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1. Introduction In this paper we consider the problem of finding a low–rank approximate solu-
tion to a system of linear equations in symmetric, positive semidefinite (psd) matrices. Specifically, let
A1, . . . , Am ∈ R

n×n be symmetric psd matrices, and let b1, . . . , bm ≥ 0. Consider the following system of
linear equations:

Ai • X = bi for i = 1, . . . , m; X � 0, symmetric (1)

where P • Q = Tr(PT Q) is the Frobenius inner product of the two matrices P and Q. It is well–known
(Barvinok [2]; see also Barvinok [3], Pataki [13]) that if (1) is feasible, then there exists a solution X � 0
of rank no more than

√
2m. However, in many applications, such as graph realization (So and Ye [14])

and dimensionality reduction (Matoušek [10], Weinberger and Saul [15]), it is desirable to have a low–rank
solution, say, a solution of rank at most d, where d ≥ 1 is fixed. Of course, such a low–rank solution may
not exist, and even if it does exist, one may not be able to find it efficiently. Thus, it is natural to ask
whether one can efficiently find an X0 � 0 of rank at most d (where d ≥ 1 is fixed) such that X0 satisfies
(1) approximately, i.e.:

β(m, n, d) · bi ≤ Ai • X0 ≤ α(m, n, d) · bi for i = 1, . . . , m (2)

for some functions α ≥ 1 and β ∈ (0, 1]. The quality of the approximation will be determined by how
close α and β are to 1. Our main result is the following:

Theorem 1.1 Let A1, . . . , Am ∈ R
n×n be symmetric psd matrices, and let b1, . . . , bm ≥ 0. Suppose that

there exists an X � 0 such that Ai • X = bi for i = 1, 2, . . . , m. Let r = min{
√

2m, n}. Then, for any
d ≥ 1, there exists an X0 � 0 with rank(X0) ≤ d such that:

β(m, n, d) · bi ≤ Ai • X0 ≤ α(m, n, d) · bi for i = 1, . . . , m

where:

α(m, n, d) =















1 +
12 ln(4mr)

d
for 1 ≤ d ≤ 12 ln(4mr)

1 +

√

12 ln(4mr)

d
for d > 12 ln(4mr)

(3)
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and

β(m, n, d) =



















1

e(2m)2/d
for 1 ≤ d ≤ 4 ln(2m)

max

{

1

e(2m)2/d
, 1 −

√

4 ln(2m)

d

}

for d > 4 ln(2m)

(4)

Moreover, there exists an efficient randomized algorithm for finding such an X0.

Before we discuss the proof and the applications of Theorem 1.1, several remarks are in order.

Remarks.

(i) While the upper bound (3) depends on the parameter r (which can be viewed as a worst–case
bound on max1≤i≤m rank(Ai)), the lower bound (4) does not have such a dependence.

(ii) From the definition of r, we see that the upper bound (3) can be made independent of n and the
ranks of A1, . . . , Am.

(iii) The constants can be improved if we only consider one–sided inequalities.

2. Proof of the Main Result We first make some standard preparatory moves (see, e.g., Barvinok
[3], Luo et al. [9], Nemirovski et al. [12]). Let X � 0 be a solution to the system (1). By a result of Barvinok
[2] and Pataki [13], we may assume that r0 ≡ rank(X) <

√
2m. Let X = UUT for some U ∈ R

n×r0 , and
set A′

i = UT AiU ∈ R
r0×r0 , where i = 1, . . . , m. Then, we have A′

i � 0, rank(A′
i) ≤ min{rank(Ai), r0},

and
bi = Ai • X =

(

UT AiU
)

• I = A′
i • I = Tr(A′

i)

Moreover, if X ′
0 � 0 satisfies the inequalities:

β(m, n, d) · bi ≤ A′
i • X ′

0 ≤ α(m, n, d) · bi for i = 1, . . . , m

then upon setting X0 = UX ′
0U

T � 0, we see that rank(X0) ≤ rank(X ′
0), and

Ai • X0 =
(

UT AiU
)

• X ′
0 = A′

i • X ′
0

i.e. X0 satisfies the inequalities in (2). Thus, in order to establish Theorem 1.1, it suffices to establish
the following:

Theorem 1.1’ Let A1, . . . , Am ∈ R
n×n be symmetric psd matrices, where n <

√
2m. Then, for any

d ≥ 1, there exists an X0 � 0 with rank(X0) ≤ d such that:

β(m, n, d) · Tr(Ai) ≤ Ai • X0 ≤ α(m, n, d) · Tr(Ai) for i = 1, . . . , m (5)

where α(m, n, d) and β(m, n, d) are given by (3) and (4), respectively.

In the sequel, let d ≥ 1 be a given integer. The proof of Theorem 1.1’ involves analyzing the following
simple randomized procedure:

Algorithm 1 Procedure GenSoln

Input: An integer d ≥ 1.
Output: An psd matrix X0 of rank at most d.
1: generate i.i.d. Gaussian random variables ξj

i with mean 0 and variance 1/d, and define ξj =

(ξj
1 , . . . , ξ

j
n), where i = 1, . . . , n; j = 1, . . . , d

2: return X0 =
∑d

j=1 ξj
(

ξj
)T

Let X0 be the output of Procedure GenSoln. Clearly, we have X0 � 0 and rank(X0) ≤ d. Moreover,
for any H ∈ R

n×n, we have E [H • X0] = Tr(H). We now claim that X0 satisfies (5) with constant
probability. This is established via the following propositions, which form the heart of our analysis.

Proposition 2.1 Let H ∈ R
n×n be a symmetric psd matrix of rank at least 1. Then, for any β ∈ (0, 1),

we have:

Pr (H • X0 ≤ βTr(H)) ≤ exp

[

d

2
(1 − β + lnβ)

]

≤ exp

[

d

2
(1 + lnβ)

]

(6)
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Proof. Consider the spectral decomposition H =
∑r

k=1 λkvkvT
k , where r ≡ rank(H) ≥ 1 and

λ1 ≥ λ2 ≥ · · · ≥ λr > 0. Then, we have H • X0 =
∑r

k=1

∑d
j=1 λk

(

vT
k ξj
)2

. Now, observe that

u =
(

vT
k ξj
)

k,j
∼ N (0, d−1Ird). Indeed, vT

k ξj is a Gaussian random variable, as it is the sum of Gaussian

random variables. Moreover, we have:

E
[

vT
k ξj
]

= 0 and E

[

(

vT
k ξj
)

(

vT
l ξj′

)]

=
1

d
· vT

k vl · 1{j=j′} =
1

d
· 1{k=l,j=j′}

Since uncorrelated Gaussian random variables are independent, it follows that H • X0 has the same
distribution as

∑r
k=1

∑d
j=1 λk ξ̃2

kj , where ξ̃kj are i.i.d. Gaussian random variables with mean 0 and variance
1/d. In particular, we have:

Pr (H • X0 ≤ βTr(H)) = Pr





r
∑

k=1

d
∑

j=1

λk ξ̃2
kj ≤ β

r
∑

k=1

λk



 = Pr





r
∑

k=1

d
∑

j=1

λ̄k ξ̃2
kj ≤ β





where λ̄k = λk/(λ1 + · · · + λr) for k = 1, . . . , r. Now, we compute:

Pr





r
∑

k=1

d
∑

j=1

λ̄k ξ̃2
kj ≤ β



 = Pr



exp



−t

r
∑

k=1

d
∑

j=1

λ̄k ξ̃2
kj



 ≥ exp(−tβ)



 (for all t ≥ 0)

≤ exp(tβ) · E



exp



−t

r
∑

k=1

d
∑

j=1

λ̄k ξ̃2
kj







 (by Markov’s inequality)

= exp(tβ) ·
r
∏

k=1

(

E

[

exp
(

−tλ̄k ξ̃2
11

)])d

(by independence)

Recall that for a standard Gaussian random variable ξ, we have E
[

exp
(

−tξ2
)]

= (1 + 2t)−1/2 for all
t ≥ 0. Thus, it follows that:

Pr (H • X0 ≤ βTr(H)) ≤ exp(tβ) ·
r
∏

k=1

(

1 +
2tλ̄k

d

)−d/2

= exp(tβ) · exp

[

−d

2

r
∑

k=1

ln

(

1 +
2tλ̄k

d

)

]

Now, note that for any fixed t ≥ 0, the function gt : R
r → R defined by gt(x) = −(d/2)

∑r
k=1 ln(1+2txk/d)

is convex. Hence, its maximum over the simplex {x ∈ R
r :
∑r

k=1 xi = 1, x ≥ 0} is attained at a vertex
of the simplex. This implies that:

Pr (H • X0 ≤ βTr(H)) ≤ exp

[

tβ − d

2
ln

(

1 +
2t

d

)]

It is easy to show that the function t 7→ exp(tβ − (d/2) ln(1 + 2t/d)) is minimized at t∗ = d(1 − β)/2β.
Moreover, we have t∗ > 0 whenever β ∈ (0, 1). It follows that:

Pr (H • X0 ≤ βTr(H)) ≤ exp

[

d

2
(1 − β + lnβ)

]

as desired. 2

Proposition 2.2 Let H ∈ R
n×n be a symmetric psd matrix with r ≡ rank(H) ≥ 1. Then, for any

α > 1, we have:

Pr (H • X0 ≥ αTr(H)) ≤ r · exp

[

d

2
(1 − α + lnα)

]

(7)

Proof. Consider the rank–1 decomposition H =
∑r

k=1 qkqT
k . Then, we have H • X0 =

∑r
k=1

∑d
j=1

(

qT
k ξj
)2

. Observe that qT
k ξj is a Gaussian random variable with mean 0 and vari-

ance σ2
k ≡ d−1

∑

l

(

qT
k el

)2
, where el is the l–th coordinate vector. Moreover, we have

∑r
k=1 σ2

k =
1
d

∑r
k=1

∑

l

(

qT
k el

)2
= 1

d · Tr(H). It follows that:

Pr (H • X0 ≥ αTr(H)) = Pr





r
∑

k=1

d
∑

j=1

(

qT
k ξj
)2 ≥ αd

r
∑

k=1

σ2
k



 ≤
r
∑

k=1

Pr





d
∑

j=1

(

qT
k ξj
)2 ≥ αdσ2

k



 (8)
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To bound the last quantity, we first note that E

[

∑d
j=1

(

qT
k ξj
)2
]

= d · σ2
k. Hence, for any t ∈ [0, 1/2) and

k = 1, . . . , r, we have:

Pr





d
∑

j=1

(

qT
k ξj
)2 ≥ αdσ2

k



 = Pr



exp



t

d
∑

j=1

σ−2
k

(

qT
k ξj
)2



 ≥ exp(tαd)





≤ exp(−tαd) · (1 − 2t)−d/2

Now, the function t 7→ exp (−tαd) · (1 − 2t)−d/2 is minimized at t∗ = (α − 1) /2α. Moreover, we have
t∗ ∈ (0, 1/2) whenever α ∈ (1,∞). It follows that:

Pr





d
∑

j=1

(

qT
k ξj
)2 ≥ αdσ2

k



 ≤ αd/2 · exp

(

−d(α − 1)

2

)

= exp

[

d

2
(1 − α + lnα)

]

(9)

Upon combining (8) and (9), we obtain:

Pr (H • X0 ≥ αTr(H)) ≤ r · exp

[

d

2
(1 − α + lnα)

]

as desired. 2

Remarks. The reader may wonder why we do not follow the proof of Proposition 2.1 and get rid of
the extra factor of r in (7). Indeed, following the argument in Proposition 2.1, we have:

Pr (H • X0 ≥ αTr(H)) ≤ exp

[

−tα − d

2
ln

(

1 − 2t

d

)]

(10)

for all t ∈ [0, 1/2). Now, the quantity on the right–hand side is minimized at t∗ = d(α − 1)/2α. If d = 1,
then we have t∗ ∈ (0, 1/2), whence we obtain the following improvement over (7):

Pr (H • X0 ≥ αTr(H)) ≤ exp

[

1

2
(1 − α + lnα)

]

However, if d ≥ 2, then we have t∗ ≥ 1/2 whenever α ≥ d/(d−1). In particular, if d ≥ 2 and α ≥ d/(d−1),
then the minimum of the function t 7→ −tα − (d/2) ln(1 − 2t/d) over [0, 1/2] occurs at t∗ = 1/2. Upon
substituting this into (10), we have:

Pr (H • X0 ≥ αTr(H)) ≤ exp

[

−1

2

(

α + d ln

(

1 − 1

d

))]

≤ 2 exp(−α/2)

which can be inferior to (7) in the applications that we are interested in.

Proof of Theorem 1.1’. We first establish the lower bound. Let β =
(

e(2m)2/d
)−1

. Note that
β ∈ (0, 1) for all d ≥ 1. Hence, by Proposition 2.1, we have:

Pr (Ai • X0 ≤ βTr(Ai)) ≤ exp

[

d ln(eβ)

2

]

=
1

2m
for i = 1, . . . , m

which implies that:

Pr

(

Ai • X0 ≥ 1

e(2m)2/d
· Tr(Ai) for all i = 1, . . . , m

)

≥ 1

2
(11)

On the other hand, if d > 4 ln(2m), then we can obtain an alternative bound as follows. Write β = 1−β′

for some β′ ∈ (0, 1). Using the inequality ln(1− x) ≤ −x− x2/2, which is valid for all x ∈ [0, 1], we have:

1 − β + lnβ = β′ + ln(1 − β′) ≤ −β′2

2

Now, let β′ =
√

4 ln(2m)
d . Since d > 4 ln(2m), we have β′ ∈ (0, 1). It then follows from Proposition 2.1

that:

Pr (Ai • X0 ≤ βTr(Ai)) ≤ exp

(

−dβ′2

4

)

=
1

2m
for i = 1, . . . , m
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which in turn implies that:

Pr

(

Ai • X0 ≥
(

1 −
√

4 ln(2m)

d

)

· Tr(Ai) for all i = 1, . . . , m

)

≥ 1

2
(12)

Upon combining (11) and (12), we obtain:

Pr (Ai • X0 ≥ β(m, n, d) · Tr(Ai) for all i = 1, . . . , m) ≥ 1

2
(13)

where β(m, n, d) is given by (4).

Next, we establish the upper bound. We write α = 1 + α′ for some α′ > 0. Using the inequality
ln(1 + x) ≤ x − x2/2 + x3/3, which is valid for all x > 0, it is easy to show that:

1 − α + lnα = −α′ + ln(1 + α′) ≤















−α′

6
for α′ ≥ 1

−α′2

6
for 0 < α′ < 1

(14)

Let T = 12 ln(4mn)
d . If T ≥ 1, then set α′ = T ; otherwise, set α′ =

√
T . In the former case, we have

α′ ≥ 1, and hence by Proposition 2.2 and the bound in (14), for i = 1, . . . , m, we have:

Pr (Ai • X0 ≥ αTr(Ai)) ≤ rank(Ai) · exp

(

−dα′

12

)

≤ 1

4m

where the last inequality follows from the fact that rank(Ai) ≤ n. In the latter case, we have α′ ∈ (0, 1),
and a similar calculation shows that:

Pr (Ai • X0 ≥ αTr(Ai)) ≤ rank(Ai) · exp

(

−dα′2

12

)

≤ 1

4m

for i = 1, . . . , m. Hence, we conclude that:

Pr (Ai • X0 ≤ α(m, n, d) · Tr(Ai) for all i = 1, . . . , m) ≥ 1 − 1

4
=

3

4
(15)

where α(m, n, d) is given by (3).

Finally, upon combining (13) and (15), we conclude that:

Pr (β(m, n, d) · Tr(Ai) ≤ Ai • X0 ≤ α(m, n, d) · Tr(Ai) for all i = 1, . . . , m) ≥ 1 −
(

1

4
+

1

2

)

=
1

4

This completes the proof of Theorem 1.1’. 2

3. Some Applications of the Main Result It turns out that Theorem 1.1 provides a unified
treatment of and generalizes several results in the literature. These results in turn give some indication
on the sharpness of the bounds derived in Theorem 1.1:

(i) (Metric Embedding) Let ℓp
2 be the space R

p equipped with the Euclidean norm, and let ℓ2 be the

space of infinite sequences x = (x1, x2, . . .) of real numbers such that ‖x‖2 ≡
(

∑

j≥1 |xj |2
)1/2

<

∞. Given an n–point set V = {v1, . . . , vn} in ℓp
2, we would like to embed it into a low–dimensional

Euclidean space as faithfully as possible. Specifically, we say that a map f : V → ℓ2 is an D–
embedding (where D ≥ 1) if there exists a number r > 0 such that for all u, v ∈ V , we have:

r · ‖u − v‖2 ≤ ‖f(u)− f(v)‖2 ≤ D · r · ‖u − v‖2

The goal is to find an f such that D is as small as possible. It is known (Dasgupta and Gupta [4],

Matoušek [10]) that for any fixed d ≥ 1, an O
(

n2/d
(

d−1 log n
)1/2

)

–embedding1 into ℓd
2 exists.

We now show how to derive this result from Theorem 1.1. Let ei be the i–th standard basis
vector in ℓd

2, and define Eij = (ei − ej)(ei − ej)
T for 1 ≤ i < j ≤ n. Let U be the m × n

1Given two functions f, g : R+ → R+, we say that (i) f(x) = O(g(x)) if there exist constants c > 0 and x0 > 0 such that

f(x) ≤ c · g(x) for all x ≥ x0, (ii) f(x) = Ω(g(x)) if there exist constants c > 0 and x0 > 0 such that f(x) ≥ c · g(x) for all

x ≥ x0; (iii) f(x) = Θ(g(x)) if we have both f(x) = O(g(x)) and f(x) = Ω(g(x)).
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matrix whose i–th column is the vector vi, where i = 1, . . . , n. Then, it is clear that the matrix
X = UT U satisfies the following system of equations:

Eij • X = ‖vi − vj‖2
2 for 1 ≤ i < j ≤ n

Now, Theorem 1.1 implies that we can find an X0 � 0 of rank at most d such that:

Ω
(

n−4/d
)

· ‖vi − vj‖2
2 ≤ Eij • X0 ≤ O

(

log n

d

)

· ‖vi − vj‖2
2 for 1 ≤ i < j ≤ n

Upon taking the Cholesky factorization X0 = UT
0 U0, we recover a set of points u1, . . . , un ∈ ℓd

2

such that:

Ω
(

n−2/d
)

· ‖vi − vj‖2 ≤ ‖ui − uj‖2 ≤ O

(
√

log n

d

)

· ‖vi − vj‖2 for 1 ≤ i < j ≤ n

as desired. Clearly, any improvements on either (3) or (4) will immediately yield an improved
bound on D for embeddings into ℓd

2. On the other hand, for any d ≥ 1, there exists an n–point
set V in ℓd+1

2 such that any embedding of V into ℓd
2 requires D = Ω

(

n1/⌊(d+1)/2⌋) (Matoušek
[11]). We should also point out that by using different techniques, Matoušek [10] was able to
show that in fact an Θ(n)–embedding into ℓd

2 exists for the cases where d = 1, 2.

If we do not restrict the dimension of the range of f , then by the Johnson–Lindenstrauss lemma
(Johnson and Lindenstrauss [7], Dasgupta and Gupta [4]), for any ǫ > 0 and any n–point set V
in ℓ2, there exists an (1 + ǫ)–embedding of V into ℓd

2, where d = O(ǫ−2 log n). In Barvinok [3,
Chapter V, Proposition 6.1], the author generalizes this result and shows that if the assumptions
of Theorem 1.1 are satisfied, then for any ǫ ∈ (0, 1) and d ≥ 8ǫ−2 log(4m), there exists an X0 � 0
of rank at most d such that:

(1 − ǫ)bi ≤ Ai • X0 ≤ (1 + ǫ)bi for i = 1, . . . , m

Thus, Theorem 1.1 complements Barvinok’s result and generalizes the corresponding results
in the study of bi–Lipschitz embeddings into low–dimensional Euclidean space (Dasgupta and
Gupta [4], Matoušek [10]). We remark that Alon [1] has shown that the dependence of d on ǫ
in the Johnson–Lindenstrauss lemma is almost tight. Specifically, there exists an n–point set
V in ℓ2 such that for any ǫ ∈ (n−1/2, 1/2), say, an (1 + ǫ)–embedding of V into ℓd

2 will require
d = Ω((ǫ2 log(1/ǫ))−1 log n).

(ii) (Quadratic Optimization with Homogeneous Quadratic Constraints) Consider the following opti-
mization problems:

v∗maxqp = maximize xT Ax
subject to xT Aix ≤ 1 i = 1, . . . , m

(16)

v∗minqp = minimize xT Ax
subject to xT Aix ≥ 1 i = 1, . . . , m

(17)

where A1, . . . , Am are symmetric psd matrices. Both of these problems arise from various applica-
tions (see Luo et al. [9], Nemirovski et al. [12]) and are NP–hard. Their natural SDP relaxations
are given by:

v∗maxsdp = maximize A • X

subject to Ai • X ≤ 1 i = 1, . . . , m
X � 0

(18)

v∗minsdp = minimize A • X

subject to Ai • X ≥ 1 i = 1, . . . , m
X � 0

(19)

It is clear that if X = xxT is a rank–1 feasible solution to (18) (resp. (19)), then x is a feasible
solution to (16) (resp. (17)). Now, consider the maximization problem (16) and its SDP relaxation
(18), where the objective matrix A can be indefinite. Suppose that X∗

maxsdp is an optimal solution
to (18). It has been shown in Nemirovski et al. [12] that one can extract a rank–1 matrix X0

from X∗
maxsdp such that (i) X0 is always feasible for (18) and (ii) A • X0 ≥ Ω

(

1
log m

)

· v∗maxqp
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with high probability. We now derive a similar result using Theorem 1.1 and some tools from
probability theory. Let r = rank(X∗

maxsdp), and let U ∈ R
n×r be such that X∗

maxsdp = UUT . By
definition, the matrix X∗

maxsdp satisfies the following system:

Ai • X∗
maxsdp = bi ≤ 1 for i = 1, . . . , m

Thus, by Theorem 1.1, the rank–1 matrix X ′
0 = UξξT UT � 0, where ξ ∈ R

r is a standard
Gaussian random vector, satisfies:

Ai • X ′
0 ≤ O(log m) · bi for i = 1, . . . , m (20)

with high probability, say, at least 49/50 (cf. (15)). Moreover, we have:

E [A • X ′
0] = A • X∗

maxsdp = v∗maxsdp

Note that v∗maxsdp ≥ v∗maxqp ≥ 0, since x = 0 is a feasible solution to (16). Now, in order to
recover the result of Nemirovski et al. [12], it suffices to show that:

Pr
(

A • X ′
0 ≥ v∗maxsdp

)

>
1

25
(21)

Indeed, (20) and (21) together would imply that the matrix X ′
0 � 0 satisfies the following system:

A • X ′
0 ≥ v∗maxsdp, Ai • X ′

0 ≤ O(log m) · bi for i = 1, . . . , m

with probability at least 1−(1/50+24/25) = 1/50. It then follows that with constant probability,

the matrix X0 = Ω
(

1
log m

)

· X ′
0 � 0 is feasible for (18), and that:

A • X0 ≥ Ω

(

1

log m

)

· v∗maxsdp ≥ Ω

(

1

log m

)

· v∗maxqp

as required. We remark that the gap between v∗maxsdp and v∗maxqp can be as large as Ω(log m);
see Nemirovski et al. [12].

In order to prove (21), we proceed as follows. First, observe that:

Pr
(

A • X ′
0 ≥ v∗maxsdp

)

= Pr





r
∑

i=1

r
∑

j=1

(UT AU)ijξiξj ≥ v∗maxsdp





= Pr





∑

1≤i<j≤r

(UT AU)ijξiξj ≥ 0





Now, let

Y =
∑

1≤i<j≤r

wijξiξj where wij =





∑

1≤i<j≤r

[

(UT AU)ij

]2





−1/2

(UT AU)ij

Note that E [Y ] = 0 and E
[

Y 2
]

= 1. The following fact shows that we can bound the probability
Pr(Y ≥ 0) using bounds on the moments of Y :

Fact 3.1 (He et al. [6]) Let Z be a random variable such that E [Z] = 0, E
[

Z2
]

= 1, and
E [|Z|p] ≤ τ for some p > 2 and τ > 0. Then, we have:

Pr(Z ≥ 0) >
1

4
τ− 2

p−2

For p = 3, the bound above can be sharpened to:

Pr(Z ≥ 0) ≥ 8(−5 +
√

7)2

27(1 +
√

7)
τ−2

It turns out that the problem of estimating the moments of Y has been extensively studied in
the literature. For instance, we have the following theorem:
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Fact 3.2 (Gnedenko [5]) Let ξ1, . . . , ξr be i.i.d. standard Gaussian random variables, and let
wij , where 1 ≤ i < j ≤ r, be any real numbers. Then, for any p ≥ 3, we have:

E





∣

∣

∣

∣

∣

∣

∑

1≤i<j≤r

wijξiξj

∣

∣

∣

∣

∣

∣

p

 ≤ 2−p/2
E [|U1 − 1|p] (22)

where U1 is a chi–square random variable with one degree of freedom.

We remark that Fact 3.2 was originally stated for i.i.d. Bernoulli random variables (i.e. ξi = ±1
with equal probability for i = 1, . . . , r). However, an application of the Central Limit Theorem
immediately yields the version stated above.

Now, by Fact 3.2, we have:

E
[

|Y |3
]

≤ 1

23/2 · (2π)1/2

(∫ 1

0

x−1/2e−x/2(1 − x)3 dx +

∫ ∞

1

x−1/2e−x/2(x − 1)3 dx

)

(23)

We first bound:
∫ 1

0

x−1/2e−x/2(1 − x)3 dx ≤
∫ 1

0

x−1/2(1 − x)3 dx =
32

35
(24)

Next, by using integration by parts, we compute:
∫ ∞

1

x−1/2e−x/2(x − 1)3 dx =

∫ ∞

1

(

x5/2 − 3x3/2 + 3x1/2 − x−1/2
)

dx

= 24e−1/2 + 8

∫ ∞

1

x−1/2e−x/2 dx

Since x−1/2e−x/2 ≤ e−x/2/2 for x ≥ 4, we bound:
∫ ∞

1

x−1/2e−x/2 dx ≤
∫ 4

1

x−1/2e−x/2 dx +

∫ ∞

4

e−x/2

2
dx

≤
∫ 2

1

e−x/2 dx +

∫ 4

2

e−x/2

√
2

dx + e−2

= 2
(

e−1/2 − e−1
)

+
√

2
(

e−1 − e−2
)

+ e−2

It follows that:
∫ ∞

1

x−1/2e−x/2(x − 1)3 dx ≤ 40e−1/2 − 8
√

2(
√

2 − 1)e−1 − 8(
√

2 − 1)e−2 <
221

10
(25)

Upon substituting (24) and (25) into (23), we have:

E
[

|Y |3
]

<
1

23/2 · (2π)1/2
· 1611

70

whence by Fact 3.1 we conclude that:

Pr(Y ≥ 0) >
1

25

thus establishing (21). Incidentally, our bound in (21) is slightly stronger than the one established
in He et al. [6].

Let us now turn our attention to the minimization problem (17) and its SDP relaxation (19). We
assume that the objective matrix A is psd, so that v∗minqp ≥ v∗minsdp ≥ 0. Let X∗

minsdp = UUT be

an optimal solution to (19), where U ∈ R
n×r and r = rank(X∗

minsdp). Let ξ ∈ R
r be a standard

Gaussian random vector. Then, by Theorem 1.1, the rank–1 matrix X ′
0 = UξξT UT � 0 satisfies:

Ai • X ′
0 ≥ Ω

(

m−2
)

·
(

Ai • X∗
minsdp

)

for i = 1, . . . , m

with high probability. Moreover, we have E [A • X ′
0] = v∗minsdp. Now, by Markov’s inequality

(since A • X ′
0 is a non–negative random variable), we have:

Pr
(

A • X ′
0 ≤ 2v∗minsdp

)

≥ 1

2
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It follows that with constant probability, the matrix X0 = O(m2) · X ′
0 � 0 is feasible for (19),

and that A •X0 ≤ O(m2) · v∗minqp. In particular, we have recovered a result of Luo et al. [9]. We

remark that the gap between v∗minqp and v∗minsdp can be as large as Ω(m2); see Luo et al. [9].

In Luo et al. [9] the authors also considered a complex versions of (16) and (17), in which the
matrices A and Ai are complex Hermitian psd and the components of the decision vector x can
take on complex values. They show that if X∗

maxsdp (resp. X∗
minsdp) is an optimal solution to the

corresponding SDP relaxation (18) (resp. (19)), then one can extract a complex rank–1 solution

that achieves Ω
(

1
log m

)

(resp. O(m)) times the optimum value. Our result shows that these

bounds are also achievable for the real versions of (18) and (19) if we allow the solution matrix
to have rank at most 2. In particular, the complex versions of (16) and (17) with real symmetric
psd A and Ai’s (i.e. only the decision vector takes on complex values) correspond precisely to
the real versions of (18) and (19) with a rank–2 constraint on X .

4. A Refinement of the Main Result In this section we show how Theorem 1.1’ can be refined
using the following set of estimates for a chi–square random variable:

Fact 4.1 (Laurent and Massart [8]) Let ξ1, . . . , ξn be i.i.d. standard Gaussian random variables. Let
a1, . . . , an ≥ 0, and set:

|a|∞ = max
1≤i≤n

|ai|, |a|22 =

n
∑

i=1

a2
i

Define Vn =
∑n

i=1 ai(ξ
2
i − 1). Then, for any t > 0, we have:

Pr
(

Vn ≥
√

2|a|2t + |a|∞t2
)

≤ e−t2/2 (26)

Pr
(

Vn ≤ −
√

2|a|2t
)

≤ e−t2/2 (27)

Fact 4.1 allows us to use the condition number of the given matrix H to compute the deviation prob-
abilities in Propositions 2.1 and 2.2. To carry out this program, let us first recall some notations. Let
H be a symmetric psd matrix. Define r = rank(H), and let K = λ1/λr be the condition number of H ,
where λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the eigenvalues of H . Set λ̄k = λk/(λ1 + · · · + λr). We then have the
following proposition:

Proposition 4.1 The following inequalities hold:

(i) 1
r ≤ |λ̄|∞ ≤ K

r ;

(ii) |λ̄|22 ≤ 1
r−1+K + K(K−1)

(r−1+K)2 ;

(iii)
√

1 + r−1
K2 · |λ̄|∞ ≤ |λ̄|2;

(iv) |λ̄|22 ≤ K|λ̄|∞.

Proof.

(i) The first inequality follows from the fact that
∑r

j=1 λ̄j = 1. To establish the second inequality,

suppose to the contrary that |λ̄|∞ > K/ri. Then, we have λ̄r > 1/r, whence
∑r

j=1 λ̄j >
(r − 1)/r + K/r > 1, which is a contradiction.

(ii) Let λ̄r = x. Then, we have λ̄1 = Kx. To bound |λ̄|22, we first observe that for x < u ≤ v < Kx
and ǫ ≥ min{u − x, Kx − v} > 0, we have (u − ǫ)2 + (v + ǫ)2 > u2 + v2. This implies that the
vector λ̄∗ that maximizes |λ̄|22 satisfies (r − 1)λ̄∗

r + Kλ̄∗
r = 1, or equivalently, λ̄∗

r = 1
r−1+K . This

in turn yields:

|λ̄|22 ≤ r − 1

(r − 1 + K)2
+

K2

(r − 1 + K)2
=

1

r − 1 + K
+

K(K − 1)

(r − 1 + K)2

as desired.
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(iii) We have:

|λ̄|22
|λ̄|2∞

= 1 +
r
∑

j=2

λ̄2
j

λ̄2
1

≥ 1 +
r − 1

K2

as desired.

(iv) We compute:

|λ̄|22
|λ̄|∞

= λ̄1 +
r
∑

j=2

λ̄2
j

λ̄1
≤ λ̄1 + (r − 2)λ̄1 +

λ̄1

K2
≤ K

r

(

r − 1 +
1

K2

)

≤ K

where we use the fact that |λ̄|∞ = λ̄1 ≤ K/r in the second inequality.

2

Using Fact 4.1 and Proposition 4.1, we obtain the following refinements to Theorem 1.1’:

Theorem 4.1 Let m ≥ 2, and let ri be the rank of Ai, where i = 1, . . . , m. Set K ≡ max1≤i≤m Ki.
Under the setting of Theorem 1.1’ and the additional assumption that mini ri ≥ 32K2 lnm, the event:

{

Ai • X0 ≥
(

1 − 1

2d

)

Tr(Ai) for all i = 1, . . . , m

}

occurs with constant probability.

Proof. Let λ̄i
1 ≥ λ̄i

2 ≥ · · · ≥ λ̄i
ri

> 0 be the normalized eigenvalues of Ai, where i = 1, . . . , m. Using

the fact that
∑ri

k=1

∑d
j=1 λ̄i

k = d and setting ti = 1−β√
2
· d
|λ̄i|2 , we have:

Pr (Ai • X0 ≤ βTr(Ai)) = Pr





ri
∑

k=1

d
∑

j=1

λ̄i
k

(

ξ̃2
kj −

1

d

)

≤ β − 1





= Pr





ri
∑

k=1

d
∑

j=1

λ̄i
k

(

dξ̃2
kj − 1

)

≤ −
√

2|λ̄i|2ti





≤ exp

(

− (1 − β)2

4
· d2

|λ̄i|22

)

(by (27))

≤ exp

(

− (1 − β)2

4
· d2ri

K2

)

(by Proposition 4.1(i),(iv))

Set β = 1 − 1
2d ∈ (0, 1). Then, since ri ≥ 32K2 lnm, we have Pr (Ai • X0 ≤ βTr(Ai)) ≤ 1

m2 . It follows
that:

Pr (Ai • X0 ≥ βTr(Ai) for all i = 1, . . . , m) ≥ 1 − 1

m
≥ 1

2

as required. 2

Theorem 4.2 Let m ≥ 2, and let ri be the rank of Ai, where i = 1, . . . , m. Set K ≡ max1≤i≤m Ki.
Under the setting of Theorem 1.1’ and the additional assumption that mini ri ≥ 3 lnm, the event:

{

Ai • X0 ≤
(

1 +
K

2d
(2K + 1)2

)

Tr(Ai) for all i = 1, . . . , m

}

occurs with constant probability.

Proof. Using the notations and arguments in the proof of Theorem 4.1, we see that:

Pr (Ai • X0 ≥ αTr(Ai)) = Pr





ri
∑

k=1

d
∑

j=1

λ̄i
k

(

ξ̃2
kj −

1

d

)

≥ α − 1




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for i = 1, . . . , m. Now, let

ti =

√

|λ̄i|22 + 2|λ̄i|∞(α − 1)d − |λ̄i|2√
2|λ̄i|∞

for i = 1, . . . , m (28)

It then follows from (26) and the definition of ti in (28) that:

Pr (Ai • X0 ≥ αTr(Ai)) ≤ exp
(

−t2i /2
)

(29)

Upon letting α = 1 + K
2d (2K + 1)2, we have:

ti =
1√
2
· |λ̄i|2
|λ̄i|∞

·
(
√

1 + 2
|λ̄i|∞
|λ̄i|22

(α − 1)d − 1

)

(by equation (28))

≥ 1√
2
·
√

1 +
ri − 1

K2
i

·





√

1 +
2(α − 1)d

Ki
− 1



 (by Proposition 4.1(iii),(iv))

≥ 1√
2
·
√

ri − 1

K2
· 2K

≥
√

2(3 lnm − 1) (since ri ≥ 3 lnm for i = 1, . . . , m)

for i = 1, . . . , m. It follows from (29) that:

Pr (Ai • X0 ≥ αTr(Ai)) ≤
e

m3
for i = 1, . . . , m

whence:

Pr (Ai • X0 ≤ αTr(Ai) for all i = 1, . . . , m) ≥ 1 − e

m2
≥ 1

4
as required. 2

5. Conclusion In this paper we have considered the problem of finding a low–rank approximate
solution to a system of linear equations in symmetric, positive semidefinite matrices. Our result provides a
unified treatment of and generalizes several well–known results in the literature. As a further illustration,
suppose that we are given symmetric psd matrices Ak of rank rk, where k = 1, . . . , K. Consider a
knapsack semidefinite matrix equality:

K
∑

k=1

Ak • Xk = b, Xk � 0 for k = 1, . . . , K

Our goal is to find a rank–one matrix X0
k � 0 for each Xk such that:

β · b ≤
K
∑

k=1

Ak • X0
k ≤ α · b

Then, our result implies that the distortion rates would be on the order of ln(K(
∑

k rk)), as opposed to
K(
∑

k rk) obtained from the standard analysis where the terms are treated as K(
∑

k rk) independent
equalities.

We also remark that our result can be applied to the following standard form SDP:

min C • X subject to Ai • X = bi for i = 1, . . . , m; X � 0 (30)

Indeed, first recall that the dual of (30) is given by:

max
m
∑

i=1

biyi subject to
m
∑

i=1

yiAi + S = C; S � 0 (31)

When X̄ is optimal for (30), then under certain regularity conditions there will be a feasible solution
(S̄, ȳ) to the dual (31) such that S̄ • X̄ = 0. Thus, in rounding the SDP solution X̄ into a lower rank
one, we can include the equality constraint S̄ • X = 0. In particular, our rounding method will yield a
low–rank X0 such that S̄ • X0 = 0, i.e. X0 is optimal for a “nearby” problem of the original SDP.



12 So et al.: A Unified Theorem on SDP Rank Reduction
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

Acknowledgment. Part of this work was done when the first author was a PhD student in the
Computer Science Department at Stanford University. Research by the first and second author was
supported in part by NSF grant DMS–0604513. We would like to express our gratitude to the anonymous
referees for their careful reading of the manuscript. In particular, we thank the referee who pointed out an
erroneous argument in the original manuscript regarding our application of the main theorem to recover
Nemirovski et al. and Luo et al.’s results on quadratic optimization. We also thank the referee who
suggested the current version of Proposition 2.1, which improves upon our previous version.

References

[1] Noga Alon, Problems and Results in Extremal Combinatorics I, Discrete Mathematics 273 (2003), 31–53.

[2] Alexander I. Barvinok, Problems of Distance Geometry and Convex Properties of Quadratic Maps, Discrete
and Computational Geometry 13 (1995), 189–202.

[3] Alexander Barvinok, A Course in Convexity, Graduate Studies in Mathematics Volume 54, American Math-
ematical Society, 2002.

[4] Sanjoy Dasgupta, Anupam Gupta, An Elementary Proof of the Johnson–Lindenstrauss Lemma, Technical
Report TR–99–06, International Computer Science Institute, Berkeley, CA, 1999.

[5] B. D. Gnedenko, The Best Constant in an Inequality of Khinchin Type for Quadratic Forms, Russian Math-
ematical Surveys 55(2) (2000), 340–341.

[6] Simai He, Zhi–Quan Luo, Jiawang Nie, Shuzhong Zhang, Semidefinite Relaxation Bounds for Indefinite
Homogeneous Quadratic Optimization, Technical Report SEEM2007–01, Department of Systems Engineering
and Engineering Management, The Chinese University of Hong Kong, 2007; to appear in SIAM Journal on
Optimization.

[7] W. B. Johnson, J. Lindenstrauss, Extensions of Lipschitz Mapping into Hilbert Space, Contemporary Math-
ematics 26 (1984), 189–206.

[8] B. Laurent, P. Massart, Adaptive Estimation of a Quadratic Functional by Model Selection, The Annals of
Statistics 28(5) (2000), 1302–1338.

[9] Zhi–Quan Luo, Nicholas D. Sidiropoulos, Paul Tseng, Shuzhong Zhang, Approximation Bounds for Quadratic
Optimization with Homogeneous Quadratic Constraints, SIAM Journal on Optimization 18(1) (2007), 1–28.
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