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Abstract

A definition of set-wise differentiability for set functions is given through refining the par-

titions of sets. Such a construction is closely related to the one proposed by Rosenmuller

(1977) as well as that studied by Epstein (1999) and Epstein and Marinacci (2001). We

present several classes of TU games which are differentiable and study differentiation

rules. The last part of the paper applies refinement derivatives to the calculation of value

of games. Following Hart and Mas-Colell (1989), we define a value operator through the

derivative of the potential of the game. We show that this operator is a truly value

when restricted to some appropriate spaces of games. We present two alternative spaces

where this occurs: the spaces pM∞ and POT2. The latter space is closely related to

Myerson’s balanced contribution axiom.

JEL Subject classification: C71

Keywords: TU games; large games; non-additive set functions; value; derivatives



1 Introduction

1.1 Outline

In this paper we introduce a differentiable calculus for non-additive set functions ν : A →
R defined over an algebraA of sets. Special emphasis will be dedicated to TU cooperative

games where ν is the characteristic function of the game. In fact, we shall make extensive

use of the terminology and notation familiar in cooperative game literature.

The starting point is the definition of a set-wise derivative achieved by refining the

partitions of sets. Formally, fixed a set A in A, consider a generic finite partition

{Hi}n
i=1 of a set H disjoint from A. We can then look at the behavior of the sums∑n

i=1 [ν (A ∪Hi)− ν (A)] as the partitions get finer. If this refinement process has a limit

for every H, the limit object is an additive set function d+ν (A) (·) over Ac, which will

be regarded as the outer derivative of ν at A. A similar definition is obtained by means

of inner increments, so leading to the inner derivative d−ν (A) (·). These definitions

of derivatives, in which the additive set functions replace the linear functionals of the

ordinary calculus for functions on vector spaces, date back to Rosenmuller [29], [30].

Though the above defined derivatives are our main objects of investigation, beside them

we introduce outer and inner differentials as well. Differentials, rather than derivatives,

are originated from Epstein [9] and Epstein and Marinacci [10] and rely on a stronger

refinement process. Differentials are far more tractable and a more fruitful calculus,

than the one reached merely by derivatives, can be carried out.

After discussing in Section 3 the basic definitions and related issues, Section 4 is

devoted to the study of differentiable set functions. We show that this family is quite

broad, encompassing finite games, convex games and measure games with some minor

qualifications. A nontrivial result of this nature will state that any game in pC∞ is

differentiable, having denoted by pC∞ the ‖·‖∞-closure of the algebra spanned by the

set of all Lipschitz convex games. Section 5 is dedicated to accomplish a calculus built

upon the derivatives we have introduced. The idea that a set-wise calculus, rather similar

to the ordinary one, has to hold goes back to [9] and [10]. We push considerably further

their original project. By Ekeland’s variational principle [8] we establish an approximate

mean value theorem. Further, a general theorem on the product differentiation rule is

delivered. Both these technical tools turn out to be indispensable to cope with most of

the issues raised in the present paper.

While we feel that this set-wise calculus may hopefully offer an useful tool for some

area of applied mathematics, the last two sections are focussed on its application in

the value theory of large TU games ([1] and [26] are the best general references on

this subject). The fact that derivatives matter in value theory is clearly understood,

both for finite games and non-atomic games. Aumann and Shapley [1] shaped a notion
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of derivative for games with a continuum of players, by creating the na-extension of

games to the ideal coalitions. As this space is linear they can then perform a traditional

Gateaux-like derivative. This elegant differential approach to nonatomic games leads to

the so-called diagonal formula in the games space pNA. This way the value of a coalition

finds interpretation as its marginal contribution to the typical coalitions, averaged over

all such coalitions. While this method has been extended to more general spaces than

pNA (see [21] and [26]), the extension of games to the ideal coalitions needs some kind

of non-atomiqueness for the games. Here we obviate this inconvenient by adopting the

”potential” point of view undertaken for finite games by Hart and Mas-Colell [12].

In [12] the value of finite games is axiomatized by a potential function which assigns

a real number to each game. Fitting their approach into our setting, this amounts to

constructing a new game u, called the potential of ν, associated with the original game

ν. The Shapley value of a coalition S is then the marginal contribution of S to the

grand coalition of the potential game u. It is readily seen that their construction may

be formulated through set-wise inner derivatives. Formally, the potential u is defined

implicitly by the relation d−u (A) (A) = ν (A) for all A. Therefore, the Shapley value

turns out to be Shν (S) = d−u (Ω) (S) for all coalitions S, where Ω is the grand coalition.

The value approach via potentials may give rise to two possible developments for

games with infinitely many players. One generalization is due to Hart and Monderer [13]

who construct a similar potential theory for games having na-extensions, along Aumann

and Shapley’s tradition. Here we are choosing an alternative direction, somewhat closer

to the original Hart and Mas-Colell’s view, consisting in using our set-wise differentiable

framework. This permits us to cope with mixed games where not all the players are

individually negligible.

In Section 6 potential games are studied along this line. The main result is that every

game in pM∞, the closure of the algebra spanned by finite σ-additive measures, has a

potential within pM∞. Section 7 studies the value operator according to the marginal

contribution interpretation. When restricting this operator to some appropriate spaces

of games, we show that it turns out to be a truly value. We present two alternative spaces

in which this occurs: the spaces pM∞ and POT2. In the former case the value coincides

with the asymptotic value, so giving a ”marginal” interpretation of the asymptotic value.

The latter space POT2 is closely related to the second order set-wise differentiability that

in turn is connected to Myerson’s balanced contribution axiom.

The paper is completed by a preliminary Section containing notation and basic con-

cepts used throughout the paper, and a final Section into which all the proofs are gath-

ered.
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1.2 Related literature

The refinement process of partitions recurs frequently in many fields of measure theory,

mainly for subadditive set functions (see [2]). The earliest use of the refinement limit

to define derivatives is due to Rosenmuller [29], [30] with the purpose of studying the

extreme points of the cone of convex games. Our derivatives d+ν (A) and d−ν (A) are

just a direct emanation of Rosenmuller’s ones. His construction is limited to convex set

function and he does not develop a calculus based on them.

Epstein’s definition of differential [9] comes from a decision theory context, where

the set function ν is a non-additive probability. In Epstein and Marinacci [10] the same

definition of differential is given with the purpose of studying the core of cooperative

games. Their differential coincides with our differential Dν (A), though we do not impose

the additive measure Dν (A) to be convex-ranged like [9] and [10].

Marinacci and Montrucchio [17] elaborated a subcalculus for set functions and related

subderivatives to the cores of games, extending some ideas from [10].

As already mentioned, Hart and Monderer [13] extend the potential approach to

differentiable non-atomic games. Their differentiability notion is closely related to a

Frechet property of the differential of the na-extension of the game. They further provide

an extension of their theory to the weighted case.

Finally, it is worth mentioning that the method of refining finite partition was orig-

inally introduced in the game theoretic field by Kannai [16] (see also [1] and [26]) to

define the asymptotic value of large games. Even if the asymptotic method to calculate

the value has some point in common with ours, a sharp link is difficult to establish.

However, a closer relation will later become more transparent for games in pM∞.

2 Preliminaries

Let A be an algebra of subsets of a given space Ω, a set function ν on (Ω,A) is a map

ν : A → R. If in addition ν (∅) = 0, the set function will be called a (coalitional) game

(with side payments). In this setting, a member ω ∈ Ω is a player, a set A ∈ A is viewed

as a coalition and ν (A) the worth of coalition A. Subsets A of Ω are always understood

as belonging to A, even without mentioning. When A is a σ-algebra, it is denoted by

Σ. In some final results we need that the space (Ω, Σ) be a standard Borel space. As it

is customary, in such a case we frequently omit Σ in many related symbols.

The algebraAA = {B ∈ A : B ⊆ A} is the restriction of the algebraA to A. Likewise

νA means the restriction of the set function ν to (A,AA). By νA we design the set

function νA (S) = ν (A ∩ S) for all S ∈ A. A class F of games is called restrictable if

ν ∈ F implies νA ∈ F for all A ∈ A. If ϑ : Ω → Ω is a measurable automorphism, define
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(ϑ∗ν) (A) = ν (ϑA).

A (finite and measurable) partition π of A is a finite family of disjoint elements

in A whose union is A. The set Π (A) designs the totality of the partitions of A. If

π1, π2 ∈ Π (A), π1 ∨ π2 = {C ∩D : C ∈ π1, D ∈ π2}. A partition π2 ∈ Π (A) is a

refinement of another π1 ∈ Π (A), denoted by π2 º π1, if each member of π1 is a union

of members of π2. Π (A) is thus directed by the refinement relation, in that π1 ∨ π2 º π1

and π1 ∨ π2 º π2 for all π1, π2 ∈ Π (A).

If π ∈ Π (Ω) and A ∈ Σ, πA ∈ Π (A) denotes the trace of π over A, i.e., πA =

{E ∩ A : E ∈ π} . A partition π ∈ Π (Ω) generates a finite sub-algebra Aπ of A, whose

atoms are the elements of π.

a (A) is the set of all the finitely additive measures (or charges) on A. The subset

ba (A) denotes those bounded and ca (A) ⊂ ba (A) is the set of (finite) countably additive

measures. If m ∈ a (AA) and n ∈ a (AAc), the direct sum m ⊕ n ∈ a (A) is defined by

(m⊕ n) (E) = m (E ∩ A) + n (E ∩ Ac).

In Section 5 we need product measures. Given two measures m,n ∈ ca (Σ), m ⊗ n

is the product measure on (Ω× Ω, Σ⊗ Σ). More specifically, we shall make use of

”diagonal measures” (m⊗ n)∆ (H) = (m⊗ n) ((H ×H) ∩∆) , where ∆ is the diagonal

set in Ω × Ω, provided ∆ ∈ Σ ⊗ Σ (this is the case under standardness assumption).

This definition extends to finitely many measures. Therefore, (m1 ⊗m2 ⊗ .....⊗mn)∆

has an obvious interpretation. We write ⊗km = m⊗m⊗ .....⊗m (k times).

Each set function ν admits a dual set function ν (A) = ν (Ω)− ν (Ac) for each A.

Several specific classes of games are used throughout the paper.

A game ν is bounded if sup {|ν (A)| : A ∈ A} < +∞. The game is monotone if

ν (A) ≤ ν (B) whenever A ⊆ B. It is superadditive when ν (A ∪B) ≥ ν (A) + ν (B) for

all disjoint sets A and B. A game is convex (or supermodular) if ν (A ∪B)+ν (A ∩B) ≥
ν (A) + ν (B) for all A and B. Given a coalition A, the unanimity game uA is the game

uA (S) = 1, if A ⊆ S and uA (S) = 0 elsewhere. They are monotone and convex.

An element N ∈ A is said to be a ν-null set, provided ν (A ∪N) = ν (A) for all

A ∈ A. The totality of the ν-null sets is denoted by N (ν). A set function ν is (weakly)

continuous with respect to the set function λ, or λ-continuous (formally, ν ¿ λ), when-

ever N (λ) ⊆ N (ν).

The dual notion of a null set is the carrier. S is a carrier of ν, provided ν (A ∩ S) =

ν (A) for all A ∈ A, i.e., ν = νS. S is a carrier iff Ω\S is ν-null. A game is termed finite

provided it has a finite carrier. No confusion arises by maintaining the same name for

games ν : A → R where A is a finite algebra. In this case we shall adopt the short-hand

notation: ω ≡ {ω}, when ω is an atom of A.

An atom of ν is an element A ∈ A such that A /∈ N (ν) and for all B ⊆ A either
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B ∈ N (ν) or A \B ∈ N (ν). ν is nonatomic if it does not have atoms

The set function ν is inner continuous at A, provided An ↑ A implies ν (An) → ν (A).

It is outer continuous at A, if An ↓ A implies ν (An) → ν (A). ν is continuous at A if

it is both inner and outer continuous at A. This type of continuity will be also termed

chain continuity in comparison to another stronger continuity introduced later.

In the space bv (Σ) of bounded variations games (i.e., games that are difference of

two monotone games, see [1]) the relation ν1 º ν2 means ν1 − ν2 ∈ bv+ (Σ), namely

ν1 − ν2 is monotone. In particular, ν is called Lipschitz, if −m ¹ ν ¹ m holds for some

m ∈ ca+ (Σ). L (Σ) is the totality of Lipschitz games. L (Σ) can be endowed with the

norm ‖ν‖∞ = inf {m (Ω) : −m ¹ ν ¹ m, m ∈ ca+ (Σ)}. L (Σ) turns out to be a Banach

space (see [22]). Following [22], for every ν ∈ L (Σ), define ν∗ = ∧{µ ∈ ca (Σ) : µ º ν}
and ν∗ = ∨{µ ∈ ca (Σ) : ν º µ}.

Denote by pM∞ (Σ) ⊂ L (Σ) the ‖·‖∞-closure of the algebra generated by the ele-

ments in ca (Σ) . We write pM∞ whenever (Ω, Σ) is a standard Borel space. The space

polM (Σ) consists of the games ν = p ◦λ = p (λ1, ..., λn) where p (x) is a polynomial and

λi ∈ ca (Σ), clearly pM∞ (Σ) is the ‖·‖∞-closure of polM (Σ) .

A vector measure is an additive map µ : A → Rn with µ = (µ1, ...., µn) where the µi

are scalar charges. A vector measure is non-atomic, if µ (A) 6= 0 implies the existence of

some B ⊂ A with µ (B) 6= 0 and µ (A \B) 6= 0. A vector measure µ is called strongly

continuous if for all ε there is a partition π ∈ Π (Ω) such that |µ| (A) ≤ ε for all A ∈ π,

where |µ| is the variation measure of µ. An extension of Lyapunov theorem ensures that

strongly continuous additive vector measures are convex-ranged, provided A = Σ, i.e.,

R (µ) = {µ (A) : A ∈ Σ} is convex (see [2]).

If X is a linear space and f : X → R, f ′ (x; h) denotes the directional derivative at

x, namely,

f ′ (x; h) = lim
t↓0

f (x + th)− f (x)

t
.

If X = Rn and ei be the i-th unit vector of the canonical basis of Rn, f+
i (x) and

f−i (x) denote the one-sided partial derivatives, i.e., f+
i (x) = f ′ (x; ei) and f−i (x) =

−f ′ (x;−ei). The one-sided gradients are ∇+f (x) =
(
f+

1 (x) , ..., f+
n (x)

)
and ∇−f (x) =(

f−1 (x) , ..., f−n (x)
)
. Clearly, ∇+f (x) = ∇−f (x) if and only if f has partial derivatives

at x. In this case, the one-sided gradients reduce to the gradient ∇f (x).
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3 Derivatives

3.1 Refinement limit

The concept of derivative will be based on a limiting process obtained by the refinement

of the partitions. We begin hence with describing this type of net convergence.

Definition 3.1. Let (µ, Ω,A) be a game. For all E ∈ A set

µ# (E) = lim
π∈Π(E)

∑
Ei∈π

µ (Ei) ≡ lim
π

nπ∑
i=1

µ (Ei) ,

where the set Π (E) of partitions of E are directed by the refinement relation.

For instance, if Ω = {ω1, ..., ωn} and Σ = 2Ω, then µ# (A) =
∑

ωi∈A µ (ωi).

The short-hand notation µ →π µ# will be frequently adopted to indicate the above

limit. When writing µ#, it will always be understood that the limit µ# (E) does exist

and is finite for all E.

As pointed out by Rosenmuller [29], the refinement limit can be seen as a limit of

additive measures. To see this, associate with any π ∈ Π (Ω) the additive measure mµ
π

on Aπ such that mµ
π (E) = µ (E) for all the atoms of Aπ. Clearly E ∈ Aπ for all the

partitions π º {E,Ec}. Therefore,

lim
πº{E,Ec}

mµ
π (E) = lim

π∈Π(E)

∑
Ei∈π

µ (Ei) = µ# (E) .

The basic consequence of this observation is that the set function µ# is additive over

(Ω,A) . For, if A and B are two disjoint elements, they belong to any Aπ, with π º
π0 = {A,Ac} ∨ {B, Bc}. Hence, µ# (A ∪B) = limπºπ0 mµ

π (A ∪B) = limπºπ0 mµ
π (A) +

limπºπ0 mµ
π (B) = µ# (A) + µ# (B).

A straightforward property of the refinement limit is:

(a1ν + a2λ)# = a1ν# + a2λ# (3.1)

where a1, a2 are scalars. Moreover, µ = µ# iff µ ∈ a (A). Accordingly, µ →π µ# ⇐⇒
µ− µ# →π 0.

Many theorems involving limits will require a stronger convergence property than

that underlying Definition 3.1. We isolate below two important qualifications. The

first one is closely related to Epstein and Marinacci’s [10] approach, while the sec-

ond definition imposes the set-wise convergence µ →π µ# to hold uniformly across

the coalitions E. To appreciate the definition (i) below, note that the equivalence

µ →π µ# ⇐⇒ µ− µ# →π 0 implies that the definition of limit may be restated as

lim
π∈Π(E)

∑
Ei∈π

µ (Ei)− µ# (Ei) = 0.
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Definition 3.2. i) A game µ is said to converge absolutely to m ∈ a (A), if |µ−m| →π

0. That is,

lim
π∈Π(E)

∑
Ei∈π

|µ (Ei)−m (Ei)| = 0,

for all E ∈ A.

ii) the limit µ →π µ# is said to hold uniformly if for all ε > 0 there is π0 ∈ Π (Ω) such

that ∣∣∣∣∣µ# (E)−
∑
Ei∈π

µ (Ei)

∣∣∣∣∣ < ε

is true for every E ∈ A and every π ∈ Π (E) such that π º π0
E.

The next Proposition clarifies the relationship among the two concepts we have

introduced. The statement (ii) asserts that the two specifications limit postulated in

Definition 3.2 are indeed equivalent. This property will be useful and frequently utilized

throughout the paper.

Proposition 3.1. i) If |µ−m| →π 0, then m = µ#. Further, to have |µ−m| →π 0 it

suffices that |µ−m| →π 0 holds at Ω.

ii) µ →π µ# uniformly iff |µ− µ#| →π 0.

3.2 Derivative

We employ the definition of refinement limit to the increments of a set function. Given

a set function ν (not necessarily a game) and an element A ∈ A, define the outer

increment game ∆+ν (A) (H) = ν (A ∪H) − ν (A), for H ∈ AAc . Likewise, the inner

increment game is ∆−ν (A) (K) = ν (A)− ν (A \K), with K ∈ AA. The next definition

is substantially due to Rosenmuller [29] who gave a similar definition at least for convex

games.

Definition 3.3. The outer derivative of ν at A, denoted by d+ν (A) ∈ a (AAc), is the

refinement limit, whenever it exists and is finite, of the game ∆+ν (A) on AAc, namely,

∆+ν (A) (·) →π d+ν (A) (·). Likewise, the inner derivative d−ν (A) ∈ a (AA) is defined

by ∆−ν (A) (·) →π d−ν (A) (·) on AA. Finally, set dν (A) = d−ν (A)⊕ d+ν (A) ∈ a (A).

For instance the inner derivative is

d−ν (A) (K) = lim
π∈Π(K)

∑
Ki∈π

ν (A)− ν (A \Ki) .

Clearly d+ν (A) and d−ν (A) are uniquely defined additive set functions. It will often

be convenient to work just only with one type of derivative. It suffices to use the dual set
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function ν. The relation ∆−ν (A) (K) = ∆+ν (Ac) (K) implies that d−ν (A) = d+ν (Ac).

Likewise, d+ν (A) = d−ν (Ac). Accordingly, dν (A) = dν (Ac).

We shall make occasionally use of Dini derivatives as well. For instance:

d
+
ν (A) (H) = lim sup

π∈Π(H)

∑
Hi∈π

ν (A ∪Hi)− ν (A) .

The definition of the lower Dini derivative d+ν (A) (H) is similar. Clearly d
+
ν (A) (·)

and d+ν (A) (·) are usually non-additive and extended values.

We next fortify the concept of derivative according to the type of convergence pos-

tulated in Definition 3.2.

Definition 3.4. The set function ν is called outer differentiable at A, if there exists an

m ∈ a (AAc) such that |∆+ν (A)−m| →π 0. The element m = D+ν (A) is called its

outer differential. The inner differential D−ν (A) is similarly defined. Finally, Dν (A) =

D−ν (A) ⊕ D+ν (A) and ν is called differentiable at A, whenever both D−ν (A) and

D+ν (A) exist.

For instance, m = D+ν (A) if

lim
π∈Π(H)

∑
Hi∈π

|ν (A ∪Hi)− ν (A)−m (Hi)| = 0.

In view of Proposition 3.1, the outer differential is uniquely defined, provided it exists,

and d+ν (A) = D+ν (A). That Proposition provides also the condition for the derivative

d+ν (A) to be the differential D+ν (A): the refinement limit ∆+ν (A) →π d+ν (A) must

hold uniformly (or, equivalently, absolutely).

It is sometimes cumbersome to handle d+ν (A), d−ν (A) as their domains are not

the whole space A but only AAc and AA, respectively. A way to remedy this, is

that of extending them to A. Set d̃+ν (A) (H) = d+ν (A) (H \ A) and d̃−ν (A) (H) =

d−ν (A) (H ∩ A) for all H ∈ A. Clearly, dν (A) = d̃+ν (A) + d̃−ν (A). We keep in the

sequel the same notation d+ν (A) and d−ν (A) for these extensions, if no confusion arises.

One could ask if some other interesting definition of derivative may emerge by adopt-

ing different types of increments. This is not the case. Fix A ∈ A and define the following

increments for all X ∈ A
ϕ1 (X) = ν (A ∪X)− ν (A)

ϕ2 (X) = ν (A)− ν (A \X)

ϕ3 (X) = ν (A ∪X)− ν (A \X) .

Proposition 3.2. The refinement limit ϕ1
# exists iff d+ν (A) exists and then ϕ1

# =

d̃+ν (A). All the same for ϕ2 and ϕ3 and ϕ2
# = d̃−ν (A), ϕ3

# = dν (A). Further, if the

limits ϕi →π ϕi
#, i = 1, 2, 3 hold uniformly then the derivatives are differentials.
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Note that the difference ν (A ∪X)−ν (A \X) can be written as ν (A ∪ F )−ν (A)+

ν (A) − ν (A \G) with F ∩ A = ∅ and G ⊆ A. Therefore the case ϕ3 →π Dν (A)

(absolutely) is nothing but the definition of differentiability adopted by [9] and [10],

though they impose that Dν (A) is convex-ranged.

The relationship between derivatives and differentials deserves some further com-

ments. The definition of the differential D+ν (A) requires a refinement limit manifestly

stronger than the one of d+ν (A). Therefore, a set function may have a derivative which

is not the differential at some A. In fact, quite surprisingly, this is a rather exceptional

phenomenon and the derivative agrees with the differential in all the relevant games we

meet.

The following example illustrates the above mentioned case. Let Ω = [0, 1] equipped

with the algebra A generated by the intervals. Denote by In one of the intervals: [0, n−1],

(0, n−1), (0, n−1] or [0, n−1), for n ∈ N. Likewise, Jn is one of intervals: [n−1, 2n−1],

(n−1, 2n−1), (n−1, 2n−1], [n−1, 2n−1). Define the game ν by ν (In) = 1, ν (Jn) = −1,

for all n ≥ 2 and ν = 0 elsewhere. Clearly, ν →π 0. Since any finite partition

π of [0, 1] admits a finer partitions including both In and Jn for some n, we have

lim supπ∈Π(Ω)

∑
Ai∈π |ν (Ai)| = 2. Hence, d+ν (∅) = 0 and D+ν (∅) does not exist.

We close this section by collecting a few useful results on the outer derivatives,

provided the set function exhibits some specific characteristic. Similar results hold for

inner derivatives.

Proposition 3.3. i) If ν is bounded then D+ν (A) ∈ ba (AAc) .

ii) if ν is outer continuous at A, then D+ν (A) is countably additive.

iii) d+ν (A) = d+ν (B) whenever A4B is ν-null.

iv) d+ν (A) ¿ ν for all A.

v) ν is nonatomic, provided d+ν (∅) is nonatomic.

4 Differentiable games

This section is dedicated to the study of the properties of differentiability for a few

important classes of games.

Any finite game is everywhere differentiable. If (ν, Ω, Σ) is a game, with Ω =

{ω1, ..., ωn} and Σ = 2Ω, we have

Dν (A) (ωi) = ν (A ∪ ωi)− ν (A \ ωi) (4.1)

for all ωi. It is interesting to relate this derivative to the Owen’s multilinear extension
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of a finite game (see [28]), given by the function

Bν (x) =
∑
A∈Σ

ν (A)
∏
i∈A

xi

∏
j∈Ac

(1− xj)

defined over R|Ω|. The relation

Dν (A) (ωi) = ∂Bν (eA) /∂xi, (4.2)

holds, where eA is the incidence vector: (eA)j = 1 if ωj ∈ A and (eA)j = 0 if ωj /∈ A.

Convex games are related to convex functions1. It is therefore not striking that they

enjoy differentiability properties of some degree, rather analogous to the ones known in

convex analysis. It is convenient to introduce subderivatives too. For a given coalition

A, the subdifferential ∂ν (A) is

∂ν (A) = {m ∈ a (A) : ν (X) ≥ ν (A) + m (X)−m (A) , ∀X} .

A charge m ∈ ∂ν (A) will be called a subderivative of ν at A. We can also conceive

the outer subdifferential ∂+ν (A) as well as the inner subdifferential ∂−ν (A) whose

definitions are obvious. For instance, m ∈ ∂+ν (A) if ν (X) ≥ ν (A)+m (X)−m (A) for

all X ⊇ A.

Theorem 4.1. Let ν be a convex game. ν is outer differentiable at any A if and only if

∂ν (∅) 6= ∅. Analogously, ν is inner differentiable if and only if ∂ν (Ω) 6= ∅. Further,

under the conditions ∂ν (∅) 6= ∅ and ∂ν (Ω) 6= ∅, we have:

i)

D+ν (A) ∈ ∂+ν (A) , D−ν (A) ∈ ∂−ν (A)

ii)

D+ν (A) = ∨{
m : m ∈ ∂+ν (A)

}
(4.3)

D−ν (A) = ∧{
m : m ∈ ∂−ν (A)

}
.

iii) ν is everywhere subdifferentiable (i.e., ∂ν (A) 6= ∅ for all A). In particular, D−ν (A)⊕
[D+ν (∅)]Ac ∈ ∂ν (A);

iv) if A ⊆ B, then Dν (A) ≤ Dν (B).

Formulas (4.3) are somewhat similar to Moreau-Rockafellar maximum formula of

convex analysis (see for instance Th. 3.1.8 of [3]) and clearly the converse formula holds

as well. For example, ∂+ν (A) = ∨{m : m ≤ D+ν (A)}.
1In fact, this assertion is not completely exact. Convex set functions are closely related to the class

of ”ultramodular” functions. They have been the object of the study [19].
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Theorem 4.1 rests on the fact that the outer difference ∆+ν (A) (·) is superadditive,

whenever the game is convex, while ∆−ν (A) (·) is subadditive. It is easy to see that such

properties are characteristic for convex games. There is therefore no hope of extending

Theorem 4.1 to other families of set functions.

The condition of differentiability ∂ν (∅) 6= ∅ and ∂ν (Ω) 6= ∅ for convex games has

another interesting implication, as shown in the following proposition.

Proposition 4.1. A convex game ν is Lipschitz iff ν is continuous, ∂ν (∅) 6= ∅ and

∂ν (Ω) 6= ∅.

The next theorem provides an important closure property for the space L(Σ) of

Lipschitz games.

Theorem 4.2. The limit in L(Σ) of differentiable games is differentiable. More specif-

ically, let νn ∈ L (Σ) and ‖νn − u‖∞ → 0 as n → ∞. If d+νn (A) exist for all n,

then d+u (A) exists and d+νn (A) (H) → d+u (A) (H) uniformly over H. Further, if

d+νn (A) = D+νn (A) then d+u (A) = D+u (A). The same property holds for inner

derivatives.

By this theorem we can identify a rather large class of differentiable games. Let

pC∞ (Σ) be the games which lie in the ‖·‖∞-closure of the algebra spanned by Lipschitz

convex games. Note that pM∞ (Σ) ⊆ pC∞ (Σ).

Proposition 4.2. Any game ν ∈ pC∞ (Σ) is everywhere differentiable.

We turn now to the measure games ν (A) = f (µ (A)).

Proposition 4.3. Let ν = f ◦µ be a measure game with µ = (µi)
n
i=1 strongly continuous

positive charges. Let µ (A) = x. Under the conditions:

i) f is locally Lipschitz continuous at x;

ii) the directional derivative f ′ (x; h) is linear on Rn
+, i.e., f ′ (x; h) =

∇+f (x) · h for h ≥ 0;

the measure game ν is outer differentiable at A and D+ν (A) = ∇+f (µ (A)) · µAc.

Similarly, D−ν (A) = ∇−f (µ (A)) · µA, provided f ′ (x; h) = ∇−f (x) · h for h ≤ 0.

It follows Dν (A) = ∇f (µ (A)) µ, provided ∇+f (x) = ∇−f (x). The hypotheses of

Proposition 4.3, under which the measure game is differentiable, are by no means neces-

sary. Consider for instance the scalar measure game ν = f ◦µ, where f is a discontinuous

solution to the Cauchy equation f (x + y) = f (x) + f (y). Clearly, Dν (A) = f ◦ µ for

all A ∈ A.

The hypothesis of positivity of µ in this Proposition can be dispensed with. It suffices

to assume that f ′ (x; ·) is linear on Rn and the proof goes through almost identically.
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Specializing the measure games f (µ (A)), the conclusion of Proposition 4.3 holds

true under much weaker assumptions on the function f , although we need measures in

place of charges. Unlike Proposition 4.3, in the next statement the directional derivative

f ′ (x; ·) is not assumed to be linear.

Proposition 4.4. Let ν = f ◦ µ and µ = (µ1, µ2, ..., µn) be non-atomic and positive

measures which are mutually singular and Σ be a σ-algebra. If µ (A) = x, and ∇+f (x)

exists, then D+ν (A) = ∇+f (µ (A)) · µAc. Likewise, D−ν (A) = ∇−f (µ (A)) · µA.

To illustrate this last result, we calculate the derivatives of the glove market game

ν (A) = mini=1,2,...,n µi (A), namely, the minimum of a finite number of mutually singular

measures µi ∈ na+ (Σ). Proposition 4.3 does not help us since the directional derivative

is not linear at many points. We can yet exploit Proposition 4.4. By computing the

directional derivative of f (x) = minj=1,..,n xj, (see for instance [3, Prop. 2.3.2]), we get

easily:

D−ν (A) =
∑

i∈Γ(µ(A))

µi

D+ν (A) =

{
0 if Γ (µ (A)) is not a singleton

µi if Γ (µ (A)) = {i} .

where Γ (x) = {i ∈ {1, ..., n} : xi = minj=1,...,n xj}.

5 Calculus

One of the most important applications of the classical differential calculus is the pro-

vision of derivative criteria for various properties of functions such as monotonicity,

convexity and so on. In in this section corresponding criteria for set functions are dis-

cussed. Some additional regularity assumptions on the set functions as well as on the

structure on the space (Ω,A) are needed, otherwise the behavior of the set function is

rather unrelated to its derivatives. The next definitions of continuity for set functions

are necessary to formulate a general approximate mean value theorem.

Definition 5.1. i) A set function ν is upper semicontinuous in measure if there exists

m ∈ ca+ (Σ) such that ν ¿ m and, given {An}∞n=1 and A in Σ, if m (An 4 A) → 0 then

ν (A) ≥ lim supn ν (An) (similar definition for lower semicontinuity);

(ii) ν is continuous in measure if for some m ∈ ca+ (Σ), m (An 4 A) → 0 implies

ν (An) → ν (A).

If ν is continuous in measure, then ν is chain continuous. Further, ν ¿ m. The

measure m in Definition 5.1 will be called a control measure in the sequel.
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The next Proposition shows that the measure-continuous set functions consist of a

rather large class, containing relevant games. Denote by C (Σ) the class of the bounded

and measure-continuous set functions.

Proposition 5.1. C (Σ) is an algebra, closed by uniform limits. Further, it contains:

i) all chain-continuous exact games (see [32]), in particular, any continuous and bounded

convex game,

ii) the class pNA′ of all games having na-continuous extensions to the space of ideal

coalitions, provided (Ω, Σ) is a standard Borel space,

iii) any Lipschitz game, i.e., L (Σ) ⊂ C (Σ) ,

iv) all the measure games f (µ (A)), where f is continuous on the range R (µ) of a vector

measure µ, not necessarily non-atomic,

v) any finite game and any chain-continuous game on
(
N, 2N

)
of bounded variation.

The identity A4B = Ac 4Bc implies that C (Σ) is closed by conjugation.

It is apparent in the proof of point (i) of this Proposition that the measure-continuity

is equivalent to a true continuity for functions defined over an appropriate metric space

(more precisely, the metric probability space Σ (m) associated with the measure space

(Ω, Σ,m), see the proof of this proposition). Accordingly, the sequential definition of

continuity can be reformulated as: for all ε > 0, there is δ > 0 such that m (B 4 A) ≤
δ =⇒ |ν (B)− ν (A)| ≤ ε.

We are in a position to formulate the above mentioned mean value theorem. Its

proof relies on Ekeland’s variational principle [8].

Theorem 5.1. Under the assumptions:

i) Σ is a σ-algebra,

ii) ν is bounded from above and upper semicontinuous in measure, with control measure

m,

iii) d+ν (E) exists for all E ∈ Σ,

iv) A ⊆ B, with m (A) 6= m (B) ,

then, for all ε > 0 sufficiently small, there is a set Cε, with A ⊆ Cε ⊆ B and m (Cε) 6=
m (B), and a scalar αε ∈ [k, 1], with k > 0, independent of ε, so that

d+ν (Cε) (B \ Cε) ≤ αε [ν (B)− ν (A)] + ε1/2m (B \ Cε) . (5.1)

If in addition d−ν (E) exists for all E, then

d−ν (Cε) (Cε \ A) ≥ (1− αε) [ν (B)− ν (A)]− ε1/2m (Cε \ A) . (5.2)

Alternatively, one can replace in (5.1) and (5.2) αε by βε ∈ [0, k′], with k′ < 1 and

m (Cε) 6= m (A).
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Replacing ν by −ν we get a similar statement for lower semicontinuous set functions.

Equations (5.1) and (5.2) change into

d−ν
(
Cε

) (
Cε \ A

) ≤ (1− αε) [ν (B)− ν (A)] + ε1/2m
(
Cε \ A

)
(5.3)

d+ν
(
Cε

) (
B \ Cε

) ≥ αε [ν (B)− ν (A)]− ε1/2m
(
B \ Cε

)
,

for some A ⊆ Cε ⊆ B.

We draw some immediate consequences. In the next two propositions we shall assume

without mentioning that the games are bounded and defined on a σ-algebra Σ.

Proposition 5.2. Let ν have outer derivative for all A ∈ Σ. ν is monotone if and only

if d+ν (A) ≥ 0 for all A, provided ν is upper semicontinuous in measure.

The condition d−ν (A) ≥ 0 leads to a similar statement for lower semicontinuous

set functions. Another important implication is the following result which will play an

important role in the next Section.

Proposition 5.3. If ν1, ν2 ∈ C (Σ), then ν1−ν2 = const iff d+ν1 (A) (Ac) = d+ν2 (A) (Ac)

for all A; equivalently, iff d−ν1 (A) (A) = d−ν2 (A) (A) for all A.

Consider the measure game fq ◦ µ with µ ∈ na1 (Σ), q ∈ (0, 1), fq (x) = 1 if

x ≥ q, fq (x) = 0 if x ∈ [0, q). Clearly ∇+fq (x) = 0 for all x. By Proposition 4.4,

D+ (fq ◦ µ) (A) ≡ 0. This implies that Proposition 5.3 may fail without some assump-

tion of continuity for the games.

Note for instance that the condition d−ν (A) (A) ≥ 0 for all A, implies ν ≥ 0 (use

(5.3) by setting A = ∅).

5.1 Differentiation rules

The linearity rule (3.1) entails that the addition formulas hold with no restriction. Hence,

d+ (a1ν + a2λ) = a1d
+ν + a2d

+λ and so on. Product formulas require much more elab-

oration. Before formulating them it is useful to remark a few facts.

i) The familiar multiplicative rule needs some restrictions based on the non-atomiqueness,

as argued in [10]. To realize this, calculate the derivative of the product νλ of two finite

games. From (4.1),

D+ (νλ) (A) (ωi) = ν (A) D+λ (A) (ωi) + λ (A) D+ν (A) (ωi) (5.4)

+D+λ (A) (ωi) D+ν (A) (ωi) ,

for every atom ωi /∈ A. Consequently, the usual multiplicative rule fails. A generalization

of rule (5.4), taking into account atoms, will be the object of Theorem 5.2.
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ii) The product of two differentiable set functions may be non-differentiable. Consider

games over N equipped with the algebra A0 of finite or cofinite subsets of N. It is easy

to check that a finite charge m on A0 is countably additive iff
∑∞

i=1 m (i) < ∞ and

m (N) =
∑∞

i=1 m (i). Notice that m is not bounded if the series
∑∞

i=1 m (i) does not

converge absolutely. Define the game ν = m2, with m countably additive measures.

Clearly ν is continuous. In view of (ii) Proposition 3.3 the derivative D+ν (∅) would be

a countably additive measure. Set m (i) = (−1)i i−1/2. This would imply D+ν (∅) (i) =

i−1, but this measure is not finite and thus ν is not differentiable. Note incidentally that

it is easy to prove that on the algebra A0 derivability implies differentiability. Hence,

not even the derivative d+ν (∅) exists for the game m2.

The next result enucleates the conditions that guarantee the validity of the familiar

product differentiation rule.

Proposition 5.4. Assume that ν and λ be bounded set functions and D+ν (A) and

D+λ (A) exist. If at least one of the two derivatives is strongly continuous, then the

product νλ is outer differentiable at A and

D+ (νλ) (A) = ν (A) D+λ (A) + λ (A) D+ν (A) . (5.5)

A similar result is valid for inner derivatives.

Though observation (ii) above shows that the set of the differentiable games is not

necessarily closed by multiplication, we state that this is true under some additional

regularity on the space (Ω, Σ). More interestingly, the derivative of the product can be

computed. In the formulas below the measure [D+ν (A)⊗D+λ (A)]∆ is the diagonal

measure mentioned in the preliminary section.

Theorem 5.2. If (Ω, Σ) is a standard Borel space, the class of games in C which are

outer differentiable is an algebra and

D+λν (A) = λ (A) D+ν (A) + ν (A) D+λ (A)

+
[
D+ν (A)⊗D+λ (A)

]
∆

.

A similar result holds for the inner differentiable games and

D−λν (A) = λ (A) D−ν (A) + ν (A) D−λ (A)

− [
D−ν (A)⊗D−λ (A)

]
∆

.

The diagonal measures displayed in this theorem exhibit a very special structure, as

established in the next Proposition. The condition for the standard product rule to hold

descends easily from it.
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Proposition 5.5. The measure [D+ν (A)⊗D+λ (A)]∆ is purely atomic. If S1 and S2

are the sets of the atoms of D+ν (A) and D+λ (A) respectively, then

[
D+ν (A)⊗D+λ (A)

]
∆

(H) =
∑

s∈S1∩S2∩H

D+ν (A) (s) D+λ (A) (s) .

Accordingly, the differentiation rule (5.5) holds iff D+ν (A) and D+λ (A) have no com-

mon atoms.

As pol (Σ) ⊆ pM∞ (Σ) ⊆ pC∞ (Σ) , Proposition 4.2 ensures that any polynomial

of measures is differentiable. Under standardness hypothesis the derivatives can be

calculated by the product rule of Theorem 5.2.

Corollary 5.1. On the standard Borel space all the polynomials ν = q (λ1, λ2, ..., λn) of

measures λi ∈ ca are differentiable. The differential Dν (A) is a linear combination of

the measures

λi, (λi ⊗ λj)∆ , (λi ⊗ λj ⊗ λk)∆ , ......, (λi1 ⊗ λi2 ⊗ .....⊗ λin)∆

where the indices may be repeated. Specifically,

D−λn (A) =
n∑

k=1

(−1)k+1

(
n

k

)
λn−k (A) Λk, (5.6)

D+λn (A) =
n∑

k=1

(
n

k

)
λn−k (A) Λk,

with Λk =
(⊗kλ

)
∆

and Λ1 ≡ λ.

6 Potentials

We extend now to infinite games of the concept of potential introduced by Hart and

Mas-Colell’s [12] for finite games.

Definition 6.1. Given a game ν, a potential of ν is a game u ∈ C (Σ) for which

d−u (A) (A) = ν (A) holds for all A. We shall use the notation Pν = u.

The restriction u ∈ C (Σ) is essential. Any finite game has a unique potential (see

[12]). The existence as well as uniqueness is not generally assured for infinite games. If

u1 and u2 are two potentials of ν, then d− (u1 − u2) (A) (A) ≡ 0. By Proposition 5.3,

u1 − u2 = k and the potential is uniquely defined up to an additive constant. This is

the reason why we convene to consider only potential games u in C (Σ) . It guarantees

the uniqueness of the normalized potential.
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Notice that in the original definition of [12] the potential is a map ν → Pν from a

class of games to real numbers. If the class is restrictable, the potential game, according

to our acceptation, is then u (S) = PνS for S ∈ Σ (see Remark 2.8 of [12]).

Call POT (Σ) the totality of games on Σ having potential. The next statement is

simple to prove and left to the reader.

Proposition 6.1. POT (Σ) is a linear, symmetric and restrictable class of games.

The purpose here is to study the class POT (Σ) and to clarify the properties of the

operator ν → Pν having domain POT (Σ). The following property is a first consequence

of Proposition 6.1.

Proposition 6.2. We have N (u) = N (ν) if u = P (ν). In particular, a game ν and its

potential u share the same carries; u is a finite game iff ν a finite game; u is nonatomic

iff so is ν.

The following concept, inspired by the ordinary calculus, is useful to calculate po-

tentials. A game ν is called homogeneous of degree α, provided d−ν (A) (A) = αν (A)

for some scalar α 6= 0. If ν ∈ C (Σ) is homogeneous of degree α, then its potential is

Pν = α−1ν. Namely, ν is an eigenvector of the operator P .

To clarify the nature of the operator P , it is worth spending some more words about

the potentials of finite games. If uC is an unanimity game, it is easy to check that

D−uC (A) (A) = |C| · uC (A), i.e., uC is homogeneous of degree |C| . Hence, PuC =

|C|−1 ·uC . This simple observation is the source of the following well-known results (see

[12], [4] and [23]).

If ν is a finite game with multilinear extension Bν (x), then u = Pν has multilinear

extension

Bu (x) =

∫ 1

0

t−1Bν (tx) dt, (6.1)

and ∇Bu (x) · x = Bν (x) holds for all x ∈ Rn.

We collect here together the main properties of the potentials of finite games. They

descend easily from the relation (6.1) and are left to the reader.

Proposition 6.3. The potential operator P over finite games preserves positivity, mono-

tonicity and convexity. Moreover, Pν = ν iff ν is additive. Finally, if ν is a symmetric

game ν (A) = f (|A|) with f : {0, 1, ..., n} → R and f (0) = 0, then u = Pν is symmetric

as well and u (A) = F (|A|) with

F (r) =
r∑

i=1

i−1f (i)

for r ∈ {1, ..., n}.
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Many of this nice properties may fail for games with infinitely many players. The

issue whether P preserves monotonicity (i.e., ν1 º ν2 =⇒ Pν1 º Pν2) will play a key

role in value theory discussed in the next section.

We turn to the existence of potentials for games in pM∞. We start with polynomial

games.

Proposition 6.4. Any polynomial game ν ∈ polM admits a potential Pν ∈ polM .

To establish the existence of potentials in pM∞, the inner second order variation of

a game is needed.

Assume that ν has inner derivative d−ν (A) at all A ∈ Σ. It will be convenient

here regarding d−ν (A) (·) as defined on the whole space, by identifying d−ν (A) (·) with

d̃−ν (A) (·) (see Section 3.2). Fix a coalition H ∈ Σ and define the set function ϕ−H (A) =

d−ν (A) (H ∩ A) for all A ∈ Σ.

Definition 6.2. Set d−−2 ν (A) (H,K) = d−ϕ−H (A) (K), whenever it does exist. Call

the game ν regularly inner twice differentiable at A, if d−−2 ν (A) (H, K) exists for all

H, K ⊆ A and d−−2 ν (A) (H,K) = d−−2 ν (A) (K,H).

We may also replace the operators d− and d−−2 by D− and D−−
2 , whenever it is the

case.

Any finite game is regularly inner twice differentiable. In fact one has

D−−
2 ν (A) (s1, s2) = ν (A)− ν (A \ s1)− ν (A \ s2) + ν (A \ {s1, s2}) . (6.2)

Another simple example is ν = f ◦ µ with f of class C2 and µ nonatomic. We have

D−−
2 ν (A) (H,K) = µ (H) · ∇2f (µ (A)) µ (K) +∇f (µ (A)) · µ (H ∩K)

for all H,K ⊆ A, and ν is regularly twice differentiable.

The role played by Definition 6.2 appears in the next Lemma.

Lemma 6.1. The potential u = Pν is monotone whenever ν is monotone, if the follow-

ing two conditions hold:

i) u is regularly inner twice differentiable for all A ∈ Σ,

ii) the set function A → d−u (A) (H ∩ A) is measure-continuous for all H.

A consequence of Lemma 6.1 is the following relevant result on the existence of

potentials in pM∞.

Theorem 6.1. Any game ν ∈ pM∞ admits a potential in pM∞. The operator P pre-

serves monotonicity and ‖Pν‖∞ ≤ ‖ν‖∞.
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7 Value

In this section we study the value of games according to Hart and Mas-Colell’s potential

theory.

If ν is a finite game and u = Pν is its potential, uniquely defined through D−u (A) (A) =

ν (A), the Shapley value Shν of the game ν is then the refinement derivative at Ω of the

potential, that is, Shν = D−u (Ω).

Although this relation is extensively discussed in [12], it may be here quickly checked.

By (4.2) and (6.1),

D−u (Ω) (S) =
∑
s∈S

∂Bu(1Ω)

∂xs

=
∑
s∈S

∫ 1

0

∂Bν(t1Ω)

∂xs

dt

which is the desired result in view of Owen’s diagonal formula [28].

Motivated by this result, we study the operator ψ : POT (Σ) → ca (Σ) defined as

ψν = d−u (Ω) for ν ∈ POT (Σ) and u = Pν.

The following properties of ψ are an immediate consequence of its definition and

Proposition 6.2. We convene here that the underlying players’ space is the standard

Borel space.

Proposition 7.1. The operator ψ : POT → ca satisfies the following properties:

i) ψ is linear, symmetric and efficient,

ii) ψ satisfies the projection axiom, i.e., ψµ = µ for all µ ∈ ca,

iii) ψ satisfies the null player axiom, i.e., (ψν) (N) = 0 for any ν-null N ,

iv) ψν ≡ Shν, if ν has a finite carrier,

v) ψ is consistent (see Section 8).

Despite of these many desirable properties, ψ is not a value since the positivity axiom

is not generally fulfilled (in fact, we are not able to prove that ψν ≥ 0, whenever ν is

monotone). The space POT is likely to be too large and must be restrained. We deliver

here two alternative subspaces of POT on which the operator ψ is positive.

In view of Theorem 6.1, a first important result is obtained by restricting the operator

to the space pM∞ that is clearly a linear, symmetric and restrictable subspace of POT .

Theorem 7.1. The operator ψ is a value over pM∞ ⊂ POT and satisfies the Milnor

axiom (see [22])

ν∗ ≤ ψν ≤ ν∗. (7.1)

ψ is ‖·‖∞-continuous with ‖ψ‖ ≤ 1. The solution ψ coincides with the asymptotic value

and its restriction to pNA∞ is the unique Aumann-Shapley value.
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Recall that the asymptotic value exists for these games. Actually,

ASY MPT ⊃ bv′M ⊃ pM∞, see Neyman [25], [26]. The uniqueness of the value on

pNA∞ is extensively discussed in [22] and [13]. Note further that, unlike pNA∞, the

value on pM∞ is not unique. Hart [11] proved that in mixed games there are infinitely

many values, corresponding to various ways in which the atomic players can be imbedded

in the ocean of the negligible players.

We can in principle calculate the value of games in pM∞, at least this is not difficult

for polynomial games, thanks to the product rule of Theorem 5.2. For instance, if

ν2 = λ1λ2 with λ1, λ2 ∈ ca,

Pν2 = 2−1 [λ1λ2 + (λ1 ⊗ λ2)∆]

ψν2 = 2−1 [λ1 (Ω) λ2 + λ2 (Ω) λ1] ,

that turns out curiously to be like the nonatomic case. However, this simple formula is

no longer preserved by monomials νn = λ1λ2 · .... · λn. For example,

ψν3 = 3−1
∑

i6=j 6=k

(λiλj) (Ω) λk − 6−1
∑

i6=j 6=k

λi (Ω) (λj ⊗ λk)∆

+6−1
∑

i6=j 6=k

(λj ⊗ λk)∆ (Ω) λi.

Another simple example is the value of games ν = λnuT with λ ∈ na1 and uT is an

unanimity game, where T is a finite coalition. By the product rule of Proposition 5.4 it

follows that λnuT is homogeneous of degree n + |T |. Therefore

(ψν) (H) =
|T |

n + |T |
|T ∩H|
|T | +

n

n + |T |λ (H) . (7.2)

In order to specify another available restriction of POT, we focus on an important

property exhibited by a solution concept.

Let ν be a finite game with potential u. Since finite games are regularly inner twice

differentiable, D−−
2 u (Ω) (i, j) = D−−

2 u (Ω) (j, i), according to Definition 6.2. By (6.2),

D−u (Ω) (i)−D−u (Ω \ j) (i) = D−u (Ω) (j)−D−u (Ω \ i) (j) ,

if i 6= j. That is, Shi (ν) − Shi

(
νΩ\j) = Shj (ν) − Shj

(
νΩ\i) which is the well-known

Myerson’s balanced contribution property [24] (see also [12]). The extension of this

property to large games is straightforward by means of refinement limits.

If φ is a solution concept defined over a restrictable class of games, φ is said to satisfy

the balanced contribution axiom, provided

lim
π∈Π(K)

∑
Kj∈π

φ
(
νS

)
(H)− φ

(
νS\Kj

)
(H) = lim

π∈Π(H)

∑
Hi∈π

φ
(
νS

)
(K)− φ

(
νS\Hi

)
(K)
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holds for all S ∈ Σ and all coalitions H, K ⊆ S such that H ∩K = ∅. When φ coincides

with operator ψ, this condition clearly amounts to saying that the potential is regularly

twice inner differentiable.

In view of Lemma 6.1 we are thus able to enucleate another subspace of POT .

Denote POT2 ⊂ POT the totality of games whose potentials satisfy the conditions

(i)-(ii) of Lemma 6.1. Observe that condition (ii) entails that POT2 ⊂ C.

Theorem 7.2. POT2 is a linear, symmetric and restrictable space. The restriction to

POT2 of the operator ψ is a value that satisfies the balanced contribution axiom.

The two subspaces pM∞ and POT2 are not comparable. There are games in pM∞
which are not twice differentiable and consequently the balanced contribution axiom is

not valid on pM∞. On the other hand, POT2 is not included into pM∞. Consider for

instance the games of type ν (A) = λ (A× A) described in Lemma 8.1 of Section 8.

They lie in L but not necessarily in pM∞. It is easy to see that these games belong to

POT2. Note incidentally that Pν = 2−1 (ν + λd) and ψν = λm holds for such games,

where λd and λm are measures defined therein.

8 Proofs

Proposition 3.1. i) From − |µ (E)−m (E)| ≤ µ (E) − m (E) ≤ |µ (E)−m (E)|, it

follows that |µ−m| →π 0 =⇒ µ − m →π 0 ⇐⇒ µ →π m. By the uniqueness of the

limit, m = µ#. Note further that if nπ ≡ n
|µ−m|
π is the measures associated with the set

function |µ−m|, the nπ are clearly positive. Given E, we have 0 ≤ nπ (E) ≤ nπ (Ω)

for all π º {E, Ec}. Hence, nπ (E) → 0 whenever nπ (Ω) → 0 that implies the second

statement.

ii) Assume that µ →π µ# uniformly. Fix E ∈ A and ε > 0. There is π0 ∈ Π (Ω) such

that if π º π0
E,

∣∣∑
Ei∈π µ (Ei)− µ# (Ei)

∣∣ < ε. Set π+ = {Ei ∈ π : µ (Ei) ≥ µ# (Ei)} and

π− = {Ei ∈ π : µ (Ei) < µ# (Ei)}. Clearly, π+ is a partition of a subset B ⊆ E and π−

is a partition of E \ B and π+ º π0
B, π− º π0

E\B. Consequently, as µ →π µ# holds

uniformly, we have

∑

Ei∈π+

|µ (Ei)− µ# (Ei)| =
∑

Ei∈π+

µ (Ei)− µ# (Ei) < ε

∑

Ei∈π−
|µ (Ei)− µ# (Ei)| = −

∑

Ei∈π−
µ (Ei)− µ# (Ei) < ε.

Therefore,
∑

Ei∈π |µ (Ei)− µ# (Ei)| < 2ε and |µ− µ#| →π 0.

Conversely, suppose µ →π µ# absolutely. Let mπ be the measures associated with

the set function |µ− µ#|. Given ε > 0, there is π0 ∈ Π (Ω) such that mπ (Ω) < ε for all
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π º π0. Consequently, mπ (E) < ε for all π º π0 ∨ {E,Ec} and all E. This means that

|µ− µ#| →π 0 holds uniformly. Consequently, µ →π µ# uniformly. ¥

Proposition 3.2. We treat only the set function ϕ3 (X) = ν (A ∪X)−ν (A \X) ≡
∆ν (A) (X). The other cases are similar. Observe first that ∆ν (A) (H) = ∆+ν (A) (H),

if H ⊆ Ac, and ∆ν (A) (K) = ∆−ν (A) (K), if K ⊆ A. Thus, if ϕ3 →π ϕ3
#, then

∆+ν (A) →π

(
ϕ3

#

)
Ac = d+ν (A). Likewise, ∆−ν (A) →π

(
ϕ3

#

)
A

= d−ν (A).

Conversely, assume that d+ν (A) and d−ν (A) exist. Consider the two set functions

ϕ1 (X) = ν (A ∪X) − ν (A) and ϕ2 (X) = ν (A) − ν (A \X), both defined on A. It

is easy to check that ϕ1
# and ϕ2

# exist and
(
ϕ1

#

)
A

= 0,
(
ϕ1

#

)
Ac = d+ν (A). Likewise,(

ϕ2
#

)
A

= d−ν (A),
(
ϕ2

#

)
Ac = 0. Therefore, as ∆ν (A) (X) = ν (A ∪X)− ν (A)+ ν (A)−

ν (A \X) = ϕ1 (X)+ϕ2 (X), we deduce the existence of the refinement limit of ∆ν (A).

¥

Proposition 3.3. i) If ν is bounded, |∆+ν (A) (H)| ≤ M holds for all A and H

and for some M ≥ 0. By Definition 3.4 and Proposition 3.1, ∆+ν (A) →π D+ν (A)

uniformly. Set ε = 1. There is a partition π0 ∈ Π (Ac) such that

∣∣∣∣∣∣
D+ν (A) (H)−

∑

Hi∈π0
H

∆+ν (A) (Hi)

∣∣∣∣∣∣
< 1,

holds for all H ∈ ΣAc . If n is the cardinality of the partition π0, we get

∣∣D+ν (A) (H)
∣∣ ≤

∣∣∣∣∣∣
D+ν (A) (H)−

∑

Hi∈π0
H

∆+ν (A) (Hi)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑

Hi∈π0
H

∆+ν (A) (Hi)

∣∣∣∣∣∣
< 1 + nM.

ii) If ν is outer continuous at A, then the game ∆+ν (A) (·) is continuous at ∅. Let

Hn ↓ ∅, with Hn ∈ AAc , and fix ε > 0. There is a partition π0 = {Ki}r
i=1 ∈ Π (Ac)

whereby
∑

Bi∈π0
Hn
|∆+ν (A) (Bi)−D+ν (A) (Bi)| ≤ ε for all n. On the other hand,

Bi = Hn ∩Ki. Hence,

r∑
i=1

∣∣∆+ν (A) (Hn ∩Ki)−D+ν (A) (Hn ∩Ki)
∣∣ ≤ ε
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is true for all n. It follows

∣∣D+ν (A) (Hn)
∣∣ =

∣∣∣∣∣
r∑

i=1

D+ν (A) (Hn ∩Ki)

∣∣∣∣∣ ≤
r∑

i=1

∣∣D+ν (A) (Hn ∩Ki)
∣∣ ≤

r∑
i=1

∣∣D+ν (A) (Hn ∩Ki)−∆+ν (A) (Hn ∩Ki)
∣∣

+
r∑

i=1

∣∣∆+ν (A) (Hn ∩Ki)
∣∣ ≤ ε +

r∑
i=1

∣∣∆+ν (A) (Hn ∩Ki)
∣∣ .

Since Hn ∩Ki ↓ ∅ for all i, we obtain lim supn→∞ |D+ν (A) (Hn)| ≤ ε. As ε is arbitrary,

D+ν (A) (Hn) → 0. This implies that D+ν (A) (·) is countably additive.

(iii) Set ϕA (X) = ν (A ∪X)−ν (A) and ϕB (X) = ν (B ∪X)−ν (B), for all X ∈ A.

From the relation B = [A \ (A \B)] ∪ (B \ A) it follows

ϕB (X) = ν (A \ (A \B) ∪ (B \ A) ∪X)

−ν (A \ (A \B) ∪ (B \ A)) = ϕA (X) .

Proposition 3.2 provides the assertion.

iv) Let ϕ (X) = ν (A ∪X)− ν (A) for all X ∈ A. It is easy to check that ϕ ¿ ν. It

suffices to prove that ϕ# ¿ ϕ. In that, ν À ϕ À ϕ# = d+ν (A) . On the other hand,

if N ∈ N (ϕ), it holds ϕ# (E ∪N) = ϕ# (E ∪ (N \ E)) = ϕ# (E) + ϕ# (N \ E). The

result follows if ϕ# (N) = 0 whenever N ∈ N (ϕ) but this is evident.

v) This is equivalent to the fact that if ν has an atom then ν# = d+ν (∅) has an atom

as well. Let A be an ν-atom. Since for every B ⊆ A, either B or A \B is ν-null, by (iv)

either B or A \ B is ν#-null. It follows that A is a ν#-atom, provided ν# (A) 6= 0. On

the other hand if one considers a partition π of A and the relative sum
∑

Ai∈π ν (Ai) at

least one Ai, say A1 is non-null, otherwise ν (A) would vanish. But then A\A1 is ν-null.

Consequently, all the elements Ai with i > 1 are ν-null. Hence,
∑

Ai∈π ν (Ai) = ν (A)

for all the partitions and, consequently, ν# (A) = ν (A) 6= 0. ¥

Theorem 4.1. A preliminary observation is that the outer increment ∆+ν (A) (·) is

superadditive when ν is convex. Therefore, if π1 º π, with π1, π ∈ Π (H),
∑
Hi∈π

ν (A ∪Hi)− ν (A) ≥
∑

Kj∈π1

ν (A ∪Kj)− ν (A) .

By monotone convergence criterion,

d+ν (A) (H) = inf
π∈Π(H)

∑
Hi∈π

ν (A ∪Hi)− ν (A) , (8.1)

provided the infimum is finite for all H ∈ AAc . On the other hand, if m ∈ ∂ν (∅) 6= ∅, as

ν is superadditive, ν (A ∪Hi)− ν (A) ≥ ν (Hi) ≥ m (Hi). We infer that d+ν (A) (H) ≥
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m (H) and d+ν (A) exists for all A. Note that d+ν (A) (H) ≤ ν (A ∪H)− ν (A) that, in

turn, implies d+ν (A) ∈ ∂+ν (A). Clearly the inverse implication is obvious: if d−ν (∅)

exists then d−ν (∅) ∈ ∂ν (∅) and thus ∂ν (∅) is nonempty.

Observe next that ν (A ∪Hi)− ν (A)− d+ν (A) (Hi) ≥ 0. Thus,
∣∣ν (A ∪Hi)− ν (A)− d+ν (A) (Hi)

∣∣ = ν (A ∪Hi)− ν (A)− d+ν (A) (Hi) .

Hence, |∆+ν (A)− d+ν (A)| →π 0 and D+ν (A) = d+ν (A).

To conclude, let m ∈ ∂+ν (A). Clearly, ν (A ∪Hi) − ν (A) ≥ m (Hi). Eq. (8.1)

implies that d+ν (A) (H) ≥ m (H) for all H ∈ AAc . Therefore (4.3) holds.

The assertion about inner differentials are obtained by duality. It suffices to observe

that ∂+ν (A) = ∂
−
ν (Ac), where the dual operator ∂ denotes superdifferentials in place

of subdifferentials, and d−ν (Ω) = d+ν (∅) . The proof goes through as before.

Next we prove statement (iii). Assume first that ν ≥ 0. By superadditivity, ν is

monotone. Fixed A, for any B we have

ν (B) ≥ ν (A ∩B) ≥ ν (A) + D−ν (A) (A ∩B)−D−ν (A) (A)

= ν (A) + D̃−ν (A) (B)− D̃−ν (A) (A) ,

which implies D̃−ν (A) ∈ ∂ν (A). If ν is not monotone and m ∈ ∂ν (∅), then ν1 = ν −
m ≥ 0. By the previous argument, D̃−ν1 (A) = D̃−ν (A)−mA ∈ ∂ν1 (A) = ∂ν (A)−m.

It follows, D−ν (A)⊕mAc ∈ ∂ν (A) and this shows that ν is subdifferentiable at any A.

In particular, we can take m = D+ν (∅) .

iv) We know that an equivalent condition for convexity is that ν (A ∪H)− ν (A) ≤
ν (B ∪H)− ν (B) for A ⊆ B and B ∩H = ∅. It follows that

∑
Hi∈π

ν (A ∪Hi)− ν (A) ≤
∑
Hi∈π

ν (B ∪Hi)− ν (B)

holds for any partition π of H. Taking the limit, D+ν (A) (H) ≤ D+ν (B) (H) for each

H ∈ ABc . In the same way we obtain D−ν (A) (K) ≤ D−ν (B) (K) for all K ∈ AA.

Let now H ⊆ B \ A. From point (i), we have ν (A ∪H) − ν (A) ≥ D+ν (A) (H) and

ν (A) − ν (A ∪H) ≥ −D−ν (A ∪H) (H) . Summing up, we get D−ν (A ∪H) (H) ≥
D+ν (A) (H). Consequently, D−ν (B) (H) ≥ D−ν (A ∪H) (H) ≥ D+ν (A) (H). Putting

together these results, we obtains Dν (A) ≤ Dν (B), provided A ⊆ B. ¥

Proposition 4.1. One implication is obvious. If ν is m-Lipschitz, then −m ∈
∂ν (∅) and m ∈ ∂ν (Ω) with m ∈ ca (Σ). Conversely, assume that ν is convex and

∂ν (∅) 6= ∅ and ∂ν (Ω) 6= ∅. Let A ⊆ B. By Theorem 4.1, ν is differentiable and

D+ν (A) ∈ ∂+ν (A). Therefore, −D+ν (A) (B \ A) ≥ ν (A)− ν (B) .

By (iv) of Theorem 4.1, −D+ν (∅) (B \ A) ≥ −D+ν (A) (B \ A). Therefore−D+ν (∅) (B \ A) ≥
ν (A)− ν (B) .
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Similarly, D−ν (Ω) (B \ A) ≥ D−ν (B) (B \ A) ≥ ν (B)− ν (A) .

Note that by (ii) of Proposition 3.3 , D+ν (∅) and D−ν (Ω) belong to ca (Σ) as ν is

continuous. Setting m = D−ν (Ω) ∨ [−D+ν (∅)] ∨ 0 ∈ ca (Σ), we get |ν (B)− ν (A)| ≤
m (B)−m (A) and ν is Lipschitz. ¥

Theorem 4.2. If ν is Lipschitz it is easy to see that

−‖ν‖∞ ≤ d+ν (A) (H) ≤ d
+
ν (A) (H) ≤ ‖ν‖∞ (8.2)

holds for all A and H ∈ ΣAc .

Now, if νn → u in L (Σ), the sequence νn is Cauchy. Applying (8.2) to νn − νm, we

get |d+νn (A) (H)− d+νm (A) (H)| ≤ ‖νn − νm‖∞. It follows d+νn (A) (H) → Φ (A,H)

for all A and H ∈ ΣAc and the convergence is uniformly on ΣAc . On the other hand, by

the decomposition u = (u− νn) + νn, we have

d+u (A) = d+ (u− νn) (A) + d+νn (A)

d
+
u (A) = d

+
(u− νn) (A) + d+νn (A) .

From (8.2),

∣∣d+u (A) (H)− d+νn (A) (H)
∣∣ ≤ ‖u− νn‖∞∣∣∣d+

u (A) (H)− d+νn (A) (H)
∣∣∣ ≤ ‖u− νn‖∞ .

Consequently, d+u (A) (H) = d
+
u (A) (H) = Φ (A,H) = limn d+νn (A) (H) which proves

u is outer differentiable as well as the limit property.

Suppose now that d+νn (A) = D+νn (A). By the decomposition u = (u− νn) + νn,

it follows

∑
i

∣∣u (A ∪Hi)− u (A)− d+u (A) (Hi)
∣∣

≤ 2 ‖u− νn‖+
∑

i

∣∣νn (A ∪Hi)− νn (A)− d+νn (A) (Hi)
∣∣ .

From which it is easy to prove that d+u (A) = D+u (A). The result for the inner

derivatives is analogous or, more simply, observe that the conjugate game ν is Lipschitz

and ‖ν‖∞ = ‖ν‖∞. ¥

Proposition 4.2. Observe first that every Lipschitz convex game ν is the difference

ν = ν+ − ν− of two Lipschitz monotone convex games. To see this, note that ∂ν (∅) ∩
ca (Σ) 6= ∅ follows from Proposition 4.1. If m ∈ ∂ν (∅) ∩ ca (Σ), then ν ≥ m ≥ −m−.

Hence, ν = ν+ − ν− with ν+ = ν + m− and ν− = m−.
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Let p (ν1, ν2, ..., νn) be a polynomial of Lipschitz convex games νi. By the decom-

position νi = ν+
i − ν−i , we get p (ν1, ν2, ..., νn) = q

(
ν+

1 , .., ν+
n , ν−1 , .., ν−n

)
where q is an-

other polynomial. Now we can obtain the decomposition q = q+ − q− where the co-

efficients of the two polynomials q+ and q− are positive. It is well-known that the

product of two positive convex games is convex, consequently, q+
(
ν+

1 , .., ν+
n , ν−1 , .., ν−n

)

and q−
(
ν+

1 , .., ν+
n , ν−1 , .., ν−n

)
are convex and Lipschitz. By Theorem 4.1 it follows that

p (ν1, ν2, ..., νn) is differentiable. Theorem 4.2 implies that every member of pC∞ (Σ) is

differentiable. ¥

Proposition 4.3. The Lipschitz continuity at x ensures that f has the Frechet

property with its directional derivative f ′ (x; h), that is

lim
‖h‖→0,h≥0

‖h‖−1
∣∣f (x + h)− f (x)−∇+f (x) · h

∣∣ = 0.

See for instance [14, Th. 3.35] for a proof. This implies that for any ε > 0, there is a

δ > 0 such that |f (x + h)− f (x)−∇+f (x) · h| ≤ ε ‖h‖, provided h ≥ 0 and ‖h‖ ≤ δ.

As µ is strongly continuous, a partition π0 ∈ Π (Ac) exists such that if π º π0 then

‖µ (Hi)‖ ≤ δ for all Hi ∈ π and thus

∣∣f (µ (A) + µ (Hi))− f (µ (A))−∇+f (µ (A)) · µ (Hi)
∣∣ ≤ ε ‖µ (Hi)‖∣∣ν (A ∪Hi)− ν (A)−∇+f (µ (A)) · µ (Hi)
∣∣ ≤ ε ‖µ (Hi)‖ .

Summing up,

∑
Hi∈π

∣∣ν (A ∪Hi)− ν (A)−∇+f (µ (A)) · µ (Hi)
∣∣ ≤ ε |µ| (Ac) .

By virtue of (i) of Proposition 3.1, D+ν (A) = ∇+f (µ (A)) · µAc . The remaining result

is easily obtained by duality. For, D−ν (A) = D+ν (Ac) and ν (E) = f (µ (E)), where

f (x) = f (µ (Ω))− f (µ (Ω)− x). ¥

Proposition 4.4. Observe that if {Hi}n
i=1 is a fixed partition of Ac, we can consider

the convergence by refinement of ∆+ν (A) (·) on each single Hi. The limit, whenever it

does exist, can be seen as a ”partial” derivative d+
Hi

ν (A) ∈ a (ΣHi
). Obviously, d+ν (A)

exists iff each d+
Hi

ν (A) exists and further, d+ν (A) = ⊕n
i=1d

+
Hi

ν (A). The same argument

holds for the differentials.

Since the measures µi are mutually singular, there is a partition (Ωi)
n
i=1 of Ω for

which µi (Ωj) = 0 for all i 6= j. Consider the partition {Hi} ∈ Π (Ac) with Hi = Ac ∩Ωi

and calculate the partial derivative D+
Hi

ν (A). If K ⊆ Hi, we have

ν (A ∪K)− ν (A) = f (µ (A) + µi (K) ei)− f (µ (A)) .
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This is a scalar measure game and we can invoke Proposition 4.3. Note that in the

one-dimensional case the local Lipschitz continuity condition in Proposition 4.3 is su-

perfluous. We deduce that D+
Hi

ν (A) = f+
i (µ (A)) µi on Hi. To conclude, if K ⊆ Ac, we

have

D+ν (A) (K) =
n∑

i=1

f+
i (µ (A)) µi (Hi ∩K)

=
n∑

i=1

f+
i (µ (A)) µi (K) = ∇+f (µ (A)) · µ (K)

which is the desired result. ¥

Proposition 5.1. C (Σ) is manifestly an algebra. Actually, if m1 and m2 are control

measures of ν1 and ν2, respectively, then m1 + m2 is a control measure of ν1± ν2 as well

as of ν1ν2.

We prove that C (Σ) is closed by uniform limits. Let νn ∈ C (Σ) with control measures

mn ∈ ca1 (Σ). Define the control measure m =
∑∞

i=1 2−imi. Assume that ν is the

uniform limit of the sequence νn, i.e., ν (A) = limn νn (A) for all A ∈ Σ, and where the

set-wise limit is uniform over A ∈ Σ. If Am is a sequence for which m (Am∆A) → 0,

clearly, mn (Am∆A) → 0 for all n. From the relation

|ν (Am)− ν (A)| ≤ |ν (Am)− νn (Am)|
+ |νn (Am)− νn (A)|+ |νn (A)− ν (A)| ,

it is immediate to infer the desired property.

(i) To prove that C (Σ) includes the continuous exact games, we make use of an

important device already utilized in [20] and that will be basically utilized in Theorem

5.1.

Given (Ω, Σ) and a positive measure m, we construct the metric space Σ (m). We

recall that Σ (m) is obtained by identifying elements F ∼ G in Σ, if m (F 4G) = 0. By

these equivalence classes, one defines the metric ρ (F, G) = m (F 4G) =
∫ |1F − 1G| dm

(see e.g. [6, III. 7]). The metric space Σ (m) turns out to be complete, as it can be

metrically embedded into a closed subset of L1 (Ω, Σ,m).

By the classical Schmeidler’s result [32] (see also [18, Th. 4.2]), we can regard any

continuous exact game ν as a function defined on the metric space Σ (m), where the

probability measure m is assured to exist by Schmeidler’s theorem. Moreover, as ν

is the lower envelope of the additive functionals λ ∈ core (ν) ⊆ ca (Σ,m), which are

continuous in Σ (m), the function ν : Σ (m) → R turns out to be upper semicontinuous.

In fact, ν is continuous since the family µ ∈ core (ν) is equicontinuous on Σ (m). It is

easy to check that the lower envelope of a family of equicontinuous functions is lower
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semicontinuous. To conclude, ν : Σ (m) → R is continuous. Clearly the continuity in

the metric space Σ (m) is equivalent to the continuity in measure.

(ii) Since the polynomials of σ-additive measures lie in C (Σ), the uniform closure is

included into C (Σ). Hence pNA′ ⊂ C (Σ) . By [21], under standardness assumption, the

class pNA′ coincides with the games having na-continuous extensions.

(iii) and (iv) are trivial and the proof is omitted.

(v) Pick as control measure any measure which has a positive mass at each point

i ∈ N, for instance m (i) = 2−i. Then, m (An 4 A) → 0 iff limn An = A. To see

this, assume that m (An 4 A) → 0. In view of point (i) that means that 1An → 1A

in `1 (N, m). It follows that 1An → 1A point-wise, namely, limn An = A. The converse

implication is obvious, since 1An → 1A point-wise implies the convergence in measure.

Now the argument follows the same lines adopted by [7] and details are omitted. ¥

Theorem 5.1. In view of point (i) in the proof of Proposition 5.1, we regard the

set function ν as an upper semicontinuous function defined on the metric space Σ (m).

Henceforth the sets E ∈ Σ will be considered as equivalence classes, namely, points

of Σ (m) . The distance in Σ (m) is denoted by ρ, given by ρ (E, F ) = m (E 4 F ).

By (iii), ρ (A,B) > 0, and the subset ΣA,B (m) = {E : A ⊆ E ⊆ B} is a closed in

Σ (m) . Therefore, the restriction ν : ΣA,B (m) → R is an upper semicontinuous function,

bounded from above and defined on the complete metric space ΣA,B (m) . Define on

ΣA,B (m) the new function

ν̃ (X) = ν (X)− ν (A)− ν (B)− ν (A)

m (B)−m (A)
(m (X)−m (A))

for all X ∈ ΣA,B (m). Clearly, ν̃ (A) = ν̃ (B) = 0. Set

sup
X∈ΣA,B(m)

ν̃ (X) = a < +∞.

We treat separately the two cases a = 0 and a > 0.

Case 1. If a = 0, the maximum is attained at A. The first order condition

d+ν̃ (A) (B \ A) ≤ 0 leads easily to d+ν (A) (B \ A) ≤ ν (B) − ν (A), which manifestly

implies (5.1) for any ε > 0, by setting Cε = A and αε = 1. Note that also eq. (5.2) is

trivially true by setting Cε = A and αε = 1.

Clearly, the maximum is attained at B as well. Therefore, if the inner derivatives

exist, we have also d−ν (B) (B \ A) ≥ ν (B)− ν (A) which yields (5.2) with Cε = B and

βε = 0. This way, (5.1) holds trivially as well.

Case 2. Assume a > 0. We operate always in the following the restriction: 0 < ε < a.

By Ekeland’s variational principle [8] there exists a set A ⊆ Cε ⊆ B such that:

i) ν̃ (Cε) ≥ a− ε,
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ii) Cε maximizes the function ν̃ (X)− ε1/2ρ (X, Cε) over ΣA,B (m).

As first thing, we show that the sets Cε, as ε varies, are uniformly away from A and

B respectively. From the assumption ε < a, it follows that ρ (A,Cε) > 0 for all ε. We

prove that ρ (A, Cε) ≥ k > 0. Suppose not. There would then exist a sequence εn → 0

such that ρ (A,Cεn) → 0. By upper semicontinuity, lim supn ν̃ (Cεn) ≤ ν̃ (A). By (1),

ν̃ (Cεn) ≥ a− εn =⇒ lim supn ν̃ (Cεn) ≥ a. Hence, ν̃ (A) ≥ a, a contradiction. The same

argument applies, by replacing A by B. Consequently, ρ (B, Cε) ≥ k′ > 0 for all ε and

for some k′.

Next we exploit condition (ii) above. By the first order condition, d+ϕ (Cε) (B \ Cε) ≤
0 holds and d−ϕ (Cε) (Cε \ A) ≥ 0, with ϕ (X) = ν̃ (X) − ε1/2ρ (X, Cε) = ν̃ (X) −
ε1/2m (X∆Cε). A straightforward computation of these derivatives leads to

d+ν (Cε) (B \ Cε) ≤ ρ (B, Cε) ρ (A,B)−1 [ν (B)− ν (A)] + ε1/2m (B \ Cε)

d−ν (Cε) (Cε \ A) ≥ ρ (Cε, A) ρ (A,B)−1 [ν (B)− ν (A)]− ε1/2m (Cε \ A) .

Setting αε = ρ (B, Cε) [ρ (A,B)]−1 and observing that ρ (B,Cε) + ρ (Cε, A) = ρ (A, B),

the desired result obtains. ¥

Proposition 5.2. An implication is obvious. Suppose then that d+ν (E) ≥ 0 for all

E. Let A ⊆ B and m be the control measure. If m (A) = m (B), then ν (A) = ν (B).

Assume hence that m (B) > m (A). By Theorem 5.1,

0 ≤ d+ν (Cε) (B \ Cε) ≤ αε [ν (B)− ν (A)] + ε1/2ρ (B, Cε) ,

for all ε small enough. Since αε ∈ [k, 1], given a sequence εn → 0, there is a subsequence,

still denoted εn, such that αεn → α > 0. From 0 ≤ αεn [ν (B)− ν (A)] + ε
1/2
n ρ (B, Cεn)

and taking the limit, we get ν (B) ≥ ν (A). ¥

Proposition 5.3. Set ν = ν1 − ν2. Fix A and apply Theorem 5.1 with B = Ω. We

get

0 = d+ν (Cε) (Cc
ε) ≤ αε [ν (Ω)− ν (A)] + ε1/2m (Cc

ε) ,

with αε ∈ [k, 1]. By the same argument adopted in Proposition 5.2, it follows that

ν (A) ≤ ν (Ω). Replacing ν by −ν, in view of (5.3), yields

0 = d+ν (Dε) (Dc
ε) ≥ α′ε [ν (Ω)− ν (A)]− ε1/2m (Dc

ε) ,

that leads to ν (A) ≥ ν (Ω). Namely, ν is constant. The other equivalence is similar. ¥

Proposition 5.4. Set ∆+ν (A) (H) = D+ν (A) (H) + σ1 (H) and

∆+λ (A) (H) = D+λ (A) (H) + σ2 (H). Tedious but straightforward computations lead

to the decomposition

∆+ (νλ) (A) = ν (A) D+λ (A) + λ (A) D+ν (A) + σ1D
+λ (A) (8.3)

+ν (A ∪ ·) σ2 + λ (A) σ1 + D+ν (A) D+λ (A) .
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By assumption, |σ1| →π 0, |σ2| →π 0. By (i) of Proposition 3.3, D+ν (A) and D+λ (A)

are in ba (AAc). It follows that σ1 (·) D+λ (A) (·) →π 0,

ν (A ∪ ·) σ2 (·) →π 0 and λ (A) σ1 (·) →π 0 absolutely. Therefore it remains to study the

refinement limit of D+ν (A) (·) D+λ (A) (·). Assume that D+ν (A) is strongly continuous.

Given an ε > 0, there is a partition π0 ∈ Π (Ac) such that |D+ν (A)| (Hi) ≤ ε for all

Hi ∈ π º π0. Hence,

∑
Hi∈π

∣∣D+ν (A) (Hi) D+λ (A) (Hi)
∣∣ ≤ ε

∑
Hi∈π

∣∣D+λ (A) (Hi)
∣∣ ≤ εM,

where M is the total variation of D+λ (A). This implies that

D+ν (A) (·) D+λ (A) (·) converges to zero absolutely and, in turn, the claim. The state-

ment for the inner derivatives can be achieved via dual set functions. ¥

In order to prove Theorem 5.2 we formulate the following Lemma.

Let Σ be a σ-algebra of subsets of a given space Ω and λ be a symmetric σ-additive

and finite measure on (Ω × Ω, Σ ⊗ Σ) (i.e., λ (A×B) = λ (B × A)). Define the game

ν(A) = λ(A×A), for A ∈ Σ. Consider the marginal measure λm(A) = λ(A×Ω) as well

as the diagonal measure λd(A) = λ((A× Ω) ∩∆).

Lemma 8.1. The game ν(A) = λ(A×A) is 2 |λm|-Lipschitz. It is everywhere differen-

tiable iff it is differentiable at ∅ and

D+ν (A) = 2λ (A× ·) + D+ν (∅)

D−ν (A) = 2λ (A× ·)−D+ν (∅) .

In addition, if Ω is a Polish space and Σ is its Borel σ-algebra, then D+ν (∅) exists and

D+ν (∅) = λd.

Proof. That ν is Lipschitz is left to the reader. Observe that ν = 2λm − ν,

therefore if ν is outer differentiable, then it is inner differentiable as well, and d−ν (A) =

2λm − d+ν (Ac) . On the other hand, we have

∆+ν (A) (H) = 2λ (A×H) + ∆+ν (∅) (H) .

Hence, D+ν (A) (H) = 2λ (A×H) + D+ν (∅) (H).

Assume that Ω is a Polish space and λ is positive. As λ is tight, there is a compact

K ⊂ Ω such that λ (Ω× Ω) − λ (K ×K) ≤ ε. Further, as λ is regular, there is an

open set A ⊇ ∆ ∩ (K ×K) such that λ (A)− λ [∆ ∩ (K ×K)] ≤ ε. By compactness of

∆∩ (K ×K) it is easy to construct a partition π = {Hi}n
i=1 of K such that Hi ∈ π =⇒

Hi × Hi ⊆ A. Consider the partition π0 of Ω given by π0 = {H1, ..., Hn, Ω \K}. Let
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π =
{
H

′
i , Kj

} º π0 where
{
H

′
i

}
is a partition of K, and {Kj} is a partition of Ω \K.

We have

∑
i

∣∣∣λ
(
H

′
i ×H

′
i

)
− λd

(
H

′
i

)∣∣∣ +
∑

j

|λ (Kj ×Kj)− λd (Kj)|

≤
∑

i

λ
(
H

′
i ×H

′
i

)
− λ

((
H

′
i ×H

′
i

)
∩∆

)
+

∑
j

λ (Kj ×Kj)

≤ λ
(
∪i

(
H

′
i ×H

′
i

))
− λ (∆ ∩ [K ×K]) + ε

≤ λ (A)− λ [∆ ∩ (K ×K)] + ε ≤ 2ε.

Hence, D+ν (∅) = λd, provide λ is positive. By the decomposition λ = λ+ − λ− we get

the desired result for any λ. ¥

Theorem 5.2. Begin first with games of the type ν = µ1 · µ2, with µ1, µ2 ∈ ca (Σ).

Use Lemma 8.1 with the symmetric measure λ = 2−1 (µ1 ⊗ µ2 + µ2 ⊗ µ1) on the product

space (Ω× Ω, Σ⊗ Σ). ν turns out to be differentiable and

D+µ1 · µ2 (∅) = (µ1 ⊗ µ2)∆ . (8.4)

Assume now that ν and λ are games for which D+ν (A) and D+λ (A) exist. By (i) and (ii)

of Proposition 3.3, D+ν (A) and D+λ (A) are in ca (ΣAc). Use the same decomposition

(8.3) as in the proof of Proposition 5.4. By assumption, |σ1| →π 0, |σ2| →π 0. Hence, as

D+λ (A) and ν (A ∪ ·) are bounded, it follows that σ1D
+λ (A), ν (A ∪ ·) σ2 and λ (A) σ1

go to zero absolutely on ΣAc , while for the last term the limit is given by (8.4). ¥

Proposition 5.5. Call D+ν (A) = µ1, D+λ (A) = µ2 and (µ1 ⊗ µ2)∆ the diagonal

measure. With no loss of generality suppose µ1 and µ2 are non negative. By Fubini’s

theorem

(µ1 ⊗ µ2)∆ (H) =

∫

H

µ1 (s) dµ2 (s) ,

where the function s → µ1 (s) is measurable. On the other hand, µ1 (s) 6= 0 at most at

countably many points which are the atoms of µ1. We get thus the representation as a

summable series. Clearly (µ1 ⊗ µ2)∆ is purely atomic. ¥

Corollary 5.1. The games q ◦ λ are differentiable by Proposition 4.2. Relations

(5.6) may be demonstrated by induction with the aid of differentiation rule of Theorem

5.2. Any monomial x1x2....xn can be represented as

nx1x2....xn = (x1 + ... + xn)n −
∑

i

(x1 + ... + xn − xi)
n (8.5)

+
∑
i,j

(x1 + ... + xn − xi − xj)
n − ..........,
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(see [1, p. 41]). Therefore (5.6) implies the remaining statement. ¥

Proposition 6.2. From Proposition 6.1 we know that if d−u (A) (A) = ν (A) for all

A, then d−uE (A) (A) = νE (A). If E is a carrier of ν, then νE = ν. The uniqueness of

the potential implies that uE = u. Hence E is a carrier of u. Conversely, from uE = u we

get νE = ν. The remaining of the proof is plain. Note that this implies N (u) = N (ν).

¥

Proposition 6.4. The claim is proved by induction. Clearly, P (λ) = λ. Suppose to

have proved that P (λs) exist for any integer s < n and for all λ ∈ ca, and that P (λs) is

a polynomial of the measures λ, (⊗2λ)∆, (⊗3λ)∆,..., (⊗sλ)∆. This implies the existence

of potentials of any monomial λ1λ2....λs for any integer s < n. This is a consequence of

the representation (8.5). Consider now the game λn. It is differentiable and by (5.6) the

derivative is

D−λn (A) (A) = nλn (A)−
(

n

2

)
λn−2 (A)

(⊗2λ
)
∆

(A)

+

(
n

3

)
λn−3 (A)

(⊗3λ
)
∆

(A)− ......

Therefore

P (λn) = n−1λn + n−1

(
n

2

)
P

[
λn−2

(⊗2λ
)
∆

]

−n−1

(
n

3

)
P

[
λn−3

(⊗3λ
)
∆

]
+ ....

In the right hand we have to compute potentials of monomials of degree less or equal

to n − 1. We conclude that P (λn) exists for any integer n and they are polynomials.

Relation (8.5) extends this result to any polynomial q (λ). ¥

Lemma 6.1. Step 1. Let ν (A) = d−u (A) (A). We prove that

d−ν (A) (H) = d−−2 u (A) (A, H) . (8.6)

Actually,

d−ν (A) (H) = lim
π∈Π(H)

∑
Hi∈π

d−u (A) (A)− d−u (A \Hi) (A \Hi)

= lim
π∈Π(H)

∑
Hi∈π

d−ũ (A) (A)− d−ũ (A \Hi) (A)

= d−−2 u (A) (A,H) .

Step 2. From (8.6) and by the symmetry of the second derivative,

d−ν (A) (H) = d−−2 u (A) (H, A). By setting ϕH (A) = d−u (A) (H), we get d−ν (A) (H) =
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d−ϕH (A) (A) for all A and all H ⊆ A. If ν is monotone, then d−ν (A) (H) ≥ 0 which

implies that d−ϕH (A) (A) ≥ 0 for all A. An application of mean value theorem yields

ϕH (A) = d−u (A) (H) ≥ 0 for all A. As u ∈ C (Σ) , Proposition 5.2 implies u is mono-

tone. ¥

Theorem 6.1. The proof is divided into several steps.

Step 1. Any game ν = p◦λ ∈ polM is regularly inner twice differentiable. The proof

of this is lengthy. Indeed, in this proof it is enough to check it, provided each measure

λi has finitely many atoms. In this case, we can then operate the decomposition (see

for instance [15]) of each measure λi as λi = µi +
∑k

r=1 aiδr, where µi are nonatomic

measures, ai are scalars, δr is the Dirac measure concentrated at the point {sr} and

S = {s1, ..., sk} is the totality of atoms of all λi. It follows easily the representation

p (λ) = p (µ) +
∑

? 6=T⊆S

pT (µ) uT

where uT are unanimity games, µ = (µi)
n
i=1 and pT (x) are appropriate polynomials of

degrees deg (p) − |T |. By iterating twice the multiplicative rule of Proposition 5.4 it

easy to check that all these addenda pT (µ) uT are regularly inner twice differentiable

and hence p (λ) is.

Step 2. Any ν ∈ polM satisfies condition (ii) of Lemma 6.1. Actually, if ν = λn,

formula (5.6) furnishes

D−ν (A) (H) = nλn−1 (A) λH (A)−
(

n

2

)
λn−2 (A)

(⊗2λ
)H

∆
(A) + ......

which is a polynomial game for the measures λ, λH , (⊗2λ)
H
∆ , ..... . Therefore A →

D−ν (A) (H) is measure continuous as it is Lipschitz. This result may be extended to

any product of measures λ1λ2...λn by the usual method.

Step 3. We prove now that P preserves monotonicity. Let ν = p ◦ λ where λ =

(λ1, ..., λn) are generic finite measures. By Proposition 6.4 the potential u = Pν exists

and is a polynomial game. Let S = {s1, s2, .....} be the set of atoms of all the measures

λi. Set Sn = {sn, sn+1, .....} and consider the sequence of games νn = νSc
n = p ◦ λSc

n . We

have that Pνn = un = uSc
n . By Proposition 6.4 and 6.2 the games un are polynomials of

measures with finitely many atoms. Suppose that µ º νn º −µ. It follow that νn +µ is

monotone with potential given by un +µ. In view of steps 1-2, un +µ satisfies conditions

(i)-(ii) of Lemma 6.1. Hence un +µ is monotone. The same argument applies for µ−νn.

We deduce that ‖un‖∞ ≤ ‖νn‖∞ for all n. As ‖ν − νn‖∞ → 0, it is easy to check that

‖un − u‖∞ → 0. To conclude, u is monotone whenever ν = p ◦ λ is monotonic.

Step 4. Let ν ∈ pM∞. We prove that Pν exists and lies in pM∞. Let ‖νn − ν‖∞ → 0

with νn polynomial games. By Step 3, ‖Pνn‖∞ ≤ ‖νn‖∞. It follows that the sequence
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un = Pνn is Cauchy and hence un → u ∈ pM∞. From D−un (A) (A) = νn (A) and

Theorem 4.2, we get D−u (A) (A) = ν (A) and u is the potential of ν.

Step 5. It remains to prove that Pν preserves monotonicity when ν ∈ pM∞. Accord-

ing to the definition of the measures ν∗ and ν∗ (see Preliminary Section) it is easy to check

(see [22]) that for any game ν ∈ L(Σ) we have ν∗, ν∗ ∈ ca (Σ), (ν1 + ν2)∗ ≥ (ν1)∗ + (ν2)∗
and ‖ν‖∞ = ‖|ν∗| ∨ |ν∗|‖bv. This last property entails that ‖ν∗‖bv ≤ ‖ν‖∞. Clearly ν is

monotone iff ν∗ ≥ 0.

Let νn → ν in pM∞ where νn is a sequence of polynomial games. The relation

νn = (νn − ν)+ν implies νn
∗ ≥ (νn − ν)∗+ν∗. As νn º νn

∗ , we have νn º (νn − ν)∗+ν∗.
By the monotonicity property of the operator P valid for polynomial games, we get

un º (νn − ν)∗ + ν∗ where un = Pνn. As ‖νn − ν‖∞ → 0, we get u º ν∗. Therefore u is

monotone, provided ν is monotone. ¥

Proposition 7.1. We prove only the consistency of ψ. The remaining claims are

obvious. Consistency is discussed at length in [12]. Following Hart and Mas-Colell’s

definition, if φ is an efficient solution defined on a restrictable class of games, and T is

a fixed coalition, define the reduced game of ν as νφ
T (S) = φ

(
νS∪T c)

(S) for all S ⊆ T

(see eq. (4.3) of [12]). Notice that νφ
T (S) is a game defined on ΣT . The solution φ is

called consistent provided φν = φνφ
T holds over T and for all T ∈ Σ.

If Pν = u, then PνS∪T c
= uS∪T c

. It follows that νψ
T (S) = d−u (S ∪ T c) (S). There-

fore the set function u1 (·) = u (· ∪ T c) is a potential of the game νψ
T . Note that u1 (·) is

not a game. The normalized potential would be u1 (·)−u (T c). To conclude, for H ⊆ T ,

ψ
(
νψ

T

)
(H) = d−u1 (T ) (H) = d−u (Ω) (H) = ψν (H)

which is the desired result. ¥

Theorem 7.1. Step 1. By Theorem 6.1 pM∞ ⊂ POT . To prove that ψ is a value,

by Proposition 7.1 it suffices to verify that ψ is a positive operator. Assume ν ∈ pM∞
is monotone. By Theorem 6.1 its potential u = Pν is a monotone game in pM∞. Hence

ψν = D−u (Ω) ≥ 0 and ψ is positive. The other properties of ψ follow straightforwardly

(see [22]).

Step 2. Let now ϕ : pM∞ → ba be any value operator. By its positivity, it satisfies

the Milnor condition (7.1). This in turn entails that ϕ is norm-continuous and takes

values on ca. Clearly the set of polynomial games p ◦ λ, with measures λ having finitely

many atoms only, is dense in pM∞. Therefore, in view of the argument discussed in step

1 of the proof of Theorem 6.1, ϕ is uniquely determined by its values at the games λnuT ,

with λ ∈ na1 and uT are unanimity games with |T | < ∞.

Step 3. By symmetry of ϕ, we prove that necessarily

ϕ (λnuT ) (H) = αn,tλ (H) + (1− αn,t)
|H ∩ T |
|T | (8.7)
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where αn,t are a nonnegative scalars, depending on n and t = |T |. Notice that ψ (λnuT )

are given in (7.2) and are a specialization of the representation (8.7).

Fix ν = λnuT and consider the automorphisms group

G (ν) = {ϑ : ϑ∗λ = λ and ϑT = T} .

G (ν) leaves ν as fixed point, i.e., ϑ∗ν = ν for all ϑ ∈ G (ν) . Set ϕ (λnuT ) = µ. There

is a unique decomposition µ = µna + µp where µna is its nonatomic component and µp

is the purely atomic part. If ϑ ∈ G (ν), ϑ∗µ = ϑ∗µna + ϑ∗µp = µna + µp. By uniqueness

of the decomposition, it follows that ϑ∗µna = µna and ϑ∗µp = µp for all ϑ ∈ G (ν). By

standard argument (see remark below), µna = αλ. If a is an atom of µp, we obtain that

µp (a) = µp (ϑa) . This implies in turn that the carrier of µp is T . Further, the measure µp

is uniform over T . Thus µp (H) = k |H ∩ T | and ϕ (λnuT ) = αλ+k |· ∩ T |. By efficiency

and positivity of ϕ, we get the representation (8.7). We have still to show that αn,t

depends merely on t = |T | rather than T . This is an easy exercise. If |T | = |Q|, consider

an automorphism ϑ such that ϑQ = T and ϑ∗λ = λ. Under standardness condition such

an automorphism does exist. Clearly, ϑ∗ (λnuT ) = λnuQ. By symmetry of ϕ, it is then

easy to show that the coefficient αn,t in the representation (8.7) is identical for the two

games λnuT and λnuQ.

Step 4. Assume now that ϕ is the asymptotic value on pM∞, necessarily existing by

[25]. It suffices to prove that ϕ (λnuT ) = ψ (λnuT ). By (8.7) and (7.2), it is enough to

show that ϕ (λnuT ) (T ) = t (t + n)−1. Let T = {a1, a2, ..., at}, and consider the following

T feasible sequence of partitions of the space Ω, πm = {a1, ..., at, H1, H2, ..., Hm}, where

λ (Hi) = 1/m. As λ is nonatomic, a partition πm with such requirements does exist. Set

νm = νπm . We aim at calculating Shνm (T ). The multilinear extension of νm is

Bνm =
∑

L

( |L|
m

)n

x1x2...xt

∏
i∈L

yi

∏
j∈Lc

(1− yj)

where the summation is made over all the subsets L ⊆ {1, 2, ..., m} and the variables

associated with the atoms a1, ..., at and those associated with the atoms H1, H2, ..., Hm

are denoted differently. By Owen’s diagonal formula it follows that

Shνm (T ) = t

∫ 1

0

st−1

(
m∑

r=0

(
m

r

) ( r

m

)n

sr (1− s)m−r

)
ds.

The functions

ρm (s) =
m∑

r=0

(
m

r

) ( r

m

)n

sr (1− s)m−r

are the Bernstein’s polynomials associated with the function sn. Thus ρm (s) → sn as

m →∞, uniformly on the interval [0, 1]. This implies

ϕν (T ) = lim
m→∞

Shνm (T ) = t

∫ 1

0

st+n−1ds = t (n + t)−1 ,
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which proves the assertion.

As regarding the last statement, the value is unique over pNA∞. This is proven in

[22] and [13]. Hence the restriction of ψto pNA∞ is the Aumann-Shapley value. ¥

Remark. In Step 3 of the above Theorem, we used a rather standard argument in

value theory (see proof of Proposition 6.1 of [1]). Let us further clarify this argument.

Fix a coalition A with λ (A) > 0 and let B be any coalition such the λ (B) = λ (A). By

Weiss’ argument (see Note 1 on page 40 of [1]) there is an automorphism ϑ ∈ G (ν) such

that ϑ (A) = B. This implies that µna (A) = µna (B). This property suffices to infer that

µna = αλ. See for instance Theorem 4 of [27]. Indeed a more general theorem based on

this property can be found in [17] (Theorem 20).

Theorem 7.2. Pν = u implies P (ϑ∗ν) = ϑ∗u. Further,

d−−2 (ϑ∗u) (A) (H,K) = d−−2 u (ϑA) (ϑH, ϑK)

that implies the space POT2 (Σ) to be symmetric. An analogous argument applies to

the restrictability in that

d−−2

(
uS

)
(A) (H, K) = d−−2 u (A ∩ S) (H ∩ S, K ∩ S) .

Clearly ψ is a positive operator by Theorem 6.1 and satisfies the balanced contribution

axiom by definition. ¥
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