e is

called a leaf edge if A(e) is empty.

The search model takes the form of a sequential decision process, whereby at each stage an

edge is selected and attempted. To define the model, we describe the state of the process, the set

of available actions, the transition mechanism, and the associated rewards.

The states of the sequential decision process are subsets S of E, with the property that none

of the edges in S is a predecessor of another edge in S; the edges in S are said to be available.

In addition, there is a special termination state, denoted by T . If the state S is the empty set,

the process moves to the termination state at the next step. If a nonterminal state S 6= ∅ is

reached, the decision maker attempts an edge e ∈ S, resulting in a random immediate reward,

whose expected value is Re. (Note that Re is allowed to be negative.) If edge e is attempted, the

process either moves to the terminal state (with probability πe) or a random set of immediate

successors of e becomes “available”; for each set X of immediate successors of e, we use pe(X) to

denote the probability that the set X is generated. In particular,

πe +
∑

X⊆A(e)

pe(X) = 1.

Formally, given a current state S 6= ∅ and given that e was attempted, the probability P (S′ |
S, e) of transitioning to a next state S′ is given by

P (S′ | S, e) =

{
πe, if S′ = T ,

pe(X), if X ⊆ A(e) and S′ = (S ∪X) \ {e}.

The outcomes at different edges are mutually independent events. (However, the immediate ran-

dom reward is allowed to be dependent on the set of immediate successors that become available.)

The goal of the decision maker is to maximize expected total reward earned until termination.

The initial state of this decision process consists of all the edges of E that have no predecessors.

It is straightforward to verify that the decision maker reaches state S only if he has successfully

attempted all predecessors of the edges in S, but has not attempted any edge in S.

The decision maker is allowed to use general, possibly randomized, history-dependent policies.

However, standard results from the theory of Markov decision processes imply the existence of an

optimal policy within the class Πs of deterministic and stationary policies. (That is, the decision

at each stage is just a function of the current state.) A deterministic policy is called a priority
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policy if there is an ordering on the edges such that the edge attempted at any step is ordered

highest among all available edges. The main result in this paper establishes the optimality of

priority policies.

2.1 Relation to the DRV Model

The model we introduced is a generalization of the DRV model considered by Denardo, Rothblum,

and Van der Heyden [1]. More specifically, the DRV model is the following special case:

(a) For every edge e, pe(X) = 0, if X 6= ∅, A(e);

(b) For all edges, Re = πere − ce, where ce > 0; and

(c) For all non-leaf edges, πe = 0, and so re is irrelevant for these edges.

This special case has the following interpretation: any available edge can be attempted at a cost

of ce. Attempting a non-leaf edge cannot result in termination, and brings no rewards, but if the

attempt is a “success” (X = A(e)), all immediate successors of e become available. Attempting

a leaf edge, results either in termination (with probability πe) and the reward re is collected,

or there is no reward and the process can continue. The DRV model also allows for voluntary

termination. This can be accommodated in our model by assuming an independent edge with

Re = 0, πe = 1.

3 Main Result.

The proof technique in [2] involves essentially of two steps: first, identify by inspection or by

some elementary computation a “highest priority” edge; and second, find a “reduced” problem in

which this edge is eliminated. The first step identifies an edge e∗ with the property that whenever

edge e∗ is available, there is at least one optimal policy that attempts it. Once such an edge e∗

is identified, the second step “eliminates” that edge using the following reasoning: if attempting

edge e causes e∗ to become available, the decision maker will attempt e∗ next; therefore, one can

“contract” edge e∗ and update the parameters associated with edge e in a manner that captures

this “two-step” attempt. Note that because the given graph is an out-forest, there is at most one

edge e that can cause e∗ to become available, and so e∗ can be safely eliminated. The resulting

problem has one fewer edge, to which the same argument can be inductively applied. Let

γ(e) =


Re/πe, if πe 6= 0,

−∞, if πe = 0 and Re < 0,

+∞, if πe = 0 and Re ≥ 0 .

Let

e∗ ∈ arg max
e∈E

γ(e).
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Lemma 1 There is an optimal policy that attempts e∗ whenever e∗ is available.

Proof. As stated before, we can restrict attention to policies that are stationary and deterministic.

For any policy ψ, we say that a state S is exceptional if e∗ ∈ S, but ψ does not attempt e∗. In this

terminology, the lemma asserts the existence of an optimal policy that has no exceptional states.

Let ψ∗ be a stationary and deterministic optimal policy with the smallest number of excep-

tional states. If ψ∗ has no exceptional states, we are done. Suppose ψ∗ has at least one exceptional

state. Then, there exists an exceptional state S∗ such that: (i) ψ∗ attempts e ∈ S∗, with e 6= e∗;

and (ii) if the attempt at e does not result in termination, ψ∗ attempts e∗. To see this, consider

the “state-transition graph” whose nodes are the exceptional states of ψ∗, and whose edges are

the pairs (S, S′) of exceptional states such that if ψ∗ reaches S, then it is possible to reach S′ in

the next step. This is a directed acyclic graph, so it must have a node S∗ with out-degree zero.

Such a state S∗ has the properties claimed above.

Now consider an alternative policy ψ that: (i) attempts e∗ in the exceptional state S∗; (ii) if

the attempt at e∗ does not result in termination, it attempts e in the following step; (iii) ψ agrees

with ψ∗ after the first two steps. Note that for the new policy ψ, S∗ is no longer an exceptional

state. As a result of this “local” interchange, the increase in the expected total reward is

Re∗ + (1− πe∗)Re −Re − (1− πe)Re∗ . (1)

Since ψ∗ is an optimal policy, this expression is less than or equal to zero; by the definition of

e∗, however, this expression is non-negative. Thus, the net change in expected total reward as

a result of this interchange is zero. We have thus constructed a new policy ψ, which is optimal

and has one less exceptional state, contradicting the definition of ψ∗. Therefore, ψ∗ must be an

optimal policy with no exceptional states.

We are now ready for the main result.

Theorem 2 There is an optimal policy which is a priority policy.

Proof. Our proof is by induction on the number of edges in the given out-forest. If the given

out-forest has only one edge, the result is trivially true. Suppose the theorem holds for all out-

forests with fewer than m edges. Let us now consider an out-forest with m edges, and let e∗ be

an edge for which γ(e) is largest. Let Ψ(e∗) be the class of stationary and deterministic policies

that attempt e∗ whenever it is available. By Lemma 1, there is an optimal policy within the class

Ψ(e∗). We argue next the problem of finding an optimal policy within the class Ψ(e∗) can itself

be formulated as a search problem in an out-forest involving the remaining m− 1 edges.

To define this reduced problem, we consider two possibilities, depending on whether or not e∗

has an immediate predecessor. If e∗ has no predecessor, then the reduced problem is equivalent to

the out-forest (N,E \{e∗}). In that case, the following priority policy is optimal: first attempt e∗
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and then (in the absence of termination) follow an optimal policy for the out-forest (N,E \ {e∗});
the latter policy can be taken to be a priority policy, by the induction hypothesis.

Suppose now that e is the immediate predecessor of edge e∗. If a policy in Ψ(e∗) attempts

e the process does not terminate and e∗ becomes available, it will then immediately attempt e∗.

By viewing this “automatic” attempt of e∗ as part of a single composite step initiated with the

attempt of e, we obtain a reduced but equivalent model, in which e∗ is eliminated, and which

involves an out-forest with m− 1 edges. We now specify the details of the reduced model.

The new set of edges is simply E = E \ {e∗}. The new termination probability πe when

attempting e needs to include the probability that e∗ becomes available and its attempt results

in termination. Thus,

πe = πe + qe∗πe∗ , (2)

where

qe∗ =
∑

X⊆A(e):e∗∈X

pe(X)

is the probability that when e is attempted, the attempt is successful and edge e∗ becomes

available. Similarly, the new expected reward Re needs to include the expected reward from the

possible subsequent attempt of e∗:

Re = Re + qe∗R
∗
e. (3)

The set A(e) of immediate successors of e in the reduced model will be the set of all edges

that may become available once the composite step is carried out. Thus,

A(e) = (A(e) \ {e∗}) ∪A(e∗).

It remains to specify the probabilities with which different subsets of A(e) become available.

Consider a typical subset of A(e), of the form X ∪Y , where X ⊆ A(e)\{e∗} and Y ⊆ A(e∗). The

probability that the set of newly available edges at the end of the composite step equals X ∪ Y is

given by

pe(X ∪ Y ) =

{
pe(X) + pe(X ∪ {e∗})pe∗(∅), if Y = ∅,
pe(X ∪ {e∗})pe∗(Y ), if Y 6= ∅.

For the case where Y = ∅, the two terms in the formula above correspond to the cases where

e∗ did not or did become available when e was attempted. Note that the mutual independence

of the sets generated when attempting different edges in the reduced problem follows from the

corresponding assumption for the original problem.

There is a one-to-one correspondence between policies in Ψ∗ and policies for the reduced

problem. Furthermore, because of the definition of the reduced problem, corresponding policies

have the same expected total reward. Consider an optimal policy for the reduced problem which is

a priority policy. (Such a policy exists because the reduced problem corresponds to an out-forest
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with m − 1 edges, and the induction hypothesis applies.) This priority policy on the reduced

problem, together with giving top priority to e∗, defines a priority policy for the original problem,

which is optimal.

4 Indices and Computation.

The proof of Theorem 2 suggests an algorithm for determining an optimal priority policy, by a

repeated application of the following 2 steps: (i) identifying a highest priority edge e∗ from the

problem data (ties can be broken arbitrarily, e.g., lexicographically); and (ii) eliminating e∗ to

obtain a smaller problem.

We make some observations on the structure of the algorithm.

(a) With the above algorithm, every edge will be eventually eliminated. Let ek be the kth edge

to be eliminated by the algorithm. We define the index of edge ek to be the value of Rek
/πek

computed by the algorithm at the beginning of the kth iteration, that is, the iteration at

which edge ek is eliminated. From Eqs. (2)-(3), and the fact that Re∗/πe∗ is maximal, we

see that Re/πe ≤ Re/πe. It follows that indices are generated in nonincreasing order, that

is, γ(ek+1) ≤ γ(ek) for every k. In particular, edges with a higher index value get higher

priority.

(b) A further property, which is apparent from the structure of the reduction, is that γ(e) is

completely determined by the data associated with e and its successors in the original out-

forest. In particular, if the forest consists of several independent trees, the index computation

can be carried out separately at each tree. This is in the spirit of indexability results for

classical multi-armed bandit problems, where the index of a state of a particular bandit can

be calculated independent of the data associated with the other bandits.

The algorithm above will in general run in exponential time, because of the “multiplicative”

increase in the number of positive probability subsets to be considered, and we suspect that this

is unavoidable. For an example, consider a tree consisting of a path ek, ek−1, . . . , e1, together with

additional leaf edges e′k−1, . . . , e
′
1, arranged so that each edge ei+1 has an immediate successor

ei that belongs to the path, and another immediate successor e′i which is a leaf edge. Suppose

that pei+1({ei}) > 0 and pei+1({ei, e′i}) > 0. Suppose furthermore that the edges e1, . . . , ek−1 are

eliminated first. In the reduced graph, after the first k − 1 iterations, all of the edges e′i will be

immediate successors of ek, and every subset of this set of successors will have positive probability.

An example of such an exponential increase is possible even for the DRV model.

In some cases, an efficient algorithm becomes possible by bypassing the computation of the

probabilities pe(X) for the reduced problems. We only need to be able to efficiently compute Re
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and πe for a reduced problem. Indeed, for a reduced problem in which edges e1, . . . , ek have been

eliminated, Re is the expected cost of a policy for the original problem that starts with edge e,

continues by choosing each time the highest priority available edge within the set {e1, . . . , ek},
and terminates voluntarily once no such edge is available (even if other edges are available). It

turns out that this interpretation leads to an efficient algorithm for computing Re (and similarly,

πe) for the DRV model. We do not provide any further details because such an efficient algorithm

is given in [1].

5 Extensions.

We end by noting that the same approach applies to the variants of the basic model described

in [1, section 5, pp. 171]. We briefly discuss the the necessary changes for the cases of risk-averse

and risk-seeking utility functions; the other variants can be handled in a straightforward way.

Consider the case of a risk-seeking utility function, where the utility of a reward x is eλx, and

λ is a positive constant. We denote by Re the expected utility resulting from a single attempt

at edge e. We note that Re > 0, and that utility maximization is equivalent to maximizing the

expected value of the product of the single-step utilities Re of the attempted edges. Voluntary

termination is modeled by an independent edge e with πe = 1 and Re = 1. Lemma 1 and

Theorem 2 are valid with the following modifications. We define γ(e) by

γ(e) =


πeRe

1− (1− πe)Re
, if 1− (1− πe)Re 6= 0,

−∞, if 1− (1− πe)Re = 0.

Let E− be the set of edges e with 1− (1− πe)Re ≤ 0. If E− 6= ∅, we let

e∗ ∈ arg max
e∈E−

γ(e),

otherwise,

e∗ ∈ arg max
e∈E

γ(e).

With this choice of e∗, Lemma 1 remains valid. The only change in the proof is that expression (1)

now becomes

πe∗Re∗ + (1− πe∗)πeRe∗Re − πeRe − (1− πe)πe∗Re∗Re. (4)

With our definition of e∗, the above expression is guaranteed to be nonnegative. Theorem 2 and

its proof remain valid, with π as before and with

Re = (1− qe∗)Re + qe∗ReR
∗
e.

Consider now the case of a risk-averse utility function, where the utility of a reward x is

−e−λx, and λ is a positive constant. We define Re to be the negative of the utility resulting from
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a single attempt at edge e. We note that Re > 0 and that utility maximization is equivalent to

minimizing the expected value of the product of the single-step disutilities Re of the attempted

edges. The definition of the γ(e) and the rest of the argument is the same as in the risk-seeking

case. The only change is that we now define E+ as the set of edges e with 1− (1− πe)Re > 0. If

E+ 6= ∅, we let

e∗ ∈ arg min
e∈E+

γ(e),

otherwise,

e∗ ∈ arg min
e∈E

γ(e).

With this definition, the expression (4) is guaranteed to be nonpositive.
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