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processing networks. In earlier work we developed the “equivalent workload formulation” of a generalized Brownian network:
denoting by Z(t) the state vector of the generalized Brownian network at time 7, one has a lower dimensional state descriptor
W(t) = MZ(t) in the equivalent workload formulation, where M is an arbitrary basis matrix for a linear space ./ that is
orthogonal to the space of so-called “reversible displacements.” Here we use the special structure of a stochastic processing
network to develop a more extensive interpretation of the equivalent workload formulation associated with its Brownian
network approximation. In particular, we (i) characterize and interpret the notion of a reversible displacement, and (ii) show
how the basis matrix M can be constructed from the basic optimal solutions of a certain dual linear program. The latter
provides a mechanism for reducing the choices for M from an infinite set to a finite one (when the workload dimension
exceeds one). We illustrate our results for an example of a closed stochastic processing network.
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1. Introduction. This paper continues a line of research that was initiated in Harrison [6] and further
developed in Harrison and Williams [8]. The first of those antecedent works describes dynamic control problems
(or to be more precise, dynamic resource allocation problems) associated with a broad class of “stochastic
processing networks” (SPNs). It also describes a class of “generalized Brownian networks” that can be used
to approximate SPNs of the identified type under heavy traffic conditions, offering purely formal arguments to
support the proposed approximation. The SPNs identified in Harrison [6] include as special cases both open
and closed multi-class queueing networks whose maximal content (in terms of jobs or customers) is large but
finite, plus models where some processing activities involve simultaneous use of several resources, models where
some activities require several different materials as inputs, and models where several different means exist for
accomplishing a given task. Most importantly, the notion of “heavy traffic” advanced in Harrison [6] involves
the system manager’s economic objective in a fundamental way, which allows a unified treatment of open and
closed network control, and expands considerably the universe of network control problems that are amenable
to heavy traffic diffusion approximations.

In Harrison and Williams [8] we considered the dynamic control problem, called a Brownian control problem,
associated with a generalized Brownian network. We showed that this control problem is equivalent in a certain
sense to a “reduced Brownian control problem” (RBCP) of lower dimension: denoting by Z(z) the state vector
of the generalized Brownian network at time #, one has a lower dimensional state descriptor W(z) = MZ(¢)
in the RBCP, where M can be chosen as any basis matrix for a certain linear space .#. (Here the rows of M
form a linearly independent set of basis vectors for J; this contrasts with the usual convention of taking the
columns of a basis matrix to form a basis.) The space ./ is characterized as the orthogonal complement of
the space of so-called “reversible displacements.” Adopting language that is now standard in the literature, we
called W(-) = {W(¢),t > 0} a “workload process” in Harrison and Williams [8], and in a similar vein, one
may describe the RBCP as an “equivalent workload formulation” of the original Brownian control problem. As
Kelly and Laws [9] emphasized in their influential survey of heavy traffic approximations for dynamic routing
problems, this model reduction is important not only for computation, but also for purposes of structural insight.

In this paper we consider the generalized Brownian network that corresponds to a given SPN, and we provide
a more extensive interpretation of the workload process W (-) than was offered in Harrison and Williams [8]. In
particular, we (i) characterize and interpret the notion of a reversible displacement, and (ii) show how the basis
matrix M described above can be constructed from the basic optimal solutions of the dual to the linear program
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used to define “heavy traffic” in Harrison [6]. The latter provides a mechanism for reducing the choices for M
from an infinite set to a finite one, when the workload dimension exceeds one. The present paper is related to
Harrison [6] in approximately the same way that Harrison [4] was related to Harrison and Van Mieghem [7];
broadly speaking, the goal here and in Harrison and Williams [8] is to cast the theory of “equivalent workload
formulations” in a more general heavy traffic setting. It should also be said that the mathematical style of this
paper differs in certain ways from what one sees in Harrison [4], following a pattern established in Bramson
and Williams [2].

The remainder of the paper is organized as follows. Section 2 explains what is meant by the “first-order data”
of a stochastic processing network, recapitulating relevant aspects of the general model formulation advanced in
Harrison [6]. There we also present an example of a closed SPN that will be used to illustrate various results
in the paper. Section 3 reviews the “static planning problem” (a linear program) that was used in Harrison [6]
to define heavy traffic, and §4 describes the first-order data for the Brownian network approximation to an
SPN satisfying our heavy traffic assumption. (The model descriptions provided in §2 and §4 of this paper are
less than comprehensive, because the theory developed here involves only limited aspects of the original SPN
and its Brownian approximation.) Section 5 defines the linear space / referred to above, and §6 provides a
characterization and dynamic control interpretation for the concept of reversible displacements that underlies our
definition of workload. Theorem 7.1 of §7 describes the relationship between the linear space ./ and the basic
optimal solutions to the dual of the static planning problem. (The proof given in §7 depends on results developed
in §6 and preliminary results developed in §7. This expositional sequence has been chosen to maximize intuitive
understanding, and more specifically, to interpret the notion of reversible displacements in a dynamic control
context. It turns out that a much shorter algebraic proof of Theorem 7.1 can be given using the definitions and
assumptions laid out in §2 through §5. For the interested reader, such a proof is provided in Appendix B.) In §8
we apply the general theory to our example.

1.1. Notation and terminology. For a positive integer k, R* will denote k-dimensional Euclidean space, Ri
will denote the nonnegative orthant in R¥, and R% | will denote the subset of vectors in R% having all components
strictly positive. We consider each of these spaces to be endowed with its Borel o-algebra. When k = 1, we
shall often suppress the superscript in this notation. For convenience, we define R® and RY to be the real
number zero. The Borel o-algebras on these last two spaces consist of the empty set and the whole space. These
conventions concerning R” and R are used in treating the degenerate case of a zero-dimensional workload. For
x € R, x* =max(x,0) and x~ = max(—x, 0). All vectors will be assumed to be column vectors unless indicated
otherwise. Inequalities between vectors are to be interpreted componentwise. The transpose of a vector or matrix
will be denoted by using a superscript '. The dot product between two vectors x, y € R¥ will be denoted by x'y
or x-y. The Euclidean norm of a vector x € R will be denoted by | x||. We define the infimum of an empty set
of real numbers to be +o0 = oco.

2. First-order data from a stochastic processing network. Assuming readers are familiar with the general
formulation of an SPN that was developed in Harrison [6], we shall recapitulate in this section only the nota-
tion and definitions that are essential for current purposes. Further commentary on the model class, especially
concerning its historical antecedents in economics and applied mathematics, can be found in Harrison [5].

Taken as primitive are positive integers £, m, and n. We interpret £ as the number of processing resources,
which may also be called processors or servers depending on the context, m as the number of distinct materials
appearing anywhere in the network, and hence also the number of storage buffers, and n as the number of
processing activities. The first-order data of concern in this section and the next are an m-vector A*, an m X n
matrix R, an £ X n nonnegative matrix A, and an n-vector v. These are interpreted as in §3 of Harrison [6]. By
scaling appropriately we can take the ¢-vector of resource capacities (denoted by ¢ in Harrison [6]) to be 1 (the
vector of ones).

An example of an open processing network was introduced and discussed in the earlier works (Harrison [6],
Harrison and Williams [8]). One could use that example to illustrate the concepts treated here. However, to
further illustrate the versatility of the SPN modeling framework and to provide an example where the Brownian
workload is more than one-dimensional, here we use a closed processing network example. This system is
portrayed in standard form in Figure 1(a). (A reduced form of this system will be described later, and Figure 1(b)
is associated with that reduction.) For this example, we imagine that materials flow through the system as
discrete jobs or customers, and we shall speak in terms of different “job classes” rather than different materials.
The open-ended rectangles in Figure 1(a) represent buffers in which jobs of different classes are stored while
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(a) Original representation (b) Alternative representation

FIGURE 1. A closed network example.

awaiting service, and the circles and elongated ellipse represent servers. For concreteness in discussing this
example, we shall express time in hours and economic value in dollars.

The system depicted in Figure 1(a) is closed, which means that jobs circulate perpetually, with no arrivals
and no departures. There are five job classes and four servers. Each job class is processed by a unique server,
so we have five processing activities. An activity is represented in Figure 1(a) by an arrow leading from the
buffer involved to the server involved. Using notation that is standard in queueing theory, we denote by w; the
reciprocal of the mean service time for activity j (j=1,...,5). Here we take the 5-vector u = (1,1, 1,2,2)".
A complete specification of model data would include a service time distribution for each of the activities, but
only the first moments (which we choose to express in the form of average service rates) are relevant for current
purposes.

This example involves two closed populations: denoting by Q,(¢) the number of class i jobs in the system at
time ¢t (i=1,...,5 and > 0), and setting b, = Q,(0) + Q,(0) + Q,(0) and b, = Q;(0) 4+ Q5(0), one has that

0,()+0,(t)+0,(t) =b, and  Q5(1)+Qs(t)=b, forall t>0. (2.1)

Of course, these relationships imply that in order to track the evolution of job counts in the various classes over
time, it suffices to observe the state vector

Q(1) = (Q:(1), Q(1), O5(1))', (2.2)

simultaneously adding the following state-space constraint to the system manager’s dynamic control problem:
0(1) e{geRi: g, +q, < b and g5 < by}. (2.3)

In the original model formulation, it is natural to constrain controls so that natural constraints on the controls
such as activity 1 (respectively, 3) cannot be used when buffer 4 (respectively, 5) is empty. The equivalent
constraint in the reduced formulation is that activity 1 (respectively, 3) cannot be used when Q,(z) + Q,(¢) = b,
(respectively, Q;(tf) = b,). The reduced formulation corresponds to the system representation in Figure 1(b),
where activities 1 and 3 are naturally described as “input activities,” and activities 4 and 5 are naturally described
as “output activities.” The input-output matrix R and the capacity consumption matrix A for this alternative
representation are
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10000
1 1 0 00
01000
R=| 0 -1 0 20 and A= (2.4)
00100
0 0 -1 02
000 1 1

One interprets Ay; as the rate at which activity j consumes the capacity of server k, and a positive R;; value as
the average rate at which activity j removes jobs from buffer i. A negative R;; value in (2.4) is interpreted as
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the average rate at which activity j creates class i jobs, or equivalently, the average rate at which it adds jobs
to buffer i. Thus, for example, activity 2 removes jobs from buffer 1 at an average rate of 1 per hour, and it
adds jobs to buffer 2 at that same average rate. The 3-dimensional vector of average arrival rates A*, which has
one component for each of the buffers remaining in Figure 1(b), has all components zero because there are no
exogenous arrivals for a closed network.

The remaining piece of first-order data for this closed network model is the 5-dimensional vector of average
reward rates v. This has one component for each activity and we assume that

v=1(0,0,0,v,,vs) where v, > vs > 0. (2.35)

One interprets v; as the average reward earned per hour of service time devoted to activity j. Thus the system
manager earns positive rewards only for “output activities,” the average reward being v,/u, = v,/2 dollars per
service completed for class 2 jobs, and vs/us = v5/2 dollars per service completed for class 3 jobs.

The system portrayed in Figure 1(a) may be interpreted as a factory that makes two families of products and
operates under a “closed-loop input control mechanism” (cf. Solberg [10]). For example, jobs of classes 1, 2,
and 4 may represent orders for products in family A, with the class designation of each job indicating its stage
of completion, and jobs of classes 3 and 5 similarly may represent outstanding orders (that is, orders released
to the factory but not yet completed) for products in family B. To be perfectly concrete, one may suppose that
class 4 jobs and class 5 jobs represent orders that have been released but not yet worked on, and that execution
of a class 2 service or a class 3 service completes work on an order. The closed-loop control mechanism we
have hypothesized is one that releases a new order for a product in family A immediately after completion of an
outstanding order for such a product, thus keeping constant the number of outstanding orders for family A, and
similarly it keeps constant the number of outstanding orders for products in family B. In formulating a dynamic
control policy, the system manager has discretion as to how server 4 will divide its time between processing
class 2 jobs and processing class 3 jobs.

3. Defining heavy traffic by means of a linear program. As in §3 of Harrison [6] we consider the
following static planning problem:

maximizev'x subjectto Rx=A", Ax<1 and xeR]. 3.1

We interpret an optimal solution x* of (3.1) as a vector of desired average activity rates (cf. §3 of Harrison [6]).
The following heavy traffic assumption will be assumed henceforth. This condition is the same as that introduced
in §3 of Harrison [6].

AsSSUMPTION 3.1. The static planning problem (3.1) has a unique optimal solution x*, and moreover,
Ax*=1.

Preparing the way for later developments, we denote by b the number of activities j such that x7 > 0, calling

these basic activities, and we number the activities so that the basic ones are 1,...,b. As in Harrison [6],
activities b+ 1, ..., n will be called nonbasic, and the matrices R and A will be partitioned as follows:

R=[H J] and A=[B N] (3.2)

where H and B both have b columns. Thus H and B are the submatrices of R and A, respectively, that correspond
to basic activities.

With an eye toward future developments, we note that the following linear program is dual to (3.1), or to be
more precise, it is one way in which the dual of (3.1) can be written:

minimize y'A* +z'1  subjectto YR+Z7A>v and ze€ Rﬂ. (3.3)
We denote by & the polyhedral set of feasible solutions for the dual linear program (3.3), meaning that
D={(y,z) eR"": yR+7A>v and zeR}. (3.4)
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Note that & does not depend on A*. By Assumption 3.1, the primal problem (3.1) has a finite optimal solution
and hence so does the dual problem (3.3), which implies that the set & is nonempty.
In the closed network example of Figure 1, for which A* =0 and other first-order data are displayed in (2.4)
and (2.5), it is easy to verify that Assumption 3.1 holds with
=(1,1,1,1, 1) (3.5)
That is, each of servers 1, 2, and 3 works full-time on the one activity of which it is capable, and server 4 divides
its time evenly between its two activities. This processing plan uses all capacity of every server (Ax* = 1),
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maximizing the circulation rate for each of the two closed populations in Figure 1 and thereby generating
rewards at the maximal rate of v'x* = (v, + v5)/2 dollars per hour.

4. First-order data for the Brownian network approximation. Now set

p=Lt+n—>b 4.1
and define a p x n matrix K via
BN (4.2)
K= . .
0 -1

Comparing (4.2) with (3.2), one sees that the first £ rows of K form the capacity consumption matrix A, and the
negative identity matrix —I appearing in (4.2) is a square (n — b) x (n — b) matrix, where n — b is the number
of nonbasic activities in our static planning problem.

Sections 4 and 5 of Harrison [6] explain how to formulate a generalized Brownian network that approxi-
mates, in a certain formal sense, a stochastic processing network whose first-order data satisfy the heavy traffic
Assumption 3.1 above. The first-order data of that Brownian network are the following: the m x n matrix R
(see §2); the p x n matrix K defined via (4.2); a compact, convex state space Z C R™ that has nonempty interior;
and the n-vector v (see §2).

For the closed queueing network example in §2, a generalized Brownian network approximation is appropriate
when the number of jobs b,, b, in each of the two closed populations is of the same large order of magnitude r
and the behavior of the system is considered over suitably large intervals of time (of order r?). Writing b, = rb,
and b, = rb, where @1 and 132 are assumed to be of moderate size, and using Q to denote the three-dimensional
queue length process described in (2.2) for the closed network example, it is natural to consider a renormalized
state descriptor at time ¢ given by

0" (1) =0(r1)/r.

Under suitable heavy traffic assumptions as described in §4 and §5 of Harrison [6], the Brownian network state
process Z(-) is a formal approximation to the renormalized state process 0’ (+), where the state space for Z(-)
is Z=10, b,] x [0, b,].

It was shown in Harrison and Williams [8] that the following condition is necessary and sufficient for well
posedness of the Brownian control problem (that is, there exist admissible controls for the Brownian control
problem if and only if the first-order data satisfy this condition).

AssumPTION 4.1. {Ry: Ky>0,yeR"} =R".

Of course, Assumption 4.1 implies that the m x n matrix R has full row rank. To further explain the meaning
of Assumption 4.1, it will be useful to define
A={Rx: Ax<1,xeR}}. (4.3)
Using linear programming language, one may describe A as the set of all m-vectors A such that problem (3.1)
remains feasible when A* is replaced by A. Given an m-vector A € A, we shall say that A is achieved by an
n-vector x, or that A is achievable using x, if Ax <1, x e R, and Rx = A.
For the following lemma, recall that we are assuming that Assumption 3.1 holds. In particular, A* € A. The
proof of this lemma is given in Appendix A.

LEmMA 4.1.  Assumption 4.1 holds if and only if A* lies in the interior of A, i.e.,
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there exists an € > 0 such that {A e R™: ||A —A*|| <&} C A. (4.4)

We assume that Assumption 4.1 holds henceforth. This assumption is satisfied by the closed network example
described earlier in §2 (see §8 for elaboration).

5. Workload. Let

N ={BeR" KB =0}, (5.1)
P ={RB: Be N). (5.2)
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Elements of the linear space % are called reversible displacements. We shall denote by ./ the orthogonal
complement of & in R™. It was shown in §4 of Harrison and Williams [8] that

M={yeR": ¥y R=n'K for some 1 € R’} (5.3)

We denote the dimension of ./ by d, and refer to d as the workload dimension. If d > 1, we let M denote a linear
mapping from R™ onto R? represented by a d x m matrix whose rows are a maximal linearly independent set
of vectors in /(. If d =0, then M is the linear mapping from R™ onto R° (the real number zero); the degenerate
case of d =0 can occur in practice and in this case many manipulations simplify. In Harrison and Williams [8],
the mapping M was used to define a workload process associated with a Brownian network. Consistent with the
terminology used there, here we refer to M as a workload matrix.

REMARK 5.1. At this point our review of essential definitions from Harrison and Williams [8] is complete.
As noted earlier in the Introduction, the matrix M has the following significance: denoting by Z(¢) the state vec-
tor of our original Brownian control problem at time ¢, then W(¢) = MZ(¢) will be the lower dimensional state
descriptor in the reduced Brownian control problem. The description of W as a “workload process” originated
in Harrison [3], where a restricted class of stochastic processing networks was considered, namely, multiclass
queueing networks with sequencing control. In that context, the term “workload” was rather obviously appro-
priate. In Harrison and Van Mieghem [7] and Harrison [4], Brownian approximations for a more general class
of stochastic processing networks were considered; here again W was called a “workload process,” and an argu-
ment was advanced in §4 of Harrison [4] to justify that terminology. Our use of the term “workload” here and
in Harrison and Williams [8], is motivated by analogy with this prior usage. In this context, there is no apparent
clear interpretation for the terminology related to quantities associated with the motivating stochastic processing
networks (Harrison [6]).

In the next two sections, for the Brownian networks associated with the SPNs introduced in Harrison [6], we
expand on the notion of reversible displacements, eventually showing (Theorem 7.2) how the workload matrix M
can be constructed from basic optimal solutions of the dual linear program (3.3).

6. Reversible displacements.
DEFINITION 6.1.  For each A € A, let v(A) denote the optimal objective value in the linear programming
problem (3.1) when A is substituted for A*. For A € A, we set v(A) = —oo. Also, let

v =v(A*) =v'x". 6.1)

REMARK 6.1. The dual problem (3.3) remains feasible when an arbitrary vector A € R™ is substituted for A*,
because A appears only in the objective function of the dual problem. Thus, by the duality theory of linear
programming, the objective in the primal problem (3.1) remains bounded above when an arbitrary A is substituted
for A*. That is, »(A) cannot take the value +oo.

Recall that a displacement 6 € R™ is said to be reversible if 6 = R for some 8 € R” such that KB = 0. From
the definition (4.2) of K one sees that the condition K3 =0 simply means that

AB=0 and B;=0 forj=b+1,...,n. (6.2)

6.1. Characterization of reversible displacements.
LEMMA 6.1. A displacement 6 € R™ is reversible if and only if, for each sufficiently large t > O there exists
x € R" satisfying

1
Rx=)\*+;8, Ax=1, xeRY} and x;=0 forj=b+1,...,n. (6.3)

Proofr. First assume that & is reversible. Let 8 € R" be such that § = R and (6.2) holds. Then x =
x*+ (1/1)B satisfies (6.3) for all sufficiently large ¢ > 0. Conversely, if x € R”" satisfies (6.3) for some ¢ > 0, we
can take B = t(x — x*) to satisfy the definition of reversibility. [

LEMMA 6.2. For each 6 e R™ and t > 0,
1 1
1/()\*—1—;8)—1—11()\*—;6) <2v*. (6.4)
Proor. Let (y*, z*) be an arbitrary optimal solution for the dual problem (3.3). (Assumption 3.1 guarantees

that the dual problem has an optimal solution.) If we consider the primal and dual problems (3.1) and (3.3)
with some other A € R™ in place of A*, by the duality theory of linear programming, the pair (y*, z*) is still a
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feasible solution for the dual problem, and one has
v(A) <y"-A+7"-1 (6.5)

Applying this inequality to both A = A* + (1/¢)6 and A = A* — (1/¢)6 gives (6.4), because y* - A* +z* -1
=v*. O

THEOREM 6.1. A vector 6 € R™ is a reversible displacement if and only if (6.4) holds with equality for all
sufficiently large t > 0.

REMARK 6.2. Examination of the proof below reveals that the above theorem remains true if “for all suffi-
ciently large ¢ > 0” is replaced with “for some ¢ > 0.”

ProoOF. First suppose that 6 is reversible and let 8 be as in the definition of a reversible displacement. Just
as in the proof of Lemma 6.1, A* 4+ (1/¢)6 and A* — (1/¢)8 are achievable using x* + (1/¢)8 and x* — (1/1)8,

respectively, for all sufficiently large ¢ > 0. Thus,
1 1 , 1 , 1
v|A*+ -0 )+v[A—-6 V(x*+ =B+ | x"—-8
t t t t
=20 x* =2v". (6.6)

Then, by Lemma 6.2, (6.4) must hold with equality.

Now suppose on the other hand that (6.4) holds with equality for some ¢ > 0. Then A*+(1/¢)6 and A* —(1/¢)6
are achievable using vectors x(" and x®, respectively, where v'x(") + v'x® = 2p*. This implies that A* is
achievable using x = %x(l) + %x(z), and that v'x = v*. That is, this vector x is an optimal solution for the primal
problem (3.1), so the uniqueness part of Assumption 3.1 implies that x = x*. Then it must be that components
b+1,...,nof both x" and x® are all zero, because x'") > 0 and x» > 0 and x} , = - -- = x? = 0. Furthermore,
since Ax") <1, Ax® <1, and 1(Ax" + Ax@) =1, it must be that Ax") =1 and Ax® =1. Thus, on setting
B =t(x*—x?), we have that KB =0, R =8, implying that § is reversible. [J

v

6.2. Fluid model interpretation of reversible displacements. Here we consider a fluid model associated
with a stochastic processing network. (One may think of this fluid model as a formal functional law of large num-
bers approximation to the original SPN.) The data for this fluid model consist of the first-order data (A*, R, A, v)
introduced in §2, plus the same compact, convex state space % (having nonempty interior) that is associated
with the approximating Brownian network.

DEFINITION 6.2.  An admissible control for the fluid model with initial state { € Z is a nondecreasing
function 7: [0, 00) — R’ such that for {, u defined by

)=+ A t—R7(t), t>0, (6.7)
u(t)y=1t— A7r(t), t=>0, (6.8)
we have
(i) {(r) € Z for all >0,

(ii) u(-) is nondecreasing with u(0) > 0.
For each ¢ > 0, the cumulative value generated by such an admissible control 7 over the time interval [0, ¢] is

V.(t) =v7(r). (6.9)

LEMMA 6.3. Suppose that, for some {° € Z and t > 0, there is an admissible control 7 for the fluid model
such that {(t) = {(0) = {°. Then,

1
;VT(t) <v', (6.10)

—_~
&,
.

o
s
S

5 E
© o
Re)
o c
9
©
=
>
el
23
> 2
O +
o <
",
@ @©
nQ
o
b
&
O ®©
_9.9
£y
32
S
rgQ.
T c
@ 9
S 3
52
2 E
c O
02
o2
T ©
T
i)
<
c 2
=

o
2c
- O
£ >

o) O
T S
E -
c
o
8 e
S =
o O
<E
‘n_

[
= C
e o

=

Q35
z-c
= <

where equality holds if and only if
T(t) = tx*. (6.11)

ProOF. Let x = (1/t)7(¢). Now, x € R’, and
1
Ax=1- ;u(t) <1,

since u(t) > u(0) > 0. Furthermore, Rx = A* because {(¢) = {(0) = {°. Thus, x is a feasible solution for the
linear program (3.1) and so

1
;V,(t) =vx <v¥, (6.12)

where the last inequality is an equality if and only if x = x*, by Assumption 3.1. O
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THEOREM 6.2. Suppose that {°, (' € Z and define § = (" — [°. Then & is reversible if and only if the
following holds:

There exists an admissible control T for the fluid model with initial state {° and

a T >0 such that {(T)={°,{(t) ={" for some t € (0, T), and V.(T) = Tv*. (6.13)

REMARK 6.3. In words, (6.13) says that starting from state {°, one can travel to state {7 and then back to {°
in finite time, achieving an average value rate of v* (the maximum achievable average value rate, cf. Lemma 6.3)
for the period of the round trip.

PrOOF. Suppose that & is reversible and let 8 be as in the definition of reversible displacements. Then, as
in the proof of Theorem 6.1, there exists ¢ > O large enough that A* — (1/¢)d is achievable using x* — (1/1)8,
and A* + (1/7)8 is achievable using x* + (1/7)B. Set T = 2t, 7(s) = (x* — (1/1)B)s, for 0 <s <1, 7(s) =
T()+ (*+(1/1)B)(s—t) for t <s <2t=T, and 7(s) = 7(T) + x*(s — T) for all s > T. Then it is readily
verified that {(s) = {°+ A*s — R7(s), 0 < 5 < oo, satisfies {(0) = {°, {(t) = {7, {(2t) = £, and {(s) = {° for all
s> T =2t. For u(s) =1s — A7(s), 0 < s < 00, since Ax <1 for x =x* — (1/1)B, x =x*+ (1/1)B and x = x*,
we have that u(-) is nondecreasing and also #(0) = 0. Finally, using the convexity of Z, it is readily shown that
{(s) € Z for all s €[0, T] and hence for all s € [0, o). By direct computation we see that

V.(T)=v (t(x* — %B) + t(x* + ;B)) =20 x* =2tv* =Tv". (6.14)

Thus (6.13) holds.

Now suppose on the other hand that (6.13) holds. Without loss of generality we can assume that 7 = 21,
because either the period of travel from £° to {7 or the period of return travel from ¢ to £° can be extended
by inserting an interval (s, s,) of indefinite length and augmenting 7 so that 7(s) = 7(s;) + x*(s — s,) for
s € (sy, 5,) (the state does not change during this interval and value is generated precisely at rate v*). Given that
T =2t, set

O = %T(t) and x? = %(T(Zt) —7(1)). (6.15)

Then A* — (1/£)d is achievable using x" and A* + (1/1)8 is achievable using x® (note that xV and x®
have nonnegative components because 7 is assumed to be nonnegative and nondecreasing). It follows from the
definition of v that

1 1 1
V(/\* - ;8) + V()\* + ;6) = U,x(l) + v/x(2) = ;VT(Q’t) (616)

From (6.13) we have that V_(2f) = 2rv*, so it follows from Lemma 6.2 that (6.16) must hold with equality.
Then the remark following Theorem 6.1 implies that § is reversible. O

7. Optimal dual solutions and the workload matrix. Recall from (3.4) that & denotes the set of feasible
solutions (y, z) for our dual linear program (3.3). From Assumption 3.1 we know that the primal linear pro-
gram (3.1) has an optimal solution and hence so does its dual (3.3). We denote by &* the set of all optimal
solutions for the dual problem. It is a general result in linear programming theory that the primal and dual
problems have the same optimal objective value, so one can equivalently define
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I ={(y,2) € D: YN +71=v"}. (7.1)
LEMMA 7.1. 9* is bounded.

REMARK 7.1. We note in passing that the boundedness of the nonempty set &* ensures that the kind of
difficulty (e.g., no extreme points of %) discussed in §7.1 of Bramson and Williams [2] in relation to the class
of stochastic processing networks considered in Harrison [4] will not occur in the context of the SPN models
introduced in Harrison [6] that we consider here.

Proor. From (3.4) and (7.1) it follows that &* is a (nonempty) convex polyhedron, and so &* is unbounded
if and only if it contains a ray, cf. p. 175 and Exercise 4.47 of Bertsimas and Tsitsiklis [1]. That is, &* is




Harrison and Williams: Workload Interpretation
816 Mathematics of Operations Research 32(4), pp. 808-820, © 2007 INFORMS

unbounded if and only if there exists a pair (y, ) € R"*\{(0,0)} that satisfies
YR4+nA>0, >0, and YA +71'1=0. (7.2)
A ray in &* consists of pairs (y, z) € R™™ having the form

»2)=0"2)+aly,n), a=0, (7.3)

where (y*, z*) € 9* and (7, n) satisfies (7.2). The two inequalities in (7.2) are needed to ensure that all such
(v, z) pairs are feasible solutions for the dual linear program, and then the equality in (7.2) is needed to ensure
that they are all optimal solutions.

Arguing by contradiction, let us suppose that there exists a pair (y,n) # (0, 0) satisfying (7.2). Note that
one cannot have y =0 because the second and third conditions in (7.2) would then imply 1 =0 as well. Thus
there exists 6 € R” such that y’6 < 0. Now consider the primal and dual linear programs (3.1) and (3.3) with
A=A*+(1/1t)6 in place of A*, where ¢ > 0 is arbitrary. Any (y, z) of the form (7.3) remains a feasible solution
for the dual linear program, because A enters the dual problem only through its objective function. Furthermore,
when A replaces A* in the dual linear program, we see from (7.1) and (7.2) that a feasible pair (y, z) having the
form (7.3) has an associated objective value

1
y-x\+z-1=v*+?(y*-5)+?(7-5). (7.4)

By taking a arbitrarily large, we can drive the right-hand side of (7.4) arbitrarily far in the negative direction.
Thus our dual linear program (a minimization problem) is unbounded below, implying that the corresponding
primal linear program is infeasible. That is equivalent to saying that A & A, regardless of how large ¢t may be.
According to Lemma 4.1, that contradicts Assumption 4.1, so we conclude that &* is bounded. [

Combining (3.4), (7.1), and Lemma 7.1, we know that &* is a nonempty, bounded, convex polyhedron. Thus
it is generated by its nonempty, finite set of extreme points. Each of its extreme points is also an extreme
point of & (this is an easy exercise), and & has only finitely many extreme points. Consequently, the following
definition makes sense.

DerINITION 7.1, Let {(y',2'): [=1,..., L} be the extreme points of &, and let those numbered 1, ..., L*
be the extreme points of ¥* (1 < L* <L < o).

REMARK 7.2. The extreme points of & are precisely the basic feasible solutions for the system of equality
and inequality constraints that define @, see p. 50 of Bertsimas and Tsitsiklis [1]. Extreme points of 9* are
called basic optimal solutions of the dual linear program (3.3).

LEMMA 7.2. For each 6 € R one has the following:

t 1<i<L*

1 1
V(/\* + ;5) =v* 4+~ min (y'-8) (7.5)

for all sufficiently large t > 0.

Proor. Fix 6 € R™. For large t > 0 we write A = A* + (1/7)6 and then focus on the linear programs
(3.1) and (3.3) with A in place of A*. From Assumptions 3.1 and 4.1, and Lemma 4.1, we know that both
problems are feasible for sufficiently large ¢ > 0. So for all sufficiently large ¢ > 0, each problem has at least
one optimal solution. Because the feasible region & for the dual problem, which does not depend on A, has
at least one extreme point (see above), it follows that the dual problem has an extreme point optimal solution for
each sufficiently large # > 0; cf. Theorem 2.7 in Bertsimas and Tsitsiklis [1]. Because v(A) equals the optimal
objective value for the dual problem, we thus have the following for all sufficiently large 7 > 0:
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1 1
v()\*+—8)= min {yl-<)\*+—6>+zl-1}. (7.6)
t I=I=<L t
For all # > 0 sufficiently large, the minimum in (7.6) is attained at one of the extreme points labeled by
[=1,...,L" that is optimal at # = oo, and for each of those, one has y' - A* +z/ - 1=vp*. O

THEOREM 7.1. A vector 8 € R™ is a reversible displacement if and only if there exists ¢ € R such that

y'-8=c forl=1,...,L". (7.7)




Harrison and Williams: Workload Interpretation
Mathematics of Operations Research 32(4), pp. 808-820, © 2007 INFORMS 817

REMARK 7.3. Because 9* is a bounded polyhedron (see Lemma 7.1), each point (y, z) € &* can be written
as a convex combination of the extreme points (yl, z’), I=1,...,L* Thus, defining

Y*={yeR™ (y,z) € " for some z € R}, (7.8)

one sees that (7.7) is equivalent to
y-6=c forall ye¥y”. (7.9)

REMARK 7.4. The short proof below depends on results developed in §6 and earlier in this section. This
expositional sequence has been chosen to maximize intuitive understanding, and more specifically, to interpret
the notion of reversible displacements in a dynamic control context. Appendix B provides a much shorter proof
of Theorem 7.1 that proceeds directly from the definitions and assumptions laid out in §2 through §5.

Proor. Tt follows from Theorem 6.1 and Lemma 7.2 that 6 € R™ is reversible if and only if

min y'-8= max y'. 8. (7.10)

1<I<L* 1<I<L*
The above occurs if and only if (7.7) holds for some constant c € R.
THEOREM 7.2. The space Jl is spanned by {y' —y',y>* —y', ..., y*" —y'}.
ProoF. By Theorem 7.1, 6§ € A if and only if (7.7) holds, which is equivalent to

(' =y")-8=0 fori=1,2,...,L". (7.11)

It follows that /{ = &' is spanned by y' —y', I =1,2,...,L*. We include the zero vector here to cover the
case where L* =1 and /= {0}. O

Thus, for d > 1, one can form a “canonical” basis for the space /[ = &' by taking a maximal linearly
independent subset from {y’ —y': I=1,..., L*}. This subset can be used to form the rows of the matrix M.
For d =0, M is always the (trivial) linear mapping onto R°.

REMARK 7.5. The method used here for constructing the workload matrix M from basic optimal solutions
of the dual linear program (3.3) is different from the analogous procedure developed in Harrison [4]. In that
earlier analysis, the workload space /( was generated by the y-components of the basic optimal solutions for the
dual linear program. Here one has to first “center” the analogous y-components. Of course, the static planning
problem underlying the theory developed in Harrison [4] is different in character from the one underlying our
current theory (see §3), so this distinction is not surprising.

8. Analysis of example. For the closed network example pictured in Figure 1, whose first-order data were
displayed in (2.4) and (2.5), we recorded the unique optimal solution x* of the static planning problem (3.1)
in (3.5). In this case all five activities are basic, so (4.2) reduces to K = A, and using that fact, readers can
easily verify that Assumption 4.1 is satisfied. For the dual linear program (3.3), using complementary slackness
and the fact that the optimal value for the dual problem is equal to the optimal value for the primal problem,
the set of dual optimal solutions is seen to be the set of (y, z) € R} x R* satisfying

—_~
&,
.

o
s
S

5 E
© o
Re)
o c
9
©
2
>
el
23
> 2
O +
o <
",
@ @©
nQ
(e}
=
=+
O ®©
_9.9
£y
32
S
._QQ.
T c
@ 9
S 3
52
2 E
c O
02
o2
T ©
T
i)
0 £
c .2
=

o
2c
- O
£ >

o) O
T S
E -
c
o
8 e
S =
o O
<E
w_

[
= C
e o

=
Q35
z-c
=<

YR+7A=1, (8.1)
zZ € Ri, (8.2)
71= % (8.3)

Using simple linear algebra, the set of all solutions of (8.1) is easily seen to be the set of (v, z) € R* x R* such
that

(v',2) = (0,0, 2(vs —v,),0,0, L (vs —vy),v,) +a,(1,0,0,1,-1,0,0) +a,(0,1,1,0, 1,1, =2), (8.4)
where a,, a, € R. The constraint (8.2) reduces this to the set of (y, z) € R® x R* satisfying (8.4) where a,, a, € R

satisfy 0 < a, < a,, 3(v; —vs) < a, < 2v,. We note that for each such (y, z), 21 = (v, +vs)/2. Thus, the set
specified above is precisely the set of optimal solutions of the dual problem and the extreme points of this set




Harrison and Williams: Workload Interpretation
818 Mathematics of Operations Research 32(4), pp. 808-820, © 2007 INFORMS

are the basic optimal solutions of the dual problem. The four extreme points of this set are readily seen to be

given by
' =(0,1(v;—v5),0) and  z'=(0, (v, —vs),0,05)"
¥ = (3(v,—vs), 2(vy —v5), 0)/ and 2= (3(vy—5),0,0, US),;
y' = (0, Jv,, %vs)/ and 2 =10, vy, 3vs, 0)/;
y4=(%v4, %v4, %vs)/ and z4=(%v4,0, l1)5,0)/.
In particular,
yz—ylzé(v4—v5)(l,0’0)/, y3_yl=%1)5(071’1)/» )’4_)’1:%(1)4’”57”5),‘

According to Theorem 7.2, the first two of these three vectors constitute a basis for the linear space ./ (they are
linearly independent, and the third is redundant). Rescaling for simplicity, we then have the following potential

choice of basis matrix:
1 0 0
M = . (8.5)

0 1 1
Appendix A. Proof of Lemma 4.1. Suppose that Assumption 4.1 holds. Let eV, ..., e be the unit basis

vectors in R”. Fori=1,...,m,let f@ =e® and fori=m+1,...,2m, let fO = —el~™ Since R and K are
linear, we see that Assumption 4.1 is equivalent to the following:

{Ry: Ky <0, yeR"} =R". (A1)
Thus, for each i=1,...,2m, there is y(i) € R" such that

Ry =f0,  Ky? <o0. (A2)
Note that Ky <0 is equivalent to Ay®) <0 and y](.i) >0for j=b+1,...,n. Let

2m ) b
y=2 Iyl and  e=minxj/y.
i=1 -

Note that & > 0.
Fix u € R™ satisfying ||u|| < 1. This can be written as
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2m
u=y wf¥ (A3)
i=1
where w; =u; fori=1,...,m, and w,=u;, fori=m+1,...,2m. Consider x = x* +& ¥ -" w;y"). Then,
2m )
Rx=MA+e> wf? =\ +eu, (A4)
im1
2m )
Ax=1+4¢Y wAy? <1, (A5)
i=1
since w; >0, Ay <0 for all i. Furthermore, for j=1,...,b,

2m
% (i)
X; = x; —i—sZwiyj

i=1

v

2m
x;—ey |Iy?]. since lw,| <1,
i=1

> xi—gy>
>x;—ey=0
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and for j=b+1,...,n,
2m 2m
szx;f—i-sZwiy](.’):O—i—sZwiy](»l) >0,

i=1 i=1
since w; > 0 for all i and y\" >0 for all i and j=b+1,...,n.

Since u € R™ satisfying |u|| < 1 was arbitrary, it follows that for each A € R™ satisfying ||A — A*|| < &, there
is x € R" such that Rx =, Ax <1, and x € R’. Hence, the desired property (4.4) holds.

Conversely, suppose that (4.4) holds. Since I' = {Ry: Ky >0, y € R"} is a cone, to prove that Assumption 4.1
holds, it suffices to show that I contains a nonempty open neighborhood of the origin. By (4.4), for each u € R”
satisfying ||u|| < &, there is y € R" such that R(x* +y) = A* —u, A(x*+y) <1, and x* 4y € R}. Then, using
the properties of x* we see that Ry = —u and Ky <0 or equivalently, R(—y) = u and K(—y) > 0. It follows
that u € I" as desired. O

Appendix B. A Minimalist Proof of Theorem 7.1. Given all the definitions and assumptions enunciated
in §2 through §5, we define the sets &* and %* as in (7.1) and (7.8) respectively. From Assumption 3.1 and
the complementary slackness theorem of linear programming (Theorem 4.5 in Bertsimas and Tsitsiklis [1]), we
have the following: a feasible solution (y, z) for the dual problem (3.3) is an optimal solution if and only if

(YR+7ZA);=v; forj=1,...,b. (B1)

That is, associating nonnegative slack variables s,,...,s, with the inequality constraints of the dual prob-
lem (3.3), a feasible dual solution (y, z, s) is one that satisfies

YR+7A—s =7, z>0 and s>0, (B2)
and a feasible dual solution is optimal if and only if s, =--- =5, =0. Thus, associating with each feasible dual
solution (y, z, s) the nonnegative p-vector

E=(21, o Zps Sppgs o5 8) s

we see from the definition (4.2) of K that
Y ={yeR™ yR+E&K=1,£cR}. (B3)

Furthermore, from the results concerning stric complementary slackness that are developed in Exercise 4.20 of
Bertsimas and Tsitsiklis [1], we have the following: there exists an optimal solution (y, £) for the dual problem
(3.3) such that . .
YR+EK =1 and EeRY .. (B4)
THEOREM B.1. A vector 6 € R™ is a reversible displacement if and only if y-86=73-0 for all y € Y*.
REMARK B.1. It follows from Remark 7.3 that Theorem B.1 and Theorem 7.1 are equivalent. (Because

¥ € Y*, the constant appearing in the statement of Theorem 7.1 must be c=73-8.)
REMARK B.2. Recalling that /f = % by definition, one may restate Theorem B.1 as follows:

M= span(Y* —3). (B5)

PrOOF. We shall prove the alternative form (B5) of the theorem. First let y € %* be arbitrary, and let ¢ € R’
be such that y and ¢ jointly satisfy the equality in (B3). From (B3) and (B4) we then have that

(y—F)R=(£ - &K,

implying that (y —y) € / by (5.3). Thus (%* —3) C /M, since y € %* was arbitrary, and hence span(%* — ) C J
as well.

To prove the reverse inclusion, let y € / be arbitrary, and let 7 € R” be such that 'R = 'K, in accordance
with (5.3). Because every component of § is strictly positive, we can choose & > 0 small enough to ensure that
&:=¢+em>0. Defining y =73 — &7y, we then have
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YR+EK=GFR+EK)—e(yR—-1K). (B6)

The first term of the right side of (B6) equals v’ by (B4), and the second term is zero. Thus y and £ jointly
satisfy the two conditions in (B3), implying that y € %*. Because —ey = y — y, this means that —e7y € (%* —3)
and hence 7y € span(%* —y). O
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