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Abstract. Sequential change diagnosis is the joint problem of detection and identification
of a sudden and unobservable change in the distribution of a random sequence. In this
problem, the common probability law of a sequence of i.i.d. random variables suddenly
changes at some disorder time to one of finitely many alternatives. This disorder time marks
the start of a new regime, whose fingerprint is the new law of observations. Both the disorder
time and the identity of the new regime are unknown and unobservable. The objective is
to detect the regime-change as soon as possible, and, at the same time, to determine its
identity as accurately as possible. Prompt and correct diagnosis is crucial for quick execution
of the most appropriate measures in response to the new regime, as in fault detection and
isolation in industrial processes, and target detection and identification in national defense.
The problem is formulated in a Bayesian framework. An optimal sequential decision strategy
is found, and an accurate numerical scheme is described for its implementation. Geometrical
properties of the optimal strategy are illustrated via numerical examples. The traditional
problems of Bayesian change-detection and Bayesian sequential multi-hypothesis testing are
solved as special cases. In addition, a solution is obtained for the problem of detection and
identification of component failure(s) in a system with suspended animation.

1. Introduction

Sequential change diagnosis is the joint problem of detection and identification of a sudden

change in the distribution of a random sequence. In this problem, one observes a sequence

of i.i.d. random variables X1, X2, . . ., taking values in some measurable space (E, E). The

common probability distribution of the X’s is initially some known probability measure P0

on (E, E), and, in the terminology of statistical process control, the system is said to be “in

control.” Then, at some unknown and unobservable disorder time θ, the common proba-

bility distribution changes suddenly to another probability measure Pµ for some unknown

and unobservable index µ ∈ M , {1, . . . ,M}, and the system goes “out of control.” The

objective is to detect the change as quickly as possible, and, at the same time, to identify

the new probability distribution as accurately as possible, so that the most suitable actions

can be taken with the least delay.

Decision strategies for this problem have a wide array of applications, such as fault de-

tection and isolation in industrial processes, target detection and identification in national

defense, pattern recognition and machine learning, radar and sonar signal processing, seis-

mology, speech and image processing, biomedical signal processing, finance, and insurance.
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For example, suppose we perform a quality test on each item produced from a manufacturing

process consisting of several complex processing components (labeled 1, 2, . . . ,M). As long

as each processing component is operating properly, we can expect the distribution of our

quality test statistic to be stationary. Now, if there occurs a sudden fault in one of the pro-

cessing components, this can change the distribution of our quality test statistic depending

on the processing component which caused the fault. It may be costly to continue manufac-

ture of the items at a substandard quality level, so we must decide when to (temporarily)

shut down the manufacturing process and repair the fault. However, it may also be expensive

to dissect each and every processing component in order to identify the source of the failure

and to fix it. So, not only do we want to detect quickly when a fault happens, but, at the

same time we want also to identify accurately which processing component is the cause. The

time and the cause of the fault will be distributed independently according to a geometric

and a finite distribution, respectively, if each component fails independently according to

some geometric distributions, which is a reasonable assumption for highly reliable compo-

nents; see Section 5.5. As another example, an insurance company may monitor reported

claims not only to detect a change in its risk exposure, but also to assess the nature of the

change so that it can adjust its premium schedule or re-balance appropriately its portfolio

of reserves to hedge against a different distribution of loss scenarios.

Sequential change diagnosis can be viewed as the fusion of two fundamental areas of

sequential analysis: change detection and multi-hypothesis testing. In traditional change

detection problems, M = 1 and there is only one change distribution, P1; therefore, the focus

is exclusively on detecting the change time, whereas in traditional sequential multi-hypothesis

testing problems, there is no change time to consider. Instead, every observation has common

distribution Pµ for some unknown µ, and the focus is exclusively on the inference of µ. Both

change detection and sequential multi-hypothesis testing have been studied extensively. For

recent reviews of these areas, we refer the reader to Basseville and Nikiforov [3], Dragalin,

Tartakovsky and Veeravalli [8, 9], and Lai [14], and the references therein.

However, the sequential change diagnosis problem involves key trade-off decisions not taken

into account by separately applying techniques for change detection and sequential multi-

hypothesis testing. While raising an alarm as soon as the change occurs is advantageous

for the change detection task, it is undesirable for the isolation task because the longer

one waits to raise the alarm, the more observations one has to use for inferring the change

distribution. Moreover, the unknown change time complicates the isolation task, and, as a

result, adaptation of existing sequential multi-hypothesis testing algorithms is problematic.

The theory of sequential change diagnosis has not been broadly developed. Nikiforov [16]

provides the first results for this problem, showing asymptotic optimality for a certain

non-Bayesian approach, and Lai [13] generalizes these results through the development of

information-theoretic bounds and the application of likelihood methods. In this paper, we

follow a Bayesian approach to reveal a new sequential decision strategy for this problem,
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which incorporates a priori knowledge regarding the distributions of the change time θ and

of the change index µ. We prove that this strategy is optimal and we describe an accurate

numerical scheme for its implementation.

In Section 2 we formulate precisely the problem in a Bayesian framework, and in Section 3

we show that it can be reduced to an optimal stopping of a Markov process whose state space

is the standard probability simplex. In addition, we establish a simple recursive formula that

captures the dynamics of the process and yields a sufficient statistic fit for online tracking.

In Section 4 we use optimal stopping theory to substantiate the optimality equation for the

value function of the optimal stopping problem. Moreover, we prove that this value function

is bounded, concave, and continuous on the standard probability simplex. Furthermore, we

prove that the optimal decision strategy uses a finite number of observations on average

and we establish some important characteristics of the associated optimal stopping/decision

region. In particular, we show that the optimal stopping region of the state space for the

problem consists of M non-empty, convex, closed, and bounded subsets. Also, we consider

a truncated version of the problem that allows at most N observations from the sequence

of random measurements. We establish an explicit bound (inversely proportional to N) for

the approximation error associated with this truncated problem.

In Section 5 we show that the separate problems of change detection and sequential multi-

hypothesis testing are solved as special cases of the overall joint solution. We illustrate

some geometrical properties of the optimal method and demonstrate its implementation by

numerical examples for the special cases M = 2 and M = 3. Specifically, we show instances

in which the M convex subsets comprising the optimal stopping region are connected and

instances in which they are not. Likewise, we show that the continuation region (i.e., the

complement of the stopping region) need not be connected. We provide a solution to the

problem of detection and identification of component failure(s) in a system with suspended

animation. Finally, we outline in Section 6 how the change-diagnosis algorithm may be

implemented with a computer in general. Proofs of most results are deferred to the Appendix.

2. Problem statement

Let (Ω,F ,P) be a probability space hosting random variables θ : Ω 7→ {0, 1, . . .} and

µ : Ω 7→ M , {1, . . . ,M} and a process X = (Xn)n≥1 taking values in some measurable

space (E, E). Suppose that for every t ≥ 1, i ∈M, n ≥ 1, and (Ek)
n
k=1 ⊆ E

(2.1) P {θ = t, µ = i,X1 ∈ E1, . . . , Xn ∈ En}

= (1− p0)(1− p)t−1pνi
∏

1≤k≤(t−1)∧n
P0(Ek)

∏
t∨1≤`≤n

Pi(E`)

for some given probability measures P0,P1, . . . ,PM on (E, E), known constants p0 ∈ [0, 1],

p ∈ (0, 1), and νi > 0, i ∈ M such that ν1 + · · · + νM = 1, where x ∧ y , min{x, y}
and x ∨ y , max{x, y}. Namely, θ is independent of µ; it has a zero-modified geometric
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distribution with parameters p0 and p in the terminology of Klugman, Panjer, and Willmot

[12, Sec. 3.6], which reduces to the standard geometric distribution with success probability

p when p0 = 0. Moreover, νi is the probability that the change type µ is i for every

i = 1, . . . ,M .

Conditionally on θ and µ, the random variables Xn, n ≥ 1 are independent; X1, . . . , Xθ−1

and Xθ, Xθ+1, . . . are identically distributed with common distributions P0 and Pµ, respec-

tively. The probability measures P0,P1, . . . ,PM always admit densities with respect to some

σ-finite measure m on (E, E); for example, we can take m = P0 + P1 · · ·+ PM . So, we fix m

and denote the corresponding densities by f0, f1, . . . , fM , respectively.

Suppose now that we observe sequentially the random variables Xn, n ≥ 1. Their common

probability density function f0 changes at stage θ to some other probability density function

fµ, µ ∈ M. Our objective is to detect the change time θ as quickly as possible and isolate

the change index µ as accurately as possible. More precisely, given costs associated with

detection delay, false alarm, and false isolation of the change index, we seek a strategy that

minimizes the expected total change detection and isolation cost.

In view of the fact that the observations arrive sequentially, we are interested in sequen-

tial diagnosis schemes. Specifically, let F = (Fn)n≥0 denote the natural filtration of the

observation process X, where

F0 = {∅,Ω} and Fn = σ(X1, . . . , Xn), n ≥ 1.

A sequential decision strategy δ = (τ, d) is a pair consisting of a stopping time (or stopping

rule) τ of the filtration F and a terminal decision rule d : Ω 7→ M measurable with respect

to the history Fτ = σ(Xn∧τ ;n ≥ 1) of observation process X through stage τ . Applying a

sequential decision strategy δ = (τ, d) consists of announcing at the end of stage τ that the

common probability density function has changed from f0 to fd at or before stage τ . Let

∆ , {(τ, d) | τ ∈ F, and d ∈ Fτ is an M-valued random variable}

denote the collection of all such sequential decision strategies (“τ ∈ F” means that τ is a

stopping time of filtration F). Let us specify the possible losses associated with a sequential

decision strategy δ = (τ, d) ∈ ∆ as follows:

(i) Detection delay loss. Let us denote by a fixed positive constant c the detection delay

cost per period. Then the expected decision delay cost for δ is E[c(τ − θ)+], possibly

infinite, where (x)+ , max{x, 0}.
(ii) Terminal decision loss. Here we identify two cases of isolation loss depending on

whether or not the change has actually occurred at or before the stage in which we

announce the isolation decision:

(a) Loss due to false alarm. Let us denote by a0j the isolation cost on {τ < θ, d = j}
for every j ∈M. Then the expected false alarm cost for δ is E[a0d1{τ<θ}].
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(b) Loss due to false isolation. Let us denote by aij the isolation cost on the event

{θ ≤ τ <∞, d = j, µ = i} for every i, j ∈M. Then the expected false isolation

cost for δ is E[aµd1{θ≤τ<∞}].

Here, aij, i, j ∈ M are known nonnegative constants, and aii = 0 for every i ∈ M;

i.e., no cost incurred for making a correct terminal decision.

Accordingly, for every sequential decision strategy δ = (τ, d) ∈ ∆, we define a Bayes risk

function

R(δ) = cE[(τ − θ)+] + E[a0d1{τ<θ} + aµd1{θ≤τ<∞}](2.2)

as the expected diagnosis cost: the sum of the expected detection delay cost and the expected

terminal decision cost upon alarm. The problem is to find a sequential decision strategy

δ = (τ, d) ∈ ∆ (if it exists) with the minimum Bayes risk

R∗ , inf
δ∈∆

R(δ).(2.3)

3. Posterior analysis and formulation as an optimal stopping problem

In this section we show that the Bayes risk function in (2.2) can be written as the expected

value of the running and terminal costs driven by a certain Markov process. We use this fact

to recast the minimum Bayes risk in (2.3) as a Markov optimal stopping problem.

Let us introduce the posterior probability processes

Π(0)
n , P{θ > n | Fn} and Π(i)

n , P{θ ≤ n, µ = i | Fn}, i ∈M, n ≥ 0.

Having observed the first n observations, Π
(0)
n is the posterior probability that the change

has not yet occurred at or before stage n, while Π
(i)
n is the posterior joint probability that the

change has occurred by stage n and that the hypothesis µ = i is correct. The connection of

these posterior probabilities to the loss structure for our problem is established in the next

proposition.

Proposition 3.1. For every sequential decision strategy δ ∈ ∆, the Bayes risk function (2.2)

can be expressed in terms of the process Π , {Πn = (Π
(0)
n , . . . ,Π

(M)
n )}n≥0 as

R(δ) = E

[
τ−1∑
n=0

c (1− Π(0)
n ) + 1{τ<∞}

M∑
j=1

1{d=j}

M∑
i=0

aijΠ
(i)
τ

]
.

While our original formulation of the Bayes risk function (2.2) was in terms of the values of

the unobservable random variables θ and µ, Proposition 3.1 gives us an equivalent version of

the Bayes risk function in terms of the posterior distributions for θ and µ. This is particularly

effective in light of Proposition 3.2, which we state with the aid of some additional notation

that is referred to throughout the paper. Let

SM ,
{
π = (π0, π1, . . . , πM) ∈ [0, 1]M+1

∣∣ π0 + π1 + · · ·+ πM = 1
}
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denote the standardM -dimensional probability simplex. Define the mappingsDi : SM×E 7→
[0, 1], i ∈M and D : SM × E 7→ [0, 1] by

Di(π, x) ,

{
(1− p)π0f0(x), i = 0

(πi + π0 pνi)fi(x), i ∈M

}
, D(π, x) ,

M∑
i=0

Di(π, x),(3.1)

and the operator T on the collection of bounded functions f : SM 7→ R by

(Tf)(π) ,
∫
E

m(dx)D(π, x) f

(
D0(π, x)

D(π, x)
, . . . ,

DM(π, x)

D(π, x)

)
for every π ∈ SM .(3.2)

Proposition 3.2. The process Π possesses the following properties:

(a) The process Π(0) , {Π(0)
n ,Fn}n≥0 is a supermartingale, and E Π

(0)
n ≤ (1 − p)n for

every n ≥ 0.

(b) The process Π(i) , {Π(i)
n ,Fn}n≥0 is a submartingale for every i ∈M.

(c) The process Π = {(Π(0)
n , . . . ,Π

(M)
n )}n≥0 is a Markov process, and

Π
(i)
n+1 =

Di(Πn, Xn+1)

D(Πn, Xn+1)
, i ∈ {0} ∪M, n ≥ 0,(3.3)

with initial state Π
(0)
0 = 1− p0 and Π

(i)
0 = p0νi, i ∈M. Moreover, for every bounded

function f : SM 7→ R and n ≥ 0, we have E[f(Πn+1)|Πn] = (Tf)(Πn).

Remark 3.3. Since 1 =
∑M

i=0 Π
(i)
n , the vector (Π

(0)
n , . . . ,Π

(M)
n ) ∈ SM for every n ≥ 0. Since

Π is uniformly bounded, the limit limn→∞Πn exists by the martingale convergence theorem.

Moreover, limn→∞Π
(0)
n = 0 a.s. by Proposition 3.2(a) since p ∈ (0, 1).

Now, let the functions h, h1, . . . , hM from SM into R+ be defined by

h(π) , min
j∈M

hj(π) and hj(π) ,
M∑
i=0

πi aij, j ∈M,

respectively. Then, we note that for every δ = (τ, d) ∈ ∆, we have

R(τ, d) = E

[
τ−1∑
n=0

c(1− Π(0)
n ) + 1{τ<∞}

M∑
j=1

1{d=j}hj(Πτ )

]

≥ E

[
τ−1∑
n=0

c(1− Π(0)
n ) + 1{τ<∞}h(Πτ )

]
= R(τ, d̃)

where we define on the event {τ <∞} the terminal decision rule d̃ to be any index satisfying

hd̃(Πτ ) = h(Πτ ). In other words, an optimal terminal decision depends only upon the value

of the Π process at the stage in which we stop. Note also that the functions h and h1, . . . , hM
are bounded on SM . Therefore, we have the following:
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lemma 3.4. The minimum Bayes risk (2.3) reduces to the following optimal stopping of the

Markov process Π:

R∗ = inf
(τ,d)∈∆

R(τ, d) = inf
(τ,d̃)∈∆

R(τ, d̃) = inf
τ∈F

E

[
τ−1∑
n=0

c (1− Π(0)
n ) + 1{τ<∞}h(Πτ )

]
.

We simplify this formulation further by showing that it is enough to take the infimum over

C , {τ ∈ F | τ <∞ a.s. and EY −τ <∞},(3.4)

where

−Yn ,
n−1∑
k=0

c (1− Π
(0)
k ) + h(Πn), n ≥ 0(3.5)

is the minimum cost obtained by making the best terminal decision when alarm is set at time

n. Since h(·) is bounded on SM , the process {Yn,Fn;n ≥ 0} consists of integrable random

variables. So the expectation EYτ exists for every τ ∈ F, and our problem becomes

−R∗ = sup
τ∈F

EYτ .(3.6)

Observe that Eτ <∞ for every τ ∈ C because ∞ > (1/c)EY −τ ≥ E(τ − θ)+ ≥ E(τ − θ) ≥
Eτ − Eθ ≥ Eτ − (1/p). In fact, we have EYτ > −∞ ⇔ EY −τ < ∞ ⇔ Eτ < ∞ for every

τ ∈ F. Since supτ∈F EYτ ≥ EY0 > −h(Π0) > −∞, it is enough to consider τ ∈ F such that

Eτ <∞. Namely, (3.6) reduces to

−R∗ = sup
τ∈C

EYτ .(3.7)

4. Solution via optimal stopping theory

In this section we derive an optimal solution for the sequential change diagnosis problem

in (2.3) by building on the formulation of (3.7) via the tools of optimal stopping theory.

4.1. The optimality equation. We begin by applying the method of truncation with a

view of passing to the limit to arrive at the final result. For every N ≥ 0 and n = 0, . . . , N ,

define the sub-collections

Cn , {τ ∨ n | τ ∈ C} and CN
n , {τ ∧N | τ ∈ Cn}

of stopping times in C of (3.4). Note that C = C0. Now, consider the families of (truncated)

optimal stopping problems corresponding to (Cn)n≥0 and (CN
n )0≤n≤N , respectively, defined

by

−Vn , sup
τ∈Cn

EYτ , n ≥ 0 and − V N
n , sup

τ∈CN
n

EYτ , 0 ≤ n ≤ N, N ≥ 0.(4.1)

Note that R∗ = V0.
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To investigate these optimal stopping problems, we introduce versions of the Snell envelope

of (Yn)n≥0 (i.e., the smallest regular supermartingale dominating (Yn)n≥0) corresponding to

(Cn)n≥0 and (CN
n )0≤n≤N , respectively, defined by

γn , ess sup
τ∈Cn

E[Yτ | Fn], n ≥ 0 and γNn , ess sup
τ∈CN

n

E[Yτ | Fn], 0 ≤ n ≤ N, N ≥ 0.(4.2)

Then through the following series of lemmas, whose proofs are deferred to the Appendix, we

point out several useful properties of these Snell envelopes. Finally, we extend these results

to an arbitrary initial state vector and establish the optimality equation. Note that each of

the ensuing (in)equalities between random variables are in the P-almost sure sense.

First, these Snell envelopes provide the following alternative expressions for the optimal

stopping problems introduced in (4.1) above.

lemma 4.1. For every N ≥ 0 and 0 ≤ n ≤ N , we have −Vn = Eγn and −V N
n = EγNn .

Second, we have the following backward-induction equations.

lemma 4.2. We have γn = max{Yn,E[γn+1 | Fn]} for every n ≥ 0. For every N ≥ 1 and

0 ≤ n ≤ N − 1, we have γNN = YN and γNn = max{Yn,E[γNn+1 | Fn]}.

We also have that these versions of the Snell envelopes coincide in the limit as N → ∞.

That is,

lemma 4.3. For every n ≥ 0, we have γn = limN→∞ γNn .

Next, recall from (3.2) and Proposition 3.2(c) the operator T and let us introduce the

operator M on the collection of bounded functions f : SM 7→ R+ defined by

(Mf)(π) , min{h(π), c(1− π0) + (Tf)(π)}, π ∈ SM .(4.3)

Observe that 0 ≤ Mf ≤ h. That is, π 7→ (Mf)(π) is a nonnegative bounded function.

Therefore, M2f ≡ M(Mf) is well-defined. If f is nonnegative and bounded, then Mnf ≡
M(Mn−1f) is defined for every n ≥ 1, with M0f ≡ f by definition. Using operator M, we

can express (γNn )0≤n≤N in terms of the process Π as stated in the following lemma.

lemma 4.4. For every N ≥ 0, and 0 ≤ n ≤ N , we have

γNn = −c
n−1∑
k=0

(1− Π
(0)
k )− (MN−nh)(Πn).(4.4)

The next lemma shows how the optimal stopping problems can be rewritten in terms of

the operator M. It also conveys the connection between the truncated optimal stopping

problems and the initial state Π0 of the Π process.

lemma 4.5. We have

(a) V N
0 = (MNh)(Π0) for every N ≥ 0, and
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(b) V0 = lim
N→∞

(MNh)(Π0).

Observe that since Π0 ∈ F0 = {∅,Ω}, we have P{Π0 = π} = 1 for some π ∈ SM . On

the other hand, for every π ∈ SM we can construct a probability space (Ω,F ,Pπ) hosting

a Markov process Π with the same dynamics as in (3.3) and Pπ{Π0 = π} = 1. Moreover,

on such a probability space, the preceding results remain valid. So, let us denote by Eπ the

expectation with respect to Pπ and rewrite (4.1) as

−Vn(π) , sup
τ∈Cn

EπYτ , n ≥ 0, and − V N
n (π) , sup

τ∈CN
n

EπYτ , 0 ≤ n ≤ N, N ≥ 0

for every π ∈ SM . Then Lemma 4.5 implies that

V N
0 (π) = (MNh)(π) for every N ≥ 0, and V0(π) = lim

N→∞
(MNh)(π)(4.5)

for every π ∈ SM . Taking limits as N →∞ of both sides in (MN+1h)(π) = M(MNh)(π) and

applying the monotone convergence theorem on the right-hand side yields V0(π) = (MV0)(π).

Hence, we have shown the following result.

Proposition 4.6 (Optimality equation). For every π ∈ SM , we have

V0(π) = (MV0)(π) ≡ min{h(π), c(1− π0) + (TV0)(π)}.(4.6)

Remark 4.7. By solving V0(π) for any initial state π ∈ SM , we capture the solution to the

original problem since property (c) of Proposition 3.2 and (3.7) imply that

R∗ = V0(1− p0, p0ν1, . . . , p0νM).

4.2. Some properties of the value function. Now, we reveal some important properties

of the value function V0(·) of (4.5). These results help us to establish an optimal solution for

V0(·), and hence an optimal solution for R∗, in the next subsection.

lemma 4.8. If g : SM 7→ R is a bounded concave function, then so is Tg.

Proposition 4.9. The mappings π 7→ V N
0 (π), N ≥ 0 and π 7→ V0(π) are concave.

Proposition 4.10. For every N ≥ 1 and π ∈ SM , we have

V0(π) ≤ V N
0 (π) ≤ V0(π) +

(‖h‖2

c
+
‖h‖
p

)
1

N
.

Since ‖h‖ , supπ∈SM |h(π)| <∞, limN→∞ ↓ V N
0 (π) = V0(π) uniformly in π ∈ SM .

Proposition 4.11. For every N ≥ 0, the function V N
0 : SM 7→ R+ is continuous.

Corollary 4.12. The function V0 : SM 7→ R+ is continuous.

Note that SM is a compact subset of RM+1, so while continuity of V0(·) on the interior

of SM follows from the concavity of V0(·) by Proposition 4.8, Corollary 4.12 establishes

continuity on all of SM , including its boundary.
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4.3. An optimal sequential decision strategy. Finally, we describe the optimal stopping

region in SM implied by the value function V0(·), and we present an optimal sequential

decision strategy for our problem. Let us define for every N ≥ 0,

ΓN , {π ∈ SM |V N
0 (π) = h(π)}, Γ

(j)
N , ΓN ∩ {π ∈ SM |h(π) = hj(π)}, j ∈M,

Γ , {π ∈ SM |V0(π) = h(π)}, Γ(j) , Γ ∩ {π ∈ SM |h(π) = hj(π)}, j ∈M.

Theorem 4.15 below shows that it is always optimal to stop and raise an alarm as soon

as the posterior probability process Π enters the region Γ. Intuitively, this follows from

the optimality equation (4.6). At any stage, we always have two choices: either we stop

immediately and raise an alarm or we wait for at least one more stage and take an additional

observation. If the posterior probability of all possibilities is given by the vector π, then the

costs of those competing actions equal h(π) and c(1− π0) + (TV0)(π), respectively, and it is

always better to take the action that has the smaller expected cost. The cost of stopping

is less (and therefore stopping is optimal) if h(π) ≤ c(1 − π0) + (TV0)(π), equivalently, if

V0(π) = h(π). Likewise, if at most N stages are left, then stopping is optimal if V N
0 (π) = h(π)

or π ∈ ΓN .

For each j ∈ {0} ∪ M, let ej ∈ SM denote the unit vector consisting of zero in every

component except for the jth component, which is equal to one. Note that e0, . . . , eM are

the extreme points of the closed convex set SM , and any vector π = (π0, . . . , πM) ∈ SM can

be expressed in terms of e0, . . . , eM as π =
∑M

j=0 πjej.

theorem 4.13. For every j ∈ M, (Γ
(j)
N )N≥0 is a decreasing sequence of non-empty, closed,

convex subsets of SM . Moreover,

Γ
(j)
0 ⊇ Γ

(j)
1 ⊇ · · · ⊇ Γ(j) ⊇

{
π ∈ SM |hj(π) ≤ min{h(π), c(1− π0)}

}
3 ej,

Γ =
∞⋂
N=1

ΓN =
M⋃
j=1

Γ(j), and Γ(j) =
∞⋂
N=1

Γ
(j)
N , j ∈M.

Furthermore, SM = Γ0 ⊇ Γ1 ⊇ · · · ⊇ Γ % {e1, . . . , eM}.

lemma 4.14. For every n ≥ 0, we have γn = −c∑n−1
k=0(1− Π

(0)
k )− V0(Πn).

theorem 4.15. Let σ , inf{n ≥ 0 |Πn ∈ Γ}.
(a) The stopped process {γn∧σ,Fn;n ≥ 0} is a martingale.

(b) The random variable σ is an optimal stopping time for V0, and

(c) Eσ <∞.

Therefore, the pair (σ, d∗) is an optimal sequential decision strategy for (2.3), where the

optimal stopping rule σ is given by Theorem 4.15, and, as in the proof of Lemma 3.4, the

optimal terminal decision rule d∗ is given by

d∗ = j on the event {σ = n,Πn ∈ Γ(j)} for every n ≥ 0.
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Accordingly, the set Γ is called the stopping region implied by V0(·), and Theorem 4.13 reveals

its basic structure. We demonstrate the use of these results in the numerical examples of

Section 5.

Note that we can take a similar approach to prove that the stopping rules σN , inf{n ≥
0 |Πn ∈ ΓN−n}, N ≥ 0 are optimal for the truncated problems V N

0 (·), N ≥ 0 in (4.5). Thus,

for each N ≥ 0, the set ΓN is called the stopping region for V N
0 (·): it is optimal to terminate

the experiments in ΓN if N stages are left before truncation.

5. Special cases and examples

In this section we discuss solutions for various special cases of the general formulation

given in Section 2. First, we show how the traditional problems of Bayesian sequential

change detection and Bayesian sequential multi-hypothesis testing are formulated via the

framework of Section 2. Then we present numerical examples for the cases M = 2 and

M = 3. In particular, we develop a geometrical framework for working with the sufficient

statistic developed in Section 3 and the optimal sequential decision strategy developed in

Section 4. Finally, we solve the special problem of detection and identification of primary

component failure(s) in a system with suspended animation.

5.1. A. N. Shiryaev’s sequential change detection problem. Set a0j = 1 for j ∈ M
and aij = 0 for i, j ∈M, then the Bayes risk function (2.2) becomes

R(δ) = cE[(τ − θ)+] + E[a0d1{τ<θ} + aµd1{θ≤τ<∞}] = cE[(τ − θ)+] + E[1{τ<θ}]

= P{τ < θ}+ cE[(τ − θ)+].

This is the Bayes risk studied by Shiryaev [19, 20] to solve the sequential change detection

problem.

5.2. Sequential multi-hypothesis testing. Set p0 = 1, then θ = 0 a.s. and thus the Bayes

risk function (2.2) becomes

R(δ) = cE[(τ − θ)+] + E[a0d1{τ<θ} + aµd1{θ≤τ<∞}] = E[cτ + aµd1{τ<∞}].

This gives the sequential multi-hypothesis testing problem studied by Wald and Wolfowitz

[22], Arrow, Blackwell, and Girshick [1]; see also Blackwell and Girshick [5].

5.3. Two alternatives after the change. In this subsection we consider the special case

M = 2 in which we have only two possible change distributions, f1(·) and f2(·). We describe a

graphical representation of the stopping and continuation regions for an arbitrary instance of

the special case M = 2. Then we use this representation to illustrate geometrical properties

of the optimal method (Section 4.3) via model instances for certain choices of the model

parameters p0, p, ν1, ν2, f0(·), f1(·), f2(·), a01, a02, a12, a21, and c.

Let the linear mapping L : R3 7→ R2 be defined by L(π0, π1, π2) , ( 2√
3
π1 + 1√

3
π2, π2). Since

π0 = 1− π1 − π2 for every π = (π0, π1, π2) ∈ S2 ⊂ R3, we can recover the preimage π of any
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(0, 0, 0)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(π0, π1, π2) = π

π0

π1

π
2

S2 ⊂ R3

(0, 0) ( 2√
3
, 0)

( 1√
3
, 1)

( 2√
3
π1 + 1√

3
π2, π2)

π0π
1

π
2

L(S2) ⊂ R2

1

Figure 1. Linear mapping L of the standard two-dimensional probability

simplex S2 from the positive orthant of R3 into the positive quadrant of R2.

point L(π) ∈ L(S2) ⊂ R2. For every point π = (π0, π1, π2) ∈ S2, the coordinate πi is given

by the Euclidean distance from the image point L(π) to the edge of the image triangle L(S2)

that is opposite the image point L(ei), for each i = 0, 1, 2. For example, the distance from

the image point L(π) to the edge of the image triangle opposite the lower-left-hand corner

L(1, 0, 0) = (0, 0) is the value of the preimage coordinate π0. See Figure 1.

Therefore, we can work with the mappings L(Γ) and L(S2 \ Γ) of the stopping region Γ

and the continuation region S2 \ Γ, respectively. Accordingly, we depict the decision region

for each instance in this subsection using the two-dimensional representation as in the right-

hand-side of Figure 1 and we drop the L(·) notation when labeling various parts of each

figure to emphasize their source in S2.

Each of the examples in this section have the following model parameters in common:

p0 = 1
50
, p = 1

20
, ν1 = ν2 = 1

2
,

f0 =
(

1
4
, 1

4
, 1

4
, 1

4

)
, f1 =

(
4
10
, 3

10
, 2

10
, 1

10

)
, f2 =

(
1
10
, 2

10
, 3

10
, 4

10

)
.

We vary the delay cost and false alarm/isolation costs to illustrate certain geometrical prop-

erties of the continuation and stopping regions. See Figures 2, 3, and 4.

Specifically, these examples show instances in which the M = 2 convex subsets comprising

the optimal stopping region are connected (Figure 2) and instances in which they are not

(Figures 3 and 4(a)). Figure 4(b) shows an instance in which the continuation region is

disconnected.

Each of the figures in this section have certain features in common. On each subfigure

there is a dashed line representing those states π ∈ S2 at which h1(π) = h2(π). Also, each
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(0, 0, 1)

(1, 0, 0) (0, 1, 0)

Γ(2)

Γ(1)

h1
=

h2
θ = 4,

µ = 2

(a)

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

Γ(2)

Γ(1)

h1
=

h2
θ = 15,

µ = 1

(b)

1

Figure 2. Illustration of connected stopping regions and the effects of vari-

ation in the false-alarm costs. (a) and (b): a12 = a21 = 3, c = 1. (a):

a01 = a02 = 10. (b): a01 = a02 = 50.

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

Γ(2)

Γ(1)

h1
=

h2
θ = 26,

µ = 2

(a)

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

Γ(2)

Γ(1)

h 1
=

h 2

θ = 16,

µ = 2

(b)

1

Figure 3. Illustration of disconnected stopping regions and the effects of

asymmetric false-isolation costs. (a) and (b): a01 = a02 = 10, c = 1. (a):

a12 = a21 = 10. (b): a12 = 16, a21 = 4.

subfigure shows a sample path of (Πn)σn=0 and the realizations of θ and µ for the sample.

The shaded area, including its solid boundary, represents the optimal stopping region, while

the unshaded area represents the continuation region.

An implementation of the optimal strategy as described in Section 4.3 is as follows: Initial-

ize the statistic Π = (Πn)n≥0 by setting Π0 = (1−p0, p0ν1, p0ν2) as in part (c) of Proposition

3.2. Use the dynamics of (3.3) to update the statistic Πn as each observation Xn is realized.

Stop taking observations when the statistic Πn enters the stopping region Γ = Γ(1) ∪Γ(2) for
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(0, 0, 1)

(1, 0, 0) (0, 1, 0)

Γ(2)

Γ(1)

h1 = h2
θ = 3,

µ = 2

(a)

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

Γ(2)

Γ(1)

h1 = h2
θ = 3,

µ = 2

(b)

1

Figure 4. Illustration of a disconnected continuation region and the effects

of variation in the delay cost. (a) and (b): a01 = 14, a02 = 20, a12 = a21 = 8.

(a): c = 1. (b): c = 2.

the first time, possibly before the first observation is taken (i.e., n = 0). The optimal ter-

minal decision is based upon whether the statistic Πn is in Γ(1) or Γ(2) upon stopping. Each

of the sample paths in Figures 2, 3, and 4 were generated via this algorithm. As Figure 2

shows, the sets Γ(1) and Γ(2) can intersect on their boundaries and so it is possible to stop

in their intersection. In this case, either of the decisions d = 1 or d = 2 is optimal.

We use value iteration of the optimality equation (4.6) over a fine discretization of S2 to

compute V0(·) and generate the decision region for each subfigure. Because in the expression

V0(π) = min{h(π), c(1−π0)+(TV0)(π)} the value V0(π) for any fixed initial condition Π0 = π

on the left depends on the entire function V0(·) on SM on the right, we have to calculate

V0(·) (or approximate it by V N(·)) on the entire space SM . The resulting discretized decision

region is mapped into the plane via L.

See Bertsekas [4, Chapter 3] for techniques of computing the value function via the op-

timality equation such as value iteration. Solving the optimality equation by discretizing

high-dimensional state-space may not be the best option. Monte Carlo methods based on

regression models for the value function seem to scale better as the dimension of the state-

space increases; see, for example, Longstaff and Schwartz [15], Tsitsiklis and van Roy [21],

Glasserman [10, Chapter 8] for details.

5.4. Three alternatives after the change. In this subsection we consider the special case

M = 3 in which we have three possible change distributions, f1(·), f2(·), and f3(·). Here, the

continuation and stopping regions are subsets of S3 ⊂ R4. Similar to the two-alternatives
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(0,1,0,0)
(0,0,1,0)

(1)(2)

Figure 5. Illustration of the mapped decision region for an instance of the

special case M = 3; see also Figure 7 below. A sample path of the process Π

is shown in which θ = 6 and µ = 3

case, we introduce the mapping of S3 ⊂ R4 into R3 via

(π0, π1, π2, π3) 7→
(√

3
2
π1 + 1

2

√
3
2
π2 + 1

2

√
3
2
π3,

3
2

√
1
2
π2 + 1

2

√
1
2
π3, π3

)
.

Then we use this representation—actually a rotation of it—to illustrate in Figure 5 an

instance with the following model parameters:

p0 = 1
50
, p = 1

20
, ν1 = ν2 = ν3 = 1

3
,

f0 =
(

1
4
, 1

4
, 1

4
, 1

4

)
, f1 =

(
4
10
, 3

10
, 2

10
, 1

10

)
, f2 =

(
1
10
, 2

10
, 3

10
, 4

10

)
, f3 =

(
3
10
, 2

10
, 2

10
, 3

10

)
c = 1, a0j = 40, aij = 20, i, j = 1, 2, 3.

Note that Figure 5 can be interpreted in a manner similar to the figures of the previous

subsection. In this case, for every point π = (π0, π1, π2, π3) ∈ S3, the coordinate πi is given

by the (Euclidean) distance from the image point L(π) to the face of the image tetrahedron

L(S3) that is opposite the image corner L(ei), for each i = 0, 1, 2, 3.
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5.5. Detection and identification of component failure(s) in a system with sus-

pended animation. Consider a system consisting initially of two working concealed com-

ponents (labeled 1 and 2) such that upon the failure of either component, the system goes

into a state of suspended animation. That is, while both components are still working nor-

mally, observations of output of the system have density f0(·), but upon failure of either

component the density of observations changes thereafter (until an alarm is raised) to one

of two alternatives: if component 2 fails before component 1, then post-failure observations

have density f2(·), otherwise they have density f1(·). The problem is to detect quickly when

there has been a component failure and to identify accurately which component has actually

failed based only on sequential observations of output of the system.

Let the random variables

θ := θ1 ∧ θ2 = min{θ1, θ2} and µ :=

{
1 if θ1 ≤ θ2

2 if θ1 > θ2

be respectively the time of failure of the first failed component of the system and the cor-

responding index of this component, where the failure time θi of the ith component is a

random variable having a geometric distribution with failure probability pi, i = 1, 2. It can

be shown easily that when the disorder times θ1 and θ2 are independent, the random variable

θ has a geometric distribution with failure probability p := p1 + p2 − p1p2 (or equivalently,

θ has a zero-modified geometric distribution with parameters p0 = 0 and p) and that it is

independent of the random variable µ, which has distribution ν1 = p1/p and ν2 = 1 − ν1.

So although the failure type (i.e., which component has failed) is a function of the failure

times of each component, it turns out that this problem fits properly within the Bayesian

sequential change diagnosis framework.

This problem can be extended naturally to several components and solved via the tech-

nology of Sections 3 and 4. In fact, it can be configured for a variety of scenarios. For

example, series-connected components where malfunction of one component suspends im-

mediately the operation of all the remaining components can appear in various electronic

relays and multicomponent electronic devices which have fuses to protect the system from

the misbehavior of one of its components. Since the system may react differently to diagnos-

tics run by the operators, post-malfunction behavior can differ according to the underlying

cause of the malfunction. See Barlow [2, Section 8.4] for background on series systems with

suspended animation. Consider also a manufacturing process where we perform a quality

test on the final output produced from several processing components. If a component is

highly reliable then a geometric distribution with a low failure rate can be a reasonable choice

for the lifetime of the component. Moreover, since the typical duration between successive

component failures widens over time we can often treat the remaining components as if they

enter a state of suspended animation under certain cost structures. That is, we can expect

the remaining components to outlive the alarm. For example, suppose that two independent
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geometric random variables have expected lifetime of 1000 each. Then the first failure will

occur at about time 500 on average, while the second failure will take an additional 1000

periods on average to occur. As illustrated in Figures 2 and 4, respectively, lower false-alarm

costs promote raising the alarm earlier, while a higher delay cost discourages waiting for

more than relatively few additional periods to raise the alarm.

Specifically, suppose that in a “black box” there are K components whose lifetimes are

independent and geometrically distributed. Observations have initially distribution f0(·)
while the system is working, but upon failure of a single component (or simultaneous failure

of multiple components), the remaining components enter a state of suspended animation,

and the post-failure distribution of observations is determined by the failed component(s).

We want to detect the time when at least one of them fails as soon as possible. Moreover,

when we raise an alarm we would like to be able to make as accurately as possible diagnoses

such as (1) how many of the components have actually failed, and (2) which ones.

Again, let the failure time θk of the kth component be a random variable having a geometric

distribution with failure probability pk, k ∈ K := {1, 2, . . . , K}, and define

θ := θ1 ∧ θ2 ∧ · · · ∧ θK = min
k∈K

θk

as the time when at least one of the K components fails. Let the mapping ϕ : 2K 7→
{0, 1, . . .} be a nonnegative-integer-valued measure on the discrete σ-algebra 2K of the set

K = {1, 2, . . . , K} of component indices, and define the random variable

µ := ϕ({k ∈ K | θ = θk})

as an index function on the set of indices of the failed components. When the random

variables θ1, . . . , θK are independent, it can be shown that the random variable θ has a

geometric distribution with failure probability

p := 1−
∏
i∈K

(1− pi)

and that it is independent of the random variable µ, which has distribution

νk :=
1

p

∑
A∈ϕ−1(k)

∏
i∈A

pi
∏

j∈K\A
(1− pj), k ∈M := {1, 2, . . . ,M := ϕ(K)}.

So, the preceding example of two components corresponds to the special case where K = 2

and ϕ(A) = minA for A ∈ {{1}, {1, 2}, {2}}. We can handle the other two aforementioned

objectives as follows:

(1) Let ϕ(A) = |A|, A ∈ 2K. Then the random variable µ represents how many compo-

nents fail.

(2) Let ϕ(A) =
∑

i∈A 2i−1, A ∈ 2K. Then the mapping ϕ is one-to-one, the random

variable µ takes values in 1, 2, . . . , 2K − 1, and the set ϕ−1(µ) consists of the indices
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of the components which fail; i.e., the random variable µ identifies uniquely which

components fail.

6. On the computer implementation of the change-diagnosis algorithm.

Updating posterior probability process Π online with a computer by using the recursive

equations in (3.1) and (3.3) is fast. However, programming a computer to check online

whether this process has just entered the optimal stopping region is a challenging task. This

is especially so because (i) the critical boundaries of stopping regions do not have known

closed-form expressions, and (ii) extensive online computations to determine if one of these

boundaries is crossed can take excessive time and defeat the purpose of quickest change

detection. Here we outline an implementation strategy that should perform well in general.

The strategy is based on sparse offline representations of critical boundaries between stop-

ping and continuation regions. Suppose that the posterior probability process Π has just

been updated to some π = (π0, π1, . . . , πM) ∈ SM . An alarm has to be raised if and only if

π ∈ Γ ≡ Γ(1) ∪ · · · ∪ Γ(M). Checking π ∈ Γ(i) for every i = 1, . . . ,M (in the worst case) is,

however, unnecessary because

π ∈ Γ ⇐⇒ π ∈ Γi if hi(π) = h(π) ≡ min
1≤j≤M

hj(π).

In other words, one should

(i) find i = arg min1≤j≤M hj(π) first, and

(ii) raise an alarm and declare that a change of type i has happened if π ∈ Γ(i), or

(iii) wait for at least one more period before raising any alarm otherwise.

Let us suppose that i = arg min1≤j≤M hj(π). Checking if π ∈ Γ(i) will be fast if both π and

Γ(i) are represented in terms of polar coordinates, set up locally relative to the corner of SM

confined in the convex set Γ(i).

To illustrate the ideas with simple pictures, we will focus on the case that there are M = 2

alternatives after the change; see Figure 6. If π = π◦ (respectively, π = π�) as in Figure

6(a), then h1(π) ≤ h2(π) and i = 1 (respectively, h1(π) ≥ h2(π) and i = 2). In either

case, π can be identified relative to each corner in terms of (i) the Euclidean distance to

that corner (denoted by rj(π), j = 0, 1, 2) and (ii) one arbitrary but fixed angle (say, by

βj(π), j = 0, 1, 2, 3 indicated on Figure 6(a)) between the line connecting π and the corner

and the rays forming the same corner. Every point on the critical boundary of the stopping

region Γ(j), j = 1, 2 admits the same representation. Let us express by r = gj(β) the critical

boundary of the stopping region Γ(j) in terms of the polar coordinates (β, r) measured locally

with respect to the corner of the simplex confined in Γ(j) for j = 1, 2. Then π◦ ∈ Γ if and

only if r1(π◦) ≤ g1(β1(π◦)), and π� ∈ Γ if and only if r2(π�) ≤ g2(β2(π�)); see Figures 6(b)

and 6(c), respectively.
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(0, 0, 1)

h1 = h2

π◦

π�

Γ(2)

Γ(1)

r2(π�)

β2(π�)

β1(π◦)
r1(π ◦)

(0, 1, 0)(1, 0, 0) β1(π◦)0

r

π
3 (in radian)

β

r1(π◦)

r = g1(β)

(a) (b)

0

r

π
3

r = g2(β)

(in radian)

r2(π�)

β2(π�)
β

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

π
1 π0

π
2

√ 4
3

( π2 1
+
π

2 2
+
π 1π

2
)

β
1 (π

)
=

arcsin (
π

0 / √
43 (
π 20 +

π 22 +
π

0 π
2 ) )

r1 (π) = √
4

3
(
π 20 +

π 22 +
π0π2

)β 2
(π

)
=

ar
cs

in
( π 1
/
√ 4 3
( π

2 0
+
π

2 1
+
π 0
π 1

)) r2 (π
)

= √
43 (
π 20 +

π 21 +
π

0 π
1 )

π

(c) (d)

Figure 6. For the sample problem displayed in Figure 4(a) (M = 2), optimal

stopping regions and local polar coordinate systems are shown in (a). The

critical boundaries of the stopping regions Γ(1) and Γ(2) are expressed in terms

of local polar coordinates in (b) and (c), respectively. In (d), polar coordinates

of π are stated in terms of its Cartesian coordinates. As in Section 5.3, we

drop L from L(π◦), L(Γ(1)), L(1, 0, 0), etc. and simply write π◦, Γ(1), (1, 0, 0).

In (a) h1(π◦) ≤ h2(π◦) and h1(π�) ≥ h2(π�).

The plan outlined above works well (i) if the local polar coordinates of π can be identified

online quickly, (ii) if the local representations gj(·), j = 1, 2 of the critical boundaries can be

stored efficiently to the computer memory, and (iii) if from there they can be retrieved and

evaluated fast on demand. Next we will explain how these requirements can be achieved.
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Recall from Section 5.3 and Figure 1 that π ∈ S2 ⊂ R3 is embedded into the equilateral

triangle L(S2) ⊂ R2 by means of a linear map π 7→ L(π). In this natural representation of

posterior distributions, π = (π0, π1, π2) is mapped to the point L(π) =
(

2√
3
π1 + 1√

3
π2, π2

)
,

whose Euclidean distance to the images L(1, 0, 0) = (0, 0), L(0, 1, 0) = ( 2√
3
, 0), L(0, 0, 1) =

( 1√
3
, 1) (corners of the equilateral triangle L(S2)) of (1, 0, 0), (0, 1, 0), (0, 0, 1) are

r0(π) , ‖L(1, 0, 0)− L(π)‖ =

√
4

3
(π2

1 + π2
2 + π1π2),

r1(π) , ‖L(0, 1, 0)− L(π)‖ =

√
4

3
(π2

0 + π2
2 + π0π2),

r2(π) , ‖L(0, 0, 1)− L(π)‖ =

√
4

3
(π2

0 + π2
1 + π0π1),

respectively; in a more compact way,

ri(π) =

√√√√4

3

(
−πi +

∑
0≤j≤k≤2

πjπk

)
, i = 0, 1, 2;(6.1)

see Figure 6(d). Because the Euclidean distance of L(π) to the edges opposite to the corners

L(1, 0, 0), L(0, 1, 0), L(0, 0, 1) are π0, π1, and π2, respectively, the angles identified in Figure

6(a) can also be calculated easily by

β1(π) = arcsin
π0√

4
3

(π2
0 + π2

2 + π0π2)
and β2(π) = arcsin

π1√
4
3

(π2
0 + π2

1 + π0π2)
;

or more compactly by

βi(π) =
πi+2 mod 3

ri(π)
=

πi+2 mod 3√
4
3

(
−πi +

∑
0≤j≤k≤2 πjπk

) , i = 0, 1, 2.(6.2)

Recall that at any π ∈ S2 one has to calculate βi(π) and ri(π) only for i = arg min1≤j≤3 hj(π)

and check if ri(π) ≤ gi(βi(π)) before raising an alarm.

Unfortunately, an exact/closed-form representation r = gj(β) of the critical boundary of

the stopping region Γ(j), j = 1, 2 in terms of the local polar coordinates (β, r) relative to

the corner confined in Γ(j) will almost never be available. Instead, only noisy observations

(due to the discretization of the state-space S2 and termination of the value iteration at

some finite stage) of that relation can be obtained from the pairs (βj(π), rj(π)) for every

grid-point π on the (approximate) critical boundary of Γ(j) for every j = 1, 2. Interpolation

between those points will certainly give an approximation for r = gj(β) for j = 1, 2, but this

may waste a lot storage space and computational time during online evaluations, especially

when the grid on S2 is fine. Instead, one can use some statistical smoothing technique to

compress the data with minimum loss of information.
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Let us suppose that N observations (β(k), r(k)), k = 1, . . . , N follow the model r(k) =

g1(β(k)) + ε(k) for every k = 1, . . . , N and that ε(k), k = 1, . . . , N are i.i.d. random variables

with zero mean and some finite common variance. Because Γ(1) is convex, the function

β 7→ g1(β) is concave, namely, fairly smooth. It may be plausible to approximate it by

a cubic spline (twice continuously differentiable piecewise cubic polynomial). The unique

curve β 7→ ĝ1(β) that has the minimum penalized sum of squared errors

Sλ(ĝ1) ,
N∑
k=1

[
r(k) − ĝ1(β(k))

]2
+ λ

∫
R

[ĝ′′1(β)]
2
dβ,(6.3)

for any arbitrary but fixed smoothing parameter λ > 0, among all twice-differentiable

curves is known to exist and belong to the family of cubic splines whose break-points are at

β1, . . . , βN ; see, for example, de Boor [7], Green and Silverman [11], Ramsay and Silverman

[17]. This optimality property and the ability to control the smoothness continuously through

λ make cubic splines an attractive candidate for an approximate g1(·). If the variation of the

original curve β 7→ g1(β) is moderate, then the number of break-points 0 ≤ K ≤ N can be

taken significantly less than the number of measurements N , and there are O(K)-algorithms

that find the cubic spline minimizing (6.3) with the given K break-points; see, for example,

Green and Silverman [11, Section 2.3.3] for Reinsch algorithm. Other algorithms represent

the solution as a basis-function expansion

ĝ1(β) =
K+3∑
j=1

cjΦj(β)

in terms of K + 3 spline basis functions Φ1, . . . ,ΦK+3, and solve the minimization problem

in (6.3) by finding the coefficients c1, . . . , cK+3 using multiple-regression; see Green and

Silverman [11, Section 3.6], Ramsay and Silverman [17, Section 3.5 and Chapter 5]. Thus,

the approximation ĝ1(·) of g1(·) can be stored to the computer memory for online use of

the change-diagnosis algorithm by means of only K + 3 numbers c1, . . . , cK+3. The basis

functions Φ1,Φ2, . . . are cubic splines with compact support and can be stored easily and

evaluated fast online.

All of the above ideas apply without affecting significantly the online performance of the

diagnosis algorithm when the number of alternatives M after change is larger than two. For

example, if M = 3, then S3 ⊂ R4 is embedded into a tetrahedron L(S3) ⊆ R3 by a linear map

π 7→ L(π) defined in Section 5.4. The Euclidean distance of L(π) to the images L(1, 0, 0, 0),

L(0, 1, 0, 0), L(0, 0, 1, 0), L(0, 0, 0, 1) of (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) are given
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by

r0(π) , ‖L(1, 0, 0, 0)− L(π)‖ =

√
3

2
(π2

1 + π2
2 + π2

3 + π1π2 + π1π3 + π2π3),

r1(π) , ‖L(0, 1, 0, 0)− L(π)‖ =

√
3

2
(π2

0 + π2
2 + π2

3 + π0π2 + π0π3 + π2π3),

r2(π) , ‖L(0, 0, 1, 0)− L(π)‖ =

√
3

2
(π2

0 + π2
1 + π2

3 + π0π1 + π0π3 + π1π3),

r3(π) , ‖L(0, 0, 0, 1)− L(π)‖ =

√
3

2
(π2

0 + π2
1 + π2

2 + π0π1 + π0π2 + π1π2),

respectively; or more compactly

ri(π) =

√√√√3

2

(
−πi +

∑
0≤j≤k≤3

πjπk

)
, i = 0, 1, 2, 3;(6.4)

see Figure 7. Because the Euclidean distance of L(π) to the faces of the tetrahedron oppo-

site to the corners L(1, 0, 0, 0), L(0, 1, 0, 0), L(0, 0, 1, 0), L(0, 0, 0, 1) are π0, π1, π2, and π3,

respectively, the distance ri(π) and two arbitrary but fixed angles, βi(π) = (βi1(π), βi2(π)),

out of three angles defined by

arcsin
πj
ri(π)

= arcsin
πj√

3
2

(
−πi +

∑
0≤k≤`≤3 πkπ`

) , 0 ≤ j ≤ 3, j 6= i(6.5)

form the local polar coordinates (βi(π), ri(π)) with respect to the corner of the simplex

confined in Γ(i), 0 ≤ i ≤ 3 and determine L(π) uniquely.

The critical boundary between stopping region Γ(i), 1 ≤ i ≤ 3 and the continuation region

can be represented by some concave surface r = gi(β) in terms of the same local polar

coordinate system (β, r) just defined above in the vicinity of Γ(i), where β = (β1, β2) is now a

vector. If (β(k), r(k)), k = 1, . . . , N are the pairs (β1(π), r1(π)) evaluated at grid-points π on

the approximate boundary of Γ(1), then one can fit a thin plane spline ĝ1(·), which is twice

continuously differentiable and minimizes the penalized sum of squared errors

Sλ(ĝ1) ,
N∑
k=1

[
r(k) − ĝ1(β(k))

]2
+ λ

∑
1≤i,j≤2

∫∫
R2

(
∂2ĝ1

∂βi∂βj

)2

(β1, β2)dβ1 dβ2

among all twice-differentiable curves on R2 for every arbitrary but fixed smoothing param-

eter λ > 0. As before, ĝ1(β) =
∑K+3

j=1 cjΦj(β) admits a basis-function expansion, and the

coefficients c1, . . . , cK+3 can be found by using multiple-regression and stored in the com-

puter memory for the online use of change-diagnosis algorithms. See Green and Silverman

[11, Chapter 7] for statistical data smoothing in three and higher dimensional Euclidean

spaces by using thin plate splines. The similarity of the local polar coordinates (6.1), (6.2)
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Figure 7. Polar coordinates of π (after transformation by L; see Section 5.4)

in terms of its Cartesian coordinates.

for M = 2 and (6.4), (6.5) for M = 3 suggest that for general M ≥ 2 and for a suitable

constant cM > 0

ri(π) =

√√√√cM

(
−πi +

∑
0≤j≤k≤M

πjπk

)
, i = 0, 1, . . . ,M

and M − 1 arbitrary but fixed angles, βi(π) = (βi,1, . . . , βi,M−1), out of M angles defined by

arcsin
πj
ri(π)

= arcsin
πj√

cM
(
−πi +

∑
0≤k≤`≤M πkπ`

) , 0 ≤ j ≤M, j 6= i

form a local polar coordinate system (βi(π), ri(π)) with respect to the corner of the simplex

SM ⊂ RM confined in stopping region Γ(i), 1 ≤ i ≤M after a suitable linear transformation

L into RM−1.
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Appendix A. Proofs

A.1. Proof of Proposition 3.1. Note that since {τ > n} ∈ Fn for every n ≥ 0, we have

E
[
(τ − θ)+

]
= E

[ ∞∑
n=0

1{θ≤n<τ}

]
=
∞∑
n=0

E[1{τ>n}P (θ ≤ n | Fn)] = E

[
τ−1∑
n=0

(
1− Π(0)

n

)]
.

Moreover, for every j ∈M, we have {τ = n, d = j} ∈ Fn, and E
[
1{d=j}1{τ<θ}

]
equals

∞∑
n=0

E
[
1{τ=n,d=j}1{θ>n}

]
=
∞∑
n=0

E
[
1{τ=n,d=j}Π

(0)
n

]
= lim

N→∞

N∑
n=0

E
[
1{τ=n,d=j}Π

(0)
τ

]
= lim

N→∞
E

[
N∑
n=0

1{τ=n,d=j}Π
(0)
τ

]
= lim

N→∞
E
[
1{τ≤N,d=j}Π

(0)
τ

]
= E

[
1{τ<∞,d=j}Π

(0)
τ

]
because of the monotone convergence theorem and that limN→∞{τ ≤ N} = ∪∞n=1{τ ≤ n} =

{τ <∞}; see, for example, Ross [18]. Similarly, E
[
1{d=j,µ=i}1{θ≤τ<∞}

]
equals

∞∑
n=0

E
[
1{τ=n,d=j}1{θ≤n,µ=i}

]
=
∞∑
n=0

E
[
1{τ=n,d=j}Π

(i)
n

]
= E

[
1{τ<∞,d=j}Π

(i)
τ

]
,

for every i ∈M. Plugging these expressions into (2.2) completes the proof. �

A.2. Proof of Proposition 3.2. Parts (a) and (b). Fix any A = {(X1, . . . , Xn) ∈ B} ∈ Fn
for some Borel B ⊂ En. Then (2.1) implies that

P(A) =

∫
B

m(dx1) · · ·m(dxn)αn(x1, . . . , xn)(A.1)

where αn(x1, . . . , xn) ,
∑M

i=0 α
(i)
n (x1, . . . , xn), and

α(i)
n (x1, . . . , xn) ,


(1− p0)(1− p)n

n∏
l=1

f0(xl), i = 0,

p0νi

n∏
j=1

fi(xj) + (1− p0)pνi

n∑
k=1

(1− p)k−1

k−1∏
l=1

f0(xl)
n∏
j=k

fi(xj), i ∈M.
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Hence, αn(x1, . . . , xn) is the joint probability density function of X1, . . . , Xn with respect to

the measure m(dx1) · · ·m(dxn). Now for i ∈M,∫
A

Π(i)
n dP = E

[
1A1{θ≤n,µ=i}

]
=

∫
B

m(dx1) · · ·m(dxn) α(i)
n (x1, . . . , xn)

=

∫
B

m(dx1) · · ·m(dxn)αn(x1, . . . , xn)
α

(i)
n (x1, . . . , xn)

αn(x1, . . . , xn)
=

∫
A

dP
α

(i)
n (X1, . . . , Xn)

αn(X1, . . . , Xn)
.

Hence,

Π(i)
n =

α
(i)
n (X1, . . . , Xn)

αn(X1, . . . , Xn)
, i ∈M, and Π(0)

n =
α

(0)
n (X1, . . . , Xn)

αn(X1, . . . , Xn)
,(A.2)

since
∑M

i=0 Π
(i)
n = 1. Similar considerations also give

P{θ = k, µ = i | Fn} =



p0νi
αn(X1, . . . , Xn)

n∏
j=1

fi(Xj), k = 0,

(1− p0)(1− p)k−1pνi
αn(X1, . . . , Xn)

k−1∏
l=1

f0(Xl)
n∏
j=k

fi(Xj), 1 ≤ k ≤ n,

(1− p0)(1− p)k−1pνi
αn(X1, . . . , Xn)

n∏
l=1

f0(Xl), k ≥ n+ 1.

Observe that for k ≥ n+ 1,

P{θ = k, µ = i | Fn} =
α

(0)
n (X1, . . . , Xn)

αn(X1, . . . , Xn)
(1− p)k−n−1pνi = Π(0)

n (1− p)k−n−1pνi.

In particular, P{θ = n+ 1, µ = i | Fn} = Π
(0)
n pνi, and P{θ ≤ n+ 1, µ = i | Fn} equals

P{θ ≤ n, µ = i | Fn}+ P{θ = n+ 1, µ = i | Fn} = Π(i)
n + Π(0)

n pνi.

Note also that P{θ > n+ 1 | Fn} equals

∞∑
k=n+2

M∑
i=1

Π(0)
n (1− p)k−n−1pνi = Π(0)

n p

∞∑
k=n+2

(1− p)k−n−1 = Π(0)
n (1− p).

Thus, E[Π
(0)
n+1 | Fn] = P{θ > n+ 1 | Fn} = Π

(0)
n (1− p) < Π

(0)
n , and

E[Π
(i)
n+1 | Fn] = P{θ ≤ n+ 1, µ = i | Fn} = Π(i)

n + Π(0)
n pνi > Π(i)

n , i ∈M.

Hence, {Π(0)
n ,Fn}n≥0 is supermartingale, and {Π(i)

n ,Fn}n≥0, i ∈M are submartingales.

For the proof of Part (c), note first that

α
(i)
n+1(x1, . . . , xn+1) =

{ [
α(i)
n (x1, . . . , xn) + pνiα

(0)
n (x1, . . . , xn)

]
fi(xn+1), i ∈M,

(1− p)α(0)
n (x1, . . . , xn)f0(xn+1), i = 0.

(A.3)

Substituting these expressions after writing Π
(i)
n+1, i ∈ {0} ∪ M by using (A.2), and then

dividing both numerator and denominator by αn(X1, . . . , Xn) give (3.3).
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Next, we find the conditional distribution of Xn+1 given Fn for n ≥ 0. If g : E 7→ R+ is a

nonnegative function and A = {(X1, . . . , Xn) ∈ B} ∈ Fn, then
∫
A

E[g(Xn+1) | Fn]dP equals∫
A

g(Xn+1)dP =

∫
B×E

g(xn+1)αn+1(x1, . . . , xn+1)m(dx1) · · ·m(dxn+1)

=

∫
B

[∫
E

g(xn+1)
αn+1(x1, . . . , xn+1)

αn(x1, . . . , xn)
m(dxn+1)

]
αn(x1, . . . , xn)m(dx1) · · ·m(dxn)

=

∫
A

[∫
E

g(xn+1)
αn+1(X1, . . . , Xn, xn+1)

αn(X1, . . . , Xn)
m(dxn+1)

]
dP.

Therefore, we have

E[g(Xn+1) | Fn] =

∫
E

g(x)
αn+1(X1, . . . , Xn, x)

αn(X1, . . . , Xn)
m(dx) =

∫
E

g(x)D(Πn, x)m(dx),(A.4)

where the second equality follows from (A.2) after substituting (A.3) into previous equality,

and the mapping D was defined by (3.1). Then for every nonnegative function f : SM 7→ R+,

(3.3) and (A.4) imply that

E[f(Πn+1) | Fn] = E
[
f

(
D0(Πn, Xn+1)

D(Πn, Xn+1)
, . . . ,

DM(Πn, Xn+1)

D(Πn, Xn+1)

)∣∣∣∣Fn] = (Tf)(Πn)

in terms of the operator T defined by (3.2), and E[f(Πn+1)|Fn] = E[f(Πn+1) | Πn]. Therefore,

the process {Πn,Fn; n ≥ 0} is Markov, and the proof of part (c) is completed. �

A.3. Proofs of Lemmas 4.1 and 4.2. Before proving the lemmas, we state Definition A.1,

Theorem A.2, and Lemma A.3 from Chow et al. [6, pp. 62-69] for ease of reference.

Definition A.1. A collection (ξt)t∈T of random variables is called directed-upwards if, for

every u, v ∈ T , there exists t ∈ T such that ξt ≥ ξu ∨ ξv.

theorem A.2. If a collection (ξt)t∈T of random variables is directed-upwards, then for every

t0 ∈ T , there exists a non-decreasing sequence (ξtn)n≥0 in the collection (ξt)t∈T such that

ess sup
t∈T

ξt = lim
n→∞

↑ ξtn ≥ ξt0 almost surely.

lemma A.3. For every n ≥ 0. the collection {E[Yτ | Fn] | τ ∈ Cn} is directed-upwards.

Proof of Lemma 4.1. To prove the lemma, we establish two inequalities. Note that γn ≥
E[Yτ | Fn] for all τ ∈ Cn by definition. So, taking expectations, we obtain Eγn ≥ supτ∈Cn

EYτ =

−Vn. For the reverse direction, by Theorem A.2 and Lemma A.3 there exists a sequence of

stopping times (τk)k≥1 ⊂ Cn such that Yn ≤ E[Yτk | Fn] ↑ γn as k →∞. So, by the monotone

convergence theorem, we have Eγn = E [limk→∞ E[Yτk | Fn]] = limk→∞ EYτk ≤ −Vn. Proof of

the equations −V N
n = EγNn , 0 ≤ n ≤ N is similar. �
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Proof of Lemma 4.2. We have γn ≤ max{Yn,E[γn+1 | Fn]}, because for every fixed τ ∈ Cn,

the expectation E[Yτ | Fn] equals

E[Yτ1{τ=n} + Yτ∨(n+1)1{τ≥n+1} | Fn] = Yn1{τ=n} + 1{τ≥n+1}E[ E[Yτ∨(n+1) | Fn+1] | Fn]

≤ Yn1{τ=n} + 1{τ≥n+1}E[γn+1 | Fn] ≤ max{Yn,E[γn+1 | Fn]}.

For the reverse direction, note that γn ≥ Yn = E[Yn | Fn] by definition. Since γn+1 =

ess supτ∈Cn+1
E[Yτ | Fn+1], by Theorem A.2 and Lemma A.3 there exists a sequence of stop-

ping times (τk)k≥1 ⊂ Cn+1 such that Yn+1 ≤ E[Yτk | Fn+1] ↑ γn+1 as k →∞. Since Cn+1 ⊂ Cn
for all n ≥ 0, we have γn ≥ E[Yτk | Fn] = E[ E[Yτk | Fn+1] | Fn] for all k ≥ 1. Taking the limit

as k → ∞ and applying the monotone convergence theorem, we have γn ≥ E[γn+1 | Fn].

Therefore, γn ≥ max{Yn,E[γn+1 |Fn]}. By a similar argument, we can establish the other

equations of Lemma 4.2. �

A.4. Proof of Lemma 4.3. Because (CN
n )N≥n is increasing for every n ≥ 0, the sequence

(γNn )N≥n is increasing for every n ≥ 0 and has a limit. Set γ′n = limN→∞ γNn , n ≥ 0.

Because γNn+1 ≥ Yn+1 and Yn+1 is integrable, taking limits in γNn = max{Yn,E[γNn+1 | Fn]},
see Lemma 4.2, and monotone convergence give γ′n = max{Yn,E[γ′n+1 | Fn]} for every n ≥ 0.

Particularly, (γ′n)n≥0 is an F-supermartingale.

Obviously, γ′n ≤ γn for every n ≥ 0. To prove the reverse inequality, it is enough to show

that γ′n ≥ E[Yτ | Fn] for every τ ∈ Cn. Take any τ ∈ Cn. Then for every F ∈ Fn and m ≥ n∫
F

γ′ndP =

∫
F∩{τ=n}

γ′τdP +

∫
F∩{τ>n}

γ′ndP ≥
∫
F∩{τ=n}

γ′τdP +

∫
F∩{τ>n}

γ′n+1dP

=

∫
F∩{n≤τ≤n+1}

γ′τdP +

∫
F∩{τ>n+1}

γ′n+1dP ≥ · · · ≥
∫
F∩{n≤τ≤m}

γ′τdP +

∫
F∩{τ>m}

γ′mdP,

where the inequalities follow from F-supermartingale property of the process (γ′n)n≥0. Be-

cause γ′k ≥ Yk for every k ≥ 0, we have γ′τ ≥ Yτ , and for every m ≥ n∫
F

γ′ndP ≥
∫
F∩{n≤τ≤m}

YτdP +

∫
F∩{τ>m}

γ′mdP ≥
∫
F∩{n≤τ≤m}

YτdP−
∫
F∩{τ>m}

(γ′m)−dP.

Since Yτ = −Y −τ is integrable and τ <∞ a.s., we have limm→∞
∫
F∩{n≤τ≤m} YτdP =

∫
F
YτdP

by dominated convergence, and the proof will be completed if limm→∞
∫
{τ>m}(γ

′
m)−dP = 0.

However, since γ′m ≥ Ym, we have (γ′m)− ≤ Y −m , and
∫
{τ>m}(γ

′
m)−dP is less than or equal to∫

{τ>m}
Y −m dP ≤

∫
{τ>m}

mdP + ‖h‖P{τ > n} ≤ Eτ1{τ>n} + ‖h‖P{τ > m},

where ‖h‖ , supπ∈SM |h(π)|. Since h(·) is bounded, Eτ < ∞ and P{τ < ∞} = 1, the right

hand side of the last inequality converges to zero as n→∞. �
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A.5. Proof of Lemma 4.4. Fix any N ≥ 1. The equality holds trivially for n = N . On

the one hand, the definition of the random variable γNN in (4.2) implies that

γNN = ess sup
τ∈CN

N

E[Yτ | FN ] = E[YN | FN ] = YN

because CN
N ≡ {N}. On the other hand, by the definition of the operator M in (4.3) we have

M0h ≡ h, and

−c
N−1∑
k=0

(1− Π
(0)
k )− (MN−Nh)(Πn) = −c

N−1∑
k=0

(1− Π
(0)
k )− h(Πn) ≡ YN ;

thanks to (3.5). Therefore, (4.4) holds for n = N . Now suppose that (4.4) is true for some

n ≥ 1. Then γNn−1 = max{Yn−1,E[γNn | Fn−1]} equals

max

{
−c

n−2∑
k=0

(1− Π
(0)
k )− h(Πn−1), E

[
−c

n−1∑
k=0

(1− Π
(0)
k )− (MN−nh)(Πn)

∣∣∣∣ Fn−1

]}

= −c
n−2∑
k=0

(1− Π
(0)
k )−min

{
h(Πn−1), c(1− Π

(0)
n−1) + (T(MN−nh))(Πn−1)

}
= −c

n−2∑
k=0

(1− Π
(0)
k )− (M(MN−nh))(Πn−1) = −c

n−2∑
k=0

(1− Π
(0)
k )− (MN−(n−1)h)(Πn−1).

By induction, the equality holds for all 0 ≤ n ≤ N . �

A.6. Proof of Lemma 4.5. Applying Lemma 4.4 for n = 0 yields part (a) since

V N
0 = −EγN0 = −γN0 = (MNh)(Π0), N ≥ 0.(A.5)

By Lemma 4.3, γn = limN→∞ γNn , and so Vn = limN→∞ V N
n by Lemma 4.1 and the dominated

convergence. Since the left-hand side of (A.5) converges to V0 as N → ∞, the limit of the

right-hand side as N →∞ exists and V0 = limN→∞(MNh)(Π0), which proves part (b). �

A.7. Proof of Lemma 4.8. Given π, π′ ∈ SM , λ ∈ [0, 1], and λ′ , 1− λ, we have

λ(Tg)(π) + λ′(Tg)(π′) = λ

∫
E

m(dx)D(π, x)g

(
D0(π, x)

D(π, x)
, . . . ,

DM(π, x)

D(π, x)

)
+ λ′

∫
E

m(dx)D(π′, x)g

(
D0(π′, x)

D(π′, x)
, . . . ,

DM(π′, x)

D(π′, x)

)
=

∫
E

m(dx) [λD(π, x) + λ′D(π′, x)]

{
λD(π, x)

λD(π, x) + λ′D(π′, x)
g

(
D0(π, x)

D(π, x)
, . . . ,

DM(π, x)

D(π, x)

)
+

λ′D(π′, x)

λD(π, x) + λ′D(π′, x)
g

(
D0(π′, x)

D(π′, x)
, . . . ,

DM(π′, x)

D(π′, x)

)}
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Now, by the concavity of g(·) and the fact that

λD(π, x)

λD(π, x) + λ′D(π′, x)
+

λ′D(π′, x)

λD(π, x) + λ′D(π′, x)
= 1

is a convex combination, we continue the chain of inequalities to obtain

λ(Tg)(π) + λ′(Tg)(π′) ≤
∫
E

m(dx) [λD(π, x) + λ′D(π′, x)]

× g
(
λD0(π, x) + λ′D0(π′, x)

λD(π, x) + λ′D(π′, x)
, . . . ,

λDM(π, x) + λ′DM(π′, x)

λD(π, x) + λ′D(π′, x)

)
=

∫
E

m(dx) [D(λπ + λ′π′, x)] g

(
D0(λπ + λ′π′, x)

D(λπ + λ′π′, x)
, . . . ,

DM(λπ + λ′π′, x)

D(λπ + λ′π′, x)

)
= (Tg)(λπ + λ′π′).

Note that the second to last equality follows from the fact that each of D0, . . . , DM , D is

linear in its first argument. So, we have established that Tg is concave. �

A.8. Proof of Proposition 4.9. Since h(π) = minj∈M
∑M

i=0 πiaij is concave, and since

the pointwise minimum of two concave functions is concave, by Lemma 4.8 the function

(Mf)(π) = min{h(π), c(1 − π0) + (Tf)(π)} is concave for every bounded concave f :

SM 7→ R. Therefore, Mh,M2h, . . . are concave, and V 0
0 , V

1
0 , . . . are concave by Lemma

4.5(a). This proves part (a). For part (b), note that Lemma 4.5(b) implies that V0(π) =

limN→∞(MNh)(π) for every π ∈ SM ; thus, V0(·) is concave on SM . �

A.9. Proof of Proposition 4.10. The inequality −V0(π) ≥ −V N
0 (π) for every π ∈ SM and

N ≥ 1 is obvious. Let us prove the second. Fix N ≥ 1, π ∈ SM , and any ε > 0. Since

0 ≥ −V0(π) = sup
τ∈C0

EπYτ ≥ EπY0 ≥ −‖h‖ > −∞

is finite, there exists some stopping time τε ∈ C0 such that

−V0(π)− ε < EπYτε = Eπ

[
−c

τε−1∑
k=0

(1− Π
(0)
k )− h(Πτε)

]
.(A.6)

Observe that τε ∧N ∈ CN
0 and

−V N
0 (π) ≥ EπYτε∧N ≥ Eπ

[
−c

τε−1∑
k=0

(1− Π
(0)
k )− h(Πτε)

]
− ‖h‖Pπ{τε ≥ N}

≥ −V0(π)− ε− ‖h‖
N

Eπτε.(A.7)



30 SAVAS DAYANIK, CHRISTIAN GOULDING, AND H. VINCENT POOR

The last inequality follows by the Markov inequality applied to Pπ{τε ≥ N} and since τε is

ε-optimal for V0. Next, we will bound Eπτε from above by using (A.6):

− ε− V0(π) < Eπ

[
−c

τε−1∑
k=0

(1− Π
(0)
k )− h(Πτε)

]
≤ Eπ

[
−c

τε−1∑
k=0

(1− Π
(0)
k )

]

= −cEπτε + cEπ

τε−1∑
k=0

Π
(0)
k ≤ −cEπτε + cEπ

∞∑
k=0

Π
(0)
k = −cEπτε + c

∞∑
k=0

EπΠ
(0)
k .

Rearrangement after using the inequality EπΠ
(0)
k ≤ (1− p)k of Proposition 3.2(a) gives

Eπτε ≤
1

c
[V0(π) + ε] +

1

p
≤ ‖h‖+ ε

c
+

1

p
.

Now using this bound on Eπτε in (A.7) we have

−V N
0 (π) ≥ −V0(π)− ε− ‖h‖

N

(‖h‖+ ε

c
+

1

p

)
.

However, ε was arbitrary, so taking the limit as ε ↓ 0 we obtain the desired bound. �

A.10. Proof of Proposition 4.11. Recall that V 0
0 (π) = (M0h)(π) = h(π) = minj∈M∑M

i=0 πiaij, which is continuous in π ∈ SM . Suppose that V N
0 : SM 7→ R+ is continuous for

some N ≥ 0. Then by (A.5)

(A.8) V N+1
0 (π) = (MN+1h)(π) = (MV N

0 )(π) = min
{
h(π), c(1− π0) + (TV N

0 )(π)
}
,

where (see (3.2))

(TV N
0 )(π) =

∫
E

m(dx)D(π, x)V N
0

(
D0(π, x)

D(π, x)
, . . . ,

DM(π, x)

D(π, x)

)
.(A.9)

Note that

• the mapping π 7→ D(π, x) is continuous for every x ∈ E,

• for every x ∈ E such that D(π, x) > 0 (these are the x-values that matter in

the defining integral of (TV N
0 )(π) above), the coordinates, D0(π,x)

D(π,x)
, . . . , DM (π,x)

D(π,x)
, are

continuous,

• since V N
0 (·) is continuous on SM by the induction hypothesis, the integrand in (A.9)

is continuous in π for every fixed x ∈ E such that D(π, x) > 0,

• since 0 ≤ V N
0 (·) ≤ ‖h‖, the same nonnegative integrand is bounded from above by

the integrable function 2 ‖h‖∑M
i=0 fi(x) for every π ∈ SM ,

• then the mapping π 7→ (TV N
0 )(π) is continuous by dominated convergence,

• and finally, since h(π) and c(1− π0) + (TV N
0 )(π) are continuous, (A.8) implies that

the mapping π 7→ V N+1
0 (π) is continuous.

Hence, continuity holds for every N ≥ 0 by induction, and this completes the proof. �
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A.11. Proof of Corollary 4.12. The function V0(π) on the compact space SM is the limit

of the sequence {V N
0 (π)}N≥0 of continuous functions, uniformly in π ∈ SM by Proposition

4.10. Therefore, it is continuous. �

A.12. Proof of Theorem 4.13. By Lemmas 4.4 and 4.1 we have that (V N
0 )N≥0 is a non-

increasing sequence of functions, bounded from above by the function h. Since h(·) and

hj(·), j ∈ M are continuous and since V N
0 (·), N ≥ 0 are continuous on SM by Proposi-

tion 4.11, the set Γ
(j)
N = {π ∈ SM |V0(π) = h(π) = hj(π)} is a closed subset of SM for each

N ≥ 0 and j ∈M.

Fix j ∈M. Then V N+1
0 (π) = h(π) = hj(π) implies V N

0 (π) = h(π) = hj(π); and therefore,

Γ
(j)
N+1 ⊂ Γ

(j)
N for every N ≥ 0. Hence, (Γ

(j)
N )N≥0 is a non-increasing sequence of closed subsets

of SM . Clearly, ΓN =
⋃M
j=1 Γ

(j)
N , N ≥ 0 and (ΓN)N≥0 is also a non-increasing sequence of

closed subsets of SM . Moreover, since V N
0 ↘ V0 by Proposition 4.10, the limit of the non-

increasing sequence (ΓN)N≥0 is Γ; i.e.,
⋂∞
N=1 ΓN = Γ. Similarly,

⋂∞
N=1 Γ

(j)
N = Γ(j), j ∈M.

Given π ∈ SM , if the inequality hj(π) ≤ min{h(π), c(1 − π0)} holds, then hj(π) ≤ h(π),

which implies that hj(π) = h(π). Also,

hj(π) ≤ min{h(π), c(1− π0) + (TV0)(π)} = V0(π).

This follows from the fact that V0 ≥ 0 implies TV0 ≥ 0 and from the optimality equation of

Proposition 4.6. But, since V0 ≤ h on SM , we have V0(π) = hj(π) = h(π) and thus π ∈ Γ(j).

As a corollary, since hj(ej) = 0 ≤ min{h(ej), c}, we have ej ∈ Γ(j).

In order to prove the convexity of Γ
(j)
N , take π, π′ ∈ Γ

(j)
N and show that λπ+(1−λ)π′ ∈ Γ

(j)
N

for every λ ∈ [0, 1]. Since V N
0 (·) is concave by Proposition 4.9, we have

λV N
0 (π) + (1− λ)V N

0 (π′) ≤ V N
0 (λπ + (1− λ)π′) ≤ h(λπ + (1− λ)π′) ≤ hj(λπ + (1− λ)π′)

= λhj(π) + (1− λ)hj(π
′) = λV N

0 (π) + (1− λ)V N
0 (π′).

Therefore, since V N
0 (π) ≤ h(π), π ∈ SM , we have

V N
0 (λπ + (1− λ)π′) = h(λπ + (1− λ)π′) = hj(λπ + (1− λ)π′)

and λπ + (1− λ)π′ ∈ ΓN ∩ {π ∈ SM |h(π) = hj(π)} = Γ
(j)
N . Hence, Γ

(j)
N is convex. Since an

intersection of convex sets is again convex, Γ(j) =
⋂∞
N=1 Γ

(j)
N is convex.

Thus, we have shown that Γ =
⋃M
i=1 Γ(i) is the union of M non-empty closed convex subsets

of SM . Finally, consider π(λ) , λe0 + (1 − λ)ej for λ ∈ (0, c
a0j+c

]. Note that c > 0 and

a0j ≥ 0 imply that the interval (0, c
a0j+c

] is non-empty. The inequality λ ≤ c
a0j+c

implies that

c(1− λ) ≥ λa0j = hj(π(λ)). Hence, h(π(λ)) ≤ hj(π(λ)) ≤ c(1− λ) ≤ c(1− λ) + (TV0)(π(λ))

and so V0(π(λ)) = h(π(λ)) by Proposition 4.6. Therefore, Γ 3 π(λ) /∈ {e1, . . . , eM}. �

A.13. Proof of Lemma 4.14. For every n ≥ 0, the limit limN→∞ γNn exists a.s. by Lemma

4.3. So, fix n and take the limit as N → ∞ of the expression in Lemma 4.4. Then apply

Lemma 4.5(b) to obtain the result. �
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A.14. Proof of Theorem 4.15. Let us prove part (a) first. Note that

σ = inf{n ≥ 0 |Πn ∈ Γ} = inf{n ≥ 0 |V0(Πn) = h(Πn)} = inf{n ≥ 0 | γn = Yn}.

The second equality follows from the definition of Γ and the last equality follows from

Lemma 4.14 and the definition of Yn (3.5). Now, fix n and recall from Lemma 4.2 that

γn = max {Yn,E[γn+1|Fn]}. Then γn = E[γn+1|Fn] on {σ > n}. So,

E[γ(n+1)∧σ | Fn] = E[γσ1{σ≤n} | Fn] + E[γn+11{σ>n} | Fn]

= γσ1{σ≤n} + 1{σ>n}E[γn+1 | Fn] = γσ1{σ≤n} + γn1{σ>n} = γn∧σ.

This establishes the martingale property of the stopped process {γn∧σ,Fn}n≥0.

To prove part (b), we use part (a) and Lemma 4.1 to write

−V0 = sup
τ∈C0

EYτ = γ0 = E[γn∧σ] = E[Yσ1{σ≤n}] + E[γn1{σ>n}].

Since Yn = −∑n−1
k=0 c(1 − Π

(0)
k ) − h(Πn) ≤ 0 for every n, we can use Fatou’s Lemma after

taking lim supn→∞ of both sides to obtain

−V0 ≤ E[Yσ1{σ<∞}] + E
[
(lim sup

n→∞
γn)1{σ=∞}

]
.(A.10)

Since lim supn→∞ γn ≤ lim supn→∞−
∑n−1

k=0 c(1 − Π
(0)
k ) = −∞ by Remark 3.3, and −V0 >

−h > −∞, the inequality (A.10) implies that P{σ =∞} = 0. Therefore, the same inequality

becomes −V0 ≡ supτ EYτ ≤ EYσ. To show that σ is optimal, we must prove that σ ∈ C0.

Since σ < ∞ a.s., it is enough to show EY −σ < ∞, which is equivalent to showing that

Eσ <∞ by the discussion before equation (3.7).

However, since EYσ ≥ −V0 > −∞, we also have Eσ <∞. Indeed,

−∞ < EYσ = E

[
−

σ−1∑
k=0

c(1− Π
(0)
k )− h(Πσ)

]
≤ −cEσ + cE

[ ∞∑
k=0

Π
(0)
k

]

= −cEσ + c

∞∑
k=0

EΠ
(0)
k ≤ −cEσ + c

∞∑
k=0

(1− p)k = −cEσ +
c

p

implies Eσ < ∞. Here, the last inequality follows from Proposition 3.2(a). This completes

the proofs of parts (b) and (c). �
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