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We consider a periodic-review single-location single-product inventory system with lost sales and positive replen-
ishment lead times. It is well known that the optimal policy does not possess a simple structure. Motivated by
recent results showing that base-stock policies perform well in these systems, we study the problem of finding
the best base-stock policy in such a system. In contrast to the classical inventory literature, we assume that
the manager does not know the demand distribution a priori, but must make the replenishment decision in each
period based only on the past sales (censored demand) data. We develop a nonparametric adaptive algorithm
that generates a sequence of order-up-to levels whose T -period running average of the inventory holding and lost
sales penalty cost converges to the cost of the optimal base-stock policy at the rate of O(1/T 1/3). Our analysis
is based on recent advances in stochastic online convex optimization and on the uniform ergodicity of Markov
chains associated with bases-stock policies.
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1. Introduction We study the problem of managing a periodically reviewed inventory system with
the following features. Inventory is replenished from a supplier with ample supply, where the replenish-
ment lead time is deterministic and is an integer multiple of the review period. Any demand that cannot
be satisfied immediately with the on-hand inventory leads to lost sales while any excess inventory at the
end of a period is carried over to the next period. At the end of each period, either inventory holding
cost of lost sales cost is incurred, and is proportional to the amount of lost sales or on-hand carry-over
inventory. The manager wants to minimize the long-run average cost per period.

Assume demands in different periods are independently and identically distributed. However, contrary
to the classical inventory literature, the common distribution of demand is not known to the manager
a priori. In each period, only sales are known, but not demand. Since sales are strictly smaller than
demand if demand exceeds the available supply, the demand information is censored.

Even when the demand distribution is known, it is well known that the optimal policy for this problem
does not possess any simple structure [11], and is difficult to compute when the lead time is long. For
this problem, the class of base-stock policies, though not optimal, are known to perform well, especially
when the ratio of the lost sales cost parameter to the holding cost parameter is high [7]. We use as a
benchmark the long-run average cost of the best base-stock policy, which could be computed if the demand
distribution were known. In this paper, we provide an algorithm for computing a base-stock level in each
period under the condition of the unknown demand distribution and censored demand information, and
show that the average cost of using this algorithm over T periods converges to the benchmark at the rate
of 1/ 3

√
T .
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1.1 Connections to the Literature We first discuss papers that study the lost sales inventory
problem under the assumption that the demand distribution is known. Morton [16] and Karlin and
Scarf [11] study the dynamic program and establishes that the optimal ordering quantity is a decreasing
function of the on-hand and on-order inventory vector with the rate of decrease at most 1. Zipkin [22]
presents a new derivation of this result and extends it to more general settings, for example, allowing
capacity restrictions. While it is possible to determine the optimal replenishment policy via dynamic
programming, the size of the state space increases exponentially with the lead time, making the approach
intractable even for problems with reasonably short lead times. As a result, various heuristics have been
proposed; however, it is unclear which algorithm, if any, performs better than the others in general. A
recent paper by Zipkin [21] contains a numerical comparison of several inventory policies, such as the
myopic policy of Morton [15], the base-stock policy, the dual-balancing policy of Levi et al. [13], the
constant-order policy of Reiman [19], and their variants.

Recently, Huh et al. [7] show the asymptotic optimality of the base-stock policies. As the ratio of
the unit penalty cost to the unit holding cost increases to infinity, they prove, under mild technical
conditions, that the ratio of the cost of the best base-stock policy to the optimal cost converges to 1.
Since the penalty cost is typically much larger than the holding cost (with the ratio exceeding 200 in
many applications), it is reasonable to expect that the best base-stock policy performs well compared to
the optimal policy. This hypothesis is confirmed by computational results by Huh et al. [7] and Zipkin
[21]. In fact, when the ratio between the ratio of the lost sales penalty and the holding cost is 100, the cost
of the best base-stock policy is typically within 1.5% of the optimal cost. Although base-stock policies
have been shown to perform reasonably well in lost sales systems, finding the best base-stock policy, in
general, cannot be accomplished analytically, and involves simulation optimization techniques.

Whereas the demand distribution is assumed to be known to the manager a priori in the classical
lost sales inventory literature, in many applications, however, the manager does not know the underlying
demand distribution, and must make the ordering decision in each period based on the historical data.
Since unsatisfied demand is immediately lost, the data available to the manager often consists of histor-
ical sales data, corresponding to the smaller of the beginning on-hand inventory level and the demand
realization for that period. The demand data is thus censored.

The first contribution of our paper is to develop an adaptive algorithm with a provable performance
guarantee. It generates a sequence of order-up-to levels {St : t ≥ 1} such that the order-up-to level St in
period t depends only on the sales data observed in the previous t − 1 periods. The T -period running
average expected cost under this algorithm converges to the cost of the best base-stock policy. We also
establish the rate of convergence, showing that the average expected cost after T periods differs from the
cost of the best base-stock policy by at most O

(
1/T 1/3

)
.

There exist a number of adaptive methods for the lost sales system with censored demand, but all of
them address only the case of zero replenishment lead-time. Burnetas and Smith [2] propose a stochastic
approximation method for estimating the newsvendor quantile. Godfrey and Powell [5] and Powell et al.
[18] develop a method of iteratively approximating the convex objective function with piece-wise linear
functions. Huh and Rusmevichientong [9] apply stochastic online convex optimization to this problem;
in their setting, the adaptive control problem is much easier because the Markov chain is independent of
the starting state, and one can obtain an unbiased derivative estimator in each period.

While the above adaptive methods are nonparametric, Nahmias [17] and Agrawal and Smith [1] con-
sider Bayesian settings, and use censored historical data to estimate the parameters of the normal and
negative binomial distributions, respectively. All of the papers mentioned here only consider the case of
zero lead time. When replenishment is instantaneous, the lost sales model turns out to be analytically
equivalent to the backorder system, and the best base-stock level is the newsvendor quantile of the de-
mand distribution. When lead times are positive, however, the problem is much more difficult and there
is no explicit formula that describes the optimal base-stock level. To the best of our knowledge, our
result represents the first adaptive algorithm for finding the best base-stock policy in lost sales inventory
systems with positive replenishment lead times.

The second contribution of our paper is the analysis of the long-run average cost under a base-stock
policy. It is well known that the stochastic process that tracks the on-hand and on-order inventories
under any base-stock policy forms a Markov chain. The Markov chain, however, may not be ergodic,
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that is, it may not have a stationary distribution. We provide a sufficient condition on the base-stock
level that ensures that the distribution of the on-hand inventory under the base-stock policy converges
to a stationary distribution, and furthermore establish the rate of convergence. The ergodicity result
simplifies the expression for the long-run average cost, leads to new insights about the structure of the
cost functions under base-stock policy, and provides a foundation for our adaptive algorithm. We believe
the sufficient condition for the ergodicity represents the first such results for Markov chains associated
with order-up-to policies in a stochastic inventory system despite the extensive literature in this area.
Our analysis is based on the uniform ergodicity of Markov chains. We expect a similar analysis to be
applicable to other inventory systems.

The third contribution of the paper is to provide a framework for applying an adaptive algorithm
to a stochastic system where the performance measure depends on its stationary distribution. In these
systems, it is often not possible to obtain the gradient of the objective function or its unbiased estimate.
The bias of the estimate often depends on how long the system has been running. As a result, an adaptive
algorithm needs to balance the benefit of smaller bias by continuing to implement the current decision,
and the benefit of switching quickly to a potentially better decision. We believe that the adaptive method
developed in this paper can be useful in other stochastic systems provided that the convergence rate to
the stationary distribution can be established uniformly for any choice of decision variables.

1.2 Organization The remainder of the paper is organized as follows. In Section 2, we formally
describe the inventory control problem with lost sales and positive lead times. In Section 3, we consider
the long-run average cost under any base-stock policy and establish a sufficient condition that guarantees
the distribution of the on-hand inventory converges to its stationary distribution. We also establish
the rate of convergence. Then, we consider the problem of estimating the long-run average cost and
its derivative using censored demand samples. We establish bounds on the bias of the sample-based
estimates for the objective function and its derivative. Based on the findings in Section 3, we present the
main result of the paper in Section 4, where we develop an adaptive algorithm and establish a provable
performance bound for the algorithm.

2. Problem Formulation and Model Description Let t ∈ {1, 2, . . .} represent the time period,
which is indexed forward. The demand in period t is denoted by Dt, and we assume that the demands
over time {D1, D2, . . .} are independent and identically distributed random variables. We will denote
by D the generic demand random variable having the same distribution as Dt. We assume that D is
nonnegative satisfying E[D] > 0. Let µ = E[D]. Let F denote the cumulative distribution function of
D. Throughout the paper, we will assume that D is a continuous random variable. Let τ ≥ 1 denote
the replenishment lead time. Given a replenishment policy π, we denote by Qt(π) the quantity ordered
in period t, which arrives at the beginning of period t + τ . Let Q−τ+1(π), Q−τ+2(π), . . . , Q0(π) be the
amounts of delivery scheduled to arrive in periods 1, 2, . . . , τ , respectively. Furthermore, let It(π) denote
the after-delivery on-hand inventory level in period t under the replenishment policy π.

For any replenishment policy π, we assume that events in period t ≥ 1 occur in the following order. At
the beginning of each period, the delivery of Qt−τ (π) units arrives, which were ordered in period t − τ .
The manager observes the outstanding procurement orders (Qt−1(π), Qt−2(π), . . . , Qt−τ+1(π)) and the
on-hand inventory It(π). Let

Xt(π) = (Qt−1(π), Qt−2(π), . . . , Qt−τ+1(π), It(π))

be the inventory vector associated with policy π. Note that each Xt(π) is a τ -dimensional vector. In
particular, we call X1(π) = (Q0(π), Q−1(π), . . . , Q−τ+2(π), I1(π)) is the initial inventory vector, which is
independent of π. The manager places an order of Qt(π) ≥ 0 units. Then, demand Dt is realized. The
manager does not observe the realized demand, but observes the sales quantity min{Dt, It(π)} only.

At the end of each period, the holding cost of $h per unit is charged on excess inventory, and the lost
sales penalty cost of $b per unit is charged on excess demand. Given the on-hand inventory It(π), the
expected cost in period t is given by C (It(π)), where

C (y) = h · E [y −Dt]
+ + b · E [Dt − y]+ , (1)

where the expectation is taken with respect to the demand Dt in period t under the replenishment policy
π. (The manager does not observe the total lost sales penalty cost, but this cost has nonetheless been



4 Huh, Janakiraman, Muckstadt, and Rusmevichientong: Base-Stock Policy in Lost Sales Inventory Systems
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

incurred.) The on-hand inventory level in the next period, It+1(π), is the sum of the carry-over inventory
and the delivery due that period; thus, it is given by the following recursion:

It+1(π) = [It(π)−Dt]
+ + Qt−τ+1(π) .

We wish to find the replenishment policy that minimizes the total long-run average expected holding cost
and lost sales penalty, that is,

inf
π

{
lim sup
T→∞

1
T

T∑
t=1

E [C (It(π))]

}
,

where the expectation is taken with respect to the on-hand inventory level It(π).

As indicated in the introduction, we will restrict our attention to the class of base-stock policies. Let
S ≥ 0. Under the order-up-to-S policy, if the inventory position (inventory on hand plus on order) in each
period is less than S, we place an order to bring the inventory position to S. If the inventory position
exceeds S, however, we do not place any order. Let Xt(S), It(S), and Qt(S) denote the inventory vector,
the on-hand inventory, and the order quantity in period t under the order-up-to-S policy, respectively.
Thus,

Qt(S) = [S −Xt(S) · 1τ ]+ ,

where 1τ = (1, 1, . . . , 1) denotes a vector of length τ .

The adaptive algorithm that we propose in this paper is a period-dependent base-stock policy. It
generates a sequence of order-up-to levels φ = {St : t ≥ 1} such that the order-up-to level St in period t
depends only on the sales data observed in the previous t − 1 periods. The T -period average expected
cost under the constructed policy φ converges to the cost of the best base-stock policy, i.e.,

lim sup
T→∞

1
T

T∑
t=1

E [C (It(φ))] = inf
S

{
lim sup
T→∞

1
T

T∑
t=1

E [C (It(S))]

}
.

3. Long-Run Average Costs Under a Base-Stock Policy In this section, we study properties
of the Markov chain associated with a base-stock policy, and provide a characterization of the long-run
average cost. When the Markov chain is ergodic, the expected holding and backorder costs in period t
converges the long-run average cost as the time period t increases to infinity. In Section 4, we use this
fact to generate a sequence of base-stock levels whose expected time-average cost approaches the cost of
the best base-stock policy.

However, the Markov chain associated with a base-stock level S may not be ergodic, if S is too small
relative to the size of the demand in each period. For instance, if the demand in each period exceeds S,
then a stockout occurs in every period, which causes the after-delivery on-hand inventory in each period
t to be exactly the same as the amount ordered in period t − τ . Thus, the on-hand inventory follows a
cyclic pattern and is not ergodic (a more detailed example of non-ergodicty is given at the end of Section
3.2). In this section, we provide a sufficient condition that guarantees ergodicity of the Markov chain
associated with an order-up-to policy, characterize the rate of convergence, and provide bounds on the
expected estimation error on both the cost function and its derivative. We believe that the results in this
section are of independent interest to the stochastic inventory theory literature.

Instead of working with the Markov chain {Xt(S) : t ≥ 1} associated with the inventory vectors under
order-up-to-S policy, it is more convenient to augment the Markov chain such that the state in each
period also includes the sample derivatives of the inventory vector with respect to S. In Section 3.1,
we study the derivatives of both the on-hand inventory level It(S) and the order quantity Qt(S) with
respect to the order-up-to level S, and develop recursive formulae that define the stochastic processes
{I ′t(S) : t ≥ 1} and {Q′t(S) : t ≥ 1}.

In Section 3.2, we establish a sufficient condition on the order-up-to level S that guarantees that the
augmented Markov chain associated with order-up-to-S policy is ergodic. When this condition is satisfied,
the augmented Markov chain converges to a stationary random vector. We also establish an upper bound
on the rate of convergence (Theorem 3), and provide an example when ergodicity fails.

Based on the ergodicity of the augmented Markov chain associated with order-up-to policies, Theorem
4 in Section 3.3 characterizes the long-run average cost for any base-stock level, regardless of whether
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the condition for ergodicity holds. This characterization becomes useful for developing our adaptive
algorithm in Section 4. Furthermore, in Section 3.4, we establish error bounds associated with the finite
sample-based cost function as well as its derivative.

We remark that, in Section 3, we study the Markov chain stochastic process associated with the lost-
sales inventory system under a fixed base-stock policy. The results in these sections stand alone without
any reference to the adaptive algorithm of Section 4.

3.1 Sample Derivatives of the On-Hand Inventory Under a Base-Stock Policy We provide
an expression for the sample derivatives of the on-hand inventory and order quantity in each period, which
will be used in the development of our adaptive algorithm. For any base-stock level S ≥ 0 and the initial
inventory vector x1 ∈ <τ+, let the random variable V (S, x1) denote the first time that the total inventory
position is less than or equal to S, assuming the we use order-up-to-S policy, that is,

V (S, x1) = min {t≥ 1 : Xt(S) · 1τ ≤ S, X1(S) = x1} .

Recall that under order-up-to-S policy, the dynamics of the order quantities and the on-hand inventory
levels are given as follows: for any t ≥ 1,

Qt(S) =


0 , if t < V (S, x1)
[S −Xt(S) · 1τ ]+ , if t = V (S, x1)
min{Dt−1, It−1(S)} , if t > V (S, x1)

and

It(S) = [It−1(S)−Dt−1]+ + Qt−τ (S) .

Let Q′t(S) = dQt(S)/dS and I ′t(S) = dIt(S)/dS denote the sample derivatives of the order quantities and
the on-hand inventory level with respect to the order-up-to level S, respectively. The main result of this
section is Theorem 1.

Let I(·) denote the indicator function.

Theorem 1 Let S ≥ 0 be a base-stock level, and let x1 ∈ <τ+ be an initial inventory vector x1 ∈ <τ+.
Under the order-up-to-S policy, the sample derivatives of the order quantity and of the on-hand inventory
satisfy the following: for any t ≥ 1, I ′t(S) ∈ {0, 1} and Q′t(S) ∈ {0, 1}, and

Q′t(S) =


0 , if 1 ≤ t < V (S, x1)
1 , if t = V (S, x1)
I ′t−1 · I[Dt−1 ≥ It−1] , if t > V (S, x1)

and

I ′t(S) = I ′t−1(S) · I [Dt−1 < It−1(S)] + Q′t−τ (S) ,

where we define I ′0(S) = 0 and Q′t(S) = 0 for all t ≤ 0. Moreover, for any t ≥ 1, with probability one,

I ′t(S) +
t∑

`=t−τ+1

Q′`(S) = 1.

Proof. Using the definition of the order-up-to policy, Janakiraman and Roundy [10] prove (in their
Lemma 1) that for any t ≥ V (S, x1),

It(S) = S −
t−1∑
`=t−τ

min {I`(S), D`} .

Moreover, they show in Corollary 2 of their paper that Q′t(S) ∈ {0, 1} and I ′t(S) ∈ {0, 1} for all t.

The desired formulae for the derivatives Q′t(S) and I ′t(S) follow immediately from the dynamics of the
order quantities and the on-hand inventory under an order-up-to-S policy. Moreover, it follows from the
above equation that

I ′t(S) = 1−
t−1∑
`=t−τ

I ′`(S) · I [D` ≥ I`(S)] = 1−
t∑

`=t−τ+1

Q′`(S),
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where the last equality follows from the fact that Q′`(S) = I ′`−1(S) · I [D`−1 ≥ I`−1(S)] for ` ≥ V (S, x1)
and Q′`(S) = 0 for ` < V (S, x1). This proves the desired result for t ≥ V (S, x1). For t < V (S, x1), the
result follows from the fact that I ′t(S) = 1 and Q′`(S) = 0 for all ` < V (S, x1). �

Let N τ = {x ∈ {0, 1}τ :
∑τ
i=1 xi ≤ 1} be the set of τ -dimensional binary vectors such that at most

one component is 1. Theorem 1 implies X ′t(S) =
(
Q′t−1(S), . . . , Q′t−τ+1(S), I ′t(S)

)
∈ N τ .

3.2 A Sufficient Condition for Ergodicity of the Markov Chain Associated with a Base-
Stock Policy In this section, we identify a sufficient condition for the Markov chain associated with a
base-stock policy to be ergodic. Under this condition, we establish the convergence rate for the Markov
chain to its stationary distribution.

We introduce an augmented Markov chain X(S) = {(Xt(S), X ′t(S)) : t ≥ 1} associated with an order-
up-to-S policy and establish a sufficient condition for its ergodicity. We let X(S) keep track of the
inventory vector in each period as well as the sample derivatives of the order quantities and the on-hand
inventory. Define, for any t ≥ 1,

(Xt(S), X ′t(S)) =
(
Qt−1(S), . . . , Qt−τ+1(S), It(S), Q′t−1(S), . . . , Q′t−τ+1(S), I ′t(S)

)
.

Lemma 2 The stochastic process X(S) = {(Xt(S), X ′t(S)) : t ≥ 1} forms a Markov chain.

Proof. We first note that Xt+1(S) = (Qt(S), . . . , Qt−τ+2(S), It+1(S)) depends only on Xt(S) =
(Qt−1(S), . . . , Qt−τ+1(S), It(S)) and Dt. Moreover, it follows from Theorem 1 that

Q′t(S) = 1− I ′t(S)−
t−1∑

`=t−τ+1

Q′`(S) and

I ′t+1(S) = 1−Q′t+1(S)−Q′t(S)−
t−1∑

`=t−τ+2

Q′`(S) ,

where Q′t+1(S) = I ′t(S) · I [Dt ≥ It]. This shows that X ′t+1(S) depends only on Xt(S), X ′t(S), and Dt,
giving the desired result. �

We will identify a sufficient condition for the ergodicity of the Markov chain X(S). Before we proceed,
we recall the definition of ergodicity (see Chapter 13 of Meyn and Tweedie [14] for more details). The
Markov chain X(S) =

{
(Xt(S), X ′t(S)) ∈ <τ+ ×N τ : t ≥ 1

}
is ergodic if there exists a random variable

(X∞(S), X ′∞(S)) such that for any initial state (x1, x
′
1) ∈ <τ+ ×N τ ,

lim
t→∞

δt (S, x1, x
′
1) = 0,

where, for any t ≥ 1,

δt (S, x1, x
′
1)

= sup
{∣∣∣P [(Xt(S), X ′t(S)) ∈ B | (X1(S), X ′1(S)) = (x1, x

′
1)]− P [(X∞(S), X ′∞(S)) ∈ B]

∣∣∣ :

measurable set B ⊆ <τ+ ×N τ
}
.

In such a case, we say (X∞(S), X ′∞(S)) is the steady-state vector of X(S).

The main result of this section is stated in the following theorem that provides a sufficient condition
for the ergodicity of the Markov chain X(S). Furthermore, it shows that the rate of convergence is
exponential in t. For any S ≥ 0, define

γ(S) = P [D ≤ S/(τ + 1)] .

Theorem 3 Let S ≥ 0 be a base-stock level. If γ(S) > 0, then the Markov chain X(S) =
{(Xt(S), X ′t(S)) : t ≥ 1} associated with an order-up-to-S policy is ergodic with a steady-state random
variable (X∞(S), X ′∞(S)). Furthermore, for any initial inventory vector (x1, x

′
1) ∈ <τ+ × N τ , and

t ≥ 4τ + 1,

δt+1 (S, x1, x
′
1)

≤

{ (
1− γ(S)2τ

)t/(4τ) + F (η)
t
2−τ , if D has an infinite support(

1− γ(S)2τ
)t/(4τ) + exp(4η/D − 2µ2( t2 − τ)/D

2
), if D ≤ D with probability one,
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where F (·) denotes the distribution function of D with µ = E[D], and η = x1 ·1τ−S denotes the difference
between the initial inventory position x1 · 1τ and the order-up-to level S.

The proof of the above theorem appears in Appendix A, and it is based on the standard coupling
argument in Markov chain theory. The main idea of the proof is the observation that, regardless of
the initial state, all sample paths of the Markov chain couple after a certain pattern (or sequence) of
consecutive demands occurs. If the initial inventory position is at most S, then an example of such a
demand pattern is a sequence of τ consecutive periods of zero demand, which will result in a state in
which the inventory on hand is S units and there is no outstanding order regardless of starting inventory
levels. When initial inventory exceeds S, we can construct a similar demand pattern that will result in
coupling. Thus, we can obtain an upper bound on δt+1 (S, x1, x

′
1) based on the probability that certain

demand patterns do not occur by period t.

An Example of Non-Ergodicity We now show that the Markov chain X(S) =
{(Xt(S), X ′t(S)) : t = 1, 2, . . .} may not be ergodic if the condition of Theorem 3 fails, that is, if γ(S) = 0.
The key idea behind this example is that if S is too small, then a stockout occurs in every period, which
causes the after-delivery on-hand inventory in each period t to be exactly the amount ordered in period
t− τ . Thus, the inventory vector Xt(S) follows a cyclic pattern.

Consider a base-stock level S such that there exists sufficiently small ε such that 0 < ε < τS
and γ(S + ε) = P [D ≤ (S + ε)/(τ + 1)] = 0. Suppose that the initial inventory vector X1(S) =
(Q0(S), Q−1(S), . . . , Q−τ+2(S), I1(S)) is given by

I1(S) =
S

τ + 1
+

ε

τ + 1
and Qt(S) =

S

τ + 1
− ε/τ

τ + 1
for each t = −τ + 2, . . . , 1, 0 .

Then, the quantity ordered in period 1 is given by

Q1(S) = S − (Q0(S) +Q1(S) + · · ·+Q−τ+2(S) + I1(S))

= S −
(

(τ − 1) ·
(

S

τ + 1
− ε/τ

τ + 1

)
+
(

S

τ + 1
+

ε

τ + 1

))
= S −

(
τ · S

τ + 1
+

ε/τ

τ + 1

)
=

S

τ + 1
− ε/τ

τ + 1
,

which is strictly positive since ε < Sτ . Since γ(S + ε) = 0, it follows that the event

D >
S

τ + 1
+

ε

τ + 1
occurs with probability 1, that is, D is greater than Q1(S) and each component of X1(S) with probability
1. Thus, the process of inventory vectors {Xt(S) : t = 1, 2, . . .} follows a cyclic process where at most one
of the components of each inventory vector Xt(S) is S/(τ + 1) + ε/(τ + 1) and all the other components
are S/(τ + 1)− (ε/τ)/(τ + 1). Similarly, we can show that {X ′t(S) : t = 1, 2, . . .} is also cyclic.

3.3 Structure of the Cost Function and the Optimal Base-Stock Level We now provide a
characterization of the long-run average holding cost and lost sales penalty under any order-up-to policy.
The main result of this section is stated in Theorem 4, which expresses the long-run average cost as a
function of the steady-state stationary distribution of inventory levels, and establishes the convexity of
the cost function with respect to the base-stock level.

Recall γ(S) = P [D ≤ S/(τ + 1)]. To simplify our exposition, we use the expressions C (It(S)) to
denote the expected holding cost and lost sales penalty in period t under the order-up-to-S policy, that
is,

C (It(S)) = h · E [Dt − It(S)]+ + b · E [It(S)−Dt]
+
,

where the expectation is taken with respect to both the random variables Dt and It(S). Similarly, we use
C (I∞(S)) to denote the long-run average expected cost under the order-up-to-S policy.

Theorem 4 For any S ≥ 0, the long-run average holding cost and lost sales penalty under an order-up-
to-S policy always exists, is independent of the initial starting inventory vector, and satisfies

C (I∞(S)) := lim
T→∞

1
T

T∑
t=1

C (It(S)) =

{
b ·
(
E [D]− S

τ+1

)
, if γ(S) = 0,

b · E [D − I∞(S)]+ + h · E [I∞(S)−D]+ , if γ(S) > 0.
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Moreover, the function C (I∞(S)) is convex and differentiable in S, and has a minimizer S∗ satisfying
γ (S∗) > 0.

Proof. If γ(S) > 0, we know from Theorem 3 that the Markov chain X(S) =
{(Xt(S), X ′t(S)) : t ≥ 1} converges to the stationary random vector (X∞(S), X ′∞(S)), and the stated
expression for the long-run average cost follows from Markov chain theory. When γ(S) = 0, it follows
that D ≥ S/(τ + 1) with probability one. Huh et al. [7] show (in Lemma 10 of their paper) that in this
case, the long-run average cost is equal to b(E[D]− S

τ+1 ), which is the desired result.

It is easy to verify that C (I∞(S)) is continuous in S. The differentiability of C (I∞(·)) follows from
the above formula since D is a continuous random variable. Moreover, let Ŝ = sup {x : γ(x) = 0}. Huh
et al. [7] (in their Appendix E and F) show that the left and the right derivatives of C (I∞(S)) at Ŝ are
−b/(τ + 1), i.e.,

lim
S↑Ŝ

d

dS
C (I∞(S)) = lim

S↓Ŝ

d

dS
C (I∞(S)) =

−b
τ + 1

.

Thus, there exists a minimizing S∗ such that γ(S∗) > 0. For S > Ŝ, the convexity of C (I∞(S)) is
established in Theorem 12 in [10]. Since the function is linear for S < Ŝ and the left and right derivatives
at Ŝ coincide at Ŝ, the convexity of C (I∞(S)) follows for all S. �

3.4 Sample-Based Estimation of the Cost and Its Derivative To estimate the cost function
C (I∞(S)) and its derivative with respect to S, one can run the system for a long time, and obtain
appropriate sample-based estimates. However, for any finite t ≥ 1, the distribution of the state in period
t is not in general exactly the same as its stationary distribution, resulting in a bias in the above estimates.
In this section, we establish error bounds associated with sample-based estimates of the cost function
C (I∞(S)) and its derivative. The main result of this section is stated in the following theorem.

Theorem 5 Let S ≥ 0 be a base-stock level such that γ(S) = P [D ≤ S/(τ + 1)] > 0. Let (x1, x
′
1) ∈ <τ+×

N τ . If we apply the order-up-to-S policy with the initial inventory vector X1(S) = x1 and X ′1(S) = x′1,
then, for any t ≥ 1,

|C (I∞(S))− C (It(S))| ≤ (b+ h) ·max {S, x1 · 1τ} · δt (S, x1, x
′
1) .

Moreover, ∣∣∣∣ ddSC (I∞(S))− d

dS
C (It(S))

∣∣∣∣ ≤ (b+ h) · δt (S, x1, x
′
1) .

In the proof of Theorem 5, we express the difference in the cost functions |C (I∞(S))− C (It(S))| in
terms of the truncated expectations of I∞(S) and It(S). We then upper bound the difference in terms of
δt (S, x1, x

′
1) using the Markov chain ergodicity results. The details of the proof appear in Appendix B.

4. An Adaptive Algorithm Building upon the results of the previous section, we propose an
adaptive algorithm that determines the base-stock level for each period, where the decision in each
period depends only on the observed sales data in the past. We also establish the convergence rate of
our algorithm. As a benchmark, we compare the running average holding cost and lost sales penalty of
our algorithm to the cost of the optimal base-stock policy. Let S∗ be the optimal base-stock level. We
make the following assumption throughout Section 4.

Assumption 1 The manager has an a priori knowledge of a lower bound M ≥ 0 and an upper bound
M ≥ 0 on S∗, i.e., M ≤ S∗ ≤M , and γ (M) = P[D ≤M/(τ + 1)] > 0.

We note for any demand distribution with positive probability at zero, the choice of M = 0 satisfies
the condition of Assumption 1. Throughout the remainder of this section, we will also assume without
loss of generality that the demand random variable has an infinite support. We emphasize that this
assumption is taken primarily to simplify our exposition and the formula for the error bounds. When
the demand is bounded almost surely, exactly the same argument applies. (See the error bounds given
in Theorem 3.) Although our algorithm applies to both bounded and unbounded demands, we note that
Assumption 1 requires us to know in advance the upper bound M on the optimal order-up-to level S∗.
Extending our analysis to the case when M is unknown remains an open research question.
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4.1 Description of the Algorithm Leveraging the convexity of C (I∞(S)) as a function of the
order-up-to level S, we extend an existing result from the online convex optimization literature, which
requires an unbiased estimate of the derivative dC (I∞(S)) /dS of the cost function (see, for example,
[4, 12, 20]). However, in our case, we cannot obtain an unbiased sample of the cost function and its
derivative because they depend on the steady-state on-hand inventory level I∞(S); furthermore, the
magnitude of the bias depends on how long the system has been running at a given base-stock level.
In this section, we propose an algorithm that carefully balances (i) the benefit of reducing the bias in
the estimator by fixing the base-stock level for a number of periods, and (ii) the ability to explore new
base-stock levels based on our estimate of the gradient.

To address the issue of bias, we propose the notion of cycles which consists of multiple periods. We
divide time into a sequence of cycles, and maintain the same base-stock level within a cycle. Base-stock
levels may be adjusted from one cycle to another. Furthermore, the cycles have unequal lengths; as time
elapses, we gain more confidence in our solution and increase the length of the cycle. While our algorithm
is a modification of existing online algorithms such as Flaxman et al. [4], our results do not immediately
follow from the existing literature because our algorithm makes use of unequal cycle lengths. The running
average cost under our algorithm is a weighted average of cycle costs, where the weights correspond to
the lengths of cycles. Since the weights are unequal across cycles, we need additional arguments and
analysis. However, in the analysis the modification with unequal cycle lengths, we make extensive use of
existing results (without cycles) as a “black box” (see, for example, Lemma 10).

Let Sk denote the order-up-to level for the kth cycle. We will use the sample derivative of the cost
function evaluated in the last period of the cycle as a proxy for dC (I∞(Sk)) /dS, which will be discussed
subsequently. If the length of the kth cycle is sufficiently long, the ergodicity of the Markov chain
{(Xt(Sk), X ′t(Sk)) : t ≥ 1} should ensure that our estimate has a small bias compared to dC (I∞(Sk)) /dS.

Our adaptive algorithm, which we refer to as Adaptive(α, β), is parameterized by two parameters
α, β ∈ (0, 1). The first parameter α controls the adjustment of the order-up-to level between two successive
cycles while the second parameter β controls the length of each cycle. (It will be shown that the choice of
α = β = 1/2 minimizes the asymptotic bound of the regret; however, we keep our exposition general to
show how the bounds depend on these two parameters.) We use k to index cycles and j to index periods
within a given cycle. Let (k, j) denote the jth period in the kth cycle. We now describe the algorithm in
details.

Algorithm Adaptive(α, β)

Initialization: For the first cycle, set the order-up-to level S1 to any number in
[
M,M

]
, and set the

initial inventory vector X(1,1) ∈ <τ+ such that X(1,1) · 1τ ≤M .

Algorithm Definition: For each cycle k = 1, 2, . . . ,

• The length of cycle k, denoted by Tk, is defined by Tk :=
⌈
kβ
⌉
, and cycle k begins at period∑k−1

k′=1 Tk′ + 1 and ends at
∑k
k′=1 Tk′ (inclusive).

• Let Sk denote the base-stock level for this cycle. The initial inventory vector in cycle k is given
by X(k,1). We will use the order-up-to-Sk policy for every period in cycle k. Let X(k,j) and
I(k,j)(Sk;X(k,1)) denote the inventory vector and the on-hand inventory level, respectively, in the
jth period of the kth cycle.

• For each period 1 ≤ j ≤ Tk in cycle k, compute an estimate of the sample-path derivative of the
on-hand inventory I ′(k,j)

(
Sk;X(k,1)

)
using the following recursion from Theorem 1:

I ′(k,j)
(
Sk;X(k,1)

)
= 1−

j−1∑
`=j−τ

I ′(k,`)
(
Sk;X(k,1)

)
· I
[
I(k,`)

(
Sk;X(k,1)

)
≤ D(k,`)

]
,

where D(k,`) is the realized demand in the `th period of the kth cycle. Note that we define
I ′(k,j)

(
Sk;X(k,1)

)
= 0 if j ≤ 0. Thus, to compute the sample-based derivative in each period,

we only need to keep the derivative values from at most the τ previous periods. Moreover, note
that the event I

[
I(k,`)

(
Sk;X(k,1)

)
≤ D(k,`)

]
can be computed based on the sales data in the `th

period of the jth cycle. We simply need to check whether or not we have a stockout.

• At the end of the kth cycle (period Tk of the kth cycle), update the base-stock level as follows.
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Let

εk =
(M −M)

max{b, h} · kα
,

and let Hk(Sk) be defined by

Hk(Sk) =


h, if I ′(k,Tk)(Sk;X(k,1)) = 1 and I(k,Tk) > D(k,Tk),
−b, if I ′(k,Tk)(Sk;X(k,1)) = 1 and I(k,Tk) ≤ D(k,Tk),
0, if I ′(k,Tk)(Sk;X(k,1)) = 0.

The base-stock level for the cycle k + 1 is then given by

Sk+1 = P[M,M ](Sk − εk ·Hk(Sk)) ,

where P[M,M ](z) = max{M, min{z,M}} is the projection operator.

• The initial inventory vector X(k+1,1) for cycle k+ 1 will correspond to the inventory vector after
ordering at the beginning of the first period of cycle k + 1.

For any L ≥ 1, let N(L) =
∑L
k=1 Tk denote the total number of time periods in the first L cycles. We

define the L-cycle regret Λ(L) as follows:

Λ(L) = E

 L∑
k=1

Tk∑
j=1

C(I(k,j)(Sk;X(k,1)))

− E [C(I∞(S∗))] ·N(L) ,

where S∗ is the optimal base-stock level. The main result of this section is that the L-cycle per-period
average regret, the expression Λ(L) divided by N(L), converges to zero at the rate of O

(
N(L)−1/3

)
if

the α and β parameters are chosen carefully. This result is stated in Theorem 6, whose proof is given in
Section 4.3.

Theorem 6 Under Assumption 1, let ν = max
{

1− γ(M)2τ , F (M), 1/e
}

. Then, for any α, β ∈ (0, 1),
the L-cycle per-period average regret under the algorithm Adaptive(α, β) satisfies

Λ(L)
N(L)

≤ (b+ h) ·
(
M −M

)
·

{
C1 (α, β)

N(L)
1−α
1+β

+
C2 (α, β)
N(L)

α
1+β

+
C3 (α, β)

N(L)
1

1+β
+
C4 (α, β)

N(L)
β

1+β

}
,

where the constants are given by:

C1 (α, β) = 4,

C2 (α, β) =
4

1− α
,

C3 (α, β) =
12 (4τ)1/β Γ (1/β) (1/β)

(ln (1/ν))1/β
,

C4 (α, β) =
24τ

ln (1/ν)
,

and Γ(·) denotes the Gamma function. If we set α = β = 1/2, then Λ(L)/N(L) = O
(
N(L)−1/3

)
.

We note that the choice of α = β = 1/2 is the one that minimizes the asymptotic per-period regret. To
see this, note that

max

{
1

N(L)
1−α
1+β

,
1

N(L)
α

1+β
,

1

N(L)
1

1+β
,

1

N(L)
β

1+β

}
= max

{
1

N(L)
1−α
1+β

,
1

N(L)
α

1+β
,

1

N(L)
β

1+β

}
,

where the equality follows from the fact that 0 ≤ β ≤ 1. The expression in the above right hand side
achieves the minimum when α = β = 1/2.
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4.2 Preliminary Results Online convex optimization is the minimization of a convex function,
for which little is known a priori except the convexity of the objective function. At each iteration, we
choose a point in the feasible region and incur the cost associated with this point; however, we obtain
some information about the function at this point, such as the gradient or its stochastic estimator. The
objective is to minimize the average cost over time.

The following theorem, which appears in [8], is an extension of the result of Zinkevich [20], Flaxman
et al. [4], and Kleinberg [12] to allow for a biased stochastic gradient estimate in each iteration and for
a general step size of the form εt = O(1/tα) with 0 < α < 1. These extensions are necessary for the
analysis of the regret under our proposed Adaptive(α, β) policy. Note that for any compact set S, PS(·)
denotes the projection operator on S.

Theorem 7 Let Φ : S → R be a convex function and let z∗ = arg minz∈S Φ(z) be its minimizer. For any
z ∈ S, let Ht(z) be an n-dimensional random vector defined on S, and suppose that there exists B > 0
such that E

[
‖Ht(z)‖2

]
≤ B2

holds for all z ∈ S. Let the sequence (Zt : t ≥ 1) be defined by

Zt+1 = PS (Zt − εt ·Ht(Zt)) , where εt =
ζ diam(S)

B
· 1
tα

for some ζ > 0 and α ∈ (0, 1), where Z1 is any point in S. Let ηA(z) = E [Ht(z) | z]−5Φ(z) . Then,
for all T ≥ 1,

T∑
t=1

E [Φ(Zt)− Φ(z∗)] ≤ diam(S)

{
B ·
[
Tα

2ζ
+

ζ T 1−α

2(1− α)

]
+

T∑
t=1

E
∣∣ηA(Zt)

∣∣} .
The next two lemmas are used in the analysis of Section 4.3 and their proofs appear in Appendix C. Let

Γ(·) represent the gamma function, which is defined by Γ(z) =
∫∞
0
wz−1e−wdw for any real number z > 0.

The proofs of these results are based on algebraic manipulation and the expression for the cumulative
density function of a gamma distribution.

Lemma 8 For any ρ ∈ (0, 1), β ∈ (0, 1), and L ≥ 1,

L∑
k=1

ρdk
βe ≤

L∑
k=1

ρk
β

≤ Γ (1/β) (1/β)

(ln (1/ρ))1/β
.

From the description of the algorithm described in Section 4.1, Tk = dkβe is the length of the kth cycle,
and N(k) =

∑k
k′=1 Tk′ denotes the total length of the first k cycles. The following lemma establishes the

relationship among k, dkβe and N(k).

Lemma 9 Let β ∈ (0, 1). For k ≥ 1, let N(k) =
∑k
k′=1dk′

βe. Then,

(i) k ≤ [(β + 1) ·N(k)]1/(β+1).

(ii) k · dkβe ≤ 2(β + 1) ·N(k).

(iii) dkβe ≤ 2 [(β + 1) ·N(k)]β/(β+1).

(iv) dkβeα ≤ 2 [(β + 1) ·N(k)]αβ/(β+1) for any α ∈ (0, 1).

4.3 Proof of Theorem 6 We express the L-cycle total regret Λ(L) as a sum of the following two
expressions:

Λ1(L) =
L∑
k=1

Tk · {E [C(I∞(Sk))]− E [C(I∞(S∗))]} , and

Λ2(L) = E

 L∑
k=1

Tk∑
j=1

{
C(I(k,j)(Sk;X(k,1)))− C(I∞(Sk))

} .
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The first expression Λ1(L) corresponds to the regret due to the deviation of Sk from S∗ – note that Λ1(L)
is the weighted sum of the loss of optimality due to Sk, where weights correspond to the cycle length
Tk. The second expression Λ2(L) reflects how much the on-hand inventory levels {I(k,j) | j = 1, 2, . . . Tk}
differ from the stationary on-hand inventory level of that cycle. We provide an upper bound for each
term in Lemmas 10 and 11.

Let ν = max
{

1− γ(M)2τ , F (M), 1/e
}

. The proof of the following lemma is obtain from our earlier
treatment of Markov chain ergodicity (Section 3), and also from addressing the issue of unequal cycle
lengths by applying, as a black box, an existing online algorithm result (Theorem 7), which does not
allow the notion of cycles.

Lemma 10 Suppose Assumption 1 holds and D has an infinite support. Then, for any α, β ∈ (0, 1), the
algorithm Adaptive(α, β) satisfies

Λ1(L) ≤
(
M −M

)
· (b+ h) · TL ·

{
Lα

2
+

L1−α

2(1− α)
+

3 (4τ)1/β Γ (1/β) (1/β)

(ln (1/ν))1/β

}
.

Proof. From the definition of Λ1(L) and the fact that T1 ≤ · · · ≤ TL, we have

Λ1(L)
TL

≤
L∑
k=1

{E [C(I∞(Sk))]− E [C(I∞(S∗))]} .

From Theorem 4, E [C(I∞(S))] is a convex function of the base-stock level S. Moreover, the dynamics of
Sk defined in the algorithm Adaptive(α, β) are exactly the same as the gradient descent method defined
in Theorem 7, with S =

[
M,M

]
, ζ = 1, and B = max{b, h}. Thus, we obtain

L∑
k=1

{E [C(I∞(Sk))]− E [C(I∞(S∗))]}

≤
(
M −M

)
·

{
max{b, h} ·

[
Lα

2
+

L1−α

2(1− α)

]
+

L∑
k=1

E
∣∣ηA(Sk)

∣∣} ,

where

ηA(S) =
d

dS
E
[
C(I(k,Tk)(S;X(k,1)))

]
− d

dS
E [C(I∞(S))] . (2)

Note max{b, h} ≤ b+ h.

We will now establish an upper bound for
∑L
k=1E

∣∣ηA(Sk)
∣∣. There are two cases to consider: dkβe ≤ 4τ

and dkβe ≥ 4τ + 1. Suppose that dkβe ≤ 4τ . The definition of C(·) implies C ′(·) ∈ [−b, h]. From
I ′(k,Tk)(S;X(k,1)) ∈ {0, 1} for all k, it follows that

∣∣ηA(Sk)
∣∣ ≤ b+ h. Note that the condition dkβe ≤ 4τ is

equivalent to k ≤ (4τ)1/β , which implies that

L∑
k=1

∣∣ηA(Sk)
∣∣ · I[dkβe ≤ 4τ ] ≤ (b+ h) · (4τ)1/β .

Suppose that dkβe ≥ 4τ + 1. Let ηk = X(k,1) · 1τ − Sk. Theorem 3, Theorem 5 and Assumption 1
imply that ∣∣ηA(Sk)

∣∣ ≤ (b+ h) ·
[(

1− γ(Sk)2τ
)dkβe/(4τ)

+ F (ηk)dk
βe/2−τ

]
≤ (b+ h) ·

[(
1− γ(M)2τ

)dkβe/(4τ)
+ F (M)dk

βe/2−τ
]

≤ 2(b+ h) ·max
{(

1− γ(M)2τ
)
, F (M)

}dkβe/(4τ)
≤ 2(b+ h) · νdk

βe/(4τ),

where the second inequality follows from the fact that γ(·) and F (·) are nondecreasing functions. The third
inequality follows from the fact that

⌈
kβ
⌉
≥ 4τ+1 and τ ≥ 1, which implies that dkβe/(4τ) ≤ dkβe/2− τ .
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It thus follows from Lemma 8 that
L∑
k=1

∣∣ηA(Sk)
∣∣ · I[dkβe ≥ 4τ + 1] ≤ 2(b+ h) · Γ (1/β) (1/β)(

ln
(
1/ν1/(4τ)

))1/β
= 2(b+ h) · (4τ)1/β · Γ (1/β) (1/β)

(ln (1/ν))1/β
.

Combining the two cases, we see that

L∑
k=1

∣∣ηA(Sk)
∣∣ ≤ (4τ)1/β ·

(
(b+ h) +

2(b+ h) · Γ (1/β) (1/β)

(ln (1/ν))1/β

)

≤ 3(b+ h) · (4τ)1/β Γ (1/β) (1/β)

(ln (1/ν))1/β
,

where the last inequality follows from the fact that 0 ≤ ln(1/ν) ≤ 1 and 1 ≤ Γ(1/β)(1/β), and we obtain
the required result. �

Lemma 11 Suppose Assumption 1 holds and D has an infinite support. Then, for any α, β ∈ (0, 1), the
algorithm Adaptive(α, β) satisfies

Λ2(L) ≤ (b+ h) · (M −M) · L · 12τ
ln (1/ν)

.

Proof. Recall that

Λ2(L) = E

 L∑
k=1

Tk∑
j=1

{
C(I(k,j)(Sk;X(k,1)))− C(I∞(Sk))

} .
Consider the summand C(I(k,j)(Sk;X(k,1))) − C(I∞(Sk)) for 1 ≤ j ≤ Tk. There are two cases to
consider: j ≤ 4τ and j ≥ 4τ + 1. Suppose j ≤ 4τ . By the convexity of the cost function C (·),∣∣E [C(I(k,j)(Sk;X(k,1)))

]
− E [C(I∞(Sk))]

∣∣ is bounded above by (M −M) ·max{b, h}. Therefore,

Tk∑
j=1

∣∣E [C(I(k,j)(Sk;X(k,1)))
]
− E [C(I∞(Sk))]

∣∣ · I[j ≤ 4τ ] ≤ 4 · τ · (M −M) ·max{b, h} .

Now, suppose j ≥ 4τ + 1. By Theorem 5,∣∣E [C(I(k,j)(Sk;X(k,1)))
]
− E [C(I∞(Sk))]

∣∣
≤ (b+ h) · (M −M) ·

[(
1− γ(M)2τ

)j/(4τ)
+ F (M)j/2−τ

]
.

Therefore,

Tk∑
j=1

∣∣E [C(I(k,j)(Sk;X(k,1)))
]
− E [C(I∞(Sk))]

∣∣ · I[j ≥ 4τ + 1]

≤ (b+ h) · (M −M) ·
Tk∑
j=1

[(
1− γ(M)2τ

)j/(4τ)
+ F (M)j/2−τ

]

≤ 2(b+ h) · (M −M) ·
Tk∑
j=1

max
{

1− γ(M)2τ , F (M)
}j/(4τ)

≤ 2(b+ h) · (M −M) ·
∫ ∞

0

νz/(4τ)dz

= 2(b+ h) · (M −M) · 4τ
ln (1/ν)

,

where the second inequality follows from the fact that j ≥ 4τ + 1, which implies that j/(4τ) ≤ j/2− τ .
The last inequality follows from max

{
1− γ(M)2τ , F (M)

}
≤ ν < 1.
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Combining the two cases, it follows that
Tk∑
j=1

∣∣E [C(I(k,j)(Sk;X(k,1)))
]
− E [C(I∞(Sk))]

∣∣
≤ 4 · τ · (M −M) ·

(
max{b, h}+

2(b+ h)
ln (1/ν)

)
≤ (b+ h) · (M −M) · 12τ

ln (1/ν)
,

where we use the fact that 0 ≤ ln(1/ν) ≤ 1 for the second inequality. Summing the above inequality over
all possible values of k = 1, . . . , L gives the required result. �

We will now prove Theorem 6.

Proof. From Lemma 10, we have

Λ1(L) ≤
(
M −M

)
· (b+ h) · TL ·

{
Lα

2
+

L1−α

2(1− α)
+

3 (4τ)1/β Γ (1/β) (1/β)

(ln (1/ν))1/β

}

Λ2(L) ≤
(
M −M

)
· (b+ h) · L · 12τ

ln (1/ν)
.

It follows from Lemma 9 and TL = dLβe that

TL · Lα =
(
L ·
⌈
Lβ
⌉)α · ⌈Lβ⌉1−α

≤ (2 · (β + 1) ·N(L))α · 2 · ((β + 1) ·N(L))(1−α)β/(β+1)

= 21+α(β + 1)α+(1−α)β/(β+1) ·N(L)α+(1−α)β/(β+1)

≤ 8 ·N(L)(α+β)/(1+β).

A similar argument shows that TL · L1−α ≤ 8 ·N(L)(1−α+β)/(1+β). Also, by Lemma 9,

TL = dLβe ≤ 2 ((β + 1) ·N(L))β/(β+1) ≤ 4N(L)β/(1+β) .

Thus, we obtain

Λ1(L)
N(L)

≤
(
M −M

)
· (b+ h) ·

{
4

N(L)(1−α)/(1+β)
+

4/(1− α)
N(L)α/(1+β)

+
12 (4τ)1/β Γ (1/β) (1/β)

(ln (1/ν))1/β ·N(L)1/(1+β)

}
.

Since L ≤ ((β + 1)N(L))1/(1+β) ≤ 2 ·N(L)1/(1+β) by Lemma 9,

Λ2(L)
N(L)

≤
(
M −M

)
· (b+ h) · 24τ

ln (1/ν) ·N(L)β/(1+β)
.

Combining the above two inequalities gives the desired result. �

4.4 Remarks Theorem 6 shows that the T -period expected running-average regret is O
(
T−1/3

)
.

The proof of Theorem 6 can easily be modified for other stochastic systems where the gradient depends on
the steady-state distribution. We require, as in most papers in the online convex optimization literature,
that the objective is convex with respect to the decision vector, the feasible set is a convex compact set,
and the gradient of the objective function is bounded. Furthermore, the Markov chain obtained by fixing
the decision vector displays the property that both the sample costs and the sample derivatives converge
to their steady-state distributions, and that their convergence rates are exponential and independent of
the decision vector (analogous to Theorem 5). Then the arguments in the proof of Theorem 6 also become
applicable.

We explain the above generalization in more detail. Suppose S is a control parameter that we want to
optimize. Let Xt(S) denote the state vector of the system in period t, and let X ′t(S) denote the sample
derivative of Xt(S) with respect to S. Let X(S) = {(Xt(S), X ′t(S) : t ≥ 1)}. Suppose that the following
conditions are satisfied. (i) The feasible set S of S is convex and compact. (ii) For any S ∈ S, X(S) is
a Markov chain, and its state space belongs to a bounded set M independent of S. (iii) For any S ∈ S,
X(S) is ergodic, and the rate of convergence δt can be uniformly bounded by an exponentially decreasing
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function, regardless of S and the initial state (analogous to Lemma A.1 and A.2). (iv) The average-cost
criterion, denoted by C(X∞(S)), is convex with respect to S. (v) In period t, the manager can obtain
the estimates for both the cost and the derivatives having biases whose magnitudes are no more than a
multiple of δt (analogous to Theorem 5).

Conditions (i) and (iv) above ensure that the problem is a convex minimization problem over a compact
set, a requirement for applying Theorem 7. This theorem, together with the bound on the bias of the
derivative estimators in Condition (v), implies a result similar to Lemma 10. Meanwhile, Conditions (ii)
and (iii) ensure that the stationary process exists for any choice of the control, and the convergence rate
(mixing time) can be uniformly bounded for each cycle. These conditions, along with the bound on the
bias of the cost estimators in Condition (v), imply a result similar to Lemma 11. Therefore, we establish
a result analogous to Theorem 6, and show that the algorithm Adaptive(α, β) can be easily adapted to
result in the time-average regret of O(T−1/3).

Finally, we remark that the objective in our paper is regret minimization where the demand distribution
is fixed, albeit unknown, whereas the analysis of Flaxman et al. [4] is in a stronger bandit setting where
the demand realizations are chosen by the adversary. We have chosen to model demand as a distribution
for two reasons: (i) such a model would be closer to the demand models used in the inventory literature,
and (ii) the stationarity of demand is crucial in establishing the Markov chain ergodicity which is a key
component of our proof.

5. Conclusion In this paper, we have considered an adaptive control of replenishment quantities
in a periodic-review inventory system with lost sales and a positive lead time. Contrary to the classical
inventory literature, the manager does not know the demand distribution a priori, and only observes
the sales data in each period. Under the long-run average-cost criterion, we have proposed an adaptive
method such that its T -period average cost converges to the cost of the optimal base-stock policy, and
we have shown the convergence rate of O(1/T 1/3). We achieve this by characterizing the ergodicity and
the mixing time of the inventory system under a fixed base-stock policy. We believe that our adaptive
method is applicable to other settings where the objective function is convex with respect to the control
variable, and depends on the steady-state distribution of the system under consideration.
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ments and suggestions that greatly improve the quality and the presentation of the paper. The research
of the first and last authors was supported in part by the National Science Foundation through grants
DMS-0732169 and DMS-0732196, respectively.

Appendix A. Proof of Theorem 3 In this section, we prove Theorem 3. We first show this result
for the case where the starting inventory position at the beginning of period 1 is at most S (Lemma A.1
in Case I), and then extend the result to a general setting (Case II).

Case I: Initial Inventory Position is at Most S The main idea used in this section is that all
the sample paths couple after a certain pattern or sequence of demands occurs. An example of such a
demand pattern is the τ consecutive periods of zero demands, which results in the on-hand inventory of
S units with no outstanding order regardless of the inventory vector before the pattern occurs. Yet, this
particular example of zero demands may never occur depending on the distribution of demand. Another
example of demand pattern, as we shall see, is as follows: the 2τ consecutive periods in each of which
demand is at most S/(τ + 1). This pattern of demands is used in the proof of Lemma A.1.

Lemma A.1 If γ(S) = P [D ≤ S/(τ + 1)] > 0, then the Markov chain X(S) = {(Xt(S), X ′t(S)) : t ≥ 1}
associated with the order-up-to-S policy is ergodic with a steady-state random vector (X∞(S), X ′∞(S)).
Moreover, for any t ≥ 2τ + 1, any initial inventory vector x1 ∈ <τ+ satisfying x1 · 1τ ≤ S, and any
x′1 ∈ N τ ,

δt+1 (S, x1, x
′
1) ≤

(
1− γ(S)2τ

)t/(2τ)
.

Proof. We make use of the following result on the uniform ergodicity of Markov chains (see Meyn
and Tweedie [14] for more details). We say a measurable set U ⊆ <τ+×N τ is a small set with respect to a
nontrivial measure ν provided that there exists t∗ > 0 such that for any (x1, x

′
1) ∈ U and any measurable
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set B ×N ⊆ <τ+ ×N τ ,

P
[
(Xt∗(S), X ′t∗(S)) ∈ B ×N

∣∣∣ (X1(S), X ′1(S)) = (x1, x
′
1)
]
≥ ν (B ×N) .

The following result appears in Theorem 16.0.2 in Meyn and Tweedie [14]. If U is a small set with respect
to ν, then there exists stationary random variable (X∞(S), X ′∞(S)) such that for any (x1, x

′
1) ∈ U and

t ≥ t∗,

δt+1 (S, x1, x
′
1) ≤

(
1− ν

(
<τ+ ×N τ

))t/(t∗−1)
.

To apply the above result, we let U = {x ∈ <τ+ | x · 1τ ≤ S} × N τ . We define a nontrivial measure ν
such that U is a small set with respect to this measure ν with t∗ = 2τ + 1, and ν

(
<τ+ ×N τ

)
≥ γ(S)2τ .

Let the measure ν be defined on <τ+ × N τ as follows. For any 0 ≤ ` ≤ τ − 1, let B` ⊆ <+ be any
measurable set and let

B =

{
(q−1, q−2, . . . , q−τ+1, i0) ∈ <τ+

∣∣∣ q−` ∈ B` for 1 ≤ ` ≤ τ − 1, and S − i0 −
τ−1∑
`=1

q−` ∈ B0

}
.

(Note that S − i0 −
∑τ−1
`=1 q−` represents the order quantity associated with the state.) For any subset

N ⊆ N τ , define ν (B ×N) by

ν(B ×N) = γ(S)τ ·
τ−1∏
i=0

P
[
D ∈ Bi ∩

[
0,

S

τ + 1

]]
· I [(0, 0, . . . , 0, 1) ∈ N ] .

From the above definition of ν, it is straightforward to verify that ν
(
<τ+ ×N τ

)
= γ(S)2τ > 0. Thus,

to complete the proof, it remains to show that U is a small set with respect to ν where t∗ = 2τ + 1. For
any 1 ≤ i ≤ τ − 1, let B̂i = Bi ∩ [0, S/(τ + 1)], and let B̂ be defined similarly to B, except that Bi’s are
replaced by B̂i’s. It follows that

P
[(
X2τ+1(S), X ′2τ+1(S)

)
∈ B ×N

∣∣∣ (X1(S), X ′1(S)) = (x1, x
′
1)
]

≥ P
[(
X2τ+1(S), X ′2τ+1(S)

)
∈ B̂ ×N

∣∣∣ (X1(S), X ′1(S)) = (x1, x
′
1)
]

From the definition of ν, it follows that ν (B ×N) = ν
(
B̂ ×N

)
. Thus, it suffices to show that

P
[(
X2τ+1(S), X ′2τ+1(S)

)
∈ B̂ ×N

∣∣∣ (X1(S), X ′1(S)) = (x1, x
′
1)
]
≥ ν

(
B̂ ×N

)
.

To prove the above inequality, we can assume without loss of generality that (0, . . . , 0, 1) ∈ N ; other-
wise, the definition of ν implies ν

(
B̂ ×N

)
= 0, and the result is trivially true. We consider the following

demand pattern of length 2τ , where the demand in each of the first τ periods is at most S/(τ + 1) and
the demands in the next τ periods satisfy D2τ−` ∈ B̂i for each ` = 0, 1, . . . , τ − 1. It is straightforward
to verify that the probability of this event occurring is γ(S)τ ·

∏τ−1
i=0 P

[
D ∈ B̂i

]
.

Claim A.1 The above demand pattern implies that

X2τ+1(S) = (Q2τ (S), . . . , Qτ+2(S), I2τ+1(S)) =

(
D2τ−1, . . . , Dτ+1, S −

2τ∑
`=τ+1

D`

)
,

X ′2τ+1(S) =
(
Q′2τ (S), . . . , Q′τ+2(S), I ′2τ+1(S)

)
= (0, 0, . . . , 0, 1) .

To prove this claim, note that since the initial inventory position x1 ·1τ is less than or equal to S, we have
that Q1(S) = S−X1(S) ·1τ for the first period, and Qt+1(S) = min{Dt, It(S)} for all t≥ 1. This implies
that for 1 ≤ t ≤ 2τ , Qt+1(S) ≤ Dt ≤ S/(τ + 1). We will now show that Qt+1(S) = Dt for τ + 1 ≤ t ≤ 2τ .
Note that

Dt−1 ≥ Qt(S) = S −Xt(S) · 1τ = S − (Qt−τ+1(S) +Qt−τ+2(S) + · · ·+Qt−1(S) + It(S)) .
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By rearranging the above inequality and using the fact that Qt(S) ≤ S/(τ + 1) for all t, we obtain

It(S) ≥ S − (Qt−τ+1(S) +Qt−τ+2(S) + · · ·+Qt−1(S))−Dt−1

≥ S − S(τ − 1)
τ + 1

− S

τ + 1
=

S

τ + 1
,

and therefore Dt ≤ S/(τ + 1) ≤ It(S). This implies that Qt+1(S) = min{Dt, It(S)} = Dt for τ + 1 ≤
t ≤ 2τ . Thus, in particular, (Q2τ (S), Q2τ−1(S), . . . , Qτ+2(S)) = (D2τ−1, D2τ−2, . . . , Dτ+1). Note that

I2τ+1(S) = X2τ+1(S) · 1τ −
2τ∑

`=τ+2

Q`(S) = X2τ+1(S) · 1τ −
2τ−1∑
`=τ+1

D`

= S −Q2τ+1(S)−
2τ−1∑
`=τ+1

D` = S −D2τ −
2τ−1∑
`=τ+1

D`,

where the third equality follows from the fact that Q2τ+1(S) = S−X2τ+1(S)·1τ . The final equality follows
from the fact that Q2τ+1(S) = min{D2τ , I2τ (S)} = D2τ . Moreover, since Dt ≤ It for τ + 1 ≤ t ≤ 2τ , it
follows from Theorem 1 that

Q′τ+2(S) = Q′τ+3(S) = · · · = Q′2τ+1(S) = 0,

which implies (by Theorem 1) that I ′2τ+1(S) = 1−
∑2τ+1
`=τ+2Q

′
`(S) = 1, completing the proof of the claim.

Now, it follows from the claim that for 1 ≤ ` ≤ τ−1, Q2τ+1−`(S) = D2τ−` ∈ B̂`, and S−X2τ+1(S)·1τ =
D2τ ∈ B̂0. Thus, X2τ+1(S) ∈ B̂ and X ′2τ+1(S) ∈ N . Since the particular demand pattern used in our

proof has the probability of occurring of at least γ(S)τ ·
∏τ−1
i=0 P

[
D ∈ B̂i

]
, it follows that

P
[(
X2τ+1(S), X ′2τ+1(S)

)
∈ B̂ ×N

∣∣∣ (X1(S), X ′1(S)) = (x1, x
′
1)
]

≥ γ(S)τ ·
τ−1∏
i=0

P
[
D ∈ B̂i

]
= ν

(
B̂ ×N

)
,

which is the desired result. �

The pattern of demand used in the proof of Lemma A.1 has been carefully selected. In the first τ
periods, demands are small such that sufficiently large quantities of inventory become available on-hand
(as opposed to on-order) during the the second τ periods. The demands from period τ +1 to 2τ are small
enough that they do not cause any stock out, in order to ensure that the vector of outstanding orders
in period 2τ + 1 are defined in terms of these demands without censoring. The proof of Lemma A.1 is
based on recognizing a set of demand patterns such that if such a pattern occurs, then all the sample
paths will meet regardless of the state of the inventory vector before the demand pattern occurs. Such a
demand pattern is called the “coalescing pattern”, and has been used by Cooper and Tweedie [3] in the
context of simulating an inventory system with age-dependent perishability.

We examine the bound given in the statement of Lemma A.1. If S is so small such that γ(S) =
P [D ∈ [0, S/(τ + 1)]] = 0, then this bound is equal to 1, and it is not meaningful. Otherwise, it
converges to 0 exponentially with respect to t, and the convergence rate improves as γ(S) increases, i.e.,
the base-stock S increases.

Case II: Initial Inventory Position Exceeds S We now extend the convergence result to the
case where the initial inventory position may exceed S. We need the following lemma. Recall that F (·)
denote the distribution function of D and µ = E [D].

Lemma A.2 For any η ∈ < and t ≥ 1,

P

[
t∑
`=1

D` ≤ η

]
≤

{
F (η)t, if D has an infinite support
e4η/D · e−2tµ2/D

2

, if D ≤ D with probability one.

Proof. It suffices to consider η ≥ 0. If the demand has an infinite support, then

P

[
t∑
`=1

D` ≤ η

]
≤ P [D` ≤ η for each 1 ≤ ` ≤ t] ≤ F (η)t.
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If the demand is bounded above by D, then it follows from Chernoff-Hoeffding’s Inequality [6] that

P

[
t∑
`=1

D` ≤ η

]
= P

[
t∑
`=1

(D` − µ) ≤ η − tµ

]
≤ exp

{
−2 (η − tµ)2

tD
2

}
.

Since exp(·) is an increasing function, and

−2 (η − tµ)2

tD
2 =

−2η2 + 4ηtµ− 2t2µ2

tD
2 ≤ 4ηµ/D

2 − 2tµ2/D
2 ≤ 4η/D − 2tµ2/D

2
,

we obtain the required result. �

If the starting inventory position exceeds S, then under the order-up-to-S policy, the manager does
not place any order until the inventory position falls below S, and the Markov chain states are transient.
This result is shown in the following lemma. Recall µ = E [D].

Lemma A.3 Consider an order-up-to-S policy, where S ≥ 0. For any starting inventory vector x1 ∈ <τ+
and t ≥ τ ,

P [Xt(S) · 1τ > S | X1(S) = x1]

≤

{
F (x1 · 1τ − S)t−τ , if D has an infinite support
e4(x1·1τ−S)/D · e−2µ2(t−τ)/D2

, if D ≤ D with probability one.

Proof. Note that if the starting inventory position x1 · 1τ is at most S, then Xt(S) · 1τ ≤ S with
probability one for all t ≥ 1. Thus, the required result holds. We proceed by assuming otherwise, that is,
x1 · 1τ > S. By the description of the base-stock policy, max{Xt(S) · 1τ , S} ≤ max{X1(S) · 1τ , S} holds
for any t ≥ 1. Thus,

P[D1 +D2 + · · ·+Dt−τ < X1(S) · 1τ − S]
= P[Dτ +Dτ+1 + · · ·+Dt−1 < X1(S) · 1τ − S]
≥ P[Dτ +Dτ+1 + · · ·+Dt−1 < Xτ (S) · 1τ − S] ,

where the equality follows since demand distributions are independent and identically distributed. Also,
for t ≥ τ , observe that

Xt(S) · 1τ > S if and only if Xτ (S) · 1τ − (Dτ +Dτ+1 + · · ·+Dt−1) > S.

Therefore, combining the above results,

P
[
Xt(S) · 1τ > S

∣∣∣ X1(S) = x1

]
≤ P[D1 +D2 + · · ·+Dt−τ < x1 · 1τ − S] .

The desired result then follows immediately from Lemma A.2. �

We are now ready to prove Theorem 3. The proof of Theorem 3 combines Lemmas A.1 and A.3.

Proof. [Proof of Theorem 3] We will prove the result when the demand D has an infinite support.
An analogous argument is applicable when D is bounded. If x1 · 1τ ≤ S, the result follows directly from
Lemma A.1. Thus, we proceed by assuming that x1 · 1τ > S.

To facilitate our exposition, we fix the initial state (x1, x
′
1), and denote by E(x1,x′1)

[·] and P(x1,x′1)
[·]

expectation and probability that are conditioned on the event that (X1(S), X ′1(S)) = (x1, x
′
1). By

conditioning on the value of Xdt/2e(S) and X ′dt/2e(S) and applying the Markov property, it follows that,
for any measurable set B ⊆ <τ+ ×N τ ,

P(x1,x′1)

[(
Xt+1(S), X ′t+1(S)

)
∈ B

]
= E(x1,x′1)

[
P(x1,x′1)

[(
Xt+1(S), X ′t+1(S)

)
∈ B

∣∣∣ Xdt/2e(S), X ′dt/2e(S)
]]

= E(x1,x′1)

[
I
[
Xdt/2e(S) · 1τ ≤ S

]
· P
[(
Xt+1(S), X ′t+1(S)

)
∈ B

∣∣∣ Xdt/2e(S), X ′dt/2e(S)
] ]

+E(x1,x′1)

[
I
[
Xdt/2e(S) · 1τ > S

]
· P
[(
Xt+1(S), X ′t+1(S)

)
∈ B

∣∣∣ Xdt/2e(S), X ′dt/2e(S)
] ]

.
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Therefore, for any measurable set B ⊆ <τ+ ×N τ , we have

P(x1,x′1)

[(
Xt+1(S), X ′t+1(S)

)
∈ B

]
− P [(X∞(S), X ′∞(S)) ∈ B]

= E(x1,x′1)

[
I
[
Xdt/2e(S) · 1τ ≤ S

]
·∆(B)

]
+ E(x1,x′1)

[
I
[
Xdt/2e(S) · 1τ > S

]
·∆(B)

]
,

where

∆(B) = P
[(
Xt+1(S), X ′t+1(S)

)
∈ B

∣∣∣ Xdt/2e(S), X ′dt/2e(S)
]
− P [(X∞(S), X ′∞(S)) ∈ B] .

The random variable |∆(B)|, however, is bounded above almost surely by
δt−dt/2e+2

(
S,Xdt/2e(S), X ′dt/2e(S)

)
by the definition of δt−dt/2e+2(·), and is also bounded above

by 1. Therefore, we obtain∣∣P(x1,x′1)

[(
Xt+1(S), X ′t+1(S)

)
∈ B

]
− P [(X∞(S), X ′∞(S)) ∈ B]

∣∣
≤ E(x1,x′1)

[
I
[
Xdt/2e(S) · 1τ ≤ S

]
· δt−dt/2e+2

(
S,Xdt/2e(S), X ′dt/2e(S)

)]
+ P(x1,x′1)

[
Xdt/2e(S) · 1τ > S

]
.

We provide an upper bound on each term of the right-hand side of the above inequality. By Lemma A.1,
the first term satisfies

E(x1,x′1)

[
I
[
Xdt/2e(S) · 1τ ≤ S

]
· δt−dt/2e+2

(
S,Xdt/2e(S), X ′dt/2e(S)

)]
≤ P(x1,x′1)

[
Xdt/2e(S) · 1τ ≤ S

]
·
(
1− γ(S)2τ

)(t−dt/2e+1)/(2τ)

≤
(
1− γ(S)2τ

)(t−dt/2e+1)/(2τ)

≤
(
1− γ(S)2τ

)t/(4τ)
,

where the last inequality follows from the fact that t/(4τ) ≤ (t−dt/2e+1)/(2τ). Furthermore, by Lemma
A.3, the second term satisfies

P(x1,x′1)

[
Xdt/2e(S) · 1τ > S

]
≤ F (x1 · 1τ − S)dt/2e−τ ≤ F (x1 · 1τ − S)

t
2−τ .

Therefore, we obtain the required result from the definition of δt+1(S, x1, x
′
1). �

Appendix B. Proof of Theorem 5 We first establish the following lemma before we prove The-
orem 5.

Lemma B.1 Under the conditions of Theorem 5,

(i)
∣∣∣E [It(S)− d]+ − E [I∞(S)− d]+

∣∣∣ ≤ max {S, x1 · 1τ} · δt (S, x1, x
′
1), for any d.

(i)
∣∣∣d− E [It(S)]+ − E [d− I∞(S)]+

∣∣∣ ≤ max {S, x1 · 1τ} · δt (S, x1, x
′
1), for any d.

(iii) |E [I [D < It(S)] · I ′t(S)]− E [I [D < I∞(S)] · I ′∞(S)]| ≤ δt (S, x1, x
′
1) .

(iv) |E [I [D ≥ It(S)] · I ′t(S)]− E [I [D ≥ I∞(S)] · I ′∞(S)]| ≤ δt (S, x1, x
′
1) .

Proof. To prove part (i), note that by definition of order-up-to-S policy, both random variables
It(S) and I∞(S) are bounded above by max {S, x1 · 1τ} with probability one. Since they are nonnegative
random variables, it follows that, for any d ≥ 0,∣∣∣E [It(S)− d]+ − E [I∞(S)− d]+

∣∣∣ =

∣∣∣∣∣
∫ max{S,x1·1τ}

0

{P [It(S)− d > z]− P [I∞(S)− d > z]} dz

∣∣∣∣∣
≤

∫ max{S,x1·1τ}

0

|P [It(S) > z + d]− P [I∞(S) > z + d]| dz

≤
∫ max{S,x1·1τ}

0

δt (S, x1, x
′
1) dz

= max {S, x1 · 1τ} · δt (S, x1, x
′
1) ,
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where the second inequality follows from the definition of δ(S, x1, x
′
1), establishing (i). Similarly, (ii)

holds.

Now, we prove (iii). By Theorem 1, I ′t(S) is binary. It follows that I ′∞(S) is also binary with
probability one. (To see this, suppose there exists a measurable set B̂ ⊆ <+ \ {0, 1} such that
P[I ′∞(S) ∈ B̂] > 0. Then, let B =

{(
q−1, . . . , q−τ+1, i0, q

′
−1, . . . , q

′
−τ+1, i

′
0

)
∈ <τ+ ×N τ

∣∣ i′0 ∈ B̂}. Thus,
P [(X∞(S), X ′∞(S)) ∈ B] > 0, but P [(Xt(S), X ′t(S)) ∈ B] = 0 for each t ≥ 1. Therefore, δt (S, x1, x

′
1)

does not converge to 0 as t→∞, contradicting Theorem 3.)

For any value of D = d, let

B(d) =
{(
q−1, . . . , q−τ+1, i0, q

′
−1, . . . , q

′
−τ+1, i

′
0

)
∈ <τ+ ×N τ

∣∣ i0 > d, i′0 = 1
}
.

Thus, for any fixed value of D = d,

E [I [d < It(S)] · I ′t(S)]− E [I [d < I∞(S)] · I ′∞(S)]
= E [I [d < It(S), I ′t(S) = 1]]− E [I [d < I∞(S), I ′∞(S) = 1]]
= P [d < It(S), I ′t(S) = 1]− P [d < I∞(S), I ′∞(S) = 1]
= P [(Xt(S), X ′t(S)) ∈ B(d)]− P [(X∞(S), X ′∞(S)) ∈ B(d)] .

The absolute value of the above expression is bounded above by δt (S, x1, x
′
1). By taking the expectation

with respect to D, we establish (iii). Similarly, (iv) holds. �

Let us now prove Theorem 5.

Proof.

Note that by definition of C(·),

C (It(S)) = h · E
[
(It(S)−D)+

]
+ b · E

[
(D − It(S))+

]
C (I∞(S)) = h · E

[
(I∞(S)−D)+

]
+ b · E

[
(D − I∞(S))+

]
.

It follows from Lemma B.1 (i) and (ii) that

|C (It(S))− C (I∞(S))|

≤ h ·
∣∣∣E [It(S)−D]+ − E [I∞(S)−D]+

∣∣∣+ b ·
∣∣∣E [(D − It(S))+

]
− E

[
(D − I∞(S))+

] ∣∣∣
≤ (h+ b) ·max {S, x1 · 1τ} · δt (S, x1, x

′
1)

which proves the first inequality.

Now, from Section 3.3, recall
d

dS
C (It(S)) = h · E [I [D < It(S)] · I ′t(S)]− b · E [I [D ≥ It(S)] · I ′t(S)] , and

d

dS
C (I∞(S)) = h · E [I [D < I∞(S)] · I ′∞(S)]− b · E [I [D ≥ I∞(S)] · I ′∞(S)] .

Thus, ∣∣∣∣ ddSC (It(S))− d

dS
C (I∞(S))

∣∣∣∣
≤ h · |E [I [D < It(S)] · I ′t(S)]− E [I [D < I∞(S)] · I ′∞(S)]|

+ b · |E [I [D ≥ It(S)] · I ′t(S)]− E [I [D ≥ I∞(S)] · I ′∞(S)]|
≤ (h+ b) · δt (S, x1, x

′
1) .

where the first inequality above follows from Lemma B.1 (iii) and (iv). �

Appendix C. Proof of Lemma 8 and Lemma 9 We first prove Lemma 8.

Proof. The first inequality follows easily from ρ ∈ (0, 1) and dkβe ≥ kβ . For the second inequality,
observe

∑L
k=1 ρ

kβ ≤
∫ L
u=0

ρu
β

du. Using the substitution y = uβ , obtain∫ L

u=0

ρu
β

du =
1
β

∫ Lβ

y=0

y−(β−1)/βρydy
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=
1
β

∫ Lβ

y=0

y1/β−1 exp
(
−y

−1/ ln ρ

)
dy

=
Γ(1/β) · (−1/ln ρ)1/β

β
·
∫ Lβ

y=0

(−1/ln ρ)−1/β

Γ(1/β)
· y1/β−1 exp

(
−y

−1/ ln ρ

)
dy .

Here, the integral corresponds to the cumulative distribution of a gamma distribution at Lβ , where the
gamma distribution has the shape parameter 1/β and the scale parameter −1/ ln ρ. Since the cumulative
density is at most 1, it follows that the above expression is at most β−1 · Γ(1/β) · (−1/ln ρ)1/β . �

We now prove Lemma 9.

Proof. Observe that

N(k) =
k∑

k′=1

dk′βe ≥
k∑

k′=1

k′
β ≥

∫ k

u=0

uβdu =
uβ+1

β + 1

∣∣∣∣∣
k

0

=
kβ+1

β + 1
.

Therefore, N(k) ≥ kβ+1/(β + 1), which implyies part (i). From above, we also obtain

N(k) ≥ kβ+1

β + 1
=

k · kβ

β + 1
≥ k · (dkβe − 1)

β + 1
,

which implies that k · dkβe ≤ (β+ 1)N(k) +k. Thus, from part (i), we obtain k · dkβe ≤ (β+ 1) ·N(k) +
[(β + 1) ·N(k)]1/(β+1), which in turn implies part (ii).

For (iii), observe that dkβe ≤ kβ + 1. From part (i), it follows

dkβe ≤ 1 + kβ ≤ 1 + [(β + 1) ·N(k)]β/(β+1)
. (3)

Since N(k) ≥ 1, we obtain part (iii). To prove part (iv), consider f(u) = uα where α ∈ (0, 1). Since f is
a concave function,

(1 + u)α = f(1 + u) ≤ f(u) + 1 · f ′(u) = uα + α · uα−1 ≤ uα + 1

for u ≥ 1. Apply the above inequality to u = [(β + 1) ·N(k)]β/(β+1) ≥ 1, to obtain

(1 + [(β + 1) ·N(k)]β/(β+1))α ≤ [(β + 1) ·N(k)]αβ/(β+1) + 1 .

Then, (3) implies dkβeα ≤ 1 + [(β + 1) ·N(k)]αβ/(β+1), from which we obtain part (iv). �
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