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We study different scaling behavior of very general telecommunications cumulative input processes. The activities of a
telecommunication system are described by a marked-point process ��Tn�Zn��n∈�, where Tn is the arrival time of a packet
brought to the system or the starting time of the activity of an individual source, and the mark Zn is the amount of work
brought to the system at time Tn. This model includes the popular ON/OFF process and the infinite-source Poisson model.
In addition to the latter models, one can flexibly model dependence of the interarrival times Tn − Tn−1, clustering behavior
due to the arrival of an impulse generating a flow of activities, but also dependence between the arrival process �Tn� and
the marks �Zn�. Similarly to the ON/OFF and infinite-source Poisson model, we can derive a multitude of scaling limits for
the input process of one source or for the superposition of an increasing number of such sources. The memory in the input
process depends on a variety of factors, such as the tails of the interarrival times or the tails of the distribution of activities
initiated at an arrival Tn, or the number of activities starting at Tn. It turns out that, as in standard results on the scaling
behavior of cumulative input processes in telecommunications, fractional Brownian motion or infinite-variance Lévy stable
motion can occur in the scaling limit. However, the fractional Brownian motion is a much more robust limit than the stable
motion, and many other limits may occur as well.
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1. Introduction and the basic model. Recent analysis of broadband measurements of teletraffic shows that
the data exhibit the following characteristic properties: heavy tails, self-similarity, and long-range dependence
(LRD). A standard model for explaining these empirical facts is the ON/OFF model. In it, traffic is generated by
a large number of independent ON/OFF sources (such as workstations in a big computer space). An ON/OFF
source transmits data at a constant rate to a server if it is ON and remains silent if it is OFF. Every individual
ON/OFF source generates an ON/OFF process consisting of independent alternating ON and OFF periods. The
ON periods are iid and so are the lengths of the OFF periods. Moreover, the ON and the OFF periods for
each source are independent. Teletraffic is then generated by the superposition of a large number of these iid
ON/OFF sources. Support for this model in the form of statistical analysis of Ethernet local area network traffic
of individual sources was provided in Willinger et al. [38]. One of the conclusions of this study was that the
lengths of the ON and the OFF periods are heavy tailed and in fact Pareto-like with tail index � between one
and two. Further evidence on infinite-variance distributions in teletraffic is given in Crovella and Bestavros [5],
Crovella et al. [6], Leland et al. [24], Hernandes-Campos et al. [16], and Hernandes-Campos et al. [17], which
present evidence of infinite-variance Pareto-like tails in file lengths, transfer times, and idle times in the World
Wide Web traffic.
One of the immediate consequences of the assumption of Pareto-like tails with tail index � between one and

two is that a stationary version of the ON/OFF process of an individual source exhibits LRD in the sense that
its covariance function stays positive and is not integrable; see Heath et al. [15] for a mathematical proof. This
mathematical fact explains LRD at the individual source level, but not at the level of teletraffic. In the ON/OFF
model, teletraffic is considered as the superposition of iid individual ON/OFF processes, and its cumulative input
is the integrated superposition of the ON/OFF processes.
This cumulative input process has been the object of intensive research over the past 15 years. In particular,

limit theory for the scaled and centered cumulative input process has been employed to prove some fundamental
results about teletraffic; see Leland et al. [24], Taqqu et al. [37], Mikosch et al. [28], and Gaigalas and Kaj [12].
One of the aims of this line of research was to show that the LRD of the individual sources (which is due to the
Pareto-like ON/OFF times) can be inherited by the limit process of the cumulative input. However, depending on
the number of superimposed ON/OFF processes, one can get quite different limit processes. Mikosch et al. [28]
show that if the number of ON/OFF sources increases “fast” with time, one gets fractional Brownian motion
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with Hurst coefficient H ∈ �0	5�1�, i.e., a Gaussian process with LRD in its increments. If this number grows
“slowly” one gets an �-stable Lévy motion as weak limit of the scaled cumulative input process. This limit is a
process with stationary and independent �-stable increments. In this model, the limit process inherits the heavy
tails from the individual ON/OFF sources. However, its increments have no dependence at all, let alone LRD.
Gaigalas and Kaj [12] show in the case of “intermediate” growth that the limit is neither �-stable Lévy motion
nor fractional Brownian motion.
In this paper we consider a stationary marked-point process (MPP)

��Tn�Zn��n∈�� (1)

where we interpret · · · ≤ T−1 ≤ T0 ≤ 0≤ T1 ≤ T2 ≤ · · · as the arrival times of a packet brought to the system or
as the starting time for the activity of one source, and Zn ≥ 0 is the amount of work brought to the system at
time Tn. For example, in the popular ON/OFF model, the arrival times Tn correspond to the beginning of an ON
period and Zn is the length of the period initiated at time Tn. We assume that the point process �Tn� is simple
and has a finite intensity 
. In general, we do not assume independence between the arrival process �Tn� and
the mark process �Zn�.
The number of active sources at time t is given by the process

M�t�=∑
n∈�

I�Tn ≤ t < Tn+Zn�� t ≥ 0	 (2)

The number of sources arriving in the interval �s� t� is described by

N�s� t�=∑
n∈�

I�s < Tn ≤ t�� s < t�

and we write N�t�= N�0� t�, t ≥ 0, for the corresponding counting process. The amount of work brought into
the system in the interval �0� t� is given by the input process

A�t�=
∫ t

0
M�y�dy =∑

n∈�
�Zn ∧ �t− Tn�+ −Zn ∧ �−Tn�+�� t ≥ 0	 (3)

Assuming that the marks Zn have, under the Palm distribution, a finite mean, we will show in §2 that the process
A is well defined in the sense that it is finite for every t ≥ 0 and that it has stationary increments. In fact, A�t�
will have a finite mean, and so by the stationarity, EA�t�= �t for all t > 0. Here, � > 0 is a constant whose
meaning is the expected amount of work arriving in a time interval of unit length.
A common way of viewing the behavior of a communication system is to assume that the cumulative input

to such a system is provided by the superposition of a large number of iid individual input processes. Each one
of the input processes generates work in the system according to the model (3). Furthermore, one also speeds
up time by a large factor (i.e., adopts the bird’s-eye point of view of the system). Then the limiting behavior
of the deviation of the cumulative input process from the average is of interest when both the number of input
processes and the time scale increase.
To fix notation, let Ai, i = 1�2� � � � , be iid copies of the input process A in (3). With n input processes,

�
∑n

i=1Ai�t��t≥0 is the cumulative input process, which is sometimes also called total accumulated work. The
deviation of the cumulative input from its mean at the time scale T > 0 is the process

Dn�T �t�=
n∑
i=1
�Ai�tT �−�tT �� t ≥ 0	 (4)

We are interested in the limits of the suitably normalized sequence of the processes Dn�T as n�T →�. Such
limits quite clearly depend on the relative speed at which the number of input processes n and the timescale
T grow. For two special cases of (3), the ON/OFF model and the infinite-source Poisson model (see §3), it
has been established in Mikosch et al. [28] that if the number of input processes grows relatively slowly, under
a proper normalization the sequence

(
Dn�T

)
converges in distribution (in the M1 topology) to a stable Lévy

motion. If, on the other hand, the number of input processes grows relatively fast, a properly normalized process
Dn�T converges in distribution (in the J1 topology) to a fractional Brownian motion.
A natural question arises: To what extent is it in general true that, under a slow growth condition for the

number of input processes, the system “looks like a stable motion,” and that, under a fast growth condition
for the number of input processes, the system “looks like a fractional Brownian motion?” We address the fast
growth situation in §4. We will see that fractional Brownian, indeed, arises frequently in such situations, the key
condition being regular variation of Var�A�·�� of the input process in (3).
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Throughout, we will consider the following examples from §3:
• the ON/OFF model with regularly varying ON/OFF times, see §3.1;
• a model with iid marks Zn, independent of �Tn� (including the infinite-source Poisson model), see §3.2;
• a renewal Poisson cluster process, see §3.2.

We will use these examples for the illustration of the theory. In particular, we will study which components of
these processes cause regular variation of Var�A�·��.
The purpose of §5 is to investigate the slow growth situation of the number of input processes. Here we identify

various situations when we obtain a stable Lévy motion in the limit, but, surprisingly, fractional Brownian
motion can appear as well. This is of course impossible for the ON/OFF or the infinite-source Poisson models.
Furthermore, various unfamiliar limit processes will occur as well.
In what follows, we generalize and extend some of the standard models of telecommunications, including

the popular ON/OFF and infinite-source Poisson models, in different ways. We allow for dependence between
�Tn� and �Zn�, but also for dependence of the interarrival times Tn − Tn−1. Moreover, the models explain the
occurrence of LRD and self-similarity of the input process A and superpositions of iid copies of A by heavy-tailed
components in the structure of the processes, such as regular variation of the interarrival times, the marks Zn,
or the number of activities started at the points Tn.

2. Basic properties of the input process A. In this section we study some of the basic properties of the
process A, such as stationarity of its increments and its first- and second-moment structures. In what follows,
we will frequently make use of the Palm distribution of the stationary MPP ��Tn�Zn�� defined in (1). Our main
reference will be Baccelli and Brémaud [2]. We mention that under the Palm distribution, we have that T0 = 0
is a point of the process N with probability 1.
For convenience we list here some of the standard notation used throughout.

C Any positive constant, possibly different from line to line or formula to formula.

 Intensity of the stationary MPP ��Tn�Zn��.
 Intensity measure of the stationary MPP.
 2 Covariance measure of the stationary MPP.

 ∗ Reduced covariance measure.
m2 Second-moment measure of the stationary MPP.
P0 Palm distribution of the mark process �Zn�.

E0�Var0 Expectation and variance with respect to P0.�F Tail 1− F of the distribution function F .
FX Distribution function of X.

f ∈RVp f is regularly varying with index p.
A�B�C� � � � The generic element of a stationary sequence �Ai�, �Bi�, �Ci�, etc.

d= Equality of the finite-dimensional distributions.

2.1. Stationarity of the increments.

Lemma 2.1. The input process A defined in (3) of the stationary MPP ��Tn�Zn�� in (1) is well defined and
has stationary increments, provided that under the Palm distribution P0 the stationary marks Zn have a finite
first moment.

Proof. We start by showing that the process has stationary increments, assuming for the moment that it is
well defined. Denote by �(h� the group of left shifts of the MPP ��Tn�Zn��; see Baccelli and Brémaud [2, p. 5].
The stationarity of the point process implies that for any h≥ 0,

�A�t+h�−A�h��t≥0 =
(∑
n∈�

�Zn ∧ �t+h− Tn�+ −Zn ∧ �h− Tn�+�
)
t≥0

= (h

(∑
n∈�

�Zn ∧ �t− Tn�+ −Zn ∧ �−Tn�+�
)
t≥0

d=
(∑
n∈�

�Zn ∧ �t− Tn�+ −Zn ∧ �−Tn�+�
)
t≥0

= �A�t��t≥0	

This proves the stationarity of the increments of the process A.
Thus, it suffices to show that A�t� is finite with probability one for every t ≥ 0. To this end, we show that

EA�t� <� for every t ≥ 0. Because each term in the sum (3) defining A�t� does not exceed t, and because the
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expected number of arrivals in �0� t� is finite, it suffices to verify that

I =E

[∑
n<0

I �Tn+Zn > 0�

]
<�	 (5)

Recall that  is the intensity measure of the stationary MPP. Then, by stationarity,

I =
�∑

m=0
E

[∑
n<0

I �Tn ∈ �−m− 1�−m��Tn+Zn > 0�

]

≤
�∑

m=0
E

[∑
n<0

I �Tn ∈ �−m− 1�−m��Zn >m�

]

=
�∑

m=0
E

[∑
n∈�

I �Tn ∈ �0�1��Zn >m�

]

=
�∑

m=0
 ��0�1�× �m����	 (6)

Then for x≥ 0,
P0�Z0 > x�= 
−1∑

n∈�
P�Tn ∈ �0�1��Zn > x�= 
−1 ��0�1�× �x����	

Because we assume that the marks have a finite first moment under P0, we may conclude from the latter identity
and (6) that I <�. This concludes the proof. �

The assumption E0Z0 <� in Lemma 2.1 guaranteed that EA�t� <� for all t ≥ 0, implying A�t� <� a.s.
Without this assumption, the conclusion does not remain valid in general, as the following example shows.
Assume that �Tn� is a homogeneous Poisson process with intensity 
 and Zn are iid marks independent of the
Poisson process. Then the number of sources that arrive by time zero and remain open by time 1 (say) is Poisson
with mean 


∫ �
0 P0�Z0 > x+ 1�dx, which is finite if and only if E0Z0 <�.

2.2. First- and second-moment structure. It is easy to describe the first moment of A�t� in terms of the
intensity measure of the marked-point process.

Lemma 2.2. Assume under the Palm distribution P0 that the stationary marks Zn have a finite first moment.
Then EA�t�= t ���s� u�, s ≤ 0< s+ u�� is finite as well.

Proof. The fact that EA�t� <� for each t follows from the argument in Lemma 2.1. By stationarity,

EA�t� = tEM�0�= tE

[∑
n∈�

I�Tn ≤ 0� Tn+Zn > 0�

]

= t ���s� u�, s ≤ 0< s+ u���

as required. �

It is not easy to relate the moment properties of the stationary point process N and of the Palm distribution
of the marks to the existence of the second moment of the input A. However, in applications it is usually
straightforward to check the finiteness of the second moment of M . Next, we obtain an expression for the second
moment and the variance of A�t� in terms of the moment measures of the MPP. This will also provide us with
conditions for finite second moments.
The natural language here is that of the second-moment measure (see Daley and Vere-Jones [7, §6.4] and

certain other related measures. Assume, therefore, that the stationary MPP ��Tn�Zn�� has a second-moment
measure m2. That is, for every measurable f , �×�+ →�,

E

(∑
n∈�

f �Tn�Zn�

)2
=
∫
�2×�2+

f �t1� z1�f �t2� z2�m2�dt1�dt2�dz1�dz2�. (7)

and both sides of this equality are finite at the same time. Applying (7) to the representation (3) of A�t�, we
obtain

E��A�t��2�=
∫
�0� t�2

h�x� y�dx dy� (8)
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where
h�x� y�=

∫
�2×�2+

I �s1 ≤ x < s1+ u1� s2 ≤ y < s2+ u2�m2�ds1�ds2�du1�du2�	

In particular, the second moment of A�t� is finite if and only if the integral on the right-hand side of (8) is finite.
In this case, a convenient expression for the variance of A�t� can be derived by using the covariance measure
of the MPP (see Karr [22]) defined by

 2�ds1�ds2�du1�du2�=m2�ds1�ds2�du1�du2�− �ds1�du1� �ds2�du2�	

It follows from (8) and Lemma 2.2 that

Var�A�t��=E��A�t��2�− �EA�t��2 =
∫
�0� t�2

g�x� y�dx dy�

where

g�x� y�=
∫
�2×�2+

I �s1 ≤ x < s1+ u1� s2 ≤ y < s2+ u2� 2�ds1�ds2�du1�du2�	 (9)

By the stationarity of the MPP, the covariance measure is invariant under the transformation Ta, �
2 ×�2+ →

�2×�2+ defined by Ta�s1� s2� u1� u2�= �s1+a� s2+a�u1� u2�, any a ∈�. Therefore, the function g in (9) depends
only on the difference �y− x�. We denote (abusing the notation in the usual way) the resulting function of one
variable also by g, i.e.,

g�x�=
∫
�2×�2+

I �s1 ≤ 0< s1+ u1� s2 ≤ x < s2+ u2� 2�ds1�ds2�du1�du2�	 (10)

We now summarize our findings in the following proposition.

Proposition 2.1. The variance of the input A�t� is given by

Var�A�t�� = 2
∫ t

0
�t− x�g�x�dx	 (11)

The following is an immediate consequence of Karamata’s theorem (see Bingham et al. [4, §1.6]).

Corollary 2.1. Assume that g ∈ RV1 for some 1 ≤ 0. If 1 ∈ �−1�0�, then Var�A�·�� ∈ RV2+1. In fact, if
1 ∈ �−1�0�, then

Var�A�t��∼ 2
�1+1��2+1�

t2g�t�� t→�	

If 1<−1, then Var�A�t��∼Ct for some finite constant C, which is positive unless
∫ �
0 g�x�dx= 0.

3. Examples.

3.1. The ON/OFF process. This is perhaps the most popular model for teletraffic. Consider a single
ON/OFF source such as a workstation as described in Heath et al. [15], Leland et al. [24], Taqqu et al. [37],
Pipiras and Taqqu [31], Levy and Taqqu [25], Mikosch et al. [28], Stegeman [35], Gaigalas and Kaj [12], and
Pipiras et al. [32]. During an ON period, the source generates traffic at a constant rate one, for example, one byte
per time unit. (However, Pipiras and Taqqu [31] and Pipiras et al. [32] also allow for random rates (rewards).)
During an OFF period, the source remains silent and the input rate is zero. Let �Zi� and �Yi� be independent
sequences of iid nonnegative random variables representing the lengths of ON periods and OFF periods, respec-
tively. Here Zi and Yi with positive (negative) index represent ON/OFF periods happening after (before) time 0.
Then,

Wi =Zi + Yi� i ∈��

are the interarrival times under the Palm measure of a stationary ON/OFF process, which we will denote by �Tn�;
see Heath et al. [15] for an explicit construction. The nth mark is simply Zn+1, the length of the next ON period.
Notice that the renewal process �Tn� and the mark process �Zn� are dependent. Obviously, M�t�= 0 or 1 in the
ON/OFF model.
Assuming that �FON ∈ RV−�ON for some �ON ∈ �1�2�, the tail of Y is lighter than the one of Z, and W has a

spread-out distribution, Heath et al. [15] showed that

g�t�∼ �2OFF
��ON− 1��̃3

t �FON�t�� t→�� (12)
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where �̃=�ON+�OFF, �ON, �OFF are the expectations of W , Z, Y , respectively, and FON is the distribution Z.
By Corollary 2.1 we see that for the ON/OFF model,

Var�A�t��∼ 2
��ON− 1��ON��ON+ 1�

�2OFF
�̃3

t3 �FON�t�� t→�	

3.2. Marks independent of the point process. In this model the sequence of marks Zn and the sequence
�Tn� are independent, and �Zn� constitutes a nonnegative stationary process. By (2.2.4) in Baccelli and
Brémaud [2], the intensity measure of a stationary MPP whose marks are independent of the point process is
given by

 = 
Leb×F �
where Leb is Lebesgue measure on �, and F is the law of the marks. By Lemma 2.2,

EA�t�= 
tEZ	

A common particular case occurs when the marks form an iid sequence. In that case, we can use Proposition
6.4.IV in Daley and Vere-Jones [7] to see that we have m2�ds1�ds2�du1�du2� = m

g
2�ds1�ds2�F �du1�F �du2�

off the diagonal s1 = s2, where m
g
2 is the second-moment measure of the unmarked (ground) stationary point

process �Tn�. On the diagonal s1 = s2, we have

m2 ��s1 = s2 ∈A�×B1×B2�= 
Leb�A�F �B1 ∩B2� 	
Therefore,

 2�ds1�ds2�du1�du2�=  
g
2�ds1�ds2�F �du1�F �du2�+ d�ds1�ds2�du1�du2��

where  g2 is the covariance measure of the ground stationary point process �Tn�, and  
d is the diagonal (signed)

measure defined by

 d �A1×A2×B1×B2�= 
Leb �A1 ∩A2� �F �B1 ∩B2�− F �B1�F �B2��

for any Borel sets Ai�Bi, i= 1�2. Therefore, by (10),
g�t� = 


[
E��Z− t�+�−E�Z1 ∧ �Z2− t�+�

]+ ∫
�2
I �s1 ≤ 0� s2 ≤ t� �FZ�−s1� �FZ�t− s2� 

g
2�ds1�ds2�� (13)

where Z1 and Z2 are two independent mark variables.
In a further particular case where the ground point process N is a homogeneous Poisson process, we have

 
g
2�A×B�= 
Leb�A∩B� for any Borel sets A and B (see Karr [22]), and so (13) reduces to

g�t�= 
E�Z− t�+	

In particular, if �FZ ∈RV−� for some �> 1, we obtain from Karamata’s theorem

g�t�= 

∫ �

t

�FZ�x�dx∼



�− 1 t �FZ�t��
and by Corollary 2.1 we see that

Var�A�t��∼ 2

��− 1����+ 1� t

3 �FZ�t�� t→�	

This model has attracted a lot of attention under the name of infinite-source Poisson model in the literature on
teletraffic; see Konstantopoulos and Lin [23], Mikosch et al. [28], Guerin et al. [13], Maulik et al. [27], and
Maulik and Resnick [26].
Another model with marks independent of the point process and forming an iid sequence, more general than

the infinite-source Poisson model, occurs when the ground process is a cluster Poisson process:
• Clusters arrive according to a homogeneous Poisson process �N with rate 
0 and points 4i whose points are

enumerated such that · · ·<4−1 < 0<41 <42 < · · · 	
• At each cluster center 4n an independent copy of a finite point process Nc starts. Here


= 
0ENc�0����

and the last expectation is assumed to be finite.
If the process Nc is a randomly stopped renewal process, we obtain a model that we will here call a renewal

Poisson cluster process. This model was studied in Faÿ et al. [11], see also Hohn and Veitch [18] and Hohn
et al. [19] for some empirical studies. It can be explicitly constructed as follows. The ground process N is a
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point process with the points

Yjk = 4j +
k∑
i=1

Xji = 4j + Sjk� j ∈�� 0≤ k≤Kj� (14)

where �4j� is as above, Xji are iid nonnegative random variables, and Kj are iid integer-valued random variables
with a finite mean. We assume that �4j�, �Kj�, and �Xji� are mutually independent. Notice that N is a stationary
point process due to the stationarity of the underlying Poisson process, and its intensity is related to the Poisson
intensity via 
= 
0�1+EK�. Recall that, unless mentioned otherwise, the marks are assumed to be iid, whether
within a cluster or not.
A possible interpretation of this model goes as follows: A packet arrives at time 4j , initiating various activities

(such as opening and closing windows or splitting the arriving packet into a number Kj + 1 of smaller pieces,
represented by Xji) at times Yj0� Yj1� � � � � YjKj

.
Write �Xn� for an iid sequence with the same distribution as X, define the random walk

S0 = 0� Sn =X1+ · · ·+Xn� n≥ 1
and a measure on �2+ by

U ∗�A×B�=E

[ K∑
n1=0

I�Sn1 ∈A�
K∑

n2=0
I�Sn2 ∈ B�

]
	 (15)

Then the the covariance measure of the ground point process N is given by

 
g
2�A�= 
0

∫
�
U ∗�A+ s�ds�

where A is any Borel set in �2, and s is a vector in �2 with both components equal to s.
The behavior of the function g in (13) is seen to be dependent on the interplay between the impact of the

ground process and the marks. We refer the reader to Faÿ et al. [11] for the details on the above statements and
on more information on the behavior of the ground process and its possible limits.

4. Limiting behavior of the cumulative input process: Fast growth condition. An extreme fast growth
condition corresponds, of course, to the situation when we take the limit of a properly normalized sequence of
the processes Dn�T in (4) as n→� for a fixed timescale T , and then let the timescale T →�. We will work
under the assumption that Var�A�t�� <� for every t ≥ 0. Then it follows by the stationary increments and the
multivariate central limit theorem that as n→�,

Sn�T �t�= n−1/2Dn�T �t�
fidi→G�tT �� t ≥ 0� (16)

where
fidi→ refers to the convergence of the finite-dimensional distributions and G is a mean zero Gaussian process

with stationary increments and incremental variance

Var�G�t+h�−G�t��=Var�G�t��=Var�A�t��� t ≥ 0� h≥ 0	
Now assume that the function g ∈ RV1 for some 1 ∈ �−1�0�. From Corollary 2.1 we know that Var�A�·�� ∈

RV2+1. Write for T > 0,

GT �t�= �Var�A�T ���−1/2G�tT �� t ≥ 0	
It is immediate that the finite-dimensional distributions of GT converge to those of fractional Brownian motion.

Theorem 4.1. Assume that g ∈RV1 for some 1 ∈ �−1�0�. Then, as T →�,
�GT �t��t≥0

fidi→ �BH�t��t≥0� (17)

where BH denotes fractional Brownian motion with covariance structure

cov�BH�t��BH�s��= 0	5�t2H + s2H − �t− s�2H�� s� t ≥ 0�
and H = 1+1/2 is the corresponding Hurst coefficient.
If g ∈RV1 for some 1<−1 and ∫ �

0 g�x�dx �= 0, then (17) holds with H = 0	5, i.e., BH is Brownian motion.

For an extensive discussion of fractional Brownian motion and its properties, we refer to Samorodnitsky and
Taqqu [34, Ch. 7]. Notice that a Hurst coefficient H < 0	5 is excluded in this theorem. The relatively rare cases
when such Hurst coefficients occur correspond to the situation when

∫ �
0 g�x�dx= 0.



Mikosch and Samorodnitsky: Scaling Limits for Cumulative Input Processes
Mathematics of Operations Research 32(4), pp. 890–919, © 2007 INFORMS 897

Example 4.1. For the ON/OFF model, under the assumptions in §3, it follows from (12) that g ∈RV1 with
1= 1−�. Hence, (17) holds with H = �3−��/2. This result was proved in the ON/OFF case in the celebrated
papers (Leland et al. [24], Taqqu et al. [37]).
We now proceed to investigate how fast the number n of input processes should grow relative to the timescale

to preserve the convergence to fractional Brownian motion appearing in Theorem 4.1. The following language
will be used. In a system with n input processes we will let the timescale be 
n. Fast growth for the number of
input processes translates, then, into sufficiently slow growth for the scale 
n.
The next result gives sufficient conditions on the rate of growth of 
n such that a properly normalized sequence

of processes �Dn�T � in (4) converges to the same fractional Brownian motion limit as in the extreme fast growth
situation of Theorem 4.1. Furthermore, it turns out that in many cases the limit exists in the sense of weak
convergence in ��0���.
For future use, we denote

S̃n�t�= �nVar�A�
n���
−1/2Dn�
n

�t�	

Theorem 4.2. Assume g ∈ RV1 for some 1 ≤ 0 and that the stationary number of open sources in (2)
satisfies E��M�0��2+=� <� for some => 0.
(i) If 1 ∈ �−1�0� or 1=−1 and ∫ �

0 g�x�dx=� and for some =′ <=


n = o�n1/��1��1+2/=
′���� (18)

then with H = 1+1/2

�S̃n�t��t≥0
fidi→ �BH�t��t≥0	 (19)

Moreover, if (18) holds for some =′ <min�2� =�, then (19) can be extended to convergence in ��0���.
(ii) Suppose that 1<−1 or 1=−1 and ∫ �

0 �g�x��dx <�. If ∫ �
0 g�x�dx �= 0, and


n = o�n1/�1+2/=��� (20)

then (19) holds with H = 0	5. The convergence can be strengthened to hold in ��0��� if (20) holds for
0<=≤ 2 or if => 2 and


n =O�
√
n�	 (21)

Proof. An application of the Hölder inequality and stationarity of the process M yields

E��A�t�−�t�2+=� ≤ t1+=
∫ t

0
E��M�y�−��2+=� dy

= t2+=E��M�0�−��2+=�	 (22)

Using this estimate, Corollary 2.1, the growth conditions (18) and (20) and the Potter bounds (see, e.g.,
Resnick [33]), we see that the Lyapunov condition

lim
n→�n

−=/2E�A�
n�−�
n�2+=
�Var�A�
n���1+=/2

= 0� (23)

is satisfied. Hence, according to classical central limit theory (e.g., Petrov [30]), S̃n�t� satisfies the central limit
theorem for every t ≥ 0.
The proof of the convergence of the finite-dimensional distributions to a Gaussian limit G is completely analo-

gous by employing the Cramér-Wold device. By Corollary 2.1, Var�A�·�� is regularly varying. This immediately
implies that the one-dimensional marginal distributions of S̃n converge to those of BH . Because S̃n, and hence
the limiting process, have stationary increments, the covariance structure of the limiting process and hence its
finite-dimensional distributions, are completely determined by its one-dimensional marginal distributions. We
obtain, thus, convergence of the finite-dimensional distributions in (19).
For functional convergence it suffices to show convergence in ��0� r� for every r > 1. We restrict ourselves

to prove tightness in ��0�1� in order to show the method. We will check that for some A> 1 and C > 0,

E��S̃n�t�− S̃n�s��2+=�≤C�t− s�A (24)

for all s� t ∈ �0�1�; see, e.g., Theorem 12.3 in Billingsley [3]. Because the processes S̃n have stationary incre-
ments, it is enough to prove (24) for s = 0 and t ∈ �0�1�.
Let J = �log�2+ =�/ log2� − 1. For i = 1� � � � � n let B0� i�t� = Ai�t�− �t and for j = 1� � � � � J , Bj� i�t� =

�Bj−1� i�t��2−E��Bj−1� i�t��2�, t ≥ 0. It is clear from (22) and the definition of J that these are well-defined zero
mean processes. We now repeatedly use the Burkholder-Davis-Gundy inequality (see, e.g., Nualart [29, p. 236])
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and the bound �a+ b�p ≤ 2p−1�ap + bp� for a�b ≥ 0 and p≥ 1 to obtain

E

[∣∣∣∣
n∑
i=1
�Ai�
nt�−�
nt�

∣∣∣∣
2+=]

≤ CE

[∣∣∣∣
n∑
i=1
�B0� i�
nt��

2

∣∣∣∣
�2+=�/2]

≤ C�nE��B0�1�
nt��
2���2+=�/2+CE

[∣∣∣∣
n∑
i=1

B1� i�
nt�

∣∣∣∣
�2+=�/2]

≤
J−1∑
j=0

C
(
nE��Bj�1�
nt��

2�
)�2+=�/2j+1 +CE

[∣∣∣∣
n∑
i=1

BJ� i�
nt�

∣∣∣∣
�2+=�/2J ]

	

A simple inductive argument shows that for all j = 0� � � � � J − 1,
E
(
�Bj�1�t��

2
)≤CE

(
�B0�1�t��

2j+1)	 (25)

If J ≥ 2 (which is equivalent to = > 2), then for j = 1� � � � � J − 1 we have, using (25) and Hölder’s inequality
as in (22),

�nVar�A�
n���
−�1+=/2� (nE(�Bj�1�
nt��

2
))�2+=�/2j+1 ≤ �nVar�A�
n���

−�1+=/2�C
(
n�
nt�

2j+1)�2+=�/2j+1
≤ Ct2+=

(

2n

Var�A�
n��

)1+=/2
n�2+=�/2j+1

n�2+=�/2

≤ Ct2+=
(


2n
Var�A�
n��

)1+=/2
n−�2+=�/4

(because j ≥ 1). Under the stronger assumptions the n-dependent coefficient is a bounded function of n and,
hence,

�nVar�A�
n���
−�1+=/2� (nE(Bj�1�
nt�

2
))�2+=�/2j+1 ≤Ct2+= (26)

for j = 1� � � � � J − 1.
Furthermore, using the Potter bounds (if 1 ∈ �−1�0�) and either (18) or (20), we see that there is u0 > 0 such

that, given C > 0 small enough, for all n large enough, and t ∈ �0�1� such that 
nt > u0, we have

�nVar�A�
n���
−�1+=/2� (nE(�B0�1�
nt��2))�2+=�/2 ≤Ct2H�1+=/2�−C	

Note that 2H�1 + =/2� − C > 1 if C is small enough. For such C > 0, now consider the case 
nt ≤ u0.
It follows from (11) that Var�A�t�� ≤ Ct2 for all t > 0 and that, under our assumptions, Var�A�t�� ≥ Ct
for all t > 0 large enough (to see that the latter claim is true in the case 1 = −1, write (11) in the form
Var�A�t��= 2 ∫ t

0 �
∫ y

0 g�x�dx�dy and use the assumption that the integral of g diverges to infinity). Therefore,
for all n large enough and t such that 
nt ≤ u0, we have

�nVar�A�
n���
−�1+=/2� (nE(�B0�1�
nt��2))�2+=�/2 ≤ C

(

nt

2
)1+=/2 ≤Ct1+=/2	

We conclude that there is A> 1 such that for all n large enough and t ∈ �0�1�,
�nVar�A�
n���

−�1+=/2� (nE(�B0�1�
nt��2))�2+=�/2 ≤CtA	 (27)

Finally, once again using the Burkholder-Davis-Gundy inequality, the definition of J , and the triangle inequal-
ity, we see that

E

[∣∣∣∣
n∑
i=1

BJ� i�
nt�

∣∣∣∣
]�2+=�/2J

≤ CnE
∣∣BJ�1�
nt�

∣∣�2+=�/2J

≤ CnE
∣∣BJ−1�1�
nt�

∣∣�2+=�/2J−1 ≤ · · · ≤CnE
∣∣B0�1�
nt�∣∣�2+=� �

where in the last steps we used Jensen’s inequality. Using the bound in (22), we see that

�nVar�A�
n���
−�1+=/2�E

∣∣∣∣
n∑
i=1

BJ� i�
nt�

∣∣∣∣
�2+=�/2J

≤ Ct2+=n−=/2
(


2n
Var�A�
n��

)1+=/2
	

Because under our assumptions the n-dependent coefficient is a bounded function of n, we conclude that

�nVar�A�
n���
−�1+=/2�E

∣∣∣∣
n∑
i=1

BJ� i�
nt�

∣∣∣∣
�2+=�/2J

≤Ct2+= (28)

for all n and t ∈ �0�1�.
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The inequality (24) now follows from (26)–(28), and so we have established the weak convergence. �

4.1. Gaussian limits in the ON/OFF model. Recall the ON/OFF model from §3.1. For 1 < � < 2, the
relation (12) established in Heath et al. [15] shows that g ∈ RV1 for 1 = 1 − �. In this case, we have
E��M�0��2+=� <� for all = > 0. Theorem 4.2 applies with limit BH , H = �3− ��/2. Condition (18) on the
growth of �
n� turns into 
n = o�n1/��−1+D�� for any D> 0. It was shown in Mikosch et al. [28] that this condition
can be weakened to 
2n/Var�A�
n��= o�n�.

4.2. Gaussian limits in the model with iid marks independent of the point process. Recall the model
with iid marks independent of the point process, introduced in §3.2. To apply Theorem 4.2, we need to verify
that E��M�0��2+=� <� for some = > 0 and that the function g is regularly varying. The following result gives
sufficient conditions for that; it is convenient to state it in terms of the reduced covariance measure 
 ∗ of the
unmarked point process. Recall that 
 ∗ is a signed measure on � such that for a measurable function h∫

�2
h�s1� s2� 

g
2�ds1�ds2�=

∫
�
du
∫
�
h�u�u+ s� 
 ∗�ds��

provided the integrals are well defined, see Karr [22].

Proposition 4.1. Assume �FZ ∈ RV−� for some � > 1 and E��N�0�1��2+=� < � for some = > 0. Then
E��M�0��2+=� <�.
Moreover, assume that

gh�t�=
∫
�
h�t− s� 
 ∗�ds�= o�t �FZ�t�� as t→�, (29)

with h�t�= ∫ �
0

�FZ�u� �FZ�u+ �t��du� t ∈�	 Then g ∈RV1 for 1= 1−�.
If, on the other hand,

gh ∈RV( for some ( ∈ �0��− 1�� (30)

then g ∈RV1 with 1=−(.
In both cases, the convergence to fractional Brownian motion in Theorem 4.2 holds.

We observe that the dominated convergence theorem implies

h�t�∼EZ �FZ�t� as �t�→�	 (31)

Proof. Observe that in the decomposition (13) of g, for the first term, by Karamata’s theorem, 
E�Z− t�+ ∼

��− 1�−1t �FZ�t�. For the second term,

E�Z1 ∧ �Z2− t�+�≤EZ1I �Z2 > t�=EZ �FZ�t�= o�t �FZ�t��	
Finally, the third term in (13) can be rewritten with the reduced covariance measure 
 ∗ as follows∫

�
du
∫
�

 ∗�ds�I �u≤ 0� u+ s ≤ t� �FZ�−u� �FZ�t− �u+ s��

=
∫
�

 ∗�ds�

∫ 0∧�t−s�
−�

�FZ�−u� �FZ�t− �u+ s��du

=
∫
�

 ∗�ds�

∫ �

0

�FZ�u� �FZ�u+ �s− t��du= gh�t�	

Now the proposition is a consequence of the following lemma. �

Lemma 4.1. Assume 0<EZ <� and let =≥ 1. Then E��M�0��=� <� if and only if E��N�0�1��=� <�.
Proof. The necessity of the condition E��N�0�1��=� <� is obvious. The key to the proof of sufficiency is

the observation that the random variables

Bm =∑
n∈�

I �Tn ∈ �−m− 1�−m��Zn >m� � m= 0�1�2� � � � �

are independent binomially �Dm� �FZ�m�� distributed, conditionally on �Dm�, where Dm = N�−m− 1�−m� and
FZ is the distribution of the iid marks Zn. Notice that �Dm� is a stationary process. Now observe that

M�0�≤∑
n∈�

�∑
m=0

I �Tn ∈ �−m− 1�−m��Zn >m�=
�∑

m=0
Bm	
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Assume = ∈ �k� k+ 1� for some integer k≥ 1. Then, by Hölder’s inequality, conditionally on �Dl�,

E��M�0��=� ≤ E

( �∑
m=0

Bm

)=

= E

( �∑
m1=0

· · ·
�∑

mk+1=0
Bm1

· · ·Bmk+1

)=/�k+1�

≤ E

( �∑
m1=0

· · ·
�∑

mk+1=0
E�Bm1

· · ·Bmk+1 � �Dl��

)=/�k+1�
	

There is a finite number of possibilities such that the subscripts m1� � � � �mk+1 coincide. Therefore, it is enough
to prove that for every j ≥ 1 and n1 ≥ 1� � � � � nj ≥ 1, n1+ · · ·+ nj = k+ 1,

E

( �∑
m1=0

E�Bn1
m1

�Dm1
� · · ·

�∑
mj=0

E�B
nj
mj

�Dmj
�

)=/�k+1�
<�	 (32)

A straightforward induction argument shows that if X is a binomial random variable with parameters n and p,
then for every d ≥ 1 there is a finite constant Cd such that EX

d ≤ Cd�np+ �np�d�	 Therefore, (32) will follow
once we check that for all d1 ≥ 1� � � � � dj ≥ 1, d1+ · · ·+dj ≤ k+ 1,

E

( �∑
m1=0

Dd1
m1
� �FZ�m1��d1 · · ·

�∑
mj=0

D
dj
mj
� �FZ�mj��

dj

)=/�k+1�
<�	

To this end, note that

E

( �∑
m1=0

Dd1
m1
� �FZ�m1��d1 · · ·

�∑
mj=0

D
dj
mj
� �FZ�mj��

dj

)=/�d1+···+dj �
≤

j∏
i=1

(
E

( �∑
mi=0

Ddi
mi
� �FZ�mi��

di

)=/di
)di/�d1+···+dj �

�

and so we only need to check that each term in the product is finite. Suppose first that =/di ≥ 1. Write

p=
�∑

m=0
� �FZ�m��di �

and notice that p <�. Then, by Lyapunov’s inequality and by stationarity of �Dm�,

E

( �∑
mi=0

Ddi
mi
� �FZ�mi��

di

)=/di

= p=/diE

( �∑
mi=0

Ddi
mi
� �FZ�mi��

di /p

)=/di

≤ p=/di
�∑

mi=0
ED=

mi
� �FZ�mi��

di /p

= p=/diE�N�0�1��= <��

as required. The case =/di < 1 is possible only when j = 1 and d1 = k+ 1. In this case,

E

( �∑
m1=0

Dk+1
m1

� �FZ�m1��k+1
)=/k+1

≤ E
�∑

m1=0
D=

m1
� �FZ�m1��=

= E��N�0�1��=�
�∑

m1=0
�FZ�m1�= <�

as well. This proves the statement. �

4.3. Gaussian limits in the Poisson cluster model. The simplest case is that of the infinite-source Poisson
model of §3.2. Because for a rate 
 Poisson process 
 ∗ = 
=0 (see Karr [22]), we see that gh = h, and so (29)
holds. Therefore, Theorem 4.2 applies with limit BH , H = �3−��/2 if 1<�≤ 2 and H = 1/2 if �> 2. (It is
easy to check that here

∫ �
0 g�x�dx > 0.)

As in the ON/OFF case, condition (18) on the growth of �
n� becomes 
n = o�n1/��−1+D�� for any C > 0, and
it is known that this can be relaxed to 
2n/Var�A�
n��= o�n�, see Mikosch et al. [28].
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For the general Poisson cluster model of §3.2, the scaling limits depend, mostly, on the relation between the
tails of the marks and cluster sizes. However, the tails of the interarrival times within each cluster also play
a role.
We start with the case where the tails of the marks are heavy relative to those of the cluster sizes.

Proposition 4.2. (i) Suppose that �FZ ∈ RV−� for some 1 < � < 2, that EK( < � for some ( >
max���3− ��, and EX <�. Then for any sequence �
n� satisfying 
n = o�n1/��−1+D�� for some C > 0, the
convergence (19) to a fractional Brownian motion BH holds with H = �3−��/2.
(ii) Suppose that �FZ ∈RV−� for some �≥ 2. Assume that EK2 <� and that

P�SL > t�= o�t �FZ�t�� as t→�, (33)

where L is a random variable independent of �Xn� with distribution

P�L= k�= (k/G=E�K− k+ 1�+/G� k≥ 1� G=
�∑
l=1

(l	 (34)

Then for any sequence �
n� satisfying 
n = o�n1/�1+D�� for some C > 0, the convergence (19) to a Brownian
motion (H = 1/2) holds (assuming that ∫ �

0 g�x�dx �= 0 if ∫ �
0 �g�x��dx <�).

The quantity G is finite because EK2 <� in part (2) of the proposition, and so L is a well-defined random
variable. Bounds on the tail of SL are readily available in many standard cases; see, for example, Embrechts
et al. [10, Theorem A3.20] or Faÿ et al. [11].
Proof. (1) We use Proposition 4.1. Observe first that E��N�0�1��2+=� <� for all => 0; see Faÿ et al. [11].

Next we study the function gh. It is straightforward to check that for the Poisson cluster model the reduced
covariance measure is given by


 ∗ = 
E

[ K∑
n1=0

K∑
n2=0

=Sn2−Sn1

]
�

where, as usual, =x is a point mass at x. Therefore, the function gh in (29) can be written, after some algebra,
in the form

gh�t� = 
E

[ K∑
n1=0

K∑
n2=0

h�t+ Sn2 − Sn1�

]

= 
�EK+ 1�h�t�+
E

[ K∑
n1=0

K∑
n2=n1+1

h�t+ Sn2 − Sn1�

]
+
E

[ K∑
n2=0

K∑
n1=n2+1

h�t+ Sn2 − Sn1�

]

= 
�EK+ 1�h�t�+
E

[ K∑
k=1

�K− k+ 1�
∫ �

0

�FZ�x�P�Z > x+ t+ Sk�dx

]

+
E

[ K∑
k=1

�K− k+ 1�
∫ �

0

�FZ�x�P�Sk ≤ x+ t ≤ Sk +Z�dx

]

= 
�EK+ 1�h�t�+
g2�t�+
g3�t�� t ≥ 0	 (35)

We start by estimating the function g2. Write

Ik�t�=
∫ �

0

�FZ�x�P�Z > x+ t+ Sk�dx	

Then

g2�t� = E

[
I�K ≤ t�

K∑
k=1

�K− k+ 1�Ik�t�
]
+E

[
I�K > t�

K∑
k=1

�K− k+ 1�Ik�t�
]

= g21�t�+ g22�t�	 (36)

Because Ik�t�≤ h�t� for all k≥ 1 and t > 0, we have for ( < 2
g21�t�≤E�K2I�K ≤ t��h�t�=E�K(�K2−(I�K ≤ t���h�t�≤EK(t2−(h�t��
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and for ( ≥ 2 we have g21�t�≤EK2h�t�. Because ( > 1, we see by (31) that

g21�t�= o�t �FZ�t�� as t→�. (37)

Further,

g22�t�≤E�KI�K > t��
�∑
k=1

Ik�t�≤EK(t1−(th�t�+EK(t1−(
∑
k>t

Ik�t�	 (38)

We already know that the first term on the right-hand side of (38) is of a smaller order than t �FZ�t�. For the
second term we need a different bound on Ik�t�. First of all, the fact that X1 > 0 a.s. implies (via an exponential
Markov inequality) that there is a> 0 and 0<A< 1 such that P�Sk < ka�≤ Ak for all k large enough. Therefore,
for all k large enough,

Ik�t�≤ Akh�t�+ �FZ�ak�	
Because by Karamata’s theorem for some constant c > 0,

t1−(
∑
k>t

�FZ�ak�∼ ct2−( �FZ�at�= o�t �FZ�t�� as t→��

we conclude that g22�t�= o�t �FZ�t��, and then also by (36) and (37),
g2�t�= o�t �FZ�t�� as t→�. (39)

Next we estimate the function g3 in (35). We start with the case 1<�< 2. Write

g3�t�=
�∑
k=1

(k

∫ �

0

�FZ�x�P�Sk ≤ x+ t ≤ Sk +Z�dx� (40)

where �(k� is defined in (34). Under the assumption EK
( <� for ( > 1, we see that for some C > 0, (k ≤

Ck−�(−1� for all k≥ 1. Therefore,

g3�t� ≤ C
∫ �

0

�FZ�x�dx
∫ �

0

[ �∑
k=1

k−�(−1�P�x+ t− y < Sk ≤ x+ t�

]
FZ �dy�

= C
∫ �

0

�FZ�x�dx
∫ �

0
�U �x+ t�−U��x+ t− y�+��FZ �dy�� (41)

where for x≥ 0
U�x�=

�∑
k=1

k−�(−1�P�Sk ≤ x�	

We may assume, without loss of generality, that ( < 2. It follows from Theorem 2 in Alsmeyer [1] that

U�x�−U�x− 1�≤Cx−�(−1� (42)

for all x large enough (because only an upper bound is required, the assumption of nonarithmetic distribution
in Alsmeyer [1] is not needed). Write the right-hand side of (41) as

C
∫ �

0

�FZ�x�dx
∫ t/2

0
�U �x+ t�−U�x+ t− y��FZ �dy�

+C
∫ �

0

�FZ�x�dx
∫ �

t/2
�U �x+ t�−U��x+ t− y�+��FZ �dy�= a�t�+ b�t�	

We have by (42)

a�t� ≤ C
∫ �

0

�FZ�x�dx
∫ t/2

0
�U �x+ t�−U�x+ t−�y���FZ �dy�

= C
∫ �

0

�FZ�x�dx
∫ t/2

0

[ �y�∑
j=1
�U�x+ t− �j − 1��−U�x+ t− j��

]
FZ �dy�

≤ C
∫ �

0

�FZ�x�dx
∫ t/2

0

[ �y�∑
j=1
��x+ t− j�−�(−1��

]
FZ �dy�

≤ CEZ
∫ �

0
�x+ t�−�(−1� �FZ�x�dx

≤ C�EZ�2t−�(−1� = o�t �FZ�t�� as t→� (43)
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because ( > �. Furthermore, by Alsmeyer [1],

b�t� ≤ �FZ�t/2�
∫ �

0

�FZ�x�U�x+ t�dx

≤ C �FZ�t/2�
∫ �

0

�FZ�x��x+ t�2−( dx

≤ Ct2−(P�Z > t�= o�t �FZ�t�� as t→� (44)

because ( > 3−�. It follows from (41), (43), and (44) that

g3�t�= o�t �FZ�t�� as t→�. (45)

Now the statement (29) follows from (35), (31), (39), and (45). This proves the statement of the proposition in
the case 1<�< 2.
(2) For this part we only need to prove (45). We have by (40)

g3�t�=C
∫ �

0

�FZ�x�P�SL ≤ x+ t ≤ SL+Z�dx�

and so it is enough to check that P�SL ≤ t ≤ SL+Z�= o�t �FZ�t�� as t→�. This clearly follows if∫ t

0
P�t− z < SL ≤ t�FZ �dz�= o�t �FZ�t�� as t→�.

This, however, is an immediate consequence of (33), and so the proof of the proposition is complete. �

More common in real-life teletraffic data is the situation when the cluster size K is heavy tailed. We give a
limit theorem in one such situation, when the tails of K dominate those of the marks. Such a model was studied
in Faÿ et al. [11] and applied to real-life and simulated data. In this case the scaling limit is determined by the
tail of K, as the following result shows.

Proposition 4.3. Assume that �FK ∈RV−� for some � ∈ �1�2�, and that �FZ�t�= o� �FK�t�� as t→�. Assume,
further, that X has a nonarithmetic distribution and EX < �. Then for any sequence �
n� satisfying 
n =
o�n1/��−1+D�� for some C > 0, the convergence (19) to a fractional Brownian motion holds with H = �3−��/2.

Proof. Here we will directly use Theorem 4.2. We still have E��M�0��=� <� for all => 0, so we only need
to check the regular variation of the function g in (9). In fact, we will prove that

g�t�∼ 


�− 1 �EX�
�−2�EZ�2t �FK�t� (46)

as t→�. For the first term on the right-hand side in (13) we have

E��Z− t�+�=
∫ �

t
P �Z > x�dx= o�1�

∫ �

t
P �K > x�dx= o�tP�K > t��	 (47)

Further, E�Z1 ∧ �Z2 − t�+� ≤ E��Z − t�+� = o�tP�K > t��	 For the third term on the right-hand side in (13),
equal to gh�t�, we use the decomposition in (35). Note that by (31), h�t�= o�P�K > t��= o�tP�K > t��	 The
same argument as in the proof of Proposition 4.2 shows that

g2�t�= o�tP�K > t��	 (48)

To estimate the function g3 we use (40). Write

g3�t� =
∫ �

0

�FZ�x�dx
∫
y≤t/2

�UG�x+ t�−UG��x+ t− y�+��FZ �dy�

+
∫ �

0

�FZ�x�dx
∫
y>t/2

�UG�x+ t�−UG��x+ t− y�+��FZ �dy�

= g3m�t�+ g3r �t��

where

UG�x�=
�∑
k=1

(kP�Sk ≤ x�	
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By Karamata’s theorem (k ∼ ��− 1�−1kP�K > k� as k→�, and applying Theorem 2 in Alsmeyer [1], we see
that for every h> 0

UG�t+h�−UG�t�∼
h

��− 1��EX�2−� tP�K > t� (49)

as t→�. In particular, for all t large enough, for every x > 0 and y ≤ t/2,

UG�x+ t�−UG��x+ t− y�+� ≤ UG�x+ t�−UG�x+ t−�y��

=
�y�∑
j=1
�UG�x+ t− j + 1�−UG�x+ t− j��

≤ C
�y�∑
j=1
�x+ t− j�P�K > x+ t− j�

≤ C�y� sup
z≤t/2

zP�K > z�≤C�y��t/2�P�K > t/2�≤C�y�tP�K > t�	

Therefore, by the dominated convergence theorem and (49)

lim
t→�

g3m�t�

tP�K > t�
=
∫ �

0

�FZ�x�dx
∫ �

0
lim
t→�

UG�x+ t�−UG�x+ t− y�

tP�K > t�
FZ �dy�

= ��− 1�−1�EX��−2�EZ�2	 (50)

Further, by (49)

g3r �t� ≤ P�Z > t/2�
∫ �

0

�FZ�x�UG�x+ t�dx

≤ CP�Z > t/2�
(∫

x≤t
+
∫
x>t

)
�x+ t�P�K > x+ t�P�Z > x�dx

= C�g3r1�t�+ g3r2�t��	

Now,
g3r1�t�≤CP�Z > t/2�tP�K > t�= o�tP�K > t���

and by Karamata’s theorem,

g3r2�t� ≤ CP�Z > t/2�
∫ �

t
xP�K > x�P�Z > x�dx

≤ CP�Z > t/2�
∫ �

t
x�P�K > x��2 dx

∼ CP�Z > t/2�t2�P�K > t��2 = o�tP�K > t��	

Therefore,
g3r �t�= o�tP�K > t�� (51)

as t→�. Now (46) follows from (47)–(48), (50), and (51). This completes the proof of the proposition. �

5. Limiting behavior of the cumulative input process: Slow growth condition. The extreme slow growth
condition corresponds to the situation when we take the limit of a properly normalized sequence of processes
�Dn�T � in (4) as we speed up time with T →� for a fixed number n of sources. Under certain assumptions this
limit will exist. In the literature it is almost invariably a stable Lévy motion, i.e., a process with independent
and stationary infinite-variance increments. Results of this type were obtained in Leland et al. [24], Taqqu et al.
[37], Willinger et al. [38], and Konstantopoulos [23] for the ON/OFF model and further extended (also to
superpositions of iid copies of the input A) in Mikosch et al. [28] and Pipiras et al. [32] for the ON/OFF and the
infinite-source Poisson models. We will see below that the limit may be much more general than stable Lévy
motion. In most “reasonable” cases this limit will be either a Gaussian process, a stable process, or a process in
the domain of attraction of such a process. In that case, taking a subsequent limit on the number n of sources
will lead, after appropriate normalization, to the corresponding Gaussian or stable limit.
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As one would expect, this last limit persists if both the number of the input processes and the timescale grow
at the same time, as long as the timescale grows fast enough relative to the number of sources. As in §4, in a
system with n input processes we will let the timescale be equal to 
n.
To see the causes of the asymptotic behavior of A�T � (for a single-input process), the following decomposition

is very useful.

A�t� =
N�t�∑
n=1

Zn+
∑
n<0

�Tn+Zn�+ ∧ t−
�∑
n=1

I�Tn ≤ t��Tn+Zn− t�+

=
N�t�∑
n=1

Zn+ I1�t�− I2�t�	 (52)

As a first consequence, we obtain the following result.

Proposition 5.1. If the stationary marks Zm have a finite first-moment E0Z under the Palm distribution P0,
then

��A�t�−�t��t≥0
d=
(N�t�∑
m=1

Zm−E

[N�t�∑
m=1

Zm

])
t≥0

+OP�1� (53)

d=
(N�t�∑
m=1

�Zm−E0�Z��+E0Z�N�t�−
t�

)
t≥0

+OP�1� (54)

d=
(N�t�∑
m=1

�Zm−
E0Z�Tm− Tm−1��
)
t≥0

+OP�1�� (55)

where OP�1� refers to a collection of random variables whose laws form (under the stationary measure P) a
tight family. In particular, if a�T � is any positive function satisfying a�T �→�, then the asymptotic behavior of
��a�T ��−1�A�tT �−�tT ��t≥0 is determined by the first terms on the right-hand side of the various expressions
above.

The proof is given below. The three expressions above emphasize different important features of the input
process that may affect limiting behavior. Thus, (54) makes it clear that the departures of the input process from
its mean may be due to the departures of cumulative sums of the marks from their mean, and to the departure
of the input process from its mean. On the other hand, the main piece in the expression (55) is a random sum
of a sequence Gm = Zm − 
E0Z�Tm − Tm−1�, m ∈ �. Note that the sequence �Gm� is stationary under the Palm
measure; see Remark 3.2.2 in Baccelli and Brémaud [2]. This makes our situation similar to that of stopped
random walks, and allows one to use similar ideas, see Gut [14] for a general treatment.
Proof. Observe that I1�t�≤ I∗�0� and I2�t�≤ I∗�t� where,

I∗�t�= ∑
m∈�

I�Tm ≤ t��Tm+Zm− t�+

is the total amount of work in the sessions arriving by time t that are not finished by that time. We proved in (5)
that the number of such sessions is finite with probability one for every t, provided that the stationary marks
Zm have a finite first moment under the Palm distribution. Then �I

∗�t��t∈� constitutes a finite stationary process,
and so

�A�t�−�t�t≥0
d=
(N�t�∑
m=0

Zm−�t

)
t≥0

+OP�1�	 (56)

We know that I1�t�≤ tM�0�. Thus, EI1�t� <� for t ≥ 0 because EM�0� <� by (5). We will now show that
EI1�t�=EI2�t�. Note that by the shift invariance of the intensity measure  of the MPP,

EI1�t� = E

[∑
m∈�

I�Tm ≤ 0���Tm+Zm�+ ∧ t�

]

=
∫
�

∫
�+
I�x≤ 0���x+ z�+ ∧ t� �dx�dz�

=
�∑
k=0

∫
�

∫
�+
I�x ∈ �−t�k+ 1��−tk����x+ z�+ ∧ t� �dx�dz�
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=
∫
�

∫
�+
I�x ∈ �0� t��

�∑
k=0

��x− �k+ 1�t+ z�+ ∧ t� �dx�dz�

=
∫
�

∫
�+
I�x ∈ �0� t���x+ z− t�+ �dx�dz�

= E

[ �∑
n=−�

I�Tn ∈ �0� t���Tn+Zn− t�+

]
=EI2�t�	

Here we used the fact that for any a≥ 0, ∑�
k=1�a− kt�+ ∧ t = �a− t�+	 This, together with (56), proves (55).

To prove (54), first observe that by the Campbell-Little-Mecke formula (see (3.3.3) in Baccelli and
Brémaud [2]), E�

∑N�t�
n=1 Zn�= 
tE0Z, and so

N�t�∑
m=1

Zm−E

[N�t�∑
m=1

Zm

]
=

N�t�∑
m=1

�Zm−E0Z�+E0Z�N�t�−
t�	

Finally, to show (55), we write instead

N�t�∑
m=1

Zm−E

[N�t�∑
m=1

Zm

]
=

N�t�∑
n=1

�Zn−
E0Z�Tn− Tn−1��−
T0+
E0Z�TN�t�− t��

and note that under the measure P of the MPP, the distribution of TN�t� − t does not depend on t (and is given
in (4.2.4b) of Baccelli and Brémaud [2]). This completes the proof. �

One application of Proposition 5.1 is as follows.

Proposition 5.2. Assume the following conditions hold:
(i) The stationary marks Zm have a finite first moment under the Palm measure P0.
(ii) There exists a function a�T � with a�T � → � as T → � such that under the measure P̃ given by

dP̃/dP0�H�= 
T1�H�, (
�a�T ��−1

�tT �∑
m=1

Gm

)
t≥0

fidi→ �V �t��t≥0 (57)

for some nondegenerate at zero stochastic process V .
(iii) N is ergodic.
(iv) An Anscombe condition �see Gut [14]� of the following type holds: For every x > 0,

lim
D↓0
lim sup
T→�

P

(
max
0≤k≤DT

∣∣∣∣
k∑

m=1
Gm

∣∣∣∣> xa�T �

)
= 0	 (58)

Then the function a ∈RV� for some �> 0 and

��a�T ��−1�A�tT �−�tT ��t≥0
fidi→ �
�V �t��t≥0� (59)

under the law P of the stationary MPP.

Proof. We note, first of all, that by the inversion formula (4.1.2b) in Baccelli and Brémaud [2], the sequence
of marks �Gm� has the same finite-dimensional distributions under the law P̃ as under the measure P of the
stationary MPP. We conclude that (57) holds under P as well.
Next, the regular variation of the function a�T � is a consequence of the Lamperti theorem (see, e.g., Theo-

rem 2.1.1 in Embrechts and Maejima [8]). Because N is ergodic, we have N�T �/T
a	s	→ 
, and hence by regular

variation of a�T �, a�N�T ��/a�T �
a	s	→ 
�. Using a standard argument (see Embrechts [10, Lemma 2.5.8 and the

proof of Theorem 2.5.9 on p. 102]; see also Gut [14]) based on the Anscombe condition (58), we conclude that[
�a�T ��−1

N�tT �∑
m=1

Gm

]
t≥0

fidi→ �
�V �t��t≥0

under the measure P of the MPP. An application of (55) finishes the argument. �

The following statement is a version of Proposition 5.2 that uses (54) instead of (55). It describes the situation
when the limit is caused by the variability of the marks, and is proved in the same way as Proposition 5.2.
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Proposition 5.3. Assume the following conditions hold:
(i) The stationary marks Zm have a finite first moment under the Palm measure P0.
(ii) There exists a function a with a�T � → � as T → � such that under the measure P̃ given by

dP̃/dP0�H�= 
T1�H�, (
�a�T ��−1

�tT �∑
m=1

�Zm−E0�Z��

)
t≥0

fidi→ �V �t��t≥0 (60)

for some nondegenerate at zero stochastic process V .
(iii) N is ergodic, and

�a�T ��−1�N �T �−
T �→ 0 in probability as T →�.
(iv) An Anscombe condition for �Zm� holds: For every x > 0,

lim
D↓0
lim sup
T→�

P

(
max
0≤k≤DT

∣∣∣∣
k∑

m=1
�Zm−E0�Z��

∣∣∣∣> xa�T �

)
= 0	 (61)

Then the function a ∈RV� for some �> 0, and (59) holds under the law P of the stationary MPP.

Remark 5.1. If relation (57) can be strengthened to convergence in distribution in the Skorokhod space
��0��� endowed with the J1-topology (see, e.g., Billingsley [3] or Jacod and Shiryaev [20]), then the ergodicity
of N and (57), as well as regular variation of a, imply that(

N�tT �

T
�
a�N�T ��

a�T �
� �a�T ��−1

�tT �∑
n=1

Gn

)
t≥0

d→ �
t�
��V �t��t≥0�

where
d→ denotes convergence in distribution in ��0���×�×��0���. Then the continuous mapping theorem

implies that (59) holds in the sense of convergence in distribution in ��0���, provided the “small terms” in
Proposition 5.1 remain appropriately “small” in the J1-topology. A similar remark applies to Proposition 5.3.

Remark 5.2. If (60) holds under the Palm probability P0 of the stationary sequence �Zn� and T1 is under P0
independent of �Z1�Z2� � � � �, then (60) also holds under P̃ . This class includes marks independent of the point
process, the stationary ON/OFF process, and, more generally, any MPP with unpredictable marks; see Definition
6.4.III in Daley and Vere-Jones [7].
Relation (60) under P0 also implies (60) under P̃ if a cross-mixing condition of the following type holds. For

every B ∈ J�Zm� m ∈�� and any Borel set A,

P0��T1 ∈A�∩ (m�B��→ P0�T1 ∈A�P0�B�
as m→�, where �(m� is the group of left shifts of the MPP ��Tm�Zm��; see Baccelli and Brémaud [2, p. 7].
This is the case if the sequence ��Tn− Tn−1�Zn��n∈� is mixing under the law P0.
Remark 5.3. The Anscombe conditions (58) or (61) are usually verified by an application of maximal

inequalities such as Kolmogorov’s (in the iid case) or Doob’s (in the martingale difference case). Alternatively,
(58) or (61) can be verified if the partial-sum process of the marks is tight in the Skorokhod space ��0���
equipped with some topology making suprema over compact intervals continuous functionals.
The most important message of Propositions 5.2 and 5.3 is that, in a very general situation, a scaled single-

input process has the same limit as a scaled partial-sum process of the stationary marks Zm or modified marks Gm.
There exists a large variety of scaling limits for a stationary sequence. The limit could be Gaussian (Brownian
motion or fractional Brownian motion), one of many kinds of self-similar stationary increments stable pro-
cesses, or processes that are neither Gaussian nor stable, a well-known example being the Rosenblatt process
in Taqqu [36]. In all known nontrivial cases the limiting process has finite-dimensional distributions that are in
the domain of attraction of a Gaussian or stable law. If one then passes to the limit as the number of sources
grows, the result will provide a large variety of possible Gaussian or stable limits. This should be compared
to Theorem 4.1 above, which guarantees that under the extreme fast growth condition and some fairly weak
assumptions, the limit always is a fractional Brownian motion. In this sense, the fractional Brownian limit under
fast growth conditions is robust under the departures from the ON/OFF process or the infinite source Poisson
model of Mikosch et al. [28], whereas the stable Lévy motion limit under slow growth conditions is not similarly
robust.
The next result is yet another version of Proposition 5.2. It also uses (54), but this time we look at a situation

when the limit is caused by the variability in the underlying point process. Once again, the proof is the same as
that of Proposition 5.2.
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Proposition 5.4. Assume the following conditions hold:
(i) The stationary marks Zm have a finite first moment under the Palm measure P0.
(ii) N is ergodic, and there exists a function a�T � with a�T �→� as T →� such that

��a�T ��−1�N �tT �−
tT ��t≥0
fidi→ �V �t��t≥0 (62)

for some nondegenerate at zero stochastic process V .
(iii) The following relation holds in probability as T →�,

�a�T ��−1
�T �∑
m=1

�Zm−E0Z�→ 0	

Then the function a ∈RV� for some �> 0 and

��a�T ��−1�A�tT �−�tT ��t≥0
fidi→ ��E0Z�V �t��t≥0 (63)

under the law P of the stationary MPP.

We now address the question of the relationship between the number n of input processes and the time
scale 
n required to preserve the same limit as in the extreme slow growth case. As in the case of the latter,
we will look separately at the situations when the limit is caused by the variability of the marks, and at the
situations when the limit is caused by the variability in the underlying point process.
We will start with the former situation. A large number of possibilities exist. We have chosen to concentrate on

a particular situation, when the marks form an iid sequence under the Palm measure (not necessarily independent
of the point process N ).
The following theorem is, then, one possible counterpart of Theorem 4.2 in the slow growth case. It sheds

light on what determines the minimal rate at which the timescale 
n should grow.

Theorem 5.1. Assume that the marks Zm form, under the Palm measure, a sequence of iid random variables
with a finite first moment. Assume that this sequence is unpredictable with respect to the underlying point process
and satisfies (60) with respect to the Palm measure. Assume also that the underlying point process is ergodic
and that the following conditions hold.
(i) For t > 0 and iid copies Ni of N ,

�a�n
n��
−1

n∑
i=1
�Ni�
nt�−

nt�

P→ 0� n→�	 (64)

(ii)

�a�n
n��
−1

n∑
i=1

I∗i �0�
P→ 0� n→�� (65)

where I∗i �0� is, for the ith input process, the total amount of work in the sessions arriving by time 0 that are
not finished by that time.
Denote

S̃n�t�= �a�n
n��
−1Dn�
n

�t�= �a�n
n��
−1

n∑
i=1
�Ai�
nt�−�
nt�� t ≥ 0	

Then the process �V �t��t≥0 in (60) is an �-stable Lévy motion for some 0<�≤ 2, the function a ∈RV�, and

�S̃n�t��t≥0
fidi→ �
�V �t��t≥0� n→�	 (66)

Proof. Because �-stable and Gaussian laws are the only weak possible limits of normalized and shifted
sums of iid random variables, the process �V �t��t≥0 in (60) is automatically an �-stable Lévy motion for some
0 < � < 2 or a Brownian motion, and the fact that the function a�T � is regularly varying with exponent �
follows, once again, from the Lamperti theorem. We write

S̃n�t� = �a�n
n��
−1

n∑
i=1

Ni�t�∑
m=1

�Z�i�
m −E0�Z��+ �a�n
n��

−1E0�Z�
n∑
i=1
�Ni�
nt�−

nt�

+ �a�n
n��
−1

n∑
i=1
�I

�i�
1 �t�− I

�i�
2 �t�� (67)

(cf. the decomposition (52)), where the superscript denotes to which input process a particular variables belongs.
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The fact that the sequence of the marks is iid, and (60), imply that(
�a�n
n��

−1
n∑
i=1

�
nt�∑
m=1

�Z�i�
m −E0�Z��

)
t≥0

fidi→ �V �t��t≥0

under the Palm measure. Because the sequence of the marks is unpredictable, this relation also holds under the
measure P̃ and then also under the stationary measure P (see Remarks 5.2, 5.3, and the proof of Proposition 5.2).
Moreover, convergence to Lévy motion for sums of iid random variables also holds in the Skorokhod topology.
Therefore, the appropriate Anscombe condition holds (see Remark 5.1), and we conclude, as before, that also(

�a�n
n��
−1

n∑
i=1

Ni�t�∑
m=1

�Z�i�
m −E0�Z��

)
t≥0

fidi→ �
�V �t��t≥0 (68)

under the stationary measure P . Because the last two terms on the right-hand side of (67) go to zero in probability
by (64), (65), and stationarity of each �I∗i �t��, the claim of the theorem follows. �

We now look at the situation when the limit is caused by the variability in the underlying point process,
and study the relationship between the number n of input processes and the timescale 
n required to preserve
the same limit as in the extreme slow growth case. The following theorem is another possible counterpart of
Theorem 4.2 in the slow growth case. It also sheds light on what determines the minimal rate at which the
timescale 
n should grow.

Theorem 5.2. Assume that the marks have a finite first moment under the Palm distribution P0. Assume
further that for some sequence bn ↑�
(i) (

b−1n
n∑
i=1
�Ni�
nt�−

nt�

)
t≥0

fidi→ �V �t��t≥0 (69)

for iid copies Ni of N and some nondegenerate at zero stochastic process V .
(ii)

b−1n
n∑
i=1

�
n�∑
m=1

�Z�i�
m −E0�Z��→ 0 in P̃ -probability as n→�, (70)

where dP̃/dP0�H�= 
T1�H�, and �Z
�i�
m �m∈� for i= 1�2� � � � are iid copies of �Zm�m∈�.

(iii) The following version of the assumption (65) is satisfied:

b−1n
n∑
i=1

I∗i �0�
P→ 0� n→�	 (71)

Then, with S̃n�t�= b−1n Dn�
n
�t� for n≥ 1 and t ≥ 0, we have

�S̃n�t��t≥0
fidi→ �E0�Z�V �t��t≥0� n→�	 (72)

The proof follows from the decomposition (67) in the same way as in Theorem 5.1.

5.1. A renewal Poisson cluster process: The case where the variability of the marks is dominating. In
the case where the variability of the marks dominates that of the underlying Poisson process, many different
limits are possible; see the discussion after Remark 5.3. In this section we will only consider the situation of
Theorem 5.1, and apply it to the renewal Poisson cluster process of §3.2.
Once again, the simplest case is that of the infinite-source Poisson model. Assuming that the marks are

regularly varying with index 1< �< 2, we see that (60) holds with respect to the Palm measure, with a�t�=
�F←
Z �1/t� for t > 1, where we are using the generalized inverse of �FZ; see, e.g., Resnick [33]. Because the
function a�t� is regularly varying with exponent 1/�> 1/2, it is simply seen by computing the second moment
that the condition (64) holds for all rates 
n. Furthermore, the random variable I

∗�0� satisfies

P�I∗�0� > x�∼ 

∫ �

x

�FZ�u�dy ∼



�− 1x �FZ�x�	

Therefore, the condition (65) is equivalent to nP�I∗�0� > a�n
n��→ 0, which is the same as

lim
n→�a�n
n�/
n → 0 as n→�� (73)
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and under this condition Theorem 5.1 gives us convergence to an �-stable Lévy motion. This is the slow growth
condition of Mikosch et al. [28].
This conclusion is a particular case of the following result describing one situation when Lévy stable limits

are obtained for a renewal Poisson cluster input process.

Proposition 5.5. Suppose �FZ ∈RV−� for some 1<�< 2, and assume that both

EK( <� and EX( <� for some ( > 3− 2/�	 (74)

Let a�t�= �F←
Z �1/t�. Then, for any sequence �
n� satisfying (73), the cumulative input process �S̃n� converges

to an �-stable Lévy process, i.e., (66) holds, where V �1� has the S��J�1�0� distribution, with J
−� =C� being

the stable tail exponent, see Samorodnitsky and Taqqu [34].

Proof. We will check the assumptions of Theorem 5.1. As before, (60) holds with respect to the Palm
measure by the independence and regular variation of the marks. To check (64), we use the notation NA�B� for
the number of active sources in B initiated in A, and estimate the variance. Note that for every t > 0,

VarN �0�t���0� t��= 
0tE�Nc�0� tU ��
2 = 
0tE�K

2 ∧ �Nr �0� tU ��
2�

(see the notation of §3.2), where Nr is the (nonstopped) renewal process (potentially) generated by each cluster,
and U is an independent standard uniform random variable. The obvious stochastic domination of Nr�0� t� by a
negative binomial random variable shows that there is b ≤ 1 and C > 0 such that

E��Nr�0� t��
2I�Nr �0� t� > bt��≤Ce−t/C 	

Therefore, using (74) we obtain (changing, if necessary, the constant C)

Var�N �0� t���0� t���≤ 
0t�Ce
−t/C + b2E�K2 ∧ t2��≤Ct1+�2−(�+ 	 (75)

Furthermore, N �−��0���0� t�� is an infinitely divisible random variable with Lévy measure given by

��B�=
∫ �

0
P�Nc�x� x+ t� ∈ B�dx

for any Borel set B, and so

Var�N �−��0���0� t��� =
∫ �

0
E�Nc�x� x+ t��2 dx

≤ tE�Nc�0�2t��
2+E�Nr�0� t��

2
∫ �

t
P

( K∑
j=1

Xj > x

)
dx	 (76)

We have already checked that the first term on the right-hand side of (76) is bounded by Ct1+�2−(�+ . Furthermore,
the assumption (74) implies that E�

∑K
j=1Xj�

( <�. The stochastic domination of Nr�0� t� by a negative binomial
random variable now shows that

Var�N �−��0���0� t���≤Ct1+�2−(�+ +Ct2t−�(−1�E
( K∑
j=1

Xj

)(

≤Ct1+�2−(�+ (77)

with, perhaps, changing constants C. Using (75) and (77), we see that for t > 0

Var
(
�a�n
n��

−1
n∑
i=1
�Ni�
nt�−

nt�

)
∼ nVarN�
nt�

�n
n�
2

≤C
n

1+�2−(�+
n

�n
n�
2

→ 0� n→��

by the fact that a is regularly varying with exponent 1/� and the lower bound on ( given in (74). Therefore,
(64) follows (without any restrictions on the sequence �
n�).
Next we check condition (65). Notice that I∗�0� is an infinitely divisible random variable with Lévy measure

given by ��B�= ∫ �
0 P�A�c��x� ∈ B�dx for any Borel set B, where A�c��x� is the total amount of work in the
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sessions belonging to a single cluster, initiated at zero, that starts by the time x > 0 but does not finish by that
time. Therefore, for z > 0,

��z��� ≤
∫ z

0
P�A�c��x� > z�dx+

∫ �

z
P

( K∑
j=1

Xj +max
(
Z0�Z1� � � � �ZK

)
> x

)
dx

= R1�z�+R2�z�	 (78)

Notice that

R1�z�≤ zP

( K∑
j=0

Zj > z

)
∼EKzP�Z > z�

as z→�; see, e.g., Proposition 4.1 in Faÿ et al. [11]. Furthermore, the fact that E�∑K
j=1Xj�

( <� implies that
P�
∑K

j=1Xj > z�= o� �FZ�z��. Because we also have P�max�Z0�Z1� � � � �ZK� > z�=O� �FZ�z��, we see that

P

( K∑
j=1

Xj +max
(
Z0�Z1� � � � �ZK

)
> z

)
=O�P�Z > z���

and for large z,

R2�z�≤C
∫ �

z
P�Z > x�dx∼ C

�− 1zP�Z > z�� z→�	

By (78) we then have for large z, ��z���≤CzP�Z > z�, where C is a finite constant. A stochastic domination
argument and the fact that, if the Lévy measure of an infinitely divisible random variable has a subexponential
tail, then the distributional tail of the random variable is asymptotically equivalent to the tail of the Lévy measure
(see Embrechts et al. [9]), show that for large z P�I∗�0� > z� ≤ Cz �FZ�z�	 Therefore, as in the case of the
infinite-source Poisson model, we conclude that (65) holds if (73) does. This completes the proof. �

5.2. A Poisson cluster process: The case when the variability of the underlying point process is domi-
nating. Surprisingly, even in the case when the variability of the underlying point process dominates that of
the marks, many different limits are possible. We will consider the situation of Theorem 5.2, and we will apply
it to Poisson cluster processes (not only Poisson cluster renewal processes) of §3.2.
Specifically, we will assume that the cluster point process Nc is a general stopped point process

Nc�0� t�=N0�0� t�∧ �K+ 1�� t ≥ 0� (79)

where N0 is a point process that has a point at the origin, independent of a nonnegative integer-valued random
variable K.
We will assume in this section that the tail �FK ∈ RV−� for some � ∈ �1�2�. It turns out that the limiting

behavior of the input process is largely determined by the relation between the tail index � and the rate of
asymptotic growth of the arrival times of the point process N0. The first result here exhibits a situation when
the latter rate of growth is relatively slow, and the input process has a stable Lévy process in the limit.

Proposition 5.6. Assume Nc satisfies (79), where K is integer-valued with tail �FK ∈ RV−� for some
� ∈ �1�2�. Moreover, assume that the arrival times of N0, 0= T

�0�
0 ≤ T

�0�
1 ≤ T

�0�
2 ≤ · · · , satisfy the relation

ET �0�
n ≤Cn�−D� n≥ 1 (80)

for some C > 0 and D ∈ �0��− 1�. Assume that the marks Zm form, under the Palm measure, a sequence of iid
random variables independent of the underlying point process, and such that

P0��Z�> z�= o�P�K > z��� z→�	 (81)

Let a�T � ↑� be such that P�K > a�T ��∼ T −1 as T →�. Then for any sequence 
n →�
lim
n→��a�n
n��

�−C/
n → 0� (82)

the cumulative input process �S̃n� satisfies (72) with bn = a�n
n�, where the limit process V is an �-stable Lévy
motion and V �1� has the same distribution as in Proposition 5.5.
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Assumption (80) is clearly satisfied for renewal processes with a finite first moment if one chooses C= �−1.
Notice that, in this case, the slow growth condition (82) coincides with the slow growth condition (73) of the
previous section.
The proof of Proposition 5.6 is given in §5.2.1.
If assumption (80) fails, the limit can be different from a Lévy stable motion, and, in fact, one can have a

fractional Brownian limit under slow growth conditions as well! Specifically, suppose that for some 1>� that
nth arrival time T �0�

n of the point process N0 is, roughly speaking, of the order n
1. We will see that in certain

circumstances one can expect in the limit a fractional Brownian motion with

H = �1+ 2−��/�21�	 (83)

More precisely, assume that there is a function h, �+ →�+ that is regularly varying at infinity with exponent
1>� such that

�T
�0�
�yz�/h�y��z≥0

fidi→ �T∗�z��z≥0 (84)

to some right-continuous process �T∗�z��. We have two basic examples in mind.
Example 5.1. Assume that T �0�

n is a deterministic sequence, given by

T �0�
n = bn1� n= 0�1�2� � � � � for some b > 0. (85)

In this case h�u�= u1 and (84) holds with T∗�z�= bz1, z≥ 0.
Example 5.2. Assume that �T �0�

n � form an infinite mean renewal process with Xn = T �0�
n − T

�0�
n−1 for n ≥ 1

being independent random variables with �FX ∈ RV−1/1. In this case, one can take h�u�= �1− FX�
←�1/u� for

u> 1, and (84) holds with �T∗�z�� being a strictly 1/1-stable subordinator.
Under slow growth conditions the suitable normalization is given by

bn = �n
n�h
←�
n��

2P�K > h←�
n���
1/2� (86)

and, under certain assumptions, the limiting process V in (72) will be a fractional Brownian motion V = BH

with H given by (83) and variance

Var�BH�1�� =
2−�

2+1−�

∫ �

0
y−�2+1−��/1P�T∗�1�≤ y�dy

+
∫ �

0
E

[
4−�

2−�
�I�w+ 1��2−�+ 4− 2�

�− 1 �I�w+ 1��1−�I�w�− �2− 3�+ 4
�2−����− 1� �I�w��

2

]
dw	

= J21 +J22 	 (87)

Here �I�w�� is the first hitting time process of �T∗�z��:

I�w�= inf�z≥ 0, T∗�z� > w�� w ≥ 0	 (88)

In Proposition 5.7 we establish the above convergence in the setup of Example 5.1. The situation of Example 5.2
will be considered elsewhere.

Proposition 5.7. Assume Nc satisfies (79), where K is integer valued and �FK ∈ RV−� for some � ∈ �1�2�.
Suppose that the arrival times of N0 satisfy (85) of Example 5.1. Assume that the marks Zm form, under the
Palm measure, a sequence of iid random variables, independent of the underlying point process, and such that

E0�Z� <� for some  >max
(

21
2+1−�

�
1+ 1
1− 1

)
	 (89)

Choose any sequence 
n ↑� and �bn� from (86) such that

lim
n→��n
n�

2/min� �2�/b2n = 0� (90)

lim
n→�nbnP�K > bn�= 0� (91)

lim
n→�n

2/min�2�  −�1+1�/�1−1��/b2n = 0	 (92)

Then the cumulative input process �S̃n� satisfies (72) with bn given by (86), and the limit process V is fractional
Brownian motion BH with H given by (83) and Var�BH�1�� given by (87).
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It is interesting to observe that the limiting fractional Brownian motion satisfies 0	5<H <�−1 with H → �−1

as 1 ↓ � and H → 0	5 as 1 ↑�.
Note that (90) does not impose any constraints on the sequence �
n� in the case  ≥ 2, whereas neither (90)

nor (92) impose any constraints on the sequence �
n� in the case  ≥ 2 + �1 + 1�/�1 − 1�. Furthermore, a
sufficient condition for (91) is n�1+�′�/��′−1�+1 = o�b2n� for some 1<�′ <�.
The proof of Proposition 5.7 is given in §5.2.2.

5.2.1. Proof of Proposition 5.6. We will verify the assumptions of Theorem 5.2. We start by checking the
convergence assumption (69). Observe that we can write

n∑
i=1
�Ni�
nt�−

nt� =

n∑
i=1
�N

�0�
nt�
i �
nt�−EN �0�
nt��
nt��+

n∑
i=1
�N

�−��0�
i �
nt�−EN �−��0��
nt��

= a�n
n��S
+
n �t�+ S−

n �t��� (93)

where for any Borel sets A and B, NA�B� is the number of active sources in B initiated in A, and the subscript i
refers, as usual, to a particular input process. For convenience, we also write here N �0�
nt�

i �
nt�=N
�0�
nt�
i �0�
nt�.

We will show that, for every t > 0,

S+
n �t�

d→ V �t� (94)

S−
n �t�

P→ 0	 (95)

By the stationarity of the increments and by the fact that a Poisson random measure is independently scattered,
this will imply the convergence to Lévy motion stated in the proposition; cf. the proof of Proposition 3.5 in Faÿ
et al. [11] for a similar situation.
Notice that both S+

n �t� and S
−
n �t� are infinitely divisible random variables whose characteristic functions can

be written in the form

E exp�i(S±
n �t��= exp

{∫ �

0
�ei(x − 1− i(x�M±

n �dx�

}
�

where M±
n are the corresponding Lévy measures, given by

M±
n = n�P1×Leb� � T −1

± 	 (96)

Here �N1��1� P1� is the probability space on which a cluster point process �Nc�u��u ≥ 0� is defined, and
the map T+, N1 × �→ �0��� is given by T+�H1� u� = Nc�0� u�/a�n
n�, and T−, N1 × �0�
nt�→ �0��� by
T−�H1� u�= Nc�u�u+ 
nt�/a�n
n�. For notational simplicity in the calculations below, we drop the subscript
(i.e., write P�E instead of P1�E1, etc.).
For the proofs of (94) and (95) we will use standard results for the weak convergence of infinitely divisible

distributions; see, e.g., Theorem 15.14 in Kallenberg [21]. The necessary and sufficient conditions for conver-
gence are formulated in the next lemma, after which we proceed to verify its assumptions. We will exploit the
following notation:

I1�n�= n
∫ �

0
E�1∧ T 2−�du�

I2�n�= n
∫ �

0
E�T−I�T− > x��du�

I3�n�= n
∫ 
nt

0
P�T+ > x�du�

I4�n�= n
∫ 
nt

0
E�T 2+I�T+ ≤ C��du�

I5�n�= n
∫ 
nt

0
E�T+I�T+ > y��du	

Lemma 5.1. If limn→� I1�n�= limx→� lim supn→� I2�n�= 0, then (95) holds. If limn→� I3�n�= tx−� for all
x > 0, limC→0 lim supn→� I4�n�= limy→� lim supn→� I5�n�= 0, then (94) holds.
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Verification of the assumptions of Lemma 5.1. We have

I1�n� ≤ n
∫ �

0
E�1∧ ��a�n
n��

−1Nc�u����2�du

= n
∫ �

0
P�Nc�u��� > a�n
n��du+

n

�a�n
n��
2

∫ �

0
E��Nc�u����2I�Nc�u���≤ a�n
n���du

= I11�n�+ I12�n�	 (97)

We have

I11�n� ≤ nE�T
�0�
K I�K > a�n
n���≤CnE�K�−CI�K > a�n
n���

∼ Cn�a�n
n��
�−CP�K > a�n
n��∼C�a�n
n��

�−C/
n → 0 as n→�� (98)

where we have used (80) and (82). We remind the reader that C is a generic finite positive constant, not always
the same as the one in (80). Further,

I12�n� =
n

�a�n
n��
2
E

[
I�K ≤ a�n
n��

∫ T
�0�
K

0
�Nc�u����2 du

]

+ n

�a�n
n��
2
E

[
I�K > a�n
n��

∫ T
�0�
K

0
�Nc�u����2I�Nc�u���≤ a�n
n��du

]
= I121�n�+ I122�n�	 (99)

Observe that, again using (80) and (82),

I121�n� ≤
n

�a�n
n��
2
E�K2T

�0�
K I�K ≤ a�n
n���

≤ C
n

�a�n
n��
2
E�K2+�−DI�K ≤ a�n
n���

∼ C
n

�a�n
n��
2
�a�n
n��

2+�−CP�K > a�n
n��

∼ C�a�n
n��
�−C/
n → 0 as n→�	 (100)

Furthermore,
I122�n�≤ nE�I�K > a�n
n��T

0
K�→ 0 as n→� (101)

as in (98). Now limn→� I1 = 0 follows from (97)–(101).
Observe that for a> 0, and a point mass at a point b > 0,

∫ �
0 =b�u�u+ a�du≤ a. Because Nc has K points,

we have for x > 0,

I2�n� ≤ n

a�n
n�
E

[
I�K > xa�n
n��

∫ �

0
Nc�u�u+
nt�du

]

≤ n

a�n
n�
E�I�K > xa�n
n��
ntK�

∼ C�n
n/a�n
n����xa�n
n��P�K > xa�n
n���

→ Cx−��−1�� n→��

by regular variation of �FK . Now limx→� lim supn→� I2 = 0 follows because �> 1, and so (95) is established.
We now switch to proving (94). We have for I3�n� the upper bound

lim sup
n→�

I3�n�≤ lim sup
n→�

n�
nt�P�K > xa�n
n��= lim sup
n→�

n�
nt�x
−��n
n�

−1 = tx−�	

On the other hand, using (80) and the condition (82), we have the lower bound

I3�n� = nE�I�K > xa�n
n���
nt− T
�0�
�xa�n
n��

�+�

≥ nE�I�K > xa�n
n���
nt−ET
�0�
�xa�n
n��

��

≥ nE�I�K > xa�n
n���
nt−C�xa�n
n��
�−D��

= �1− o�1��nP�K > xa�n
n���
nt�∼ tx−�� n→�	

We conclude that limn→� I3�n�= tx−� holds for fixed t� x > 0.
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For I4�n� we have for any D�= > 0 and for large n by virtue of Karamata’s theorem

I4�n� ≤
n

�a�n
n��
2
�
nt�E�K

2I�K ≤ =a�n
n���

+ n

�a�n
n��
2

∫ 
nt

0
E��Nc�0� u��

2I�K > =a�n
n��Nc�0� u�≤ Da�n
n���du

≤ C=2�n
n�P�K > =a�n
n��+
n

�a�n
n��
2
�
nt�D

2�a�n
n��
2P�K > =a�n
n��

≤ C�n
n�P�K > =a�n
n���=
2+ D2�∼C=−��=2+ D2�� n→�	

Hence,

lim
D↓0
lim sup
n→�

I4�n�≤C=2−� → 0 as =→ 0.

Finally, for I5�n� we have
I5�n�≤

n

a�n
n�
�
nt�E�KI�K > ya�n
n����

and then limy→� lim supn→� I5�n�= 0 follows in the same way as the corresponding statement for I2�n� above.
And so we have established (94).
We have now verified condition (69) of Theorem 5.2. The second assumption of that theorem, (70), follows

directly from (81). It remains to check assumption (71). We use a decomposition somewhat different from (78).
Notice that for x > 0,

P�A�c��x� > z� ≤ P

( K∑
j=0

Zj > z�T
�0�
K > x/2

)
+P�max�Z0�Z1� � � � �ZK� > x/2�	

Therefore,

��z��� ≤ zP

( K∑
j=0

Zj > z

)
+P

( K∑
j=0

Zj > z

)∫ �

z
P�T

�0�
K > x/2�dx+

∫ �

z
P�max�Z0�Z1� � � � �ZK� > x/2�dx

= R1�z�+R2�z�+R3�z�	

Therefore, as in the proof of Proposition 5.5, the assumption (65) will follow once we show that

Ri�z�≤CzP�K > z� for i= 1�2�3 and z large enough. (102)

Using Proposition 4.3 in Faÿ et al. [11], we see that (102) holds for i= 1�3. Because∫ �

z
P�T

�0�
K > x/2�dx≤ 2ET �0�

K ≤CEK�−C <��

we can once again use Proposition 4.3 in Faÿ et al. [11] to see that (102) holds for i= 2. This proves (65) and
therefore completes the proof of the proposition. �

5.2.2. Proof of Proposition 5.7. Once again, we verify the assumptions of Theorem 5.2, and we start by
checking the convergence assumption (69). For this, we will establish that for every t > 0,

b−1n
n∑
i=1
�Ni�
nt�−

nt�

d→ BH�t�	 (103)

Then, stationarity of the Nis implies that for any t1 < t2

b−1n
n∑
i=1
�Ni�
nt1�
nt2�−

n�t2− t1��

d→ BH�t2�−BH�t1�	 (104)

The latter relation implies tightness of the family of random variables b−1n
∑n

i=1�Ni�
ntj�−

ntj�, j = 1� � � � � k,
for any choice of 0≤ t1 < t2 < · · ·< tk and k≥ 1. Any of the laws of the above family is infinitely divisible and



Mikosch and Samorodnitsky: Scaling Limits for Cumulative Input Processes
916 Mathematics of Operations Research 32(4), pp. 890–919, © 2007 INFORMS

so are their weak limits. Because the marginal laws of any such weak limit point are Gaussian, the weak limit
points of the above family are Gaussian as well. Relation (104) determines the covariance structure of the weak
limits, which coincides with the one of BH . This will prove (69).
We proceed, therefore, to show (103). To this end we will again use decomposition (93), but the normalization

a�n
n� will be replaced by bn, and we also use the symbols S
±
n abusing notation.

By the obvious independence it is then enough to show that

S+
n �t�

d→ tHN �0�J21 � and S−
n �t�

d→ tHN �0�J22 �� (105)

where J2i , i = 1�2, are defined in (87). We will check (105) for S+
n ; the proof for S

−
n is similar. Again,

Theorem 15.14 in Kallenberg [21] gives necessary and sufficient conditions for this convergence in terms of
Lévy measures. Using the Lévy measure description given in (96) with the corresponding modification of the
normalizing sequence, one needs to prove

lim
n→�

∫ 
nt

0
E

[(
Nc�0� u�

bn

)2
I�Nc�0� u�≤ Cbn�

]
du= t2HJ21 � C > 0� (106)

lim
n→�

∫ 
nt

0
E

[
Nc�0� u�

bn
I�Nc�0� u� > ybn�

]
du= 0� y > 0	 (107)

Notice that by (86), 
n/h�bn�→ 0 and so, for large n, the integral on the left-hand side of (107) vanishes.
We now concentrate on (107), in which we set C = 1, the general case being analogous. Denote by J �n� the
expression under the limit on the left-hand side of (107). We have

J �n� = n

b2n
E

(
I�K ≤ bn�

∫ 
nt

0
�Nc�0� u��

2 du

)
+ n

b2n
E

(
I�K > bn�

∫ �
nt�∧T �0�
�bn�

0
�Nc�0� u��

2 du

)
= J1�n�+ J2�n�	

We have for any T > 0,

∫ T

0
�Nc�0� u��

2 du =
��T /b�1/1�∧K∑

n=1
n2�T �0�

n − T
�0�
n−1�+K2�T − bK1�+

= b
��T /b�1/1�∧K∑

n=1
n2�n1− �n− 1�1�+K2�T − bK1�+	

Hence,

J1�n� =
n

b2n
E

(
I�K ≤ bn�b

��
nt/b�
1/1�∧K∑

n=1
n2�n1− �n− 1�1�

)
+ n

b2n
E�I�K ≤ bn�K

2�
nt− bK1�+�

= J11�n�+ J12�n�	

Clearly, J12�n� ≤ �n/b2n�E�K
2I�K ≤ �t/b�1/1
1/1n �� ≤ �n
1/1n /b2n��t/b�

1/1EK → 0	 Moreover, by Karamata’s
theorem,

J11�n� ∼ b1
n

b2n
E

(
I�K ≤ bn�

��
nt/b�
1/1�∧K∑

n=1
n1+1

)

∼ b
1

1+ 2
n

b2n
E�I�K ≤ bn���
nt/b�

1/1 ∧K�2+1�

∼ b
1

2+1

n

b2n

∫ �
nt/b�
�2+1�/1

0
P�K > y1/�2+1��dy

∼ b
1

2+1

n

b2n

2+1

2+1−�
�
nt/b�

�2+1�/1P�K > �
nt/b�
1/1�

∼ t2HJ21 	
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Collecting the above estimates, we conclude that J1�n�∼ t2HJ21 	 Now we turn to J2�n�. Because 
n/h�bn�→ 0,
we have

J2�n� ≤
n

b2n
E

(
I�K > bn�b

��
nt/b�
1/1�∑

n=1
n2�n1− �n− 1�1�

)

≤ C
n

b2n
E�I�K > bn��

��
nt/b�
1/1�∑

n=1
n1+1

≤ C
n

b2n

�2+1�/1n P�K > bn�=C

P�K > bn�

P�K > 

1/1
n �

→ 0	

Taking into account the above bounds, we conclude that (107) is satisfied. Therefore, we have checked the
convergence assumption (69) in Theorem 5.2.
For the remaining assumptions, one needs to use the slow growth conditions (90)–(92), as is seen

below. The assumption (70) in Theorem 5.2 follows because by the slow growth condition (90) we have
limn→��n
n�1/ /bn = 0. It remains to check the assumption (65) of Theorem 5.2. Notice that, as in the proof of
Proposition 5.6,

��z���≤ zP

( K∑
j=0

Zj > z

)
+
∫ �

z
P�A�c��x� > z�dx	 (108)

Because (89) implied that  >�, we can apply Proposition 4.3 in Faÿ et al. [11] to conclude that

zP

( K∑
j=0

Zj > z

)
∼ �EZ��zP�K > z�� z→�	

The slow growth condition (91) guarantees that the contribution of this term to the tail of I∗i �0� vanishes in the
limit in (65). For the second term on the right-hand side in (108) we observe that for x > z large enough, for
some C > 0

P�A�c��x� > z� ≤ P�Z > z/2�+P
(
max

j≤b1/1x1/1
Zj > z/2+C−1x1−1/1

)
= a1�x� z�+ a2�x� z�	

Notice that for 0<A<  − 1,
a1�x� z�≤Cz− ≤Cx−�1+A�z−� −1−A�	

Therefore, ∫ �

z
a1�x� z�dx≤Cz−� −1��

and because  > �, we see once again by the slow growth condition (91) that the contribution of this term to
the tail of I∗i �0� vanishes in the limit in (65). Furthermore,∫ �

z
a2�x� z�dx≤C

∫ �

z
x1/1�z+ x1−1/1�− dx≤Cz−� −�1+1�/�1−1��	

The slow growth condition (92) guarantees that the contribution of this term to the tail of I∗i �0� vanishes in the
limit in (65) as well. This completes the proof of (65) and, hence, of the proposition. �
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