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We study stochastic tree fluid networks driven by a multidimensional Lévy process. We are interested in (the joint distribution
of) the steady-state content in each of the buffers, the busy periods, and the idle periods. To investigate these fluid networks,
we relate the above three quantities to fluctuations of the input Lévy process by solving a multidimensional Skorokhod
reflection problem. This leads to the analysis of the distribution of the componentwise maximums, the corresponding epochs
at which they are attained, and the beginning of the first last-passage excursion. Using the notion of splitting times, we are
able to find their Laplace transforms. It turns out that, if the components of the Lévy process are “ordered,” the Laplace
transform has a so-called quasi-product form.
The theory is illustrated by working out special cases, such as tandem networks and priority queues.
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1. Introduction. Prompted by a series of papers by Kella and Whitt (Kella [20, 22], Kella and Whitt
[25, 26]), there has been considerable interest in multidimensional generalizations of the classical storage model
with nondecreasing Lévy input and constant release rate (Prabhu [34, Ch. 4]). In the resulting networks, often
called stochastic fluid networks, the input into the buffers is governed by a multidimensional Lévy process.
Recently, motivated by work of Harrison and Williams on diffusion approximations (Harrison and Williams
[16, 17]), the presence of product forms has been investigated (Kella [21, 23], Konstantopoulos et al. [28], Piera
et al. [33]). Recall that the stationary buffer-content vector has a product form if it has independent components,
meaning that the distribution of this vector is a product of the marginal distributions.
The results in these papers show that, apart from trivial cases, the stationary buffer-content vector of stochastic

fluid networks never has a product form. Despite this “negative” result, we show that it may still be possible to
express the joint distribution of the buffer content in terms of the marginal distributions. This is most evident in
the Laplace domain. For certain tandem queues, for instance, the Laplace transform is a product that cannot be
“separated”; we then say that the buffer-content vector has a quasi-product form.
In the literature on stochastic fluid networks, there has been a focus on the stationary buffer-content vector W

or one of its components. Here, we are also interested in the stationary distribution of vector of ages of the busy
periods B and idle periods I . The age of a busy (or idle) period is the amount of time that the buffer content has
been positive (or zero) without being zero (positive). Knowing these, it is also possible to find the distribution
of the remaining length of the busy (or idle) period and the total length of these periods.
We are interested in W , B, and I for a class of Lévy-driven fluid networks with a tree structure, which

we therefore call tree fluid networks. Our analysis of these networks relies on a detailed study of a related
multidimensional Skorokhod reflection problem (see, e.g., Robert [35]). Using its explicit solution, we relate the
triplet of vectors �W�B� I� to the fluctuations of a multidimensional Lévy process X. We also prove that the
stationary distribution of the buffer-content vector is unique.
Since our analysis of fluid tree networks is based on fluctuations of the process X, this paper also contributes

to fluctuation theory for multidimensional Lévy processes. Supposing that each of the components of X drifts
to −�, we write �X for the (vector of) componentwise maximums of X, G for the corresponding epochs at which
they are attained, and H for the beginning of the first last-passage excursion. Under a certain independence
assumption, if the components of G are “ordered,” we express the Laplace transform of � �X�G� in terms of the
transforms of the marginals � �Xj�Gj�. Since Xj is a real-valued Lévy process, the Laplace transform of � �Xj�Gj�
is known if Xj has one-sided jumps; see, for instance, Bertoin [4, Thm. VII.4].
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We also examine the distribution of H under the measure �↓
k , which is the law of X given that the process Xk

stays nonpositive. There exists a vast body of literature on (one-dimensional) Lévy processes conditioned to stay
nonpositive (or nonnegative); see the recent paper by Chaumont and Doney [5] for references. Under the measure
�↓
k , we also find the transform of � �X�G�. As a special case, we establish the Laplace transform of the maximum
of a Lévy process conditioned to stay below a subordinator, such as a (deterministic) positive-drift process.
By exploiting the solution of the aforementioned Skorokhod problem, the results that we obtain for the pro-

cess X can be cast immediately into the fluid-network setting. For instance, the knowledge of � �X�G� allows us to
derive the Laplace transform of the stationary distribution of �W�B� in a tandem network and a priority system if
there are only positive jumps, allowing Brownian input at the “root” station. That is, we characterize the joint law
of the buffer-content vector and the busy-period vector. With the �↓

k -distribution of H , we establish the transform
of the idle-period vector I for a special tandem network. Our formulas generalize all explicit results for tandem
fluid networks known to date (in the Laplace domain), such as those obtained by Kella [20] and more recently
by Dębicki et al. [6]. Most notably, quasi-products appear in our formulas, even for idle periods.
To derive our results, we make use of the notion of splitting times. These essentially allow us to reduce the

problem to the one-dimensional case. For real-valued Markov processes, splitting times have been introduced
by Jacobsen [18]. Splitting times decompose (“split”) a sample path of a Markov process into two independent
pieces. A full description of the process before and after the splitting time can be given. However, since the
splitting time is not necessarily a stopping time, the law of the second piece may differ from the original law of
the Markov process (refer to Millar [31, 32] for further details and to Kersting and Memişoğlu [27] for a recent
contribution).
The idea to use splitting times in the context of stochastic networks is novel. The known results to date are

obtained with Itô’s formula (Konstantopoulos et al. [28]), a closely related martingale (Kella and Whitt [26]), or
differential equations (Piera et al. [33]). Intuitively, these approaches all exploit a certain harmonicity. However,
the results of Kyprianou and Palmowski [29] already indicate a relation between these approaches and splitting.
Splitting has the advantage that it is insightful and that proofs are short. Moreover, it can also be used for
studying more complicated systems (Dieker and Mandjes [8]).
This paper is essentially divided into two parts. In the first part, consisting of §§2–4, we analyze the fluctua-

tions of an n-dimensional Lévy processes X. The notion of splitting times is formalized in §2. These splitting
times are first used to study the distribution of � �X�G� in §3, and then to analyze the distribution of H under
�↓
k in §4. The second part of this paper deals with fluid networks. Section 5 ties these networks to fluctuations
of X, so that the theory of the first part can be applied in §6. Finally, in Appendix A, we derive some results
for compound Poisson processes with negative drift. They are used in §4.

2. Splitting times. This paper relies on the application of splitting times to a multidimensional Lévy process.
After splitting times have been introduced, we study splitting at the maximum (§2.1) and splitting at a last-
passage excursion (§2.2).
Throughout, let X = �X1� 
 
 
 �Xn�′ be an n-dimensional Lévy process, that is, a càdlàg process with stationary,

independent increments such that X�0�= 0 ∈�n. Without loss of generality, as in Bertoin [4], we work with the
canonical measurable space ���� �= �D��0�����d ∪ �������, where � is the Borel �-field generated by the
Skorokhod topology, and � is an isolated point that serves as a cemetery state. In particular, X is the coordinate
process. Unless otherwise stated, “almost surely” refers to � . All vectors are column vectors.
The following assumption is used extensively throughout this paper:
D Xk�t�→−� almost surely, for every k.
We emphasize that a dependence between components is allowed. In the sequel, �Xk�t� (or Xk�t�) is short-

hand for sups≤t Xk�s� (or inf s≤t Xk�s�). Due to D, �Xk �= �Xk��� is well-defined and almost surely finite for
every k. Furthermore, we write �X = � �X1� 
 
 
 � �Xn�′.
The following two definitions are key to further analysis. The second definition is closely related to the first,

but somewhat more care is needed on a technical level. Intuitively, for the purposes of this paper, there is no
need to distinguish the two definitions.
Definition 2.1. We say that a random time T is a splitting time for X under � if the two processes

�X�t�� 0≤ t ≤ T � and �X�T + t�−X�T �� t ≥ 0� are independent under � . We say that T is a splitting time from
the left for X under � if the two processes �X�t�� 0≤ t < T � and �X�T + t�−X�T−�� t ≥ 0� are independent
under � .
Note that if X is a Lévy process under � with respect to some filtration � that includes the natural filtration,

any � -stopping time � is a splitting time for X under � . In fact, the Lévy assumption implies that �X�� +
t�− X���� t ≥ 0� is not only independent of �X�t�� 0 ≤ t ≤ ��, but also that it has the same distribution as
�X�t�� t ≥ 0�.
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We need some notions related to the initial behavior of X. For k = 1� 
 
 
 � n, set �Rk = inf�t > 0� Xk�t� =�Xk�t��. Since � �Xk�t�−Xk�t�� t ≥ 0� is a Markov process under � with respect to the filtration generated by X
(see Proposition VI.1 of Bertoin [4]), the Blumenthal zero-one law shows that either �Rk > 0 almost surely (0 is
then called irregular for � �Xk�t�−Xk�t�� t ≥ 0�) or �Rk = 0 almost surely (0 is then called regular for � �Xk�t�−
Xk�t�� t ≥ 0�). We also set Rk = inf�t > 0� Xk�t�= Xk�t��, and define regularity of 0 for �Xk�t�− Xk�t�� t ≥ 0�
similarly as for � �Xk�t�−Xk�t�� t ≥ 0�. If �Rk = 0 almost surely, we introduce

S̄k = S̄Xk �= inf�t > 0� Xk�t� �= �Xk�t���
Again, either S̄k = 0 almost surely (0 is then called an instantaneous point for � �Xk�t�−Xk�t�� t ≥ 0�) or S̄k > 0
almost surely (0 is then called a holding point for � �Xk�t�−Xk�t�� t ≥ 0�). One defines Sk, instantaneous points,
and holding points for �Xk�t�− Xk�t�� t ≥ 0� similarly if Rk = 0.

2.1. Splitting at the maximum under � . Let Gk =GX
k �= inf�t ≥ 0� Xk�t�= �Xk or Xk�t−�= �Xk� be the

(first) epoch that Xk “attains” its maximum, and write G= �G1� 
 
 
 �Gn�
′. Observe that Gk is well-defined and

almost surely finite for every k by D.

Lemma 2.1. Consider a Lévy process X that satisfies D.
(i) If �Rk > 0 � -almost surely or Xk is a compound Poisson process, then Gk is a splitting time for X under � .
(ii) If �Rk = 0 � -almost surely but Xk is not a compound Poisson process, then Gk is a splitting time from the

left for X under � .

Proof. We use ideas of Lemma VI.6 of Bertoin [4], who proves the one-dimensional case under exponential
killing.
We start with the first case, in which the ascending ladder set is discrete. Set �0 = 0 and define the stopping

times �n+1 = inf�t > �n� �Xk�t� > �Xk�t−�� for n> 0. Write N = sup�n� �n <��. Note that D implies that N <�
almost surely.
Let F and K be bounded functionals. Apply the Markov property to see that for n ∈�+,

Ɛ�F �X�t��0≤ t ≤Gk�K�X�Gk+ t�−X�Gk�� t ≥ 0�#N = n$
= Ɛ

[
F �X�t��0≤ t ≤ �n�1�N≥n�K�X��n+ t�−X��n�� t ≥ 0�1�supt≥�n Xk�t�=Xk��n��

]
= Ɛ

[
F �X�t��0≤ t ≤ �n�1�N≥n�

]
Ɛ
[
K�X��n+ t�−X��n�� t ≥ 0�1�supt≥�n Xk�t�=Xk��n��

]
= Ɛ

[
F �X�t��0≤ t ≤ �n�1�N≥n�

]
Ɛ
[
K�X�t�� t ≥ 0�1�supt≥0 Xk�t�=0�

]
�

Summing over n shows that the processes �X�t�� 0≤ t ≤Gk� and �X�Gk+ t�−X�Gk�� t ≥ 0� are independent.
The argument in the case �Rk = 0 is more technical but essentially the same. The idea is to discretize the

ladder height structure, for which we use the local time %̄k at zero of the process � �Xk�t�−Xk�t�� t ≥ 0�; see
Bertoin [4, Ch. IV] for definitions. Note that %̄k��� <� almost surely by Assumption D.
Therefore, we fix some & > 0 and denote the integer part of &−1%̄k��� by n = �&−1%̄k����. A variation

of the argument for �Rk > 0 (using the additivity of the local time) shows that �X�t�� 0 ≤ t ≤ %̄−1k �n&�� and
�X�%̄−1k �n&�+ t�−X�%̄−1k �n&��� t ≥ 0� are independent. According to Bertoin [4, Prop. IV.7(iii)], %̄−1k �n&� ↑Gk

as & ↓ 0, which proves the lemma. �

2.2. Splitting at a last-passage excursion under �↓
k . Let Hk =HX

k �= inf�t ≥ 0� sups≥t Xk�s� �=Xk�t�� be
the beginning of the first last-passage excursion, and write H = �H1� 
 
 
 �Hn�

′.
In this subsection, we study the splitting properties of Hk for some fixed k= 1� 
 
 
 � n. We suppose that 0 is

a holding point for �Xk�t�− Xk�t�� t ≥ 0�, i.e., that Rk = 0 and Sk > 0 � -almost surely. Under this condition,
the event � �Xk = 0� has strictly positive probability. Therefore, one can straightforwardly define the conditional
law �↓

k of X given �Xk = 0.
It is our aim to investigate splitting of Hk under �

↓
k , but we only have knowledge of X under � . As a first step,

it is therefore useful to give a sample path construction of the law �↓
k on the canonical measurable space ���� �.

For this, we define a process Xk↓ by

Xk↓�t�=
{
X�t� if t ∈ [

R
�j�
k � S

�j�
k

)
#

X
(
R
�j�
k

)−X((R�j�k + S
�j�
k − t)−)

if t ∈ [
S
�j�
k � R

�j�
k

)
�

(1)



Dębicki, Dieker, and Rolski: Quasi-Product Forms for Lévy-Driven Fluid Networks
632 Mathematics of Operations Research 32(3), pp. 629–647, © 2007 INFORMS

where R�0�k = 0, and for j ≥ 1,
S
�j�
k �= inf{t > R

�j−1�
k � Xk�t� �=Xk�t�

}
� R

�j�
k �= inf{t > S

�j�
k � Xk�t�=Xk�t�

}
�

In other words, Xk↓ is constructed from the coordinate process X by “reverting” the excursions of �Xk�t�−
Xk�t�� t ≥ 0�.
We have the following interesting lemma, which is the key to all results related to �↓

k . For the random-walk
analogue, refer to Doney [9].

Lemma 2.2. Consider a Lévy process X that satisfies D. If Rk = 0 and Sk > 0 � -almost surely, then Xk↓

has law �↓
k under � .

Proof. Observe that �Rk > 0, and that the postmaximum process �X�Gk+ t�−X�Gk�� t ≥ 0� has distribution
�↓
k (a proof of this uses similar arguments as in the proof of Lemma 2.1; see Millar [31, 32] for more details).
Fix some q > 0 and let eq be an exponentially distributed random variable, independent of X (obviously, one

must then enlarge the probability space). The first step is to construct the law of �X�Gq
k + t�− X�G

q
k�� 0 ≤

t < eq − G
q
k�, where G

q
k �= inf�t < eq� Xk�t� = �Xk�eq� or Xk�t−� = �Xk�eq��. By the time-reversibility of X

(Bertoin [4, Lem. II.2]), it is equivalent to construct the law of �X�F qk �−X��F
q
k − t�−�� 0 ≤ t < F

q
k �, where

F
q
k �= sup�t < eq� Xk�t�= Xk�eq� or Xk�t−�= Xk�eq��.
To do so, we use ideas from Greenwood and Pitman [13]. Let %k be the local time of �Xk�t�− Xk�t�� t ≥ 0�

at zero (since Rk = 0, S̄k > 0, we refer to Bertoin [4, Sec. IV.5] for its construction). Its right-continuous inverse
is denoted by %−1k . The X-excursion at local time s, denoted by X

s , is the càdlàg process defined by

Xs�u� �=X��%−1k �s−�+ u�∧ %−1k �s��−X�%−1k �s−�−�� u≥ 0�
If %−1k �s−�= %−1k �s�, then we let X

s be �, the zero function that serves as a cemetery. Since �Xs� s > 0� is a
càdlàg-valued Poisson point process as a result of D, one can derive (e.g., with the arguments of Lemma II.2
and Lemma VI.2 of Bertoin [4]) that the process

W �= �W�s�= �D�s��Xs�� s > 0�

is time-reversible, where D�s� �= X�%−1k �s��. After setting �q �= %−1k �eq�, it can be seen that this implies that
��D�s��Xs�� 0< s <�q� and ��D��q−�−D���q−s�−��X�q−s�� 0< s <�q� have the same distribution. In other
words, one can construct the law of �X�F qk �−X��F qk − t�−�� 0≤ t < F qk � from the law of �X�t�� 0≤ t < F qk �
by “reverting” excursions as in (1).
It remains to show that this construction is “consistent” in the sense of Kolmogorov, so that one can let q→ 0

to obtain the claim. For this, note that the family ��q� can be coupled with a single random variable through
�q = %−1k �e1/q�. �

We now study the splitting properties of Hk using the alternative construction of �
↓
k given in Lemma 2.2.

Since S�1�k is a � -stopping time with respect to the (completed) natural filtration of X, the Markov property
of X under � with respect to this filtration (Bertoin [4, Prop. I.6]) immediately yields the following analogue of
Lemma 2.1.

Lemma 2.3. Consider a Lévy process X that satisfies D. If Rk = 0 and Sk > 0 � -almost surely, then Hk is
a splitting time for X under �↓

k . Moreover, it has an exponential distribution under �↓
k .

We remark that the construction and analysis of �↓
k is the easiest under the assumption that Rk = 0 and Sk > 0

� -almost surely, which is exactly what we need in the remainder. A vast body of literature is devoted to the
case n= 1, and the measure �↓

1 is then studied under the assumption that �R1 = 0. This is challenging from a
theoretical point of view, since the condition that the process stays negative has � -probability zero. Therefore,
much more technicalities are needed to treat this case. We refer to Bertoin [3] and Doney [9] for more details.
See also Chaumont and Doney [5].

3. The � -distribution of � �X�G�. The aim of this section is to find the Laplace transform of the distribution
of � �X�G�, assuming some additional structure on the process X. Thus, in the sequel we write Xk ≺Xj if there
exists some Kkj > 0 such that Xj −KkjXk is nondecreasing almost surely.

Lemma 3.1. Suppose the Lévy process X satisfies D. If Xk ≺Xj , then Gk ≤Gj .

Proof. First note that Gk�Gj <� as a consequence of D. To prove the claim, let us assume instead that
Gj <Gk while �X�t� �= Xj�t�−CXk�t� is nondecreasing for some arbitrary C > 0. Suppose that Xk�Gk�= �Xk
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and Xj�Gj� = �Xj ; the argument can be repeated if, for instance, Xk�Gk−� = �Xk. The assumption Gj < Gk

implies that
0≤ �X�Gk�− �X�Gj�=Xj�Gk�− �Xj −C� �Xk−Xk�Gj�$≤ 0�

meaning that �Xk =Xk�Gj�. This contradicts Gj <Gk in view of the definition of Gk. �

The following proposition expresses the distribution of � �X�G� in terms of those of �X�Gk��Gk� and
�X�Gk−��Gk�. We denote the scalar product of x and y in �n by �x� y�, and we write “cpd Ps” for “compound
Poisson.” Throughout this paper, the expression

∏
j .j ×

∏
j /j ×0 should be read as �

∏
j .j�× �

∏
j /j�×0.

Proposition 3.1. Suppose that X is an n-dimensional Lévy process satisfying D and that X1 ≺X2 ≺ · · · ≺Xn.
Then for any .�/ ∈�n

+,

Ɛ e−�.�G�−�/� �X� =
n−1∏
j=1

�Rj>0 or Xj cpd Ps

Ɛ e−�
∑n
%=j .%$Gj−

∑n
%=j /%X%�Gj �

Ɛ e−�
∑n
%=j+1 .%$Gj−

∑n
%=j+1 /%X%�Gj �

×
n−1∏
j=1

�Rj=0�Xj not cpd Ps

Ɛ e−�
∑n
%=j .%$Gj−

∑n
%=j /%X%�Gj−�

Ɛ e−�
∑n
%=j+1 .%$Gj−

∑n
%=j+1 /%X%�Gj−� × Ɛ e−.nGn−/n �Xn �

Proof. First observe that the assumptions imply that the terms X%�Gj� and X%�Gj−� in the formula are
nonnegative for %≥ j , which legitimates the use of the Laplace transforms. Remark also that �Ri = 0 for i > j
whenever �Rj = 0, i.e., for some deterministic i0 we have �Ri > 0 for i≤ i0 and �Ri = 0 for i > i0.
Let us first suppose that �Rj > 0 or that Xj is a compound Poisson process. We prove that for j = 1� 
 
 
 � n−1,

Ɛ e−
∑n
%=j .%G%−

∑n
%=j /% �X% = Ɛ e−�

∑n
%=j .%$Gj−

∑n
%=j /%X%�Gj �

Ɛ e−�
∑n
%=j+1 .%$Gj−

∑n
%=j+1 /%X%�Gj �

Ɛ e−
∑n
%=j+1 .%G%−

∑n
%=j+1 /% �X% �

The key observations are that �Xj =Xj�Gj� and that G% ≥Gj almost surely for %= j� 
 
 
 � n by Lemma 3.1.
The fact that Gj is a splitting time by Lemma 2.1(i) then yields

Ɛ e−
∑n
%=j .%G%−

∑n
%=j /% �X% = Ɛ e−�

∑n
%=j .%$Gj−

∑n
%=j /%X%�Gj �e−

∑n
%=j+1 .%�G%−Gj $−

∑n
%=j+1 /%� �X%−X%�Gj �$

= Ɛ e−�
∑n
%=j .%$Gj−

∑n
%=j /%X%�Gj � Ɛ e−

∑n
%=j+1 .%�G%−Gj $−

∑n
%=j+1 /%� �X%−X%�Gj �$� (2)

The latter factor, which is rather complex to analyze directly, can be computed on choosing .j = /j = 0 in the
above display.
Repeating this argument for the case �Rj = 0 yields with Lemma 2.1(i), provided that Xj is not a compound

Poisson process,

Ɛ e−
∑n
%=j .%G%−

∑n
%=j /% �X% = Ɛ e−�

∑n
%=j .%$Gj−/j �Xj−

∑n
%=j+1 /%X%�Gj−�

Ɛ e−�
∑n
%=j+1 .%$Gj−

∑n
%=j+1 /%X%�Gj−� Ɛ e−

∑n
%=j+1 .%G%−

∑n
%=j+1 /% �X% �

It is shown in the proof of Theorem VI.5(i) of Bertoin [4] that �Xj =Xj�Gj−� almost surely, and this proves the
claim. �

In the rest of this section, the following assumption is imposed.
G For j = 1� 
 
 
 � n− 1, we have

Xj+1�t�=Kj+1Xj�t�+2j+1�t�� (3)

where �22� 
 
 
 �2n� are mutually independent nonnegative subordinators and K2� 
 
 
 �Kn are strictly positive.
Note that Assumption G implies X1 ≺X2 ≺ · · · ≺Xn. Moreover, it entails that for j = 1� 
 
 
 � n−1 and %≥ j ,

we have

X%�t�=K%
j Xj�t�+

%∑
i=j+1

K%
i 2i�t��

where we have set K%
j =

∏%
i=j+1Ki and K

j
j = 1. In other words, X% can be written as the sum of Xj and %− j

independent processes, which are all mutually independent and independent of Xj .
The following reformulation of (3) in terms of matrices is useful in §6. Let K be the upper triangular

matrix with element �i� i + 1� equal to Ki+1 for i = 1� 
 
 
 � n − 1, and zero elsewhere. Also write 2�t� �=
�21�t�� 
 
 
 �2n�t��

′, where 21�t�=X1�t�. Equation (3) is then nothing else than the identity X�t�= �I−K ′�−1·
2�t�. The matrix �I −K ′�−1 is lower triangular, and element �i� j� equals Ki

j for j ≥ i.
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The cumulant of the subordinator 2j�t� is defined as

32j �/� �=− logƐ e−/2j �1�
for /≥ 0 and j = 2� 
 
 
 � n.
The following theorem expresses the joint Laplace transform of � �X�G� in terms of its marginal distributions

and the cumulants 32 . However, except for trivial cases, the Laplace transform is not the product of marginal
Laplace transforms. Still, it can be expressed in terms of these marginal transforms in a product-type manner.
We call this a quasi-product form.

Theorem 3.1. Suppose that X is an n-dimensional Lévy process satisfying D and G. Then for any .�/ ∈�n
+,

the transform Ɛ e−�.�G�−�/� �X� equals
n−1∏
j=1

Ɛ e−�
∑n
%=j .%+

∑n
%=j+1 32% �

∑n
k=% Kk% /k�$Gj−�

∑n
%=j K%j /%$ �Xj

Ɛ e−�
∑n
%=j+1 .%+

∑n
%=j+1 32% �

∑n
k=% Kk% /k�$Gj−�

∑n
%=j+1K%j /%$ �Xj

× Ɛ e−.nGn−/n �Xn �

Proof. Let j be such that �Rj > 0 or Xj is compound Poisson. By Assumption G, we then have for a ∈�+,

Ɛ e−aGj−
∑n
%=j /%X%�Gj � = Ɛ e−aGj−�

∑n
%=j K%j /%$Xj �Gj �−

∑n
%=j+1�

∑n
k=% Kk% /k$2%�Gj �

= Ɛ�e−aGj−�
∑n
%=j K%j /%$Xj �Gj � Ɛ�e−

∑n
%=j+1�

∑n
k=% Kk% /k$2%�Gj ��Gj$�

= Ɛ e−�a+
∑n
%=j+1 32% �

∑n
k=% Kk% /k�$Gj−�

∑n
%=j K%j /%$Xj �Gj ��

The claim now follows from Proposition 3.1 and from Xj�Gj�= �Xj almost surely.
If �Rj = 0 but not a compound Poisson process, the same argument gives the joint transform of �X%�Gj−�� %=

j� 
 
 
 � n� and Gj . In the resulting formula, Xj�Gj−� can be replaced by Xj�Gj�, as outlined in the proof of
Theorem VI.5(i) in Bertoin [4]. �

The following corollary shows that Theorem 3.1 not only completely characterizes the law of � �X�G� under � ,
but also its law conditioned on one component to stay nonpositive. Indeed, let �↓

k be the law of �X�Gk + t�−
X�Gk�� t ≥ 0� for k= 1� 
 
 
 � n; it can be checked that this measure equals �↓

k as defined in §2.2 in case Rk = 0
and Sk > 0 � -almost surely. Note that �↓

k can be regarded as the law of X given that Xk stays nonpositive.

Corollary 3.1. For .�/ ∈�n
+, we have

Ɛ↓
k e

−�.� �X�−�/�G� =
n−1∏
j=k

Ɛ e−�
∑n
%=j+1 .%+

∑n
%=j+2 32% �

∑n
i=% Ki%/i�$Gj+1−�

∑n
%=j+1K%j+1/%$ �Xj+1

Ɛ e−�
∑n
%=j+1 .%+

∑n
%=j+1 32% �

∑n
i=% Ki%/i�$Gj−�

∑n
%=j+1K%j /%$ �Xj

�

Proof. Directly from Theorem 3.1 and (2). �

In particular, this corollary characterizes the law of the maximum of a Lévy process given that it stays below
a subordinator. It provides further motivation for studying the law of the vector H under �↓

k .

4. The �↓
k -distribution of H . The aim of this section is to find the Laplace transform of the distribution

of H under �↓
k under the assumption that 0 is a holding point for �Xk�t�− Xk�t�� t ≥ 0� under � .

We try to follow the same train of thoughts that led us to the results in §3. This analogy leads to Proposi-
tion 4.1, which does not yet give the Laplace transform of the distribution of H under �↓

k . Therefore, we need
an auxiliary result, formulated as Lemma 4.1, which relies on Appendix A. Finally, Proposition 4.2 enables us
to find the Laplace transform of the distribution of H under �↓

k .
As in the previous section, additional assumptions are imposed on the Lévy process X. Here, they are signifi-

cantly more restrictive. The following Assumption H plays a similar role in the present section as Assumption G
in §3. Note that it implies X1 ≺X2 ≺ · · · ≺Xn.
H Let 5= �5�t�� t ≥ 0� be a compound Poisson process with positive jumps only. For each j = 1� 
 
 
 � n,

we have
Xj�t�=5�t�− cj t�

where cj decreases strictly in j .
In the remainder of this section, we write 7 ∈ �0��� for the intensity of jumps of 5. We also set 8�n�k �=

sup�R�j�k � R
�j�
k ≤ R�1�n � and �

�n�
k �= sup�S�j�k � S�j�k ≤ R�1�n �. In particular, 8

�n�
n = R�1�n and ��n�n = S�1�n . Also, we write

for /≥ 0 and i= 1� 
 
 
 � n,
9i�/� �= logƐ e−/Xi�1�

for the Laplace exponent of −Xi. Since we assume D, 9i is strictly increasing on �+, see the proof of Corol-
lary VII.2 of Bertoin [4]. Therefore, we can define :i as the inverse of 9i. The function :i plays an important
role in this section.
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Recall that we used n splitting times to arrive at Proposition 3.1. Here, we only know that Hk is a splitting
time for X under �↓

k (see Lemma 2.3). In general, however, Hi (i < k) is not a splitting time under �
↓
k , and the

similarity with Proposition 3.1 is lost.

Proposition 4.1. Suppose the Lévy process X satisfies D. For 0 ∈�k
+, we have

Ɛ↓
k e

−∑k
j=1 0jHj = 7

7+∑k
j=1 0j

Ɛ e−
∑k−1
j=1 0j

(
8
�k�
k −8�k�j

)
�

Proof. Lemma 2.3 yields

Ɛ↓
k e

−∑k
j=1 0jHj = Ɛ↓

k e
−�∑k

j=1 0j�Hk Ɛ↓
k e

−∑k−1
j=1 0j �Hj−Hk��

In the discussion following (1), we have seen that there is a simple sample-path correspondence between the
laws �↓

k and � . This yields immediately that Hk is exponentially distributed under �
↓
k with parameter 7. It also

gives that the �↓
k -distribution of �Hj −Hk� j = 1� 
 
 
 � k− 1� is the same as the � -distribution �8�k�k − 8�k�j � j =

1� 
 
 
 � k− 1�. �

Motivated by the preceding proposition, we now focus on the calculation of the distribution of the 8�k�k −8�k�j
(that is, their joint Laplace transform). For this, we apply results from Appendix A.
The following lemma is of crucial importance, as it provides a recursion for the transform of �8�i�j+1−8�i�j � j =

1� 
 
 
 � i−1� and �8�i�j −��i�j � j = 1� 
 
 
 � i� in terms of the transform of the same family with superscript �i−1�.
The transforms of the marginals 8�i�i −��i�i and 8�i−1�i−1 −��i−1�i−1 also appear in the expression, but these transforms
are known: for 0 ≥ 0, i= 1� 
 
 
 � n (cf. the proof of Proposition A.1),

7Ɛ e−0
(
8
�i�
i −��i�i

)
= 7+0− ci:i�0�� (4)

Lemma 4.1. Suppose that X is an n-dimensional Lévy process satisfying D and H. Then for any i= 2� 
 
 
 � n,
/ ∈�i−1

+ � 0 ∈�i
+, we have the following recursion:

Ɛ e−
∑i−1
j=1 /j

(
8
�i�
j+1−8�i�j

)
−∑i

j=1 0j
(
8
�i�
j −��i�j

)

= /i−1+7Ɛ e−0i
(
8
�i�
i −��i�i

)

/i−1+7Ɛ e−���ci−1/ci�−1��7+/i−1�+�ci−1/ci�0i$
(
8
�i−1�
i−1 −��i−1�i−1

)

× Ɛ e−
∑i−2
j=1 /j

(
8
�i−1�
j+1 −8�i−1�j

)
−∑i−2

j=1 0j
(
8
�i−1�
j −��i−1�j

)
−���ci−1/ci�−1��7+/i−1�+�ci−1/ci�0i+0i−1$

(
8
�i−1�
i−1 −��i−1�i−1

)
�

Proof. Fix some i = 2� 
 
 
 � n, and consider the process Xi−1 between �
�i�
i and 8�i�i . There are several

excursions (at least one) of the process �Xi−1�t�− Xi−1�t�� t ≥ 0� away from 0 between ��i�i and 8�i�i , and we
call these excursions the �i− 1�-subexcursions. Each �i− 1�-subexcursion contains excursions of the processes
�X%�t�− X%�t�� t ≥ 0� for % < i− 1; we call these the %-subexcursions. To each �i− 1�-subexcursion, we assign
2i − 4 marks, namely two for each of the i − 2 types of further subexcursions. The first mark corresponds
to the length of the last %-subexcursion in the �i− 1�-subexcursion, and the second to the difference between
the end of the last %-subexcursion and the end of the �% + 1�-subexcursion. Observe that these marks are
independent for every �i− 1�-subexcursion between ��i�i and 8�i�i , and that their distributions are equal to those
of �8�i−1�% −��i−1�% � %= 1� 
 
 
 � i− 2� (the first marks) and �8�i−1�%+1 −8�i−1�% � %= 1� 
 
 
 � i− 2� (the second marks).
The idea is to apply Proposition A.1 to the process

Z�x� �= inf{t ≥ 0� Xi−1(��i�i )−Xi−1(��i�i + t)= x}− x

ci−1− ci
�

see Figure 1. In this diagram, excursions of �Xi−1�t�− Xi−1�t�� t ≥ 0� correspond to jumps of Z. The relevant
information on the subexcursions is incorporated into Z as jump marks.
Observe that Z is a compound Poisson process with negative drift 1/ci−1−1/�ci−1− ci� and intensity 7/ci−1,

starting with a (marked) jump at zero. The jumps of Z correspond to �i− 1�-excursions, and the above marks
are assigned to the each of the jumps. In terms of Proposition A.1, it remains to observe that 8�i�i − 8

�i�
i−1 and

8
�i�
i −��i�i correspond to ��− − TN−�/ci−1 and �−/�ci−1− ci�, respectively. �

With the recursion of Lemma 4.1, we can find the joint transform of 8�k�k − 8�k�j for j = 1� 
 
 
 � k− 1, which
is required to work out Proposition 4.1. This is done in (14) below. It is equivalent to find the transform of
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Xi–1

0

0

Z� −

�
�i�
i

8
�i�
i

slope: ci − ci−1

Figure 1. Excursions of �Xi−1�t�− Xi−1�t�� t ≥ 0� correspond to jumps of Z.

8
�k�
j+1−8�k�j for j = 1� 
 
 
 � k−1, which is the content of the next proposition. We have also added 8�k�k −��k�k for
convenience. The resulting formula has some remarkable features similar to the formula in Theorem 3.1. Most
interestingly, a quasi-product form appears here as well.
For / ∈�k−1

+ ≥ 0, and j = 1� 
 
 
 � k− 1, we define

�k
j �/� �= cj

k−1∑
%=j

(
1
c%+1

− 1
c%

)
�7+/%��

Proposition 4.2. Suppose that X is an n-dimensional Lévy process satisfying D and H. Then for any
k= 2� 
 
 
 � n, / ∈�k−1

+ , 0 ≥ 0, we have

Ɛ e−
∑k−1
j=1 /j

(
8
�k�
j+1−8�k�j

)
−0

(
8
�k�
k −��k�k

)
=

k−1∏
j=1

/j +7Ɛ e−��
k
j+1�/�+�cj+1/ck�0$

(
8
�j+1�
j+1 −��j+1�j+1

)

/j +7Ɛ e−��
k
j �/�+�cj /ck�0$

(
8
�j�
j −��j�j

) × Ɛ e−��
k
1 �/�+�c1/ck�0$

(
8
�1�
1 −��1�1

)
�

Proof. Since for %= 2� 
 
 
 � i, by definition of �k
% �/�,(

c%−1
c%

− 1
)
�7+/%−1�+

c%−1
c%

�k
% �/�=�k

%−1�/��

it follows from Lemma 4.1 that

Ɛ e−
∑%−1
j=1 /j

(
8
�%�
j+1−8�%�j

)
−��k

% �/�+�c%/ck�0$
(
8
�%�
% −��%�%

)

Ɛ e−
∑%−2
j=1 /j

(
8
�%−1�
j+1 −8�%−1�j

)
−��k

%−1�/�+�c%−1/ck�0$
(
8
�%−1�
%−1 −��%−1�%−1

) = /%−1+7Ɛ e−�k
% �/�0�

(
8
�%�
% −��%�%

)

/%−1+7Ɛ e−�k
%−1�/�0�

(
8
�%−1�
%−1 −��%−1�%−1

) �

The claim follows from this recursion (start with %= k and note that �k
k �/�= 0). �

5. Multidimensional Skorokhod problems. In the next sections, we apply results of the previous sections
to the analysis of fluid networks. Such networks are closely related to (multidimensional) Skorokhod reflection
problems, which we describe first. Subject to certain assumptions, we explicitly solve such a reflection problem
in §5.1. Section 5.2 describes the fluid networks associated to these special Skorokhod problems.
Let P be a nonnegative matrix with spectral radius strictly smaller than one. To a given càdlàg function Y

with values in �n such that Y �0� = 0, one can associate a càdlàg pair �W�L� with the following properties
(w ∈�n

+):
S1 W�t�=w+ Y �t�+ �I −P ′�L�t�, t ≥ 0,
S2 W�t�≥ 0, t ≥ 0 and W�0�=w,
S3 L�0�= 0 and L is nondecreasing, and
S4

∑n
j=1

∫ �
0 Wj�t�dLj�t�= 0.

It is known that such a pair exists and that it is unique; see Harrison and Reiman [15] for the continuous
case, Robert [35] or Whitt [37, Thm. 14.2.3] for the càdlàg case, and Kella [24] for a more general result.
It is said that �W�L� is the solution to the Skorokhod problem of Y in �n

+ with reflection matrix I − P ′ and
initial condition w.
In general, the pair �W�L� cannot be expressed explicitly in terms of the driving process Y , with the notable

exception of the one-dimensional case. However, if the Skorokhod problem has a special structure, this property
carries over to a multidimensional setting.



Dębicki, Dieker, and Rolski: Quasi-Product Forms for Lévy-Driven Fluid Networks
Mathematics of Operations Research 32(3), pp. 629–647, © 2007 INFORMS 637

5.1. A special Skorokhod problem. It is the aim of this subsection to solve the Skorokhod problem for the
pair �W�L� under the following assumptions:
N1 P is strictly upper triangular,
N2 the jth column of P contains exactly one strictly positive element for j = 2� 
 
 
 � n, and
N3 Yj is nondecreasing for j = 2� 
 
 
 � n.
In §5.2, we show that these assumptions impose a “tree” structure on fluid networks.

Theorem 5.1. Under N1–N3, the solution to the Skorokhod problem of Y in �n
+ is given by

L�t�= 0∨ sup
0≤s≤t

�−�I −P ′�−1Y �s�− �I −P ′�−1w$�

W�t�=w+ Y �t�+ �I −P ′�L�t��

where the supremum should be interpreted componentwise.

Proof. As W is determined by L and S1, we only have to prove the expression for L. By Theorem D.3 of
Robert [35], we know that Li satisfies the fixed-point equation

Li�t�= 0∨ sup
0≤s≤t

��P ′L�i�s�−wi− Yi�s�$ (5)

for i= 1� 
 
 
 � n and t ≥ 0.
As a consequence of N1, we have �I − P ′�−1 = I + P ′ + · · · + P ′n−1, and the jth row of �I − P ′�−1 is the jth

row of I +P ′ +P ′2+ · · ·+P ′j−1. Therefore, the theorem asserts that

Li�t�= 0∨ sup
0≤s≤t

[
−

i−1∑
k=0
�P ′kY �s�+P ′kw$i

]
� (6)

The proof goes by induction. For i= 1, (6) is the same equation as (5). Let us now suppose that we know that
(6) holds for i = 1� 
 
 
 � j − 1, where j = 2� 
 
 
 � n. Furthermore, let j∗ < j be such that pj∗j > 0; it is unique
by N2. Equation (5) shows that

Lj�t� = 0∨ sup
0≤s≤t

�pj∗jLj∗�s�−wj − Yj�s�$

= 0∨ sup
0≤s≤t

[(
0∨ sup

0≤u≤s
−

j∗−1∑
k=0

pj∗j �P
′kY �u�+P ′kw$j∗

)
−wj − Yj�s�

]

= 0∨ sup
0≤s≤t

[
sup
0≤u≤s

−
j∗−1∑
k=0

pj∗j �P
′kY �u�+P ′kw$j∗ −wj − Yj�s�

]
(7)

= 0∨ sup
0≤u≤t

sup
u≤s≤t

[
−

j∗−1∑
k=0
�P ′k+1Y �u�+P ′k+1w$j −wj − Yj�s�

]

= 0∨ sup
0≤u≤t

[
−

j∗∑
k=0
�P ′kY �u�+P ′kw$j

]
� (8)

where we have used N3 for the equalities (7) and (8).
The proof is completed after noting that the jth row of P ′k only contains zeroes for k= j∗ + 1� 
 
 
 � j − 1. �

Instead of working directly with W , it is often convenient to work with a transformed version, �W �=
�I − P ′�−1W . The process �W lies in a cone �, which is a polyhedron and a proper subset of the orthant �n

+.
Under the present assumptions, at least one edge of � is in the interior of �n

+ and at least one is an axis. Below,
we give an interpretation of �W .
We next establish a correspondence between the event that Wj�t� = 0 and �Wj�t� = 0 under an additional

condition.

Proposition 5.1. Suppose that N1–N3 hold, but with “nondecreasing” replaced by “strictly increasing”
in N3. Then, we have Wj�t�= 0 if and only if �Wj�t�= 0, for any j = 1� 
 
 
 � n and t ≥ 0.
Proof. For j = 1 we have Wj�t�= �Wj�t�, so the stated is satisfied; suppose therefore that j > 1. Since the

matrix �I−P ′�−1 is lower triangular and nonnegative, we straightforwardly get that �Wj�t�= 0 implies Wj�t�= 0.
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For the converse, observe that under N1–N2 (see the proof of Theorem 5.1; we use the same notation)

�Wj�t�=
j−1∑
k=0
�P ′kW $j�t�=

j∗∑
k=0
�P ′kW $j�t��

An induction argument shows that it suffices to prove that Wj�t�= 0 implies Wj∗�t�= 0. To see that this holds,
we observe that by S1 and (5), Wj�t�= 0 is equivalent to

pj∗jLj∗�t�−wj − Yj�t�= 0∨ sup
0≤s≤t

�pj∗jLj∗�s�−wj − Yj�s�$�

The right-hand side of this equality is clearly nondecreasing. Therefore, since Yj is strictly increasing by assump-
tion, we conclude that dLj∗�t� > 0, which immediately yields Wj∗�t�= 0 by S4. This completes the proof. �

5.2. Lévy-driven tree fluid networks. In this subsection, we define a class of Lévy-driven fluid networks,
which we call tree fluid networks. We are interested in the steady-state behavior of such networks.
Consider n (infinite-buffer) fluid queues, with external input to queue j in the time interval �0� t$ given by

Jj�t�. We assume that J = �J �t�� t ≥ 0� = ��J1�t�� 
 
 
 � Jn�t��
′� t ≥ 0� is a càdlàg Lévy process starting in

J �0�= 0 ∈�n
+. The buffers are continuously drained at a constant rate as long as there is content in the buffer.

These drain rates are given by a vector r ; for buffer j , the rate is rj > 0.
The interaction between the queues is modeled as follows. A fraction pij of the output of station i is imme-

diately transferred to station j , while a fraction 1−∑
j �=i pij leaves the system. We set pii = 0 for all i and

suppose that
∑

j pij ≤ 1. The matrix P = �pij � i� j = 1� 
 
 
 � n� is called the routing matrix. We assume that for
any station i, there is at most one station feeding buffer i, and that pij = 0 for j < i. The resulting network can
be represented by a (directed) tree. Indeed, the stations then correspond to nodes, and there is a vertex from
station i and j if pij > 0. We therefore use the name “tree fluid networks.” We represent such a fluid network
by the triplet �J � r�P�. Note that P satisfies N1–N2 by definition of a tree fluid network.
The buffer content process W and regulator L associated to the fluid network �J � r�P� are defined as the

solution of the Skorokhod problem of
Y �t� �= J �t�− �I −P ′�rt

with reflection matrix I − P ′. The buffer content is sometimes called the workload, explaining the notation W .
Importantly, the dynamics of the network are given by S1–S4, as the reader may verify. The process Lj can be
interpreted as the cumulative unused capacity in station j .
Associated to the processes W and L, one can also define the process of the age of the busy period: for

j = 1� 
 
 
 � n, we set
Bj�t� �= t− sup�s ≤ t� Wj�s�= 0�� (9)

and let B�t�= �B1�t�� 
 
 
 �Bn�t��′. Hence, if there is work in queue j at time t (that is, Wj�t� > 0), Bj�t� is the
time that elapsed after the last time that the jth queue was empty. If there is no work in queue i at time t, then
Bi�t�= 0. Similarly, one can also define the age of the idle period for j = 1� 
 
 
 � n:

Ij�t� �= t− sup�s ≤ t� Wj�s� �= 0��
and the corresponding vector I�t�. As a result of these definitions, Ij�t� > 0 implies Bj�t� = 0 and Bj�t� > 0
implies Ij�t�= 0 for j = 1� 
 
 
 � n. The quantities �Bj�t� and Ĩj �t� are defined similarly, but with Wj replaced by
the jth element of �W = �I −P ′�−1W .
The random variables �Wj , �Bj , and Ĩj have a natural interpretation. Indeed, let us consider all stations on a

path from the root of the tree to station j . The total content of the buffers along this path is then given by �Wj .
Consequently, �Bj and Ĩj correspond to the ages of the busy and idle periods of this aggregate buffer.
In the rest of the paper, we assume that the tree fluid network has the following additional properties:
T1 If pij > 0, then pij > rj/ri,
T2 Jj�t� are nondecreasing for j = 2� 
 
 
 � n,
T3 J is an n-dimensional Lévy process, and
T4 J is integrable and �I −P ′�−1 Ɛ J �1� < r .

An important consequence of T1 and T2 is that Y is componentwise nondecreasing, except for Y1. Consequently,
if T1 and T2 hold for a tree fluid network, then N1–N3 are automatically satisfied for the associated Skorokhod
problem. Hence, Theorem 5.1 gives an explicit description of the buffer contents in the network. Note that T4
ensures stability of the network.
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Let us now define the process

X�t� �= �I −P ′�−1Y �t�= �I −P ′�−1J �t�− rt�
In view of assumption T1, the down-stream buffer contents always grow when one of the up-stream buffers is
nonempty. Moreover, under T1, �W is itself a reflected process, that is ��W� L̃� is the solution to the Skorokhod
problem for X with reflection matrix I and initial condition �I − P ′�−1w. Therefore, each coordinate of �W
is a one-dimensional reflected process. A similar assumption facilitates the analysis in Kella [20], Kella [22,
Thm. 4.1 and Lem. 4.2], and Kella and Whitt [25].
In the next proposition, we find the steady-state behavior of the buffer content and the age of the busy (and

idle) period for the Lévy-driven tree fluid network �J � r�P�. We also consider the case where the inequality
pij > rj/ri in T1 holds only weakly (i.e. pij ≥ rj/ri), as this plays a role in priority fluid systems (see §6.3
below).
Recall the definitions of G=GX and H =HX in §§2.1 and 2.2, respectively.

Proposition 5.2. Suppose that T1–T4 hold for the tree fluid network �J � r�P�.
(i) For any initial condition W�0�=w, the triplet of vectors �W�t��B�t�� I�t�� converges in distribution to

��I −P ′� �X�GX�HX� as t→�.
(ii) If the second inequality in T1 holds only weakly, then for any initial condition W�0�= w, the triplet of

vectors �W�t�� �B�t�� Ĩ�t�� converges in distribution to ��I −P ′� �X�GX�HX� as t→�.

Proof. Throughout this proof, a system of equations like (9) is abbreviated by B�t� = t − sup�s ≤ t�
W�s�= 0�.
We start with the proof of (ii). By Theorem 5.1, we have for any t > 0

�W�t�= �x+X�t�$∨ sup
0≤s≤t

�X�t�−X�s�$�

where x= �I −P ′�−1w. Moreover, as a consequence of Proposition 5.1, we have

�B�t� = t− sup�s ≤ t� �W�s�= 0�
= t− sup

{
s ≤ t� x+X�s�= 0∧ inf

0≤u≤s
�x+X�u�$

}
= t− sup

{
s ≤ t� x+X�s�= 0∧ inf

0≤u≤t
�x+X�u�$

}
�

where the last equality is best understood by sketching a sample path of X. The supremum over an empty set
should be interpreted as zero.
This reasoning carries over to idle periods:

Ĩ �t�= t− sup
{
s ≤ t� x+X�s� �= 0∧ inf

0≤u≤s
�x+X�u�$

}
�

Due to the stationarity of the increments of �X�t�� t ≥ 0� (T3), we may extend X to the two-sided process
�X�t�� t ∈��. This leads to


�W�t�
�B�t�
Ĩ�t�


=d




�x−X�−t�$∨ sup−t≤s≤0�−X�s�$
− sup�s� − t ≤ s ≤ 0�−X�s�= �x−X�−t�$∨ sup−t≤u≤0�−X�u�$�
− sup�s� − t ≤ s ≤ 0�−X�s� �= �x−X�−t�$∨ sup−t≤u≤s�−X�u�$�


 �

Since x−X�−t�→−� almost surely by T4, this tends to


sups≤0�−X�s�$
− sup�s ≤ 0� −X�s�= supu≤0�−X�u�$�
− sup�s ≤ 0� −X�s� �= supu≤s�−X�u�$�


 �

a vector that is almost surely finite, again by T4. By time-reversibility (see Lemma II.2 of Bertoin [4]), the latter
vector is equal in distribution to � �X�GX�HX�.
The first claim follows from (ii) after noting that B�t�= �B�t� and I�t�= Ĩ �t� by Proposition 5.1. �

We remark that the above proof does not use T3 to the fullest. Indeed, for the proposition to hold, it suffices
that J has stationary increments and that it is time-reversible.



Dębicki, Dieker, and Rolski: Quasi-Product Forms for Lévy-Driven Fluid Networks
640 Mathematics of Operations Research 32(3), pp. 629–647, © 2007 INFORMS

Let us now suppose that the initial buffer content w is random. Proposition 5.2 shows, after a standard
argument, that �W�t�� is a stationary process if W�0�= w is distributed as C∗, where C∗ is the distribution of
�I −P ′� �X. We now show that this stationary distribution is unique.
Corollary 5.1. Suppose that T1–T4 hold for the tree fluid network �J � r�P�. Then C∗ is the only stationary

distribution.

Proof. Suppose there exists another stationary distribution C∗
0 �=C∗. Let W ∗

0 be the corresponding stationary
process. For any Borel set B in �n

+ and any t ≥ 0, we then have ��W ∗
0 �0� ∈ B�= ��W ∗

0 �t� ∈ B�. Therefore,
��W ∗

0 �0� ∈ B� = lim
t→���W ∗

0 �t� ∈ B�

= lim
t→�

∫ �

0
��W ∗

0 �t� ∈ B �W ∗
0 �0�=w���W ∗

0 �0� ∈ dw�

=
∫ �

0
lim
t→���W ∗

0 �t� ∈ B �W ∗
0 �0�=w���W ∗

0 �0� ∈ dw�

=
∫ �

0
���I −P ′� �X ∈ B���W ∗

0 �0� ∈ dw�= ���I −P ′� �X ∈ B��
where the second last equation is due to Proposition 5.2. This is clearly a contradiction. �

Corollary 5.1 answers, for the special case of tree fluid networks, a question from the paper of Konstantopolous
et al. [28] on the uniqueness of the stationary distribution. Note that for the queueing problem related to �J � r�P�,
the uniqueness of the stationary distribution was discussed in Kella [22]. In contrast to the setting in Kella [22],
we allow for the first component of J �t� to be a general Lévy process.
In the next section, we combine Proposition 5.2 with the results given in §§3 and 4 to study particular

networks.

6. Tandem networks and priority systems. In this section, we analyze n fluid queues in tandem, which is
a tree fluid network with a special structure. We also analyze a closely related priority system.
The tandem structure is specified by the form of the routing matrix: we suppose that P is such that pi� i+1 > 0

for i= 1� 
 
 
 � n−1, and pij = 0 otherwise. Observe that we allow pi� i+1 > 1, and that it is not really a restriction
to exclude pi� i+1 = 0; otherwise the queueing system splits into independent tandem networks.
In all of our results, we suppose that the tandem system �J � r�P� satisfies T1–T4. We rule out the degenerate

case where the first j ≥ 1 components of J are deterministic drifts, since an equivalent problem can then be
studied with the first j stations removed. We also impose the following assumptions on the input Lévy process J :
T5 J has mutually independent components, and
T6 The Lévy measure of J1 is supported on �+.
Observe that under T2–T3, T5 implies that J2� 
 
 
 � Jn are independent nonnegative subordinators.
This section consists of three parts. In §6.1, we are interested in the joint (steady-state) distribution of the buffer

contents and the ages of the busy periods for fluid tandem networks, i.e., in the distribution of �W����B����.
Section 6.2 considers the situation of a single compound Poisson input to the system. For that system, we are
also interested in the ages of the idle periods, i.e., in the vector I���. In §6.3, we analyze buffer contents and
busy periods in a priority system.

6.1. Generalities. To find the joint distribution of W��� and B���, throughout this section denoted by W
and B respectively, we rely on Proposition 5.2. This motivates the analysis of X�t�= �I − P ′�−1J �t�− rt. For
i= 2� 
 
 
 � n, we define the cumulant of Ji�t� by 3Ji �/� �=− logƐ e−/Ji�1�, /≥ 0. As in §4, we write 9i (defined
by 9i�/�= logƐ e−/Xi�1�) for the Laplace exponent of −Xi. Its inverse is again denoted by :i.
Under T2 and T6, the Lévy measure of X is supported on �n

+. Moreover, as we ruled out trivial queues in
the network, each of the components of �X has a nondegenerate distribution. Therefore, let us recall that the
following holds (see, e.g., Theorem VII.4 in Bertoin [4]): for .�/≥ 0, �.�/� �= �0�0�, / �=:i�.�, i= 1� 
 
 
 � n,
we have

Ɛ e−.Gi−/ �Xi =−ƐXi�1�
:i �.�−/
.−9i�/�

� (10)

This identity plays a crucial role in the results of this section. For notational convenience, we shall write that
(10) holds for any .�/≥ 0, without the requirements �.�/� �= �0�0� and / �=:i�.�.
Now we can formulate the main result of this subsection. We remark that the first formula also holds if J1

is not necessarily spectrally positive. For instance, it allows for phase-type downward jumps; see Dieker [7] for
the joint transform of �Xj and Gj in that case.
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Theorem 6.1. Consider a tandem fluid network �J � r�P� for which T1–T6 holds. Then for D�/ ∈�n
+, the

transform Ɛ e−�D�W �−�/�B� equals

n−1∏
j=1

Ɛ e−�
∑n
%=j+1 3J% �D%�+

∑n
%=j+1�p%−1%r%−1−r%�D%+

∑n
%=j /%$Gj−Dj �Xj

Ɛ e−�
∑n
%=j+1 3J% �D%�+

∑n
%=j+1�p%−1%r%−1−r%�D%+

∑n
%=j+1 /%$Gj−pj� j+1Dj+1 �Xj

× Ɛ e−/nGn−Dn �Xn �

Consequently, we have for D�/ ∈�n
+,

Ɛ e−�D�W �−�/�B� = −ƐXn�1�
:n�/n�−Dn
/n−9n�Dn�

×
n−1∏
j=1

:j�
∑n

%=j+1 3
J
% �D%�+

∑n
%=j+1�p%−1� %r%−1− r%�D%+

∑n
%=j /%�−Dj

:j�
∑n

%=j+1 3
J
% �D%�+

∑n
%=j+1�p%−1� %r%−1− r%�D%+

∑n
%=j+1/%�−pj� j+1Dj+1

×
n−1∏
j=1

∑n
%=j+1 3

J
% �D%�+

∑n
%=j+1�p%−1� %r%−1− r%�D%+

∑n
%=j+1/%−9j�pj� j+1Dj+1�∑n

%=j+1 3
J
% �D%�+

∑n
%=j+1�p%−1� %r%−1− r%�D%+

∑n
%=j /%−9j�Dj�

�

Proof. By Proposition 5.2(i), �W�B�=d ��I −P ′� �X�GX�. Hence we have

Ɛ e−�D�W �−�/�B� = Ɛ e−��I−P�D� �I−P ′�−1W �−�/�B� = Ɛ e−�/�G�−��I−P�D� �X�� (11)

Now note that the stability condition T4 for �J � r�P� implies D for X by the law of large numbers. Thus, to
apply Theorem 3.1 for (11), it is enough to check that G holds. Standard algebraic manipulations give

X1�t�= J1�t�− r1t
and

Xi+1�t�= pi� i+1Xi�t�+ Ji+1�t�+ �pi� i+1ri− ri+1�t
for i= 1� 
 
 
 � n− 1. Hence, G holds with Ki = pi−1� i and 2i�t�= Ji�t�+ �pi−1� iri−1− ri�t.
As a result, we know that from Theorem 3.1,

Ɛ e−�/�G�−��I−P�D� �X� = Ɛ e−�/�G�−� �D� �X�

=
n−1∏
j=1

Ɛ e−�
∑n
%=j+1 32% �

∑n
k=% Kk% �Dk�+

∑n
%=j /%$Gj−�

∑n
k=j Kkj �Dk� �Xj

Ɛ e−�
∑n
%=j+1 32% �

∑n
k=% Kk% �Dk�+

∑n
%=j+1 /%$Gj−�

∑n
k=j+1Kkj �Dk� �Xj

× Ɛ e−/nGn− �Dn �Xn�

where we have set �D= �I −P�D for notational convenience.
The reader may check that

∑n
k=j K

k
j �Dk = Dj and

∑n
k=j+1K

k
j �Dk = pj� j+1Dj+1, leading to the first claim. The

second assertion is a consequence of the first and (10). �

Theorem 6.1 extends several results from the literature on the steady-state distribution of the buffer content
for tandem Lévy networks. In particular, if J �t� = �J1�t��0�

′, P = �pij�, with p12 = 1 and zeroes elsewhere,
if one chooses /1 = /2 = 0 and D1 = 0 in Theorem 6.1, then one obtains Theorem 3.2 of Dębicki et al. [6].
Additionally, if one chooses /1 = /2 = 0 and supposes that J1 is a subordinator, we recover the results of
Kella [20].
Even if the Laplace transform of �Gj� �Xj� can be inverted, it is generally not straightforward to invert the

Laplace transform of �W�B� given in Theorem 6.1. Some progress has been recently made in case n= 2; for
a Brownian fluid system, Lieshout and Mandjes [30] calculate the distribution of W . Avram et al. [2] study a
compound Poisson setting with exponential jumps. A different type of explicit solution can be found in the work
of Harrison [14]; he gives an example closely related to the framework of the present paper.
For use in §6.3, we point out that the expression in Theorem 6.1 is Ɛ e−�D�W �−�/� �B� if the second inequality in

T1 is weak, cf. Proposition 5.2(ii).

The lengths of the busy periods. Besides the Laplace transforms of the ages B of the busy periods,
Theorem 6.1 also enables us to find the Laplace transforms of the length V of the steady-state running busy
periods. Indeed, let Di, i = 1� 
 
 
 � n denote the steady-state remaining lengths of the running busy period, so
that Vi = Bi +Di. We know that Di and Bi are equal in distribution. In fact, following for instance (Asmussen
[1, Sec. V.3]), we have

�Bi�Di�=d �UiVi� �1−Ui�Vi�� (12)

where Ui are i.i.d. and uniform on �0�1$.
For the Brownian (single-station) fluid queue, the following result is Corollary 3.8 of Salminen and

Norros [36].
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Corollary 6.1. Consider a tandem fluid network �J � r�P� for which T1–T6 holds. Then for .�/ ≥ 0,
. �= /,

Ɛ e−.Bi−/Di =−ƐXi�1�
:i�.�−:i�/�

.−/ �

Moreover, we have for .≥ 0,
Ɛ e−.Vi =−ƐXi�1�

d:i�.�

d.
�

Proof. Since the second claim follows straightforwardly from the first, we only prove the first expression.
Following (12), we have for . �= /,

�.−/�Ɛ e−.Bi−/Di = �.−/�Ɛ e−�.−/�UiVi−/Vi = �.−/�Ɛ
∫ 1

0
e−�.−/�uVi−/Vi du

= Ɛ
∫ .

/
e−uVi du= Ɛ

∫ .

0
e−uVi du− Ɛ

∫ /

0
e−uVi du�

The two identities that result upon setting /= 0 and .= 0 can be used to express the first and second expectation
in terms of the Laplace transform of Bi and Di respectively; this yields for . �= /

Ɛ e−.Bi−/Di = 1
.−/�.Ɛ e

−.Bi −/Ɛ e−/Bi $�
where we have used the equality in distribution of Bi and Di. Application of (10) completes the proof. �

6.2. A single compound Poisson input. In this subsection, we examine a tandem fluid network with a
single compound Poisson input (Kella and Whitt [25]). The following assumption formalizes our framework.
T7 pi� i+1 = 1 for i= 1� 
 
 
 � n− 1, while pij = 0 otherwise, and
T8 J1 is a compound Poisson process with positive drift d and intensity 7, and Jj ≡ 0 for j = 2� 
 
 
 � n.

Moreover, rj decreases strictly in j and Ɛ J �1� < rn.
An important consequence of T7 and T8 is that

�rj − rk�D= 9j�D�−9k�D�� (13)

which simplifies the resulting expressions in view of fact that we often deal with ratios of the fluctuation
identity (10). Interestingly, it is also possible to study (joint distributions of) idle periods under these assumptions.
The following corollary collects some results that follow from T7 and T8 and Theorem 6.1. Many interesting

formulas can be derived, but we have selected two examples for which the formulas are especially appealing.

Corollary 6.2. Consider a tandem fluid network �J � r�P� for which T7–T8 holds.
(i) For i= 1� 
 
 
 � n, and D�/≥ 0, we have

Ɛ e−DWi−/Bi =−ƐXi�1�
:i�/�−D

/+ �ri−1− ri�D
× :i−1��ri−1− ri�D+/�
:i−1��ri−1− ri�D+/�−D�

Moreover, ��Wi = 0�= ��Bi = 0�= ƐXi�1�/�d− ri�.
(ii) For i= 2� 
 
 
 � n and D�/≥ 0′, in analogy with (i)

Ɛ�e−DWi−/Bi #Wi−1 = 0$=− ƐXi�1�
d− ri−1

:i�/�−D
:i−1��ri−1− ri�D+/�−D�

Proof. To prove (i), apply Theorem 6.1 to obtain for i= 1� 
 
 
 � n,

Ɛ e−DWi−/Bi = Ɛ e−��ri−1−ri�D+/$Gi−1

Ɛ e−��ri−1−ri�D+/$Gi−1−D �Xi−1
Ɛ e−/Gi−D �Xi �

With (10), this leads immediately to the given formula after invoking (13).
We find ��Wi = 0� upon choosing D= 0 and noting that

��Wi = 0�= ��Bi = 0�= lim
/→�

Ɛ e−/Gi =−ƐXi�1� lim
/→�

:i�/�

/
= ƐXi�1�

d− ri
�

where the last equality follows from Proposition I.2 in Bertoin [4].
The second claim uses a similar argument; it follows from Theorem 6.1 that for i= 2� 
 
 
 � n

Ɛ e−DiWi−/i−1Bi−1−/iBi = Ɛ e−��ri−1−ri�Di+/i−1+/i$Gi−1

Ɛ e−��ri−1−ri�Di+/i$Gi−1−Di �Xi−1
Ɛ e−/iGi−Di �Xi �

and the numerator of the fraction tends to ��Wi−1 = 0� as /i−1 →�. Now apply (10) and (13). �
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We end this subsection with an application of the theory in §4, which enables us to study the idle periods in
a tandem fluid network satisfying T7–T8. For 0 ∈�k−1

+ , we set

�k
j �0� �= cj

k−1∑
%=j

(
1
c%+1

− 1
c%

)(
7+

%∑
p=1
0p

)
�

which is similar to the definition of �k
j in §4.

Proposition 6.1. Consider a tandem fluid network �J � r�P� for which T7–T8 holds. For 0 ∈�n
+, we have

Ɛ e−�0� I� = 1−
n∑
k=1

��Wk = 0�Ɛ↓
k

[
e−

∑k−1
%=1 0%H%�1− e−0kHk �]�

where ��Wj = 0� is given in Corollary 6.2(i), and

Ɛ↓
k e

−∑k
%=1 0%H% = 7+∑k−1

%=1 0%�1− ck/c%�− ck:1��
k
1�0��

7+∑k
%=1 0%

×
k−1∏
j=1

7+∑k−1
%=1 0%−

∑k−1
%=j+1�ck/c%�0%− ck:j+1��k

j+1�0��

7+∑k−1
%=1 0%−

∑k
%=j+1�ck/c%�0%− ck:j��

k
j �0��

� (14)

Proof. Note that T7 and T8 imply H. The first claim follows from Proposition 5.2 and the facts that for
k= 2� 
 
 
 � n,

Ɛ e−
∑k
%=1 0%H% = Ɛ e−

∑k−1
%=1 0%H% + Ɛ↓

k

[
e−

∑k−1
%=1 0%H%�1−0kHk�

]
�� �Xk = 0��

and Ɛ e01H1 = 1−Ɛ↓
1 �1− e−01H1 $�� �X1 = 0�. These identities follow after observing that Hk vanishes on the event

� �Xk = 0�, and that � �Xk = 0� is the complement of � �Xk > 0�.
Let us now prove the expression for the �↓

k -distribution of �H1� 
 
 
 �Hk�
′. From Proposition 4.1 and Proposi-

tion 4.2, we know that

Ɛ↓
k e

−∑k
%=1 0%H% = 7Ɛ e−�k

1�0�
(
8
�1�
1 −��1�1

)

7+∑k
%=1 0%

k−1∏
j=1

∑j
%=1 0%+7Ɛ e−�k

j+1�0�
(
8
�j+1�
j+1 −��j+1�j+1

)

∑j
%=1 0%+7Ɛ e−�k

j �0�
(
8
�j�
j −��j�j

) �

The proof is finished after invoking (4) and noting that for j = 1� 
 
 
 � k− 1,
ck
cj

[
7+

j∑
%=1
0%+�k

j �0�

]
= ck
cj+1

[
7+

j∑
%=1
0%+�k

j+1�0�
]
= 7+

k−1∑
%=1
0%−

k−1∑
%=j+1

ck
c%
0%�

and
ck
c1
�7+�k

1�0�$= 7+
k−1∑
%=1
0%−

k−1∑
%=1

ck
c%
0%�

as the reader readily verifies. �

6.3. A priority fluid system. In this subsection, we analyze a single station which is drained at a constant
rate r> 0. It is fed by n external inputs (“traffic classes”) J1�t�� 
 
 
 � Jn�t�, each equipped with its own (infinite-
capacity) buffer. The queue discipline is (preemptive resume) priority, meaning that for each i= 1� 
 
 
 � n, the
ith buffer is continuously drained only if first i− 1 buffers do not require the full capacity r. We call such a
system a priority fluid system.
The aim of this section is to find the Laplace transform of �W�E�, where Wj =Wj��� is the stationary buffer

content of class-j input traffic, and Ej = Ej��� is the stationary age of the busy period for class j . We impose
the following assumptions.
P1 J is an n-dimensional Lévy process with mutually independent components, and its Lévy measure is

supported on �n
+, J �0�= 0,

P2 Jj�t� are nondecreasing for j = 2� 
 
 
 � n, and
P3 J is integrable and

∑n
i=1 Ɛ Ji�1� < r.

The central idea is that W evolves in the same manner as the solution to the Skorokhod problem that
corresponds to a tandem fluid network �J � r�P�, with r = �r� 
 
 
 �r�′ and P = �pij� such that pi� i+1 = 1 for i=
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1� 
 
 
 � n− 1 and pij = 0 otherwise. This equivalence has been noticed, for instance, by Elwalid and Mitra [12].
It allows us to use the notation of §6.1.
It is important to observe that P1–P3 for the priority system implies T1–T6 for the corresponding tandem

fluid network, except that the second inequality in T1 only holds as a weak inequality. However, as remarked
in §6.1, the Laplace transform of the distribution of �W� �B� is then still given in Theorem 6.1.
The steady-state ages of the busy periods E can also be expressed in terms of the solution �W�L� to this

Skorokhod problem, but it does not always equal �B as in §6.1. To see this, notice that if class-1 traffic (highest
priority) arrives to an empty system at time t, we have W2�t�= 0, while �W2�t� > 0 so that �B2�t� > 0. However,
it must hold that E2�t�= 0.
Still, the following theorem shows that it is possible to express the distribution of �W�E� in terms of �W� �B�.
Theorem 6.2. Consider a priority fluid network for which P1–P3 holds. Then for D�/ ∈�n

+, the transform
Ɛ e−�D�W �−�/�E� equals

Ɛ e−�D�W �−�/� �B� +
n∑
j=2

Ɛ
[
e−

∑j−1
%=1 D%W%−

∑j−1
%=1 /% �B%�1− e−/j �Bj �#Wj = · · · =Wn = 0

]
�

Proof. In principle, Ej equals �Bj , except when Wj = 0. In fact, it follows from the above reasoning that

Ɛ e−�D�W �−�/�E� = Ɛ�e−D1W1−/1 �B1#W2 = · · · =Wn = 0$+
n∑
j=2

Ɛ
[
e−

∑j
%=1 D%W%−

∑j
%=1 /% �B%#Wj > 0�Wj+1 = · · · =Wn = 0

]
�

Now, use the fact that �Wj > 0� is the complement of �Wj = 0� and rearrange terms. �

If the J2� 
 
 
 � Jn are strictly increasing, it can be seen (for instance with Theorem 6.1) that

Ɛ
[
e−

∑j−1
%=1 D%W%−

∑j−1
%=1 /% �B%�1− e−/j �Bj �#Wj = · · · =Wn = 0

]= 0�
Therefore, in that case, we have the equality in distribution �W�E�=d �W� �B�.
Another important special case is when J1� 
 
 
 � Jn are compound Poisson processes, say with intensities

71� 
 
 
 � 7n respectively. Much is known about the resulting priority system, see for instance Jaiswal [19] for
this and related models. To our knowledge, the distribution of �W�E� has not been investigated. However, it is
given by Theorem 6.2 and Theorem 6.1 upon noting that 3J% �D�→ 7% as D→�. Since it is not so instructive
to write out the resulting formulas, we leave this to the reader.

Appendix A. Some calculations for a compound Poisson process with negative drift. In this appendix,
we study a compound Poisson process Z with negative drift, and derive some results on the excursions of Z−Z
from 0, just before its entrance to 0. These results are applied in §4.
Let us first fix the notation. Throughout this appendix, Z is a Lévy process on ���� ��� with Laplace

exponent

9−Z�/� �= logƐ e−/Z�1� = c/−7
∫
�+
�1− e−/z� F �dz��

where c > 0, 7 ∈ �0���, and F is a probability distribution on �0���. That is, Z is a compound Poisson
process under � with rate 7 and negative drift −c, and its (positive) jumps are governed by F . We suppose
that ƐZ�1� < 0, so that Z drifts to −�. In analogy to §4, the inverse of 9−Z is denoted by :−Z; it is uniquely
defined since 9−Z is increasing. Observe that :−Z�0�= 0.
Set T0 = 0, and let Ti denote the epoch of the ith jump of Z. To the ith jump of Z, we associate a vector of

marks, denoted by Mi ∈�m
+ (for some m ∈�+). We suppose that Mi is independent of the process T ≡ �Tn� n≥

1�, and that it is also independent of �Z�Tj�− Z�Tj−��Mj� for j �= i. However, we allow for a dependency
between Mi and Z�Ti�−Z�Ti−�. In fact, an interesting choice for Mi is Mi =Z�Ti�−Z�Ti−� (so that m= 1).
Define �− as the first hitting time of zero, and N− as the index of the last jump before �−, i.e.,

�− �= inf�t ≥ 0� Z�t�= 0�� N− = inf�n≥ 0� Z�Tn+1−�≤ 0��
Write � K for the law of Z+ K under � with initial mark M0 =M . We suppose that the initial condition �K�M�
is independent of Z, and has the same distribution as �Z�T1�−Z�T1−��M1�. Observe that both �− and N− are
� K-almost surely finite, and that (by the Markov property) the “overshoot of the first excursion” TN−+1− �− has
an exponential distribution with parameter 7.
In this appendix, it is our aim to characterize the � K-distribution of �− (excursion length), �−−TN− (excursion

“undershoot”), and MN− (mark of the last jump). Overshoots and undershoots have been studied extensively in
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the literature. However, as opposed to what we have here, these results are all related to the situation that a
Lévy process can cross a boundary by jumping over it (strictly speaking, this is the only case where the terms
“overshoot” and “undershoot” seem to be appropriate). See Doney and Kyprianou [10] for a recent contribution
and for references.
In view of the results of Dufresne and Gerber [11], it is tempting to believe that �− − TN− has an exponential

distribution. However, it turns out that this “undershoot” has a completely different distribution.

Proposition A.1. We have for /�0 ≥ 0 and L ∈�m
+,

ƐK e
−/��−−TN− �−0�−−�L�MN−� = �/+0− c:−Z�0�+7$Ɛ e−�/+0+7�K/c−�L�M�

/+7Ɛ e−�/+0+7�K/c

= �/+7ƐK e−0�− $Ɛ e−�/+0+7�K/c−�L�M�

/+7Ɛ e−�/+0+7�K/c �

To prove this proposition, we need an auxiliary result on Poisson processes. Consider a Poisson point process
N�t� with parameter C, and let M be a positive random variable, independent of N . Let A�t� be the backward
recurrence time process defined by N , that is the time from M to the nearest point to the left. The following
lemma characterizes the joint distribution of N�M�, A�M�, and M .

Lemma A.1. We have for /�0 ≥ 0 and 0≤ s ≤ 1,

Ɛ sN�M�e−/A�M�−0M = /

/+ sC Ɛ e−�/+0+C�M + sC

/+ sC Ɛ e−�0+�1−s�C$M �

Proof. We only prove the claim for 0 = 0; the general case follows by replacing the distribution of M by
the (defective) distribution of M̃ given by Ɛ e−/M̃ = Ɛ e−�/+0�M . Let U0 = 0 and U1�U2� 
 
 
 be the location of
consecutive points of N . Observe that

Ɛ sN�M�e−/A�M� =
�∑
n=0
sn Ɛ�e−/�M−Un�#0≤ M −Un ≤Un+1−Un$

=
�∑
n=0
sn
∫ �

0

∫ t

0
e−�/+C��t−x� �Un

�dx� � M �dt�=
�∑
n=0
snOn�C+/�� (15)

where
On�/� �= Ɛ�e−/�M−Un�# M ≥Un$�

Clearly, O0�/�= Ɛ e−/M . If we let B be the forward recurrence time process, we have for n≥ 1,
On�/� = Ɛ�e−/�M−Un�# M ≥Un−1$− Ɛ�e−/�M−Un�#Un−1 ≤ M < Un$

= Ɛ�e−/�M−Un−1�+/�Un−Un−1�# M ≥Un−1$− Ɛ�e−/�M−Un�#Un−1 ≤ M < Un$
= Ɛ�e/�Un−Un−1�$Ɛ�e−/�M−Un−1�# M ≥Un−1$− Ɛ�e/B�M� �N�M�= n− 1$��N �M�= n− 1�
= C

C−/�On−1�/�−��N �M�= n− 1�$�

where we used the lack-of-memory property of the exponential distribution for the last equality. After iteration,
we obtain

On�/�=
(

C

C−/
)n

Ɛ e−/M −
n−1∑
i=0

(
C

C−/
)n−i

��N �M�= i��

Therefore, taking 0< s <//C (later we may use an analytic-continuation argument), we deduce from (15) that

Ɛ�sN�M�e−/A�M�$= Ɛ e−�/+C�M
�∑
n=0

(
− sC
/

)n
−

�∑
n=1
sn

n−1∑
i=0

(
−C
/

)n−i
��N �M�= i��

The double sum in this expression can be rewritten as

− sC

/+ sC
�∑
i=0
si ��N �M�= i�=− sC

/+ sC Ɛ e−�1−s�CM �

and the claim follows. �

Lemma A.1 is the main ingredient to prove Proposition A.1.
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Proof of Proposition A.1. The crucial yet simple observation is that

ƐK e
−/��−−TN− �−0�−−�L�MN−� = ƐK�e

−/��−−TN− �−0�−−�L�MN−�#N− = 0$+ ƐK�e
−/��−−TN− �−0�−−�L�MN−�#N− ≥ 1$

= Ɛ e−�7+/+0�K/c−�L�M� + ƐK�e
−/��−−TN− �−0�−−�L�MN−�#N− ≥ 1$� (A1)

To analyze the second term, we exploit the fact that there are several excursions of Z− Z from 0. Therefore,
we set

C�t� �= inf�s ≥ 0� Z�s�−Z�0�=−t��
where an infimum over an empty set should be interpreted as infinity.
It is obvious that C is a subordinator with drift 1/c, and that it jumps at rate 7/c with jumps distributed as �−

under � K . This observation implies with Theorem VII.1 of Bertoin [4] that

:−Z�0�=
0

c
+ 7

c
�1− ƐK e

−0�−�� (A2)

Lemma A.1 can be applied to the Poisson process N constituted by the jump epochs of C, C = 7/c, and
M = K. Each jump of C corresponds to an excursion of Z− Z from 0, for which the “excursion overshoot,” the
excursion length, and the marks of the last jump are of interest. Observe that these quantities have the same
distribution as �− − TN− , �−, and MN− , respectively. Using the notation of Lemma A.1, this yields

ƐK�e
−/��−−TN− �−0�−−�L�MN−�#N− ≥ 1$= Ɛ��ƐK e

−0�−�N�K�−1e−/A�K�/c−0K/c#N �K�≥ 1$ƐK e−/��−−TN− �−0�−−�L�MN−�� (A3)

Therefore, Lemma A.1 yields

Ɛ�sN�K�−1e−/A�K�/c−0K/c#N �K�≥ 1$ = Ɛ�sN�K�e−/A�K�/c−0K/c$− Ɛ e−�7+/+0�K/c

s

= 7

7s+/�Ɛ e
−��1−s�7+0�K/c − Ɛ e−�7+/+0�K/c$�

Upon combining this with (A1) and (A3), we arrive at

ƐK e
−/��−−TN− �−0�−−�L�MN−� = �/+7ƐK e−0�− $Ɛ e−�7+/+0�K/c−�L�M�

7ƐK e−0�− +/−7Ɛ e−�7�1−ƐK e−0�− �+0�K/c +7Ɛ e−�7+/+0�K/c �

which, with the help of (A2), reduces to

�/+0− c:−Z�0�+7$Ɛ e−�/+0+7�K/c−�L�M�

/+0− c:−Z�0�−7�Ɛ e−:−Z�0�K − 1�+7Ɛ e−�/+0+7�K/c �

By definition of :−Z, we have

0 = 9−Z�:−Z�0��= c:−Z�0�+7�Ɛ e−:−Z�0�K − 1��

and the claim follows. �
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