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her destination at minimum cost, and the cost of using an arc depends only on the total number of players using that
arc. A natural extension is to allow for players controlling different amounts of flow, which results in so-called weighted
congestion games. While examples have been exhibited showing that pure-strategy Nash equilibria need not exist anymore,
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remains strongly NP-hard for a fixed number of players. In addition to congestion games, we provide complexity results on
the existence and computability of pure-strategy Nash equilibria for the closely related family of bidirectional local-effect
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1. Introduction. Game theory in general, and the concept of Nash equilibrium in particular, has lately
(re)emerged as a “hot topic” in the operations research and computer science literature. The complexity of
computing a mixed Nash equilibrium of a finite game given in strategic form is a case in point. Goldberg and
Papadimitriou [20] showed that finding a mixed Nash equilibrium in a game with a constant number of players
can be reduced to solving a four-player game. Daskalakis et al. [10] showed in turn that the latter problem
is PPAD-complete, i.e., it is as difficult as computing a Brouwer fix point of a continuous function from the
closed unit ball to itself. Subsequently, Chen and Deng [7] and Daskalakis and Papadimitriou [9] proved that
computing mixed Nash equilibria in games with three players is PPAD-complete as well. Eventually, Chen and
Deng [8] established the same result for the two-player case.
Although Nash [30] showed that mixed Nash equilibria do exist in any finite noncooperative game, it is

well known that pure-strategy Nash equilibria may not, as demonstrated by classical games such as “matching
pennies” (e.g., Shor [35]). It is therefore natural to ask which games have pure-strategy Nash equilibria and, if
applicable, how difficult it is to find one. In this article, we study these questions for certain classes of weighted
congestion games and local-effect games.
Congestion games were introduced by Rosenthal [31], who proved that they are guaranteed to possess pure-

strategy Nash equilibria. In fact, Monderer and Shapley [29] showed that every exact potential game is isomor-
phic to a congestion game. In a congestion game, a player’s strategy consists of a subset of resources, and her
cost depends only on the number of players choosing the same resources. An important subclass of congestion
games can be represented by means of networks.1 Every player wants to route one unit of flow from her origin
to her destination, on a path of minimal cost. The network arcs are the resources, and a player’s set of pure
strategies consists of the sets of arcs corresponding to paths connecting her origin-destination pair. Fabrikant
et al. [12] studied the computational complexity of finding pure-strategy Nash equilibria in congestion games.
For symmetric network congestion games, where all players have the same origin-destination pair, they pre-
sented a polynomial-time algorithm for computing a pure-strategy Nash equilibrium. On the other hand, they
proved that this problem is PLS-complete for symmetric congestion games as well as for asymmetric network

1 Network congestion games are particularly interesting from a computational point of view because players’ strategies can be encoded
compactly.
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congestion games. A simpler proof of the latter result was given by Ackermann et al. [1], who also showed that
this result still holds for affine cost functions.
In weighted congestion games, players control different, integral amounts of flow. Depending on whether

players are allowed to split their flows or not, a player’s strategy consists of a set of paths with corresponding
integer flow values between her origin-destination pair, or a single path. Libman and Orda [25] constructed a
simple instance of an unsplittable weighted network congestion game that does not possess a pure-strategy Nash
equilibrium. A similar example was presented by Fotakis et al. [16], who also observed that for the special case
of affine cost functions, a pure-strategy Nash equilibrium is always guaranteed to exist. Awerbuch et al. [5]
derived a tight bound of �

√
5 + 3�/2 on the pure price of anarchy for this special case. The pure price of

anarchy is the ratio of the cost of a worst pure-strategy Nash equilibrium to that of a globally optimal solution.
Awerbuch et al. also gave upper bounds for instances with polynomial cost functions of degree greater than
one. Tight bounds for this case were later provided by Aland et al. [3]. Goemans et al. [19] showed that a
pure-strategy Nash equilibrium need not exist for instances with cost functions that are polynomials of degree
of at most two. Milchtaich [27] had earlier shown that weighted congestion games with player-specific cost
functions on networks consisting only of parallel arcs do not always have a pure-strategy Nash equilibrium either.
This was elaborated on by Gairing et al. [17], who considered different cost functions, slight modifications in the
network topology, and both the weighted and the unweighted cases. Milchtaich [28] characterized topological
properties of networks that guarantee the existence of pure-strategy Nash equilibria in network congestion games
if players control different amounts of flow or cost functions are player specific.
In this article, we prove that the problem of deciding whether a weighted network congestion game with

simple, nonlinear cost functions possesses a pure-strategy Nash equilibrium is strongly NP-hard, regardless of
whether one considers splittable or unsplittable flows. In the unsplittable case, we are able to show that the
problem remains strongly NP-complete even if the number of players is fixed, or if all players have the same
origin and destination. We also establish strong NP-completeness for weighted congestion games with affine
player-specific cost functions on networks consisting of parallel arcs only.
Leyton-Brown and Tennenholtz [24] introduced local-effect games to model situations in which the use of one

resource can affect the cost of using other resources. Local-effect games are, in general, not guaranteed to possess
pure-strategy Nash equilibria. However, Leyton-Brown and Tennenholtz showed that so-called bidirectional
local-effect games with linear local-effect functions belong to the class of exact potential games, and therefore
always have pure-strategy Nash equilibria. The question of whether there exists a polynomial-time algorithm for
finding a pure-strategy Nash equilibrium for these games was left open.
We prove that computing a pure-strategy Nash equilibrium is, in fact, PLS-complete. Because the proof uses

a tight PLS-reduction, our result implies the existence of instances of bidirectional local-effect games with linear
local-effect functions that have exponentially long shortest improvement paths. It also implies that the problem of
computing a pure-strategy Nash equilibrium that is reachable from a given strategy state via selfish improvement
steps is PSPACE-hard. In addition, we show that, given an initial strategy profile for a bidirectional local-effect
game with linear local-effect functions and a positive integer k (unarily encoded), it is strongly NP-complete to
decide whether there is a sequence of at most k selfish steps that transforms the initial state into a pure-strategy
Nash equilibrium. We also prove that the problem of deciding whether a bidirectional local-effect game with
general local-effect functions has a pure-strategy Nash equilibrium is strongly NP-complete.
Before we present the details of our results on weighted congestion games and local-effect games in §§3 and 4,

respectively, we conclude this introduction by briefly discussing additional related work on the computational
complexity of pure-strategy Nash equilibria. Gottlob et al. [21] considered restrictions of strategic games intended
to capture certain aspects of bounded rationality. Among other results, they proved that even in the setting where
each player’s payoff function depends on the actions of at most three other players and where each player’s
strategy set consists of at most three actions, the problem of determining whether a strategic game has a pure-
strategy Nash equilibrium is NP-complete. This result was strengthened by Fischer et al. [13], who showed that
the problem remains NP-hard even if each player has only two actions to choose from and her payoff depends
on the actions of at most two other players. Àlvarez et al. [4] studied how various representations of a strategic
game influence the computational complexity of deciding the existence of a pure-strategy Nash equilibrium.
They showed that this problem is NP-complete when the number of players is large and the number of strategies
for each player is constant, whereas the problem is

∑p
2 -complete when the number of players is constant and

the sizes of the strategy sets are exponential (with respect to the lengths of the strategies). Schoenebeck and
Vadhan [34] analyzed the computational complexity of deciding whether pure-strategy Nash equilibria exist in
graph games and circuit games. Brandt et al. [6] studied the impact of various notions of symmetry in strategic
games on the computational complexity of finding pure-strategy Nash equilibria. Expanding on a line of research
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started by Ieong et al. [22], who considered singleton congestion games, Ackermann et al. [1] proved that the
lengths of all best-response sequences are polynomially bounded in the number of players and resources, in
congestion games where the strategy space of each player consists of the bases of a matroid over the set of
resources. This especially implies that pure-strategy Nash equilibria for congestion games with this matroid
property can be computed in polynomial time, even in the case of player-specific costs (Ackermann et al. [2]).
In the latter paper, Ackermann et al. also showed the existence of pure-strategy Nash equilibria in weighted
congestion games with the same matroid property.

2. Preliminaries.

Noncooperative games. A strategic game is defined by a set N of n players, a finite set of actions Si
for each player i ∈ N , and a payoff or utility function ui for each player mapping S �= ∏

i∈N Si to �. The
set S is called the strategy or action space of the game, and its elements are the pure-strategy states. A pure-
strategy Nash equilibrium of a strategic game is a state s = �s1
 s2
 � � � 
 sn� ∈ S such that for each player i ∈N ,
ui�s�≥ ui�s1
 � � � 
 si−1
 s′i 
 si+1
 � � � 
 sn�, for all s′i ∈ Si. Thus, no player can benefit from changing her strategy
while the other players retain their current strategies.
Although every game has a Nash equilibrium if players are allowed to randomize over their set of pure

actions (Nash [30]), pure-strategy Nash equilibria are, in general, not guaranteed to exist. A fundamental class
of strategic games, which always have a pure-strategy Nash equilibrium, are potential games. Every game in
this class is characterized by the existence of a potential function that associates with each strategy profile a
real number such that the change in the potential function value of two states differing only in a single player’s
strategy is positive if and only if the difference in payoff to this particular player is positive. A potential function
is exact if these two values always coincide.

Congestion games. An unweighted congestion game is defined by a set of players N = �1
2
 � � � 
 n� and
a set of resources E. For each player i ∈ N , her set of available strategies is a collection of subsets of the
resources; i.e., Si ⊆ 2E . A nondecreasing cost function fe� � → �≥0 is associated with each resource e ∈ E.
Given a strategy profile s = �s1
 s2
 � � � 
 sn� ∈ S, the cost of player i is ci�s�=−ui�s�=

∑
e∈si fe�ne�s��, where

ne�s� denotes the number of players using resource e in s. In other words, in a congestion game each player
chooses a subset of resources that are available to her; and the cost to a player is the sum of the costs of the
resources used by her, where the cost of a resource depends only on the total number of players sharing this
resource.
A network congestion game is a congestion game in which the arcs of an underlying directed network represent

the resources. Each player i ∈N has an origin-destination pair �ri
 ti�, where ri and ti are nodes of the network,
and the set Si of pure strategies available to player i is the set of directed (simple) paths from ri to ti.
In a weighted network congestion game, each player i ∈N has a positive integer weight wi, which constitutes

the amount of flow that player i wants to ship from ri to ti. In the case of unsplittable flows, the cost of
player i adopting strategy si in a strategy profile s = �s1
 s2
 � � � 
 sn� ∈ S is given by ci�s� =

∑
e∈si fe��e�s��,

where �e�s�=
∑

i� e∈si wi denotes the total flow on arc e in s. In integer-splittable network congestion games, a
player with weight greater than one can choose a subset of paths on which to route her flow simultaneously;
that is, player i’s strategy consists of the specification of the ri-ti-paths used and the integer amounts of flow
routed on them, which sum up to wi. The corresponding cost is the total cost of the paths that player i uses,
weighted by the respective amounts of flow player i routes on them.
An (un)weighted network congestion game is called symmetric or a single-commodity game if all players have

the same origin-destination pair.
In terms of the input size of a weighted network congestion game, we assume that the cost functions are

explicitly specified; that is, for each integer value � with 0 ≤ � ≤∑
i∈N wi and each arc e, the value fe��� is

given in binary encoding.2

Local-effect games. In a local-effect game with player set N = �1
2
 � � � 
 n�, all players have the same set
of available actions, �. For each action a ∈�, there is a nondecreasing cost function fa� �→�≥0 that depends
merely on the number of players who play this action. Furthermore, for each pair of actions a
a′ ∈�, a �= a′, a
function fa′
 a� �→�≥0 expresses the impact of action a′ on the cost of action a. Its value depends only on the

2 Although more compact encodings are often possible, this assumption leads to stronger hardness results, which are the main concern of
this paper.
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number of players that choose action a′. The functions fa′
 a are called local-effect functions, and it is assumed
that fa′
 a�0�= 0. Moreover, local-effect functions are either strictly increasing or identical to zero. For a given
strategy state s = �s1
 s2
 � � � 
 sn� ∈�n, na�s� denotes the number of players playing action a in s. The cost to a
player i ∈N for playing action si in strategy state s is given by ci�s�= fsi �nsi �s��+

∑
a∈�
 a�=si fa
 si �na�s��. If the

local-effect functions fa′
 a are zero for all a �= a′, the local-effect game is equivalent to a symmetric network
congestion game with parallel arcs. A local-effect game is called a bidirectional local-effect game if, for all
a
a′ ∈�, a �= a′, and for all x ∈�, fa′
 a�x�= fa
a′�x�.

PLS. The complexity class PLS was introduced by Johnson et al. [23] to characterize the computational com-
plexity of local search problems. A combinatorial optimization problem � consists of a collection of instances
�� 
 c�, where � denotes the set of feasible solutions and c� � →� is the objective function. A combinatorial
optimization problem � together with a neighborhood function N� � → 2� belongs to PLS if (a) instances
are recognizable in polynomial time and a feasible solution can be computed efficiently, (b) the feasibility of
a proposed solution can be checked efficiently and its objective function value can be evaluated in polynomial
time, and (c) the neighborhood of a feasible solution can be searched in polynomial time to determine a better
feasible solution, if one exists. The computational problem associated with a local search problem is to find,
for a given instance �� 
 c�, a locally optimal solution w.r.t. the neighborhood function N , i.e., an s ∈ � such
that there is no solution in the neighborhood of s with strictly better cost. A local search problem L2 in PLS
is PLS-complete if, for any other problem L1 in PLS, there are polynomial-time computable functions � and �
such that � maps instances x of L1 to instances ��x� of L2, � maps solutions of ��x� to solutions of x, and if
s is a locally optimal solution for the instance ��x� of L2, then ��s
 x� is a locally optimal solution for x. Such
a reduction is called tight if for any instance x of L1 one can identify a subset X of feasible solutions of ��x�
so that (a) X contains all local optima of ��x�, (b) for every solution f of x one can construct in polynomial
time a solution s ∈X such that ��s
 x�= f , and (c) if the transition graph of ��x� contains a directed path from
s ∈ X to s′ ∈ X whose internal nodes are not in X, then either ��s
 x�= ��s′
 x� or the transition graph of x
contains an arc from ��s
 x� to ��s′
 x� (Schäffer and Yannakakis [33]). In particular, the length of a longest
path from any solution to a locally optimal solution in the transition graph of L2 is at least as large as that in
the transition graph of L1.

3. Complexity of weighted congestion games. We begin by giving a high-level description of the common
idea that forms the basis of our NP-hardness proofs for the various classes of games. In each case, we take
a counterexample, i.e., an instance that does not have a pure-strategy Nash equilibrium, and couple it with an
instance of the same class in which the strategy profiles correspond to the feasible solutions in a given instance
of an NP-complete problem. We also introduce an additional player who can participate in either game. All
other players are limited by cost or structure to participate in “their” part of the game only. The participation
of the extra player in the counterexample turns that game into one that has a pure-strategy Nash equilibrium.
Therefore, the entire game has a pure-strategy Nash equilibrium if and only if the part of the game corresponding
to the NP-complete problem has a pure-strategy Nash equilibrium that prevents the extra player from joining the
game, which happens if and only if it corresponds to a Yes-instance. The only deviation from this proof scheme
occurs in the case of weighted network congestion games with a fixed number of players. Instead of introducing
another player, one of the two players from the counterexample is given access to the other part of the game,
which she will be able to take advantage of if and only if the state in this part of the game corresponds to a
solution of a Yes-instance.

3.1. Unsplittable flows. Libman and Orda [25] presented an example of a weighted network congestion
game with general nondecreasing arc-cost functions that does not have a pure-strategy Nash equilibrium. Fotakis
et al. [16] provided a similar instance. We simplify the latter instance and turn it into a gadget to derive the
following result.

Theorem 3.1. The problem of deciding whether a weighted symmetric network congestion game with
unsplittable flows possesses a pure-strategy Nash equilibrium is strongly NP-complete.

Proof. The proof is by reduction from 3-Partition, which is strongly NP-complete (Garey and Johnson
[18]). Consider an arbitrary instance of 3-Partition: a finite set A= �1
2
 � � � 
3m� of items (m≥ 2), a number
B ∈ �, and a positive integer weight wi for each item i ∈ A such that B/4<wi < B/2 and

∑
i∈A wi =mB. We

will construct a weighted single-commodity network congestion game that has a pure-strategy Nash equilibrium
if and only if A can be partitioned into m disjoint sets A1
A2
 � � � 
Am such that

∑
i∈Ak wi = B for 1≤ k≤m.
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Figure 1. Illustration of the weighted single-commodity network congestion game used in the proof of Theorem 3.1.

We introduce a player pi for each item i ∈ A; the corresponding weight is wi. In addition, there are three
players p3m+1, p3m+2, and p3m+3 with weights w3m+1 = 
B, w3m+2 = 2 
B, and w3m+3 = 
B/2, respectively. Here,

B �= 2mB. All players have the same origin, r , and destination, t. The network is depicted in Figure 1. It consists
of a contracted version of the example by Fotakis et al. [16] and m additional arcs ē1
 ē2
 � � � 
 ēm, connecting
r and t. We denote the r-t-paths in the lower part of the network by P1 = �e1�, P2 = �e2
 e3�, P3 = �e2
 e4
 e6�,
and P4 = �e5
 e6�.
The nondecreasing arc-cost functions are defined as follows:

fēk �x� �=
{
x
 if x < �m+ 1�B


240 
B
 otherwise

for k= 1
 � � � 
m


fe1�x� �=



12 
B
 if x≤ 
B

120 
B
 if 
B < x≤ 2 
B

228 
B
 otherwise


fe2�x� �=



1 
B
 if x≤ 
B

2 
B
 if 
B < x≤ 2 
B

8 
B
 otherwise


fe3�x� �=



16 
B
 if x≤ 
B

18 
B
 if 
B < x≤ 2 
B

20 
B
 otherwise


fe4�x� �=



1 
B
 if x≤ 
B

40 
B
 if 
B < x≤ 2 
B

79 
B
 otherwise


fe5�x� �=



10 
B
 if x≤ 
B

12 
B
 if 
B < x≤ 2 
B

14 
B
 otherwise


fe6�x� �=



2 
B
 if x≤ 
B

10 
B
 if 
B < x≤ 2 
B

12 
B
 otherwise%
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Table 1. Possible defections in the subgame defined by the subnetwork of the network displayed in
Figure 1 that consists of arcs e1
 e2
 � � � 
 e6 and players p3m+1 and p3m+2 only.

s3m+1 s3m+2 Deviator→New strategy Current cost/ 
B Improved cost/ 
B

P1 P1 p3m+1 → P3 c3m+1 = 228 c′3m+1 = 4
P1 P2 p3m+1 → P3 c3m+1 = 12 c′3m+1 = 11
P1 P3 p3m+2 → P2 c3m+2 = 52 c′3m+2 = 20
P1 P4 p3m+2 → P2 c3m+2 = 22 c′3m+2 = 20
P2 P1 p3m+2 → P2 c3m+2 = 120 c′3m+2 = 28
P2 P2 p3m+1 → P1 c3m+1 = 28 c′3m+1 = 12
P2 P3 p3m+1 → P1 c3m+1 = 24 c′3m+1 = 12
P2 P4 p3m+1 → P1 c3m+1 = 17 c′3m+1 = 12
P3 P1 p3m+2 → P2 c3m+2 = 120 c′3m+2 = 26
P3 P2 p3m+2 → P4 c3m+2 = 26 c′3m+2 = 24
P3 P3 p3m+1 → P1 c3m+1 = 99 c′3m+1 = 12
P3 P4 p3m+1 → P1 c3m+1 = 14 c′3m+1 = 12
P4 P1 p3m+2 → P2 c3m+2 = 120 c′3m+2 = 20
P4 P2 p3m+1 → P3 c3m+1 = 12 c′3m+1 = 11
P4 P3 p3m+1 → P1 c3m+1 = 22 c′3m+1 = 12
P4 P4 p3m+1 → P1 c3m+1 = 26 c′3m+1 = 12

Suppose there is a partition A1
A2
 � � � 
Am of A such that
∑

i∈Ak wi = B for 1≤ k≤m. Consider the strategy
state s in which player pi chooses the arc ēk such that item i ∈Ak, and s3m+1 = P3, s3m+2 = P4, and s3m+3 = P1.
The cost to player pi, for i ∈A, is B. If such a player would route her flow on one of the other arcs ē&, & �= k,
her cost would increase to B+wi. By choosing a path Pk, k ∈ �1
2
3
4�, this player’s cost would increase to
at least 4 
B. Player p3m+1 experiences a cost of 14 
B. A change to path P1, P2, or P4 would result in a cost of
120 
B, 17 
B, or 26 
B. For player p3m+2, the cost in state s is 24 
B. Switching to path P1, P2, or P3 increases her
cost to 228 
B, 26 
B, or 99 
B. Player p3m+3 has a cost of 12 
B. Routing her flow on path P2, P3, or P4 would result
in an increased cost of 18 
B, 54 
B, or 26 
B. Finally, every player p3m+1, p3m+2, and p3m+3 would increase her cost
to 240 
B by switching to some single-arc path ēk, k ∈ �1
2
 � � � 
m�. Thus, no player can decrease her cost by
routing flow over another path: s is a pure-strategy Nash equilibrium.
For the other direction, we claim that every pure-strategy Nash equilibrium s of this game has the following

properties:
(a) Players p3m+1, p3m+2, and p3m+3 play a strategy in �P1
 P2
 P3
 P4�.
(b) Every player pi, i ∈ �1
2
 � � � 
3m�, chooses an arc ēk, for some 1≤ k≤m.
Property (a) clearly holds for players p3m+1 and p3m+2, for if one of these players chose an arc ēk for some

k ∈ �1
2
 � � � 
m�, she would experience a cost of 240 
B. She could decrease her cost to at most 228 
B by
switching to some path Pk, k ∈ �1
2
3
4�. For property (b), suppose there is a player pi, i ∈ �1
2
 � � � 
3m�,
routing her flow on a path Pk, k ∈ �1
2
3
4�. In this case, the cost of player pi is at least 4 
B. Given that we
have already established property (a) for players p3m+1 and p3m+2, the total weight of players using an arc ēk in
s is at most 2mB. Therefore, there must exist some k ∈ �1
2
 � � � 
m� such that

∑
i� si=ēk wi ≤ 2B. By switching

to arc ēk, player pi can decrease her cost to, at most, fēk �2B+wi� < 3B. To show (a) for player p3m+3, suppose
that she uses an arc ēk, k ∈ �1
2
 � � � 
m�. Then, only players p3m+1 and p3m+2 use one of the paths P1, P2, P3,
and P4. However, the congestion game restricted to players p3m+1 and p3m+2 and strategies P1, P2, P3, and P4
does not have a pure-strategy Nash equilibrium—a contradiction.3 Table 1 lists the 16 possible combinations
that we need to consider to show that in each case at least one of the two players can decrease her cost by
routing her flow on a different path. Hence, the only way that the entire game can have a pure-strategy Nash
equilibrium is for player p3m+3 to play a strategy in �P1
 P2
 P3
 P4�.
Given a pure-strategy Nash equilibrium s, we can now define a partition of A by setting Ak �= �i ∈A� si = ēk�,

k= 1
2
 � � � 
m. We claim that these sets define a solution to the 3-Partition problem. Suppose this is not the
case. Then, because of (a), there exists an index k ∈ �1
2
 � � � 
m� such that ∑i� si=ēk wi < B. The current cost of
player p3m+3, using a path Pk, k ∈ �1
2
3
4�, is at least 4 
B. By switching to arc ēk, this player can decrease her
cost to, at most, fēk �B−1+mB�= �m+1�B−1. This contradicts the assumption of s being a Nash equilibrium.
To complete the proof, we note that the problem of deciding whether a weighted network congestion game

with unsplittable flows has a pure-strategy Nash equilibrium is in NP. Indeed, one can verify in polynomial time
that a given strategy state is a Nash equilibrium by conducting a shortest-path computation for each player. �

3 This subgame coincides with the contracted version of the instance by Fotakis et al. [16], to which we referred earlier.
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While the NP-hardness of the corresponding decision problem for weighted network congestion games with
player-specific payoff functions follows immediately, we can actually strengthen this result.

Theorem 3.2. The problem of deciding whether a weighted network congestion game with parallel arcs and
affine player-specific cost functions possesses a pure-strategy Nash equilibrium is strongly NP-complete.

Proof. The problem is obviously in NP. To show NP-completeness, we reduce, as before, from 3-Partition.
We are given a set A= �1
2
 � � � 
3m� of items, a number B ∈�, and a positive integer weight wi for each item
i ∈A such that B/4<wi < B/2 and

∑
i∈A wi =mB. We will construct a weighted network congestion game with

parallel arcs only and player-specific cost functions such that it has a pure-strategy Nash equilibrium if and only
if A can be partitioned into m disjoint sets A1
A2
 � � � 
Am such that

∑
i∈Ak wi = B, for 1≤ k≤m.

We introduce a player pi for each item i ∈A; the corresponding weight is wi. There are four additional players
p3m+i, for i = 1
2
3
4, with w3m+1 = 1, w3m+2 = 2, w3m+3 = 3, and w3m+4 = 1. All players want to ship flow
from r to t in a network of parallel arcs e1
 e2
 � � � 
 em+3 connecting r and t.
Let fi
k denote the cost function of player pi for arc ek, and let K �= 3�mB + 7�+ 1. For i = 1
2
 � � � 
3m

and k= 1
2
 � � � 
m+ 3, we define

fi
k�x� �=
{
x
 if k ∈ �1
2
 � � � 
m�

K
 otherwise%

For the remaining players p3m+i
 i ∈ �1
2
3
4�, we set

f3m+1
 k�x� �=



K
 if k ∈ �1
2
 � � � 
m+ 1�


7
 if k=m+ 2


2x
 if k=m+ 3


f3m+2
 k�x� �=



K
 if k ∈ �1
2
 � � � 
m+ 1�


2x
 if k=m+ 2


5
 if k=m+ 3


f3m+3
 k�x� �=



K
 if k ∈ �1
2
 � � � 
m�∪ �m+ 2�


3x
 if k=m+ 1


2x
 if k=m+ 3


f3m+4
 k�x� �=



x
 if k ∈ �1
2
 � � � 
m�

K
 if k ∈ �m+ 1
m+ 2�


B+ 1
 if k=m+ 3%

Assume that we are given a Yes-instance of the partition problem. Then there is a partition A1
A2
 � � � 
Am of
A such that

∑
i∈Ak wi = B for 1≤ k≤m. Consider the strategy state s in which player pi chooses the arc ek with

i ∈ Ak, i = 1
2
 � � � 
3m, and s3m+1 = em+3, s3m+2 = em+2, s3m+3 = em+1, and s3m+4 = em+3. In s, each player pi
corresponding to an item i ∈ A has a cost of B. Switching to a different arc in �e1
 e2
 � � � 
 em� increases her
cost to B+wi, and routing her flow on an arc in the set �em+1
 em+2
 em+3� results in a cost of K, which is no
improvement either. Player p3m+1 has a cost of four. The only other arc yielding a cost less than K is em+2.
However, switching to this arc results in a higher cost of seven. Player p3m+2 has a cost of four in state s.
Changing her strategy to em+3 gives a new cost of five; all other arcs have cost K for this player. Player p3m+3
with current cost nine can decrease her cost neither by using arc em+3, which would yield a cost of 10, nor by
taking one of the other arcs, which would result in a cost of K. Player p3m+4’s cost is B+ 1 in s. Switching to
an arc ek, for some 1 ≤ k ≤m, results in the same cost; all other arcs would increase her cost. Hence, s is a
pure-strategy Nash equilibrium.
For the other direction of the proof, we first observe that any pure-strategy Nash equilibrium of the constructed

game has the following properties:
(a) Each player pi, i ∈ �1
2
 � � � 
3m�, uses an arc in �e1
 e2
 � � � 
 em�.
(b) None of the players p3m+1, p3m+2, p3m+3 plays a strategy in �e1
 e2
 � � � 
 em�.
(c) Player p3m+4 plays strategy em+3.
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Table 2. Possible defections in the subgame restricted to players p3m+1, p3m+2, p3m+3 and
strategies em+1, em+2, em+3, as discussed in the proof of Theorem 3.2. This game is similar to
instances described by Milchtaich [27].

s3m+1 s3m+2 s3m+3 Defector → New strategy Current cost Improved cost

em+2 em+2 em+1 p3m+1 → em+3 c3m+1 = 7 c′3m+1 = 2
em+2 em+2 em+3 p3m+2 → em+3 c3m+2 = 6 c′3m+2 = 5
em+2 em+3 em+1 p3m+1 → em+3 c3m+1 = 7 c′3m+1 = 6
em+2 em+3 em+3 p3m+3 → em+1 c3m+3 = 10 c′3m+3 = 9
em+3 em+2 em+1 p3m+3 → em+3 c3m+3 = 9 c′3m+3 = 8
em+3 em+2 em+3 p3m+1 → em+2 c3m+1 = 8 c′3m+1 = 7
em+3 em+3 em+1 p3m+2 → em+2 c3m+2 = 5 c′3m+2 = 4
em+3 em+3 em+3 p3m+3 → em+1 c3m+3 = 12 c′3m+3 = 9

Properties (a) and (b) follow immediately from the fact that for any player there exists a strategy with cost
strictly smaller than K, i.e., in any Nash equilibrium each player pays less than K. For property (c), we first
observe that in any Nash equilibrium the only possible strategies for player p3m+4 are ek, 1≤ k≤m, and em+3.
Suppose that p3m+4 does not use arc em+3. Then, by properties (a) and (b), only p3m+1, p3m+2, and p3m+3 play
strategies in �em+1
 em+2
 em+3�. However, the congestion game restricted to these three players and strategies
does not have a pure-strategy Nash equilibrium, yielding a contradiction. In fact, we only need to consider all
possibilities for the three players to choose their strategies from �em+1
 em+2
 em+3�. We can exclude from the
start all possibilities that imply a cost of K for one of the players. Eight possible combinations, which are listed
in Table 2, remain to be considered. In consequence, the only way for the whole game to have a pure-strategy
Nash equilibrium is if player p3m+4 uses arc em+3.
Given a pure-strategy Nash equilibrium s of the constructed game, we can now associate a partition of the

item set with the m groups of players who route their flows on arcs ek with 1≤ k ≤m. We claim that the so
defined sets, i.e., Ak �= �i ∈A� si = ek�, 1≤ k≤m, form a solution to the 3-Partition problem. Suppose this is
not true. Then there exists an index k ∈ �1
2
 � � � 
m� such that the total weight of players routing their flows on
ek is at most B− 1. Consider player p3m+4, who, by property (c), plays strategy em+3 in any pure-strategy Nash
equilibrium. Her current cost is B+1. By switching to arc ek, she can decrease her cost to at most B. However,
this contradicts the assumption of s being a Nash equilibrium. Therefore,

∑
i∈Ak wi = B for 1≤ k≤m. �

The following result shows that deciding the existence of pure-strategy Nash equilibria in asymmetric weighted
network congestion games with unsplittable flows remains strongly NP-complete, even if the number of players
is fixed. Note that this result does not render Theorem 3.1 obsolete, because that theorem dealt with symmetric
games.

Theorem 3.3. The problem of deciding whether a weighted network congestion game with a fixed number
of players has a pure-strategy Nash equilibrium is strongly NP-complete.

Proof. We reduce from Arc-Disjoint Paths: Given a directed graph G= �N 
A� and a set of node pairs
�r1
 t1�
 �r2
 t2�
 � � � 
 �rk
 tk�, does there exist a collection of arc-disjoint paths P1
 P2
 � � � 
 Pk, where Pi is an
ri-ti-path? This problem is NP-complete, even in the case of only two terminal pairs (Fortune et al. [15]).
Let G= �N 
A�, �r1
 t1�, and �r2
 t2� be an instance of Arc-Disjoint Paths with two terminal pairs. We will

construct a congestion game whose underlying network will consist of two building blocks. The first component
is obtained from the original network G by replacing each arc a ∈ A by a path consisting of three arcs ē1, ē2,
and ē3. We denote the resulting graph by G′. The second building block is the network that we already used
as a gadget in the proof of Theorem 3.1. It consists of four different r-t-paths, which we will call Qk here, for
k= 1
2
3
4. We will refer to it as the “lower” part of the new network. See Figure 2 for an illustration.
Both building blocks are connected as follows. Assume that A = �a1
 a2
 � � � 
 am�. We introduce an arc ē0

between r and the starting node of the second arc ē21, which was one of three arcs replacing the original arc
a1 ∈A. Furthermore, for 1≤ i≤m−1, we create an arc ēi connecting the end node of ē

2
i with the start node of

ē2i+1. Finally, there is an arc ēm from the end node of ē2m to the terminal node t. We denote the r-t-path formed
by the arcs ēk, k= 0
1
 � � � 
m, and ē2i , i= 1
2
 � � � 
m, by Q5.
The game has four players. Players p1 and p2 wish to route one unit of flow from r1 to t1 and from r2 to t2,

respectively. Players p3 and p4 have weights w3 =m and w4 = 2m, to be sent from r to t.
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Figure 2. Illustration of the weighted network congestion game created in the proof of Theorem 3.3.

We define the cost of the arcs that replaced ai ∈A as follows:

fē1i �x� �= fē3i �x� �=
{
0
 if 0≤ x <m

K
 if x≥m


fē2i �x� �=
{
0
 if 0≤ x <m+ 2


K
 if x≥m+ 2


where K �= 237m+ 1. Moreover, for 0≤ i≤m,

fēi �x� �=
{
0
 if 0≤ x≤m

K
 if x >m%

The cost functions fei , for i= 1
2
 � � � 
6, in the lower part of the network, are defined in the same way as the
corresponding functions in the proof of Theorem 3.1; however, 
B is replaced by m.
Let us first assume that the given instance of Arc-Disjoint Paths is a Yes-instance, i.e., there exist arc-

disjoint paths P1 and P2 in G connecting r1 and t1, and r2 and t2, respectively. We will abuse notation and
denote the corresponding paths in G′ also by P1 and P2. Consider the strategy state s in which players p1 and
p2 choose P1 and P2, respectively, whereas player p3 uses Q5, and p4 routes her flow on Q2. We claim that
s is a Nash equilibrium. Because at most one of the players p1 and p2 uses a particular arc in G′, the cost
of any arc ē1i 
 ē

2
i 
 ē

3
i , 1 ≤ i ≤m, in s is zero. Therefore, p1 and p2 have zero cost and play optimal strategies.

Similarly, the cost of player p3 is zero, because in addition to the last observation, the total weight on any arc
ēi, 0≤ i≤m, is m, i.e., the cost for using each of these arcs is zero. Finally, player p4 uses the cheapest path in
the lower part of the network. By routing her flow on any path sharing arcs with G′, her cost would increase to
at least K. Thus, no player can decrease her cost by routing flow over another path; s is indeed a pure-strategy
Nash equilibrium.
Let us now assume that we are given a pure-strategy Nash equilibrium s of the constructed game. Because

any arc in G′, if used by player p4, induces a cost of K > 237m, this player is always better off using a path
in �Q1
Q2
Q3
Q4�. We further observe that there is no r1-t1-path or r2-t2-path that shares any arc with the
lower part of the network, i.e., neither player p1 nor player p2 will use such an arc. However, if we restrict
the game to players p3 and p4 and the lower part of the network, it follows from the same reasoning used in the
proof of Theorem 3.1 that this subgame does not have a pure-strategy Nash equilibrium. Therefore, player p3
has to choose a path intersecting G′. Arcs ē1i and ē

3
i , 1≤ i ≤m, are very expensive if the load is greater than

or equal to w3 = m; hence, the only way for p3 to route her flow in a Nash equilibrium is to use path Q5.
Because she cannot decrease her cost by switching to a path in the lower part of the network, the cost for using



Dunkel and Schulz: On the Complexity of Pure-Strategy Nash Equilibria
860 Mathematics of Operations Research 33(4), pp. 851–868, © 2008 INFORMS

Q5 must be smaller than K. This implies that at most one of the players p1 and p2 uses an arc ē2i , 1≤ i ≤m
(otherwise, the total weight on such an arc would be m+ 2). Similarly, neither p1 nor p2 can use any arc ēk for
k ∈ �0
1
 � � � 
m�. This, in turn, implies that both p1 and p2 only use G′ to route their flows. Furthermore, the
corresponding paths of these two players in G have to be disjoint, i.e., the Arc-Disjoint Paths instance is a
Yes-instance. �

3.2. Integer-splittable flows. Rosenthal [32] gave an example of an asymmetric weighted network con-
gestion game that does not have a pure-strategy Nash equilibrium if players are allowed to split their flows
(see Figure 5). Interestingly, the same game possesses a pure-strategy Nash equilibrium if each player has to
route her flow on a single path. The following result shows that one cannot efficiently decide the existence of
pure-strategy Nash equilibria in network congestion games with integer-splittable flows, unless P=NP.

Theorem 3.4. The problem of deciding whether a weighted network congestion game with integer-splittable
flows possesses a pure-strategy Nash equilibrium is strongly NP-hard, even if there is only one player with
weight two, and all other players have unit weights.

Proof. The reduction is from Monotone 3Sat, which is known to be NP-complete (Garey and Johnson
[18]). Consider an instance of Monotone 3Sat with set of variables X = �x1
 x2
 � � � 
 xn� and set of three-
variable clauses C = �c1
 c2
 � � � 
 cm�. Each clause contains either only negated variables or only unnegated
variables.
We will create a game that has one player px for every variable x ∈X with weight wx = 1, origin x, and des-

tination x̄. Moreover, each clause c ∈C gives rise to a player pc with weight wc = 1, origin c, and destination c̄.
There are three more players p1, p2, and p3 with weights w1 = 1, w2 = 2, and w3 = 1 and origin-destination pairs
�r
 t1�, �r
 t2�, and �r
 t3�, respectively. For every variable x ∈X, the network contains two disjoint paths P 1

x and
P 0
x from x to x̄. Path P 0

x consists of 2��c ∈ C � x ∈ c�� + 1 arcs, and P 1
x has 2��c ∈C � x̄ ∈ c�� + 1 arcs with cost

functions as shown in Figure 3. For each origin-destination pair �c
 c̄�, we introduce two disjoint paths P 1
c and

P 0
c from c to c̄. Path P 1

c consists of only two arcs. The paths P 0
c have seven arcs each and are constructed for

c = cj in the order j = 1
2
 � � � 
m as follows. For a positive clause c = cj = �xj1 ∨ xj2 ∨ xj3� with j1 < j2 < j3,
path P 0

c starts with the arc connecting c to the first inner node v1 on path P
1
xj1

that has only two incident arcs so
far. The second arc is the unique arc �v1
 v2� of path P

1
xj1

that has v1 as its start vertex. The third arc connects
v2 to the first inner node v3 on path P 1

xj2
that has only two incident arcs so far. The fourth arc is the only arc

�v3
 v4� on P
1
xj2

with start vertex v3. From v4, there is an arc to the first inner node v5 on P
1
xj3

that has only two
incident arcs so far, followed by �v5
 v6� of P

1
xj3
. The last arc of P 0

c connects v6 to c̄. Figure 3 illustrates this
construction. For a negative clause c= cj = �x̄j1 ∨ x̄j2 ∨ x̄j3�, we proceed in the same way, except that we choose
the inner nodes vi from the upper variable paths P 0

xj1
, P 0

xj2
, and P 0

xj3
.

The strategy set of player px is �P
1
x 
 P

0
x �. We will interpret it as setting the variable x to true (false) if px

sends her unit of flow over P 1
x (P 0

x ). Note that player pc can only choose between the paths P 1
c and P 0

c . This is
due to the order in which the paths P 0

c are constructed. Depending on whether player pc sends her unit of flow
over path P 1

c or P 0
c , the clause c will be satisfied or not.

The second part of the network consists of all origin-destination pairs and paths for players p1
 p2, and p3 (see
Figure 4). Player p1 can choose between paths U1 = ��r
 t2�
 �t2
 t1�� and L1 = ��r
 t1��. Player p2 is the only

Px1

1
2

Pc1

0/1
0/1

0/10/10/1
0/1

x1 x1 x2 x2 x3 x3
0/1 0/1

0/10/1
0/1

0/10/1
0/1

0/1 0/1

0/1

0/1

v4
v6

v5v3v1
v2

c1 c1 c2

0 Px2

0 Px3

0

Px1

1 Px2

1 Px3

1

0

Pc1

1

0/ 1
m

Figure 3. Part of the constructed network corresponding to a positive clause c1 = �x1∨x2∨x3�. The notation a/b defines a cost per unit
flow of value a for load 1 and b for load 2. For any other arc, the cost does not depend on the amount of flow on that arc. Arcs without
specified values have zero cost.
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Figure 4. Part of the network used by players p1, p2, and p3. A single number a on an arc defines a constant cost of a per unit flow for
this arc. Unlabeled arcs have cost zero.

player who can split her flow; that is, she can route her two units either both over path U2 = ��r
 t2��, both over
path L2 = ��r
 t1�
 �t1
 t2��, or one unit on the upper and the other unit on the lower path; i.e., her strategy set is
S2 = �L2
U2
L2U2�. Finally, player p3 has three possible paths from which to choose. The upper path U3 shares
an arc with each clause path P 1

c and has some additional arcs to connect these. The paths M3 = ��r
 t2�
 �t2
 t3��
and L3 = ��r
 t1�
 �t1
 t2�
 �t2
 t3�� have only arcs with the paths of p1 and p2 in common. The cost functions are
defined in Figure 4.
Given a satisfying truth assignment, we define a strategy state s of the game by setting the strategy of player

px to be P
1
x for a true variable x, and P

0
x otherwise. Each player pc plays P

1
c . Furthermore, s1 = L1, s2 =U2, and

s3 =M3. It is easy to show that no player can decrease her cost by unilaterally switching to another strategy;
i.e., the defined strategy configuration is a pure-strategy Nash equilibrium.
For the other direction, we first observe that any pure-strategy Nash equilibrium s has the following properties:

(a) player p3 does not use path U3, (b) the cost of player p3 is at least eight, and (c) each player pc routes her
unit flow over path P 1

c . Property (a) follows from the fact that the subgame shown in Figure 5 with players p1
and p2 only does not have a pure-strategy Nash equilibrium.4 Thus, p3 will use either the middle or the lower
path. No matter how many other players use an edge of the lower path, the cost of p3 using L3 is at least 10.
The only possibility for p3 to face a cost strictly less than eight is if she uses the middle path and at most one
additional unit of p1 or p2 is routed over arc �r
 t2�. Let us consider the case s1 = L1, s2 = L2, and s3 =M3 first.
Then p2 has a cost of 34, and she can decrease her cost by switching to strategy U2 with a new cost of 14.
If s1 = L1
 s2 = L2U2, and s3 =M3, the cost of player p2 is 17. Choosing strategy U2 instead yields a lower cost
of 14. The last case to consider is s1 = U1
 s2 = L2, and s3 =M3. Then, player p2 has a cost of 30, which can
be decreased by switching to strategy L2U2, leading to a cost of 16. Consequently, property (b) holds for any
pure-strategy Nash equilibrium of the game. For property (c), suppose there is a player pc
 c ∈C, routing her unit
flow on P 0

c . By (a) and (b), we know that p3 uses either the lower or the middle path with a cost of at least eight.
Consider a change of p3 to the upper path U3. Her new cost would be at most 7+ �m− 1��1/m� < 8, which
would contradict that s is a Nash equilibrium.
We claim that the truth assignment that sets a variable x to true if the corresponding player uses P 1

x , and
x to false otherwise, satisfies all clauses. Suppose that all variables of a positive clause c = �x1 ∨ x2 ∨ x3� are
false; i.e., sxi = P 0

xi
for i = 1
2
3. By property (c), player pc uses P

1
c . Because of (a), her current cost is 1/2.

Choosing path P 0
c instead would decrease the cost to zero, which contradicts the assumption of s being a Nash

equilibrium. A similar argument holds for a negative clause. �

Note that we have not claimed that the problem of deciding whether a weighted network congestion game with
integer-splittable flows possesses a pure-strategy Nash equilibrium is in NP. Although this can be easily shown
if all cost functions are convex, it follows from a result by Meyers and Schulz [26] that, in general, the problem
of deciding whether a given strategy profile is a pure-strategy Nash equilibrium is in itself a co-NP-complete
problem.

4. Bidirectional local-effect games. Leyton-Brown and Tennenholtz [24] presented a characterization of
local-effect games that have an exact potential function and that are therefore guaranteed to possess pure-
strategy Nash equilibria. One of these subclasses is that of bidirectional local-effect games with linear local-effect

4 This subgame coincides with the instance originally conceived by Rosenthal [32], to which we alluded earlier.
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Figure 5. On the left: Subgame with two players without pure-strategy Nash equilibrium. On the right: Digraph of all strategy states and
improving moves.
Note. The players’ weights are one and two, respectively.

functions. However, without linear local-effect functions, deciding the existence of pure-strategy Nash equilibria
is difficult.

Theorem 4.1. The problem of deciding whether a bidirectional local-effect game possesses a pure-strategy
Nash equilibrium is strongly NP-complete.

Proof. The proof uses a reduction from 3-Partition. Consider an arbitrary instance of 3-Partition with
finite set A= �1
2
 � � � 
3m� of items, a number B ∈ �, and a positive integer weight wi for each item i ∈ A
such that B/4< wi < B/2 and

∑
i∈A wi =mB. We may assume that B ≥ 12. We will construct a bidirectional

local-effect game such that it has a pure-strategy Nash equilibrium if and only if A can be partitioned into m
disjoint sets A1
A2
 � � � 
Am such that

∑
i∈Ak wi = B for 1≤ k≤m.

The action set � consists of 3m2 + 2m+ 3 actions that are available to 4m+ 3 players. For each item i ∈A,
there is a set of m corresponding actions a1i 
 a

2
i 
 � � � 
 a

m
i ; we will make sure that in any Nash equilibrium of

the game exactly one player will pick one of these actions, for each item. The remaining actions are denoted
by dj and d̄j , j = 1
2
 � � � 
m, and h1
 h2, and h3. We define the cost functions for actions a ∈ �aji � i =
1
2
 � � � 
3m
 j = 1
2
 � � � 
m�∪ �dj � j = 1
2
 � � � 
m� as

fa�x� �=
{
0
 if x≤ 1


K
 otherwise


where K �= 3�4m+ 3�B+ 18. For j = 1
2
 � � � 
m,

fd̄j �x� �=
{
B
 if x≤ 1


K
 otherwise%

Furthermore, we have

fh1�x� �= fh2�x� �=




0
 if x= 0


B+ 1
 if x= 1


2B+ 6
 if x= 2


3B+ 12
 if x= 3


Bx
 otherwise


fh3�x� �=




0
 if x= 0


B+ 1
 if x= 1


2B+ 2
 if x= 2


3B+ 12
 if x= 3


Bx
 otherwise%

The local-effect functions between actions h1, h2, and h3 are given by

fh1
 h2�x� �=




0
 if x= 0


B+ 1
 if x= 1


2B+ 4
 if x= 2


Bx
 otherwise
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K
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K
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K

Figure 6. Illustration of the “local-effect graph” of the game constructed in the proof of Theorem 4.1.
Note. An arc label 3 corresponds to the coefficient of a linear local-effect function fa
a′ �x�= 3x. Moreover, p �= 3m.

fh1
 h3�x� �=




0
 if x= 0


B+ 3
 if x= 1


2B+ 4
 if x= 2


Bx
 otherwise


fh2
 h3�x� �=




0
 if x= 0


B+ 1
 if x= 1


2B+ 5
 if x= 2


Bx
 otherwise%

All other local-effect functions are defined in Figure 6.
Assume that the given 3-Partition instance is a Yes-instance; that is, there is a partition A1
A2
 � � � 
Am of

the item set A such that
∑

i∈Ak wi = B for 1≤ k≤m. Consider the following strategy state s of the local-effect
game. For i= 1
2
 � � � 
3m and j = 1
2
 � � � 
m, let

ndj �s�= 1
 nd̄j �s�= 0
 nh1�s�= 0
 nh2�s�= 1
 nh3�s�= 2
 and naji
�s�=

{
1
 if i ∈Aj

0
 otherwise%

We show that no player can decrease her cost by switching to another action. First, a player choosing some
action aji pays a cost of wi due to a local effect from action dj . Switching to action a

k
i for some k �= j does not

change the player’s cost. Any other action apart from h1, h2, or h3 would imply a cost of at least K. Switching
to action h1, h2, or h3 leads to a cost of at least B+ 1>wi. Thus, none of these players can decrease her cost.
Now consider a player with action dj . Her cost is

∑
i∈Aj wi = B. Switching to some action aji , dk, or d̄k with

k �= j increases her cost to at least K. Action d̄j implies an equal cost of B. Switching to h1, h2, or h3 results in
a cost of at least B+ 1. Hence, such a player has no incentive to change her strategy either. The player playing
action h2 has a cost of 3B + 6. Switching to some action in �\�h1
 h2
 h3� increases her cost to at least K.
A change to action h1 or h3 results in a new cost of 3B + 6 or 3B + 12, respectively. Finally, a player with
action h3 has cost 3B+ 3 in state s. She would also strictly increase her cost by switching to some action in
�\�h1
 h2
 h3�. A change to action h1 would result in a cost of 3B+ 6, whereas switching to h2 increases her
cost by four cost units. Consequently, the defined state is a pure-strategy Nash equilibrium.
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Table 3. Possible defections in the subgame restricted to actions h1, h2, and h3 and three players
“� � � , under the assumption that

∑m
j=1 ndj �s� <m”

nh1 nh2 nh3 Defector→New strategy Current cost Improved cost

3 0 0 h1 → h2 ≥3B+ 12 3B+ 5
0 3 0 h2 → h3 3B+ 12 3B+ 6
0 0 3 h3 → h2 3B+ 12 3B+ 6
2 1 0 h1 → h3 ≥3B+ 7 3B+ 5
2 0 1 h1 → h2 ≥3B+ 9 3B+ 3
1 2 0 h2 → h3 3B+ 7 3B+ 5
0 2 1 h2 → h3 3B+ 7 3B+ 3
1 0 2 h3 → h2 3B+ 5 3B+ 3
0 1 2 h2 → h1 3B+ 6 ≤3B+ 5+ �m− 1�/m
1 1 1 h1 → h3 ≥3B+ 5 3B+ 3

For the other direction of the proof, we make the following observations. Let s be a pure-strategy Nash
equilibrium. Then, for each i ∈ �1
2
 � � � 
3m�, at most one player chooses a strategy from the set �aji � j ∈
�1
2
 � � � 
m��. Otherwise, at least one of the players could decrease her current cost of at least K to less than
3�4m+ 3�B <K by switching to action h3. By the same token, for each j ∈ �1
2
 � � � 
m�, at most one player
chooses an action from �dj
 d̄j� in s. It follows that at least three players play an action from �h1
 h2
 h3�.
Suppose there were more than three. Then, there existed either an i ∈ �1
2
 � � � 
3m� such that

∑m
j=1 naji �s�= 0

or some j ∈ �1
2
 � � � 
m� with ndj �s�+ nd̄j �s�= 0. In the first case, one of the players currently playing h1,
h2, or h3 could decrease her cost from at least B+ 1 to at most wi < B if she made the switch to any of the
actions corresponding to item ai. In the second case, switching to d̄j would decrease the cost of some player
to B. Consequently,

nh1�s�+ nh2�s�+ nh3�s�= 3
 (1)
m∑
j=1
naji
�s�= 1 for i= 1
2
 � � � 
3m
 and (2)

ndj �s�+ nd̄j �s�= 1 for j = 1
2
 � � � 
m% (3)

The key insight left to show is that ndj �s�= 1 for j = 1
2
 � � � 
m. Assume that
∑m

j=1 ndj �s� <m. Consider the
subgame defined by actions h1, h2, and h3 and three players. Table 3 shows that this subgame does not have
a pure-strategy Nash equilibrium. Therefore, the only way s can be a pure-strategy Nash equilibrium is that
the local effects on h1 due to actions dj sum up to one (see the row next to last in Table 3). Consequently,
ndj �s�= 1 for j = 1
2
 � � � 
m.
Now consider a player with action dj in state s. Because s is a Nash equilibrium, she cannot decrease her

cost by switching to action d̄j . Therefore, the current cost of this player has to satisfy
∑3m

i=1 naji �s�wi ≤ B (note
that by (3), nd̄j �s�= 0). Because of (2), we have

∑3m
i=1

∑m
j=1 naji �s�wi =mB, implying

3m∑
i=1
naji
�s�wi = B for j = 1
2
 � � � 
m%

Hence, a solution to the partitioning problem is given by Aj �= �i ∈A� naji �s�= 1�, j = 1
2
 � � � 
m. �

If the number of players or the number of actions in a local-effect game is fixed, then the number of possible
strategy combinations of all players is polynomially bounded in the input size. Hence, deciding the existence of
pure-strategy Nash equilibria is solvable in polynomial time in these cases.
As mentioned before, bidirectional local-effect games with linear local-effect functions belong to the class

of exact potential games (Leyton-Brown and Tennenholtz [24]); in particular, pure-strategy Nash equilibria are
guaranteed to exist. However, it turns out that computing one is at least as hard as finding a local optimum for
several combinatorial optimization problems with efficiently searchable neighborhoods.

Theorem 4.2. The problem of computing pure-strategy Nash equilibria for bidirectional local-effect games
with linear local-effect functions is PLS-complete.
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Proof. We reduce from Max-Cut with the flip-neighborhood, which is PLS-complete (Schäffer and
Yannakakis [33]):5 Given a complete graph on n nodes with nonnegative integral edge weights wij , for i �= j ,
find a partition of the nodes into two sets L and R such that the sum of the weights of edges between nodes in
L and R cannot be increased by moving a single node from one set to the other.
We construct a bidirectional local-effect game with linear local-effect functions as follows. There are n

players with common action set � that contains two actions aLi and aRi for each node i = 1
2
 � � � 
 n. Let
K �= nmaxi �=j wij . For each action a ∈ �, fa�x� �= 0 if x ≤ 1, and fa�x� �= K, otherwise. The local-effect
functions are given for i
 j ∈ �1
2
 � � � 
 n�, i �= j , by faLi 
 aLj �x� �= faRi 
 aRj �x� �=wijx. Furthermore, faLi 
 aRi �x� �=Kx
for i ∈ �1
2
 � � � 
 n�. All local-effect functions not defined so far are identical to zero. This definition of local
effects ensures that in any pure-strategy Nash equilibrium s of the game,

naLi �s�+ naRi �s�= 1 for i= 1
2
 � � � 
 n% (4)

For if not, at least one player would be able to decrease her present cost of at least K by switching from her
current action to an action aLi for which naLi �s�+naRi �s�= 0. Ergo, we can associate with any pure-strategy Nash
equilibrium s a unique cut in the graph by defining L�s� �= �i� naLi �s�= 1� and R�s� �= �i� naRi �s�= 1�.
We show next that for any pure-strategy Nash equilibrium s of the game, the corresponding cut is indeed a

local optimum of the Max-Cut instance. Because s is a Nash equilibrium, no player can decrease her cost by
switching to another action. In particular, a player with action aLi , i ∈ �1
2
 � � � 
 n�, cannot improve by switching
to action aRi . Using (4), this implies

n∑
j=1
j �=i

wijnaLj �s�≤
n∑
j=1
j �=i

wijnaRj �s�% (5)

With the definition of L�s� and R�s�, it follows that
∑

j∈R�s� wij −
∑

j∈L�s� wij ≥ 0. Thus, moving node i from
L�s� to R�s� does not increase the weight of the associated cut. Similarly, one can show that shifting a node
from R�s� to L�s� cannot improve the cut either. We may conclude that the described transformation is indeed
a PLS-reduction. �

Because the reduction is actually a tight PLS-reduction, we obtain the following two results for free (see, e.g.,
Yannakakis [36]).

Corollary 4.1. There are instances of bidirectional local-effect games with linear local-effect functions
that have exponentially long shortest improvement paths.

Corollary 4.2. For a bidirectional local-effect game with linear local-effect functions, the problem of
finding a pure-strategy Nash equilibrium that is reachable from a given strategy state via selfish improvement
steps is PSPACE-complete.

The following observation underlines that finding a pure-strategy Nash equilibrium for bidirectional local-
effect games with linear local-effect functions is indeed hard. It was inspired by similar results of Fischer [14]
for some local search problems.

Theorem 4.3. Given an instance of a bidirectional local-effect game with linear local-effect functions, a
pure-strategy profile s0, and an integer k > 0 (unarily encoded), it is strongly NP-complete to decide whether
there exists a sequence of at most k selfish steps that transforms s0 into a pure-strategy Nash equilibrium.

Proof. Given a sequence �s0
 s1
 � � � 
 sn� of pure-strategy profiles, we can check in polynomial time whether
it is a sequence of at most k self-improving steps such that sn is a pure-strategy Nash equilibrium, i.e., the
problem is in NP. The proof of strong NP-completeness is by reduction from 3-Partition.
Consider an arbitrary instance of 3-Partition with item set A= �1
2
 � � � 
3m�, positive integer weights wi

with B/4 < wi < B/2 for i ∈ A, where B ∈ � and
∑

i∈A wi =mB. Without loss of generality, we may assume
that m> 2. We construct an instance of a bidirectional local-effect game with linear local-effect functions and

5 Our original proof of this result (Dunkel and Schulz [11]) used a reduction from PosNae3Flip (Schäffer and Yannakakis [33]). The
new, shorter proof presented here was inspired by a proof of Ackermann et al. [1] for the PLS-completeness of finding a pure-strategy
Nash equilibrium in congestion games with linear cost functions. In fact, it was pointed out by an anonymous referee that there is a close
relationship between congestion games with linear cost functions and local-effect games with linear local-effect functions. In particular, the
following reduction shows that the result by Ackermann et al. [1] is stronger than Theorem 4.2. Given a congestion game with strategy sets
S1
 S2
 � � � 
 Sn ⊆ 2E , let me be the slope of the linear cost function associated with resource e ∈ E. Define a bidirectional local-effect game
as follows: The action set is � �=⋃n

i=1 Si . Moreover, for a ∈�, fa�x� �=
∑

e∈a mex+M�x−1�. In addition, fa′ 
 a�x� �=
∑

e∈a∩a′ mex if a ∈ Si
and a′ ∈ Sj with i �= j . If a
a′ ∈ Si, then fa′ 
 a�x� �=Mx. Here, M is a sufficiently large constant.
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a pure-strategy profile s0 such that there exists a sequence of at most k= 4�m− 1� selfish steps that transforms
s0 into a pure-strategy Nash equilibrium if and only if the 3-Partition instance is a Yes-instance, i.e., A can
be partitioned into m disjoint subsets A1
A2
 � � � 
Am such that

∑
i∈Aj wi = B for j = 1
2
 � � � 
m.

The action set � of the local-effect game contains for each item i ∈ A actions aji for j = 1
2
 � � � 
m. In
addition, there are actions aj for j = 1
2
 � � � 
m, and actions bl for l= 1
2
 � � � 
 k+1. To simplify notation, we
introduce index sets J �= �1
2
 � � � 
m�, L1 �= �1
2
 � � � 
m−1�, L2 �= �m
m+1
 � � � 
 k+1�, and L �= L1∪L2.
The game has 3m+k+2 players. We also let D �= kB+1 and K �=D2+1. Then, the cost functions are defined
as follows:

faj �x� �= D+ x− 1
k+ 2

for all j ∈ J 


faji
�x� �=

{
x
 if x≤ 1


Kx
 otherwise

for all i ∈A and j ∈ J 


fbl �x� �=
{
�D+B+ 1�x
 if x≤ 1


Kx
 otherwise

for all l ∈ L1


fbl �x� �=
{
�D+B�x
 if x≤ 1


Kx
 otherwise%
for all l ∈ L2%

For the slopes of the linear local-effect functions, the reader is referred to Figure 7. Finally, we define the
pure-strategy profile s0 by

na1�s0� �= 1


naj �s0� �= 0 for all j ∈ J\�1�

na1i �s0� �= 1 for all i ∈A

naji
�s0� �= 0 for all i ∈A and j ∈ J\�1�


nbl �s0� �= 1 for all l ∈ L%

K
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K

Figure 7. Illustration of the local-effect graph of the game constructed in the proof of Theorem 4.3.
Note. An arc label 3 corresponds to the coefficient of a linear local-effect function fa
a′ �x�= 3x. Moreover, p �= 3m.
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Assume that the 3-Partition instance is a Yes-instance. We consider the following sequence of players’
moves. First, the 3�m− 1� players with an action a1i in s0 such that i ∈ Aj for some j �= 1 switch to action aji ,
in arbitrary order. They are followed by the m− 1 players with actions bl, l ∈ L1, who move, in arbitrary order,
to actions al+1. It is not difficult to see that this sequence has the desired properties. Furthermore, the resulting
state s, i.e.,

naj �s� = 1 for all j ∈ J 


naji
�s� =

{
1
 if i ∈Aj

0
 otherwise


for all i ∈A and j ∈ J 


nbl �s� = 0 for all l ∈ L1


nbl �s� = 1 for all l ∈ L2%

defines a pure-strategy Nash equilibrium of the game.
For the other direction, assume that there exists a sequence of at most k self-improving steps that transforms

s0 into a pure-strategy Nash equilibrium s of the local-effect game. We claim that s satisfies∑
j∈J
naji
�s�= 1 for all i ∈A% (6)

It cannot happen that
∑

j∈J naji �s� > 1 for some i ∈A because then there would be a player with cost at least K,
who could certainly improve. Therefore, suppose there is an i ∈A such that

∑
j∈J naji �s�= 0. Then, at least k+3

players play an action in �aj � j ∈ J �∪ �bl � l ∈ L�, each having a cost of at least D. Because there is some j ∈ J
such that naj �s�≤ �3m+ k+ 2�/m≤ 7, any one of these players can decrease her cost by switching to action
a
j
i with new cost at most 1+ 7wi <D. This is a contradiction, and hence (6) must hold. Consequently,

∑
i∈A
wi

(∑
j∈J
naji
�s�

)
=mB%

In the last step of the proof, we show that∑
i∈A
winaji

�s�= B for all j ∈ J 8 (7)

i.e., Aj �= �i ∈A � naji �s�= 1� defines a solution to the partition problem. Suppose (7) does not hold. Then there
is some j ∈ J with ∑

i∈A
winaji

�s�≤ B− 1%

We claim that this implies nbl �s� = 0 for all l ∈ L. If there was an l with nbl �s� = 1, then the cost of the
corresponding player would be at least D+B. Because s was obtained from s0 by a sequence of at most k steps,
and because naj �s0�≤ 1 for all j ∈ J , we have naj �s�≤ k+1. The player with action bl can decrease her cost by
changing to action aj , because faj �k+2�+∑

i∈A winaji �s� <D+B. Therefore, nbl �s�= 0 for all l ∈ L. However,
because of nbl �s0�= 1 for all l ∈ L, at least k+ 1 players have to change their action in order to reach strategy
state s. This is a contradiction; i.e., (7) must hold, and the sets Aj as defined above are a feasible solution to
the 3-Partition instance. �
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