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1. Introduction A fundamental challenge that faces all decision—makers is the need to cope with
an uncertain environment while trying to achieve some predetermined objectives. One certainly does
not need to go far to encounter such situations — for example, an office clerk trying to get to work
as fast as possible while avoiding possibly congested roads; a customer in the supermarket trying to
checkout while avoiding lines that may take a long time, and so on. From a decision—maker’s perspective,
it is then natural to ask whether one can determine the optimal decision given one’s assessment of the
uncertain environment. This is a motivating question in the field of stochastic optimization. To keep
our discussion focused, we shall consider the class of 2-stage stochastic programs with recourse [II, [5],
particularly those that arise in the context of combinatorial optimization problems. Roughly speaking,
in the 2—stage recourse model, one commits irrevocably to some initial (i.e. first stage) action x based
on one’s knowledge of the underlying probability distribution. The actions in the second stage cannot
be determined in advance, since they depend on the actions of the first stage as well as the uncertain
parameters of the problem. However, once those parameters are realized (according to the distribution),
a recourse (i.e. second stage) action r can be taken so that, together with the first—stage actions, all the
requirements of the problem are satisfied. Naturally, one would seek for the action (z,r) that minimizes
the “total cost”. However, since the outcome is random, such an objective can have many possible
interpretations. In this paper we shall consider the problem of risk minimization. Specifically, let X be
the set of permissible actions, and let (Q, %, P) be the underlying probability space. In accordance with
the convention in the literature, we assume that the probability distribution is specified via one of the
following models:

(a) Scenario Model: The set of scenarios S and their associated probabilities are explicitly given.
Hence, under this model, a “polynomial-time” algorithm is allowed to take time polynomial in
|S], the number of scenarios.
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(b) Black—Box Model: The distribution of the scenarios is given as a black box. An algorithm can
use this black box to draw independent samples from the distribution of scenarios.

Note that the scenario model is much more restrictive than the black-box model. For instance, the
scenario model is applicable only when the underlying probability distribution is discrete. Now, we are
interested in solving problems of the form:

min {g(z) = ¢(z) + 2(g(z,w))} (1)

where ¢ : X — R is a (deterministic) cost function, ¢ : X x @ — Ry is another cost function that
depends both on the decision € X and some uncertain parameter w € Q, and ® : L?(Q, %,P) — R
is some risk measure. We shall refer to Problem (Il) as a risk—adjusted 2—stage stochastic program with
recourse. Two typical examples of & are the expectation operator and the maz operator. The former
gives rise to a risk-neutral objective, while the latter gives rise to an extremely risk—averse objective.
Both of these risk measures have been studied in recent work on approximation algorithms for stochastic
combinatorial optimization problems (see, e.g., [7, 18| 13|, 10, 1Tl 23, B @ [§]). For the case where ® is
the expectation operator, it turns out that under the black—box model, one can obtain a near—optimal
solution to Problem () with high probability by the so—called Sample Average Approximation (SAA)
method [14]. Roughly speaking, the SAA method works as follows. Let w!,...,w”" be N i.i.d. samples
drawn from the underlying distribution, and consider the sampled problem:
1
3 X3

min ; (c(z) + q(z,w")) (2)
Under some mild assumptions, it has been shown [14] 21] that the optimal value of (2] is a good ap-
proximation to that of () with high probability, and that the number of samples N can be bounded.
Unfortunately, the bound on N depends on the maximum variance V' (over all € X) of the random
variables ¢(z,w), which need not be polynomially bounded by the input size. However, in a recent
breakthrough, Shmoys and Swamy [23] have been able to circumvent this problem for a large class of 2—
stage stochastic linear programs. Specifically, by bounding the relative factor by which the second—stage
actions are more expensive than the first-stage actions by a parameter A (called the inflation factor),
they are able to show that an adaptation of the ellipsoid method will yield an (1 + €)-approximation
with the number of samples (i.e. black—box accesses) bounded by a polynomial of the input size, A and
1/e. Subsequently, Charikar et al. [3] have established a similar but more general result using the SAA
method. We should mention, however, that both of these results assume that the objective function is
linear. Thus, in general, they do not apply to Problem ().

On another front, motivated by robustness concerns, Dhamdhere et al. [6] have considered the case
where ® is the max operator and developed approximation algorithms for various 2-stage stochastic
combinatorial optimization problems with recourse under that setting. Unfortunately, their techniques
only work under the more restrictive scenario modell. Recently, Feige et al. [8] have shown that such
a difficulty can be partially circumvented in the case of covering problems. Specifically, they developed
approximation algorithms for a class of 2-stage robust covering problems where the list of scenarios is
given implicitly by an upper bound on the number of active elements (i.e. those elements that need to
be covered) in any scenario. It should be noted, however, that the above robust optimization framework
has some limitations. First, it is clear that the approaches used by Dhamdhere et al. [6] and Feige et
al. [§] for specifying the underlying probability distribution are less general than the black—box model.
Secondly, since the worst—case scenario may occur with an exponentially small probability, it seems un-
likely that sampling techniques can be applied to efficiently solve the aforementioned robust optimization
problems. Finally, the extreme risk—averse nature of the robust optimization framework may lead to
overly conservative solutions. This may not be desirable in some applications.

From the above discussion, a natural question arises whether we can incorporate a certain degree of
robustness (possibly with some other risk measures ®) in the problem while still being able to solve it
in polynomial time under the black—box model. If so, can we also develop approximation algorithms for
some well-studied combinatorial optimization problems under the new robust setting?

Our Contribution. In this paper we answer both of the above questions in the affirmative. Using
techniques from the mathematical finance literature [19, 2], we provide a unified framework for treating

1n fact, since only the worst case matters, it is not even necessary to specify any probabilities in their framework.
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the aforementioned risk—adjusted stochastic optimization problems. Specifically, we use an one-parameter
family of functionals {¢q fo<a<1 to capture the degree of risk aversion, and we consider the problem:

min {c(z) + a(q(z,w))}

As we shall see, such a family arises naturally from a change of the underlying probability measure P
and possesses many nice properties. In particular, it includes ® = E as a special case and ® = max as a
limiting case. Thus, our framework provides a generalization of previous work. Moreover, our framework
works under the most general black—box model, and we show that as long as one does not insist on
considering the worst—case scenario, one can use sampling techniques to obtain near—optimal solutions
to the problems discussed above efficiently. Our sampling theorem and its analysis can be viewed as a
generalization of those by Charikar et al. [3]. Consequently, our result extends the class of problems that
can be efficiently treated by the SAA method. Finally, by combining with techniques developed in earlier
work [I8, [0, 23, [6], we obtain the first approximation algorithms for a large class of 2-stage stochastic
combinatorial optimization problems under the risk—adjusted setting.

The rest of the paper is organized as follows. In Section[2 we give some motivation for the risk measure
we use and introduce a powerful representation theorem due to Rockafellar and Uryasev [19] (see also
Ben—Tal and Teboulle [2]) concerning that measure. In Section [Bl we prove the main result of this paper,
namely a sampling theorem for a broad class of risk—adjusted 2—stage stochastic programs with recourse.
We then use the sampling theorem to design approximation algorithms for several risk—adjusted stochastic
combinatorial optimization problems in Section [l Finally, we close with some concluding remarks and
future directions in Section [l

2. Motivation: Risk Aversion as Change of Probability Measure We begin with the setup
and some notation. Let (2, %,P) be a probability space, and let L?(£2,%,P) be the Hilbert space of
square-integrable random variables with inner product (-,-) given by (U,V) = [, UV dP. We assume
that the second-stage cost function g satisfies the following:

(a) q(z,-) is measurable w.r.t. & for each z € X;

(b) g is continuous w.r.t. z; and

(¢) Elg(z,w)] < oo for each x € X.

To motivate our approach, let us investigate how the following problems capture risk:

min {c(x) + E[q(r, )]} 3)
;réi)r% {c(:v) + 216118 q(z, w)} (4)

Problem (8] is a standard stochastic optimization problem, in which a first-stage decision z* € X is
sought so that the sum of the first—stage cost c¢(x*) and the expected second—stage cost E[q(z*,w)] is
minimized. In particular, we do not consider any single scenario as particularly important, and hence
we simply weigh them by their respective probabilities. On the other hand, Problem (@) is a pessimist’s
version of the problem, in which one considers the worst—case second—stage cost over all scenarios. Thus,
for each z € X, we consider the scenario w, that gives the maximum second—-stage cost as most important,
and we put a weight of 1 on w, and 0 on all w # w,, regardless of what their respective probabilities are.
These observations suggest the following approach for capturing risk. For each x € X, let f, : Q@ — R
be a measurable weighing function such that:

fo(w)dP(w) =1
Q
Now, consider the problem:
min {c(z) + E[fo(w)a(z, )]} ()

Observe that Problem (@l captures both Problems [B]) and () as special cases. Indeed, if we set f, =1,
then we recover Problem (B). On the other hand, suppose that  is finite, with P(w) > 0 for all w € Q.
Consider a fixed z € X, and let w’ = argmax,eq ¢(x,w). Then, by setting f, (') = ﬁ and f(w) =0
for all w # W', we recover Problem ().
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From the above discussion, we see that one way of addressing risk is by changing the underlying
probability measure P using a weighing function. Indeed, the new probability measure is given by:

Q:(w) = fa(w)P(w) (6)

and we may write Ep [f,(w)q(x,w)] = Eqg, [¢(z,w)]. Alternatively, we can specify the probability measure
Q.. directly without using weighing functions. As long as the new measure Q, is absolutely continuous
w.r.t. P for each z € X (i.e. P(w) = 0 implies that Q4 (w) = 0), there will be a corresponding weighing
function f, given precisely by (B). Thus, in this context, we see that f, is simply the Radon—Nikodym
derivative of Q, w.r.t. P.

Note that in the above formulation, we are allowed to choose a different weighing function f, for each
x € X. Clearly, there are many possible choices for f,. However, our goal is to choose the f,’s so that
Problem () is computationally tractable. Towards that end, let us consider the following strategy. Let
a € ]0,1) be a given parameter (the risk aversion level), and define:

Qz{fEL%Q,%,]P’):OSf(w)Sﬁ for all w € €, (f,1>=1}

For each x € X, we take f, to be the optimal solution to the following optimization problem:
Ju = argmax Ep [f(w)q(z,w)] (7)

Note that such a f, always exists (i.e. the maximum is always attained), since the functional f —
(f,q(z,-)) is continuous, and the set Q is compact (in the weak*—topology) by the Banach—Alaoglu
theorem (see p. 120 of [15]). Intuitively, the function f, boosts the weights of those scenarios w that have
high second—stage costs ¢(z,w) by a factor of at most (1 — a)~!, and zeroes out the weights of those
scenarios that have low second—stage costs. Note also that when o = 0, we have f, =1; and as a /1,
fo tends to a delta function at the scenario w that has the highest cost ¢(x,w). Thus, the definition of
fo in ([@) captures the intuitive notion of risk as discussed earlier. Now, we define ¢, by:

Palq(z,w)) = Ep [fo(w)q(z, )]
where f, is given by ().

At this point, it may seem that we need to perform the non—trivial task of computing f, for many
x € X. However, it turns out that this can be circumvented by the following representation theorem of
Rockafellar and Uryasev [19] (see [2] for an interesting historical account of this result). Such a theorem
forms the basis of our sampling approach.

THEOREM 2.1 (Rockafellar and Uryasev [19], Ben-Tal and Teboulle [2]) Let oo € (0,1), and for x € X
and B € R, define:

1
-«

Fa(w,8) = B+ 7—F» [(g(,w) - 6)*]
Then, Fy(x,-) is finite and convez, with ¢, (q(z,w)) = ming Fy(z, 8). In particular, if q is convex w.r.t. ,
then @, is convex w.r.t. x as well. Indeed, F, is jointly convex in (z,3).

The power of the above representation theorem lies in the fact that it reduces the risk—adjusted stochastic
optimization problem:

min {e(2) + (g, )} ®)

to the well-studied problem of minimizing the expectation of a certain random function. Thus, it seems
plausible that the machinery developed for solving the latter can be applied to Problem (§]) as well.
Moreover, when ¢, q are convex w.r.t.  and X is convex, both Problem (8) and its Sample Average
Approximation (SAA) are convex optimization problems. This opens up the possibility of using powerful
convex optimization techniques [9] [I7] to design efficient algorithms for such problems. Before we discuss
the algorithmic aspects of Problem (8) and its SAA, however, let us first establish the approximation
quality of the SAA approach.
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3. Sampling Theorem for Risk—Adjusted Stochastic Optimization Problems In this section
we show that for any fixed « € [0,1), it suffices to have only a polynomial number of samples in order
for the Sample Average Approximation (SAA) method [I4] to yield a near—optimal solution to Problem
@®). Our result and analysis generalize those in [3]. To begin, let X be a finite set, and let us assume
that the functions ¢: X — R and ¢ : X x 2 — R satisfy the following properties:

(a) (Non—Negativity) The functions ¢ and g are non-negative for every first-stage action z € X
and every scenario w € ).

(b) (Empty First Stage) There exists a first—stage action ¢ € X such that ¢(¢) = 0 and ¢(z,w) <
q(¢,w) for every € X and w € Q.

(¢) (Bounded Inflation Factor) There exists a A > 1 such that ¢(¢,w) — q(z,w) < Ac(z) for every
re€ X and w € Q.

We remark that the assumptions above are the same as those in [3] and capture those considered in recent
work (see, e.g., [18 13| 10, 23]). Now, let go(x) = ¢(x) + va(g(z,w)). By Theorem [ZT] we have:

. _ . ’
miy Jo(r) = o 9oz, B)

where:
G, 0) = (@) + Beld (2, 8,0)]  and (@) = 0+ o (a(w0) — B

Let (z*,5*) € X x [0,00) be an exact minimizer of g/, and set Z* = g/, (¢*, 3*). It is easy to show that
8* €10, Z*]. Indeed, observe that:

15} if g(z,w) <
q/(x,ﬁ,w) = q(x,w) —af (9)

otherwise
11—«

Thus, if 8 > Z*, then we have ¢/(z, 8,w) > Z* for all x € X and w € Q.

We first establish the following lemma.

LEMMA 3.1 Let a € [0,1), and let ¢,q and ¢’ be as above.
(a) Let k> 1 be fized. For any x € X, w € Q and B € [0,kZ*], we have:
d(z,8,w) < ¢ (¢, 6,w) <max {q'(4,0,w),q (¢, kZ*,w)}

(b) Foranyzxze X,weQ and B € [0,00), we have:

>

o(x)
1—

q/((bv 67(“)) - q/(I,ﬁ,W) <

Q

PROOF. The first inequality in (a) follows directly from the empty first stage assumption. The second
inequality follows from equation (@) above. To establish (b), we compute:

1
¢(68.w) = d@pw) = 17— |(a6.w) =B = (glw,w) —B)"]
W) Za0) i < (o)
1—«
= ,w) — .
W if g(z,w) < B < q(p,w)
0 if g(z,w) < ¢(¢,w) < B
The desired result then follows from the bounded inflation factor assumption. a

Before we proceed further, let us first introduce a definition and state the version of the Hoeffding
bound that we will be using later.



6 So et al.: Risk Averse Stochastic Combinatorial Optimization
Mathematics of Operations Research xx(x), pp. xxx—xxx, ©200x INFORMS

DEFINITION 3.1 We say that x* € X is an exact (resp. y—approzimate) minimizer of a function f if we
have f(z*) < f(x) (resp. f(z*) <~f(z)) for allx € X.

LEMMA 3.2 (HOEFFDING BOUND; cF. [12]) Let Vi,...,V, be independent random variables with 0 <
Vi<1lfori=1,....,n. Set V.=>3"V;. Then, for any e >0, we have P (‘V —E[V] ‘ >en) < 2e=<m,

Here is our main sampling theorem.

THEOREM 3.1 Let ¢/ (z,8) = c¢(z) + Ep [¢'(z, B,w)], where ¢ and q' satisfy the assumptions above, and
a € [0,1) is the risk aversion level. Let € € (0,1/3] and § € (0,1/2) be given. Set:

Ao = A , nzmax{l @ }

1l-a "1«
and define: . N
Ja (x,8) = c(z) + B+ Ni-a) ; (q(z,w") — 5)+
to be the SAA of g,, where w!,... w" are N i.i.d. samples from the underlying distribution, and

A2 i 1
N=0 (7&(1—002 log (?'”5))

Let k> 1 be fized, and suppose that (z,3) € X x [0,kZ*] is an exact minimizer of G over the domain
X x [0,6Z%]. Then, with probability at least 1 — 26, the solution (Z,[) is an (1 + ©(ex))—-approrimate
minimizer of g,.

REMARKS.

(a) Note that (z,3) need not be a global minimizer of ¢V over X x [0,00), since such a global
minimizer may have 8 > kZ*. In other words, the optimal solutions to the problems:

. ~N
min x, 10
i G (z,5) (10)

and

. ~N
ptin | o (x, B) (11)
could be different. From a practitioner’s point of view, it may be easier to solve (I0) than (ITI),
because in many applications, it is difficult to estimate Z* without actually solving the problem.
However, it can be shown (see Theorem [B.2)) that by repeating the sampling sufficiently many
times, we can obtain a sample average approximation ¢ whose exact minimizers (z*, 3*) over
X x [0,00) satisfy 5* < (1 + €)Z* with high probability. Thus, we can still apply the theorem

even though we are solving Problem (I0).

(b) Note that this theorem does not follow from a direct application of [3 Theorem 1] for two
reasons. First, the domain of our optimization problem is X x [0,xZ*], which is compact but
not finite. However, this can be circumvented by using a suitably chosen grid on [0,kZ*]. A
second, and perhaps more serious, problem is that there may not exist a 5y € [0, Z*] such that
¢ (z,B,w) < ¢ (¢, By, w) for all z € X and w € Q. Such an assumption is crucial in the analysis
in [3]. On the other hand, we have the weaker statement of Lemma [3.1fa), and that turns out
to be sufficient for establishing our theorem.

PROOF. Let (z*, 3*) be an exact minimizer of g/,. Then, we have Z* = ¢/ (z*, 3*). Our proof consists
of three steps.
Step 1: Isolate the high—cost scenarios and bound their total probability mass.

We divide the scenarios into two classes based on a parameter M > 0 to be determined later. Specifically,
we say that a scenario w is high if ¢(¢,w) exceeds the threshold M (i.e. ¢(¢,w) > M); otherwise, we say
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that w is low. Let p = P(w : w is high), and define:

[év(xaﬁ) .Iﬁ,

hl (z, 6)

2 |

Z
Z (2, B,w

Then, it is clear that ¢ (z, 3) = c(x) + IN (z, 8) + ﬁg(:t, B). Similarly, we define:
I (LL' B) [q/(ﬂﬁ 67 ) 1{u.) is low}} = (1 _P) -Ep [q/($767w) |w is IOW]
h; ((E ﬁ Ep q/ :E 67 1{w is high}] =p- Ep [q/(x,ﬁ,w) |w is hlgh]

whence ¢/, (z,3) = c(x) + 1, (z, 8) + b, (z, 3). Now, we can bound p by choosing M appropriately:

LEMMA 3.3 Let M = e '\, Z*. Then, we have p < W

ProOOF. We compute:
Z* =gl (z*,6%) > Ll (2", %) =p-Ep|¢(z*, 5%, w) | w is high] (12)

By Lemma BIIb), we have ¢'(z*, 8*,w) > ¢'(¢, 3*,w) — Aac(z®) for all w € Q. Moreover, by equation
@), we have ¢'(¢, *,w) > M whenever w is a high scenario. Thus, it follows from ([I2]) that:

7" > p(M — Age(z™)) = p(M — Ao Z7)
Upon setting M = e\, Z*, we have Z* > pA\,Z*(e~! — 1), which implies the desired result. 0

Armed with Lemma [3.3] we can prove the following result:

LEMMA 3.4 Let Ny, be the number of high scenarios in the samples w',...,w™. Then, with probability
at least 1 — 6, we have Np/N < 2/,

PROOF. Define the indicator random variables X,..., Xy as follows:
1 if w? is high
X; =
0 otherwise

Then the random variables X1,..., Xy are i.i.d., and we have N; = Ef\il X; and Ep [N] = pN <
m Using Lemma 3.2 we have

eN 1 €2(1 — 2¢)’N
PIN, —pN > (2 < gLz
{h P >Aa( 1—6)}—‘”’( Aa<1—e>2>

Then, for € € (0,1/3], the above probability is at most § by our choice of N. Thus, with probability at

least 1 — §, we have:
N 1
Nj, —pN < ;_ (2 - )

o 1—c¢

< 2¢/)\,, as desired. O

or equivalently, N /N < 2¢e/\, +p — W

Step 2: Establish the quality of the scenario partition.

We claim that each of the following events occurs with probability at least 1 — §:

Aq {‘l’a(:zr,ﬁ) - ig(x,ﬁ)‘ < 2exkZ* for every (z,0) € X x [O,AZ*]}
Ay = {ﬁg(qﬁ, B) — b (x,8) < 2ec(x) for every (z,) € X x [0, oo)}

As = {hl(9,8) — hl(z,B) < 2ec(z) for every (z,8) € X x [0,00)}
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Indeed, observe that by Lemma BI(b) and Lemma B4 for any (z, ) € X x [0, 00), we have:
. . 1 » ; Np,
N N _ / 7 ’ 7
ha'(6.8) = ho'@.B) = D (068w —d(@B,0") < T¢ - Aac(r) < 2ec(x)
i: wt high
with probability at least 1 — ¢. Similarly, for any (z,5) € X x [0,00) and € € (0, 1/3], we have:

h/a(¢76) - h:l(xuﬁ) =D EIP’ [(ql(¢7ﬁ7w) - q'(x,ﬁ,w)) |w is hlgh} < : )\aC(CE) < 2€C($)

<
Aa(l =€)
with probability 1. Thus, we conclude that both events As and As occur with the required probability.

To prove that event A; occurs with probability at least 1— ¢, we need the following crucial observation:

LEMMA 3.5 For each © € X and w € Q, the function ¢ (x,-,w) is n—Lipschitz (i.e. |q’(:v,ﬁl,w) -
¢ (@, B2,0)| < 0l = Bl where y = max {1, 72 }.

PROOF. Let 81,82 > 0 be such that 81 < B2. Then, we have:
= [a—fh if g(x,w) < B

‘q/(xvﬁlvw)_q/(xaﬁQaw)’ S maX{17%}'(ﬁ2_ﬁl) 1f61 Sq(m,W) <ﬁ2

= 1 iya (B2 — B1) otherwise

This completes the proof. a

Now, we use a standard meshing argument to establish the desired result. Define S = {iexZ*/n : i =
0,1,...,[n/€l}, and consider a fixed (z, ) € X x S. Let W be the random variable given by:

q (z, B,w) if w is low
W =

0 otherwise

It follows that Ep[W] = I/, (z, ). Now, let Wi,..., Wy be N i.i.d. samples of W. Observe that + Ef\il W;
has the same distribution as [N (z, 3). By Lemma BI{a), we have:

Wi < max{q'(¢,0,w),q (¢, k2", w)}

fori=1,2,...,N. However, for a low scenario w, we have:
M
(6.0 _ Q(Qbaw) <
¢(¢,0,w) =T+ < 7
and

M —arkZ*
q/((bv K,Z*,W) S max {’{Z*v i}

(recall that M is the threshold for determining whether a scenario is high or not). Hence, by setting:

N
! _ * M - . / — .
M’ = max KZ,l— , Yi=W;/M', Y—E Y;
-«
i=1

we see that V; € [0,1] and Ep[Y] = L51/ (z, 3). Moreover, the random variable Y has the same distribution

as %ZA&V(I, B). It then follows from Lemma B2l and our choice of N that:

P(‘Y—ﬁz’ (:v,ﬁ)’ > M) < 2exp <—€4(1;°‘)2N> <9

M Aa 5 - XS]

(63

By applying the union bound over all (x,3) € X x S, it follows that:

|l (e, 8) = I (2, 0)| <

for all (z,3) € X x S with probability at least 1 — 4.
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Now, consider an arbitrary pair (z, ) € X x [0,xZ*]. Then, there exists a §’ € S such that |G — 5’| <
exZ*/2n. Since ¢'(x,-,w) is n-Lipschitz by Lemma Bl we have |¢'(z, 3,w) — ¢'(z, 5 ,w)| < exZ*/2.
It follows that |Il,(z, 8) — I/ (z,8')| < exZ*/2 and ’lN z,08) — IN(z, )| < enZ*/2. Using the triangle
inequality, we conclude that ‘lév z,B8) — Ul (z,8)| < 2exZ* whenever |lév z,B8) = U,(z, )| < exZ*. This
shows that event A; occurs with probability at least 1 — 6.

Step 3: Establish the approximation guarantee.

With probability at least 1 — 26, we may assume that all of the events A;, A; and As occur. Then, for
any (x,0) € X x [0,kZ*], we have:

U (z,08) <IN(x,3) + 2erxZ* (Event A7)
hi, (2, 8) < hi(¢,5) (Lemma BI)(a))
0 < h(z, B) + 2ec(x) — hY (6, B) (Event As)

Upon summing the above inequalities, we obtain:

9o, B) = 33 (2, 8) < 2ewZ" + 2ec(x) + hiy (¢, 8) = hiY (6, 5) (13)
Similarly, we have:
IN(x,B) <U\,(x,0) + 2exZ* (Event A,)
Y (z,8) < bl (6, ) (Lemma BI{2))
0 < hly(x, B) + 2ec(z) — by (o, B) (Event As)

from which it follows that:

95 (2, 8) = go(, ) < 2ewZ" + 2ec(x) + b (6, B) — iy (¢, 5) (14)
Now, let (Z,3) € X x [0,£Z*] be an exact minimizer of g} over [0, xZ*]. Upon instantiating (z,3) by
(z,8) in (I3) and by (z*, 5*) in ([I4) (recall that (z*, 8*) is an exact minimizer of ¢,) and summing, we
have:
g(/l(jvﬁ) - g;(x*a 6*) + g(]l\f(x*’ﬁ*) - gév(jvﬁ)
< AdenZ” + 2ec(z) + 2ec(a”) + o (0, B) — 1 (6, 8) + D (6.87) — i (6, 5)
Using Lemma [3.3] and Lemma [3.5], we bound:

Wl B) = a0 )] < ponlB = 5] < 5T 2 ~ <22

where the last inequality follows from the facts that o € [0,1), € € (0,1/2] and A > 1. Similarly, together
with Lemma [3.4] we have:

2 z7*
67’]/4, < 2exZ*

WY (0,57~ W (6, 5)] < Nl — B <
Since we have g (z, 3) < gY (z*, %), we conclude that:
(1 - 26)g,(z,8) 90(%, B) — 2ec(Z)

< gl(x*, B8%) + 2ec(x”) + ek Z* + denZ*

IN

A

< (14 10ex)Z*
It follows that g/ (7, 3) < (1 4+ ©(ex))Z* as desired. This completes the proof of Theorem 311 O

The next theorem shows that by repeating the sampling sufficiently many times, we can obtain a SAA
G whose exact minimizers (z*, 3*) over X x [0, 00) satisfy 3* < (1 + €)Z* with high probability.
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THEOREM 3.2 Let o € [0,1), e € (0,1/3] and 6 € (0,1/3) be given, and let

1 1 A2 n 1
=0 ((17)vsg). v =0 (aramhe(F 5 )

Consider a collection gt~ , ..., g&8N of independent SAAs of g!,, where each g;N uses N i.i.d. samples
of the scenarios. Fori=1,2,....k, let (z°,3%) be an evact minimizer of g5 over X x [0,00). Setv =
argmin; ¢4 (7%, 3%). Then, wzth probabzlzty at least 1 — 38, the solution (z°, V) satisfies 3° < (1 +¢)Z*
and is an (1 + ©(e))—minimizer of g.,.

PROOF. We set £ = 1+ ¢ in Theorem Bl Let us call g4V good if both events A; and Ay hold. Upon
following the computations in Step 2 of Theorem [B.I, we conclude that & is good with probability at
least 1 — 26/k. Tt follows that all the §5"’s are good with probability at least 1—26. Now, let (z*, %)
be an exact minimizer of g/,. Since Ep [¢5V (2%, 8%)] = g, (2*, 3*), we have, by Markov’s inequality, that:

P (35N (2%, 87) > (1+ gh(z™, B)) < — !

:1—7
1+e 1+1/e
fori=1,2,...,k. It follows that:

k
| 1
~1, N * * < / * * ) = - > - - z o
P (g5 (2%, 8) < (1 +€)go (™, 57) for somei=1,....k) > 1 (1 1+1/6) =i

Thus, with probability at least 1 — 34, there exists an index u such that g% is good, and that:
gt (@, 5%) < g (%, 87) < (L4 €)go(a™, 5%) = (L+€)Z*

It follows that 3* < (1+¢)Z*. In particular, we may apply Theorem 3.1 and conclude that ¢/, (z%, f*) <
(14 ©(€))Z*. This completes the proof. O

Note that in Theorems 3] and 321 we assume that the problem of minimizing §2 can be solved
exactly. In many cases of interest, however, we can only get an approximate minimizer of §Y. The
following theorem shows that we can still guarantee a near—optimal solution in this case.

THEOREM 3.3 Let a € [0,1), e € (0,1/3] and 6 € (0,1/5) be given. Let
E=0(1+e¢Hlogd™), kK =0((1+e Hlogks ™))

and set: 2
& n Lo
N=0|—>—1 - |X|-=-kk
(s (£ 5-4))

i=k,j=k'
Consider a collection { Gl } L of independent SAAs of gl,, where each g((l BN yses N iiod. sam-

i=1,j=
ples of the scenarios. Then, with probability at least 1 — 50, one can find a pair of indices (u,v) such that

(w,v),N

any y—approxrimate minimizer of gy is an (1 + ©(€))y—minimizer of g.,.

PROOF. As before, let (z*,3*) be an exact minimizer of g,. We call g5V good if events A; and
Az hold for both kK = 1 and k = (1 + €)y. Similar to the proof of Theorem B2l we conclude that with
probability at least 1 — 44§, we can find indices v, ..., v such that for all : = 1,2,..., k, we have:

(a) 35N g good; and

(b) oSN (@, 8%) < (1+ )2,

Note that (b) implies that if (z°,3°) is a ~-approximate minimizer of § g N  then we have

Glive), N(@,B') < (1 + €)yZ*. In particular, we have §* < (1 + ¢)yZ*. Now, by Markov’s inequality,
we have:

k
P (ﬁgjvvi)vN@,ﬁ) < (1+e€)hl(¢,B) for some i = 1,...,k) >1- <1 —1 —l—ll/e) >1-9

Thus, with probability at least 1 — 59, we have a collection { ((; i), N} of functions that satisfy (a) and

(b) above, and that there exists an index u such that:

Ao )N (g B) < (14 €)h!, (¢, B) (15)
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For simplicity of notation, let us write & for G5 N  Now, let v = arg min; 95N (x, B), where (2, 37)
is a y-approximate minimizer of i, for i = 1,2,...,k. Note that we have 3V < (1 + €)yZ*. Since we
have oV (z¥, BY) < g (x4, B4), it follows that:

BN @) < SV )+ T e ) < N 8+ (- g ) (10
Upon instantiating (z, 3) by (z?,3") in ([3) and by (z*,3*) in (4], we obtain:
9@, 5) = guN (@', BY) < 2e(1+ ey 2 + 2ec(x”) + ho (6, 6Y) — heN (9, 5°) (17)
g (@, 5) = gh(@*, 87) < 2e(14 ey Z" + 2ec(a”) + hiN (6, 57) = b (o, 67) (18)
Upon summing (I6), (I7) and (&) and following the computations in Step 3 of Theorem [B.1] we obtain:
9a(@", BY) = goa”, 8%) < 8e(1+ €)yZ" + 2ec(z”) + 2ec(z™) + (v — 1)ga™ (2", 57)
Now, upon instantiating (z, 8) by (z*, 5*) in (I4) and noting that 5* < Z*, we have:
gaN(@*,8%) < gh(a®,B%) + 2627 + 2ec(a”) + hiN (¢, 87) — hiy(¢, B7)
< ZF+2eZF + 2ec(x”) +e(1+2€) 2" (19)
< (1+66)z*

where () follows from the facts that h%N (¢, %) — bl (¢, 3*) < eh!,(¢, %) (see (IF)), and that on the
almost sure event Az, we have:

ho (0, 8%) < he (a7, 8%) 4 2ec(z™) < (1+2€)Z”
It follows that:
(1—26)g5, (%, 8) < (1 + 1ey) Z* + (v = Dgi™ (2%, 8%) < (14 20e)yZ*

whence:

V2" = (1+ ()2
as desired. O

As we shall see, Theorems and [3.3] play an important role in the design of efficient approximation
algorithms for various risk—adjusted stochastic combinatorial optimization problems under the black—box
model. In particular, they allow us to generalize the recent results in [23] 3] [6] to the risk—adjusted
setting.

4. Applications In this section we consider three stochastic combinatorial optimization problems
that are special cases of Problem () and develop approximation algorithms for them. As we shall see, a
key feature that is common to all these algorithms is locality, i.e. for each scenario A in the second stage,
given a fractional second—stage solution to scenario A, the algorithm will return an integral second—stage
solution to scenario A whose value is at most some factor times the value of the fractional solution. Such a
feature allows us to take advantage of the following easily—checked properties of ¢,: for random variables
71,7y € L*(Q, B,P) and any « € [0, 1), we have:

(a) (Positive Homogeneity) ¢, (cZ1) = cp(Z1) for any constant ¢ > 0.
(b) (Monotonicity) If Z; < Zs a.e., then vo(Z1) < @u(Z2).

In the sequel, we assume that the cost functions satisfy the properties in Section 3l In view of Theorems
and B3] we may also assume that for each of the problems under consideration, there is only a
polynomial number (say N) of scenarios, each occurring with probability 1/N.

4.1 Covering Problems Before we define the 2—stage stochastic set cover problem, let us recall the
setting of the usual (deterministic) set cover problem. We are given a universe U of elements e, ..., e,
and a collection S of subsets of U, say S = {S1,...,Sn}. Each set S € § has a non—negative weight
wg, and our goal is to choose a minimum—weight collection of sets from S so that every element in U
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belongs to some set in the collection. As is well-known (see, e.g., [26] Chapter 13]), the following is an
LP relaxation of the deterministic set cover problem:

minimize E WSTS

ses

subject to Z xg>1 VeeU (20)
S:e€sS
xg >0 vSeS

In the 2-stage stochastic set cover problem, we are again given a universe U of elements and a collection
S of subsets of U. However, the elements to be covered are not known in advance. Instead, there is a
probability distribution over scenarios, where each scenario specifies a subset A C U of elements to be
covered by the sets in §. For notational convenience, we shall use A C U to index a scenario in the
sequel. Now, each set S € S has a first-stage weight w, > 0 and a second-stage weight wl’ > 0. In the
first stage, one selects some of these sets and incurs their first—stage weights. Then, a scenario A C U is
drawn according to the underlying distribution. If the union of the sets chosen in the first stage cannot
cover A, then additional sets from S may be selected, and their second—stage weights will be incurred.
At the end, the union of the sets chosen in the first and second stage must cover A. Now, let « € [0,1)
be the risk aversion level. Then, we can formulate the risk-adjusted 2-stage stochastic set cover problem
as follows:

minimize Z whrs + valq(z, A)) subject to x5 € {0,1} VS €S (21)
Ses
where:
q(x,A) = minimize Z whras subject to ra € F(x, A)
Ses
.7:(,@,14) = {TA : Z ras>1-— Z xs Ve €A, ras € {0,1} VSES}
S:eeS S:eesS
If we index the scenarios by Aq, ..., Ax, then we can write Problem (21J) in the following equivalent form:
1 & !
minimize Z wgscs + 0+ m Z (Z wéITAi,S — 6)
Ses i=1 \SeS
subject to ng—i— ZrAi,Szl Veec A;,i=1,...,N
S:eeS S:eeS
zs € {0,1} vsesS
T‘Ai7s€{0,1} vseS, i=1,...,.N
B>0

Thus, by relaxing the binary constraints in the straightforward manner and reformulating, we obtain a
linear program that can be solved in polynomial time. The following theorem shows that such an LP
relaxation can be used to obtain a good approximation to the risk—adjusted 2-stage stochastic set cover
problem. It can be viewed as a generalization of a result by Shmoys and Swamy [23], Theorem 2.1] to the
risk—adjusted setting.

THEOREM 4.1 Suppose that we have a procedure that, for any instance of the deterministic set cover
problem, produces a feasible solution whose value is at most p times the optimal value of the LP relazation
(20). Then, we can convert any feasible solution (x,r) to the LP relazation of (Z1l) into an integral solution
whose value is at most 2p times the value of (x,r). In particular, we have a 2p-approximation algorithm
for the risk—-adjusted 2—stage stochastic set cover problem.

PROOF. Let (z,r) be a feasible solution to the LP relaxation of ([2I]). Observe that for each element
e € U, we either have ) g, cq2s > 1/20r ) ¢ .g7a,s > 1/2 for every scenario A that contains e. Now,

define:
1
Ez{eEU: E x52§}

S:e€S
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Then, {2zs}s is a fractional solution to the deterministic set cover problem whose universe is E. By
our assumption, we can convert the fractional solution into an integral solution {Zg}s whose value is at
most 2p Zses wéxs. Similarly, for each scenario A, {2r4 s}s is a fractional solution to the deterministic
set cover problem whose universe is A\E. Thus, we can convert the fractional solution into an integral
solution {74,5}s whose value is at most 2p 3" g g w§ ra,5. It follows that the value of the integral solution
(z,7) is given by:

Z wéfcs + PYa (Z wéITA,S>

Ses Ses

IN

2p Z whrs + 0o <2p Z wéITA)S> (22)

Ses Ses

2p [Z wETs + o <Z wéerﬁ)] (23)
ses ses

where [22)) (resp. (23)) follows from the monotonicity (resp. positive homogeneity) of ¢,. This completes
the proof. O

Together with known results in the literature, Theorem [ immediately yields new approximation
algorithms for various risk—adjusted 2—stage stochastic covering problems. For instance,

e using the standard LP rounding algorithm for vertex cover [I6] (see also [26, Chapter 14]),
we obtain a 4—approximation algorithm for the risk—adjusted 2—stage stochastic vertex cover
problem;

e using the greedy set cover algorithm of Chvatal [4] (see also [26l Chapter 13]), we obtain an
O(log n)—approximation algorithm for the risk—adjusted 2—stage stochastic set cover problem.

4.2 Facility Location Problem Recall that in the usual (deterministic) facility location problem,
we are given a set of facilities F' and a set of clients D. Each facility ¢ € F has an opening cost of f (i) > 0.
Each client in D must be assigned to an opened facility, and the cost of assigning client j € D to the
opened facility ¢ € F' is ¢;; > 0. We assume that the assignment costs {c;;}icr jep satisfy the triangle
inequality. The goal is then to open a set of facilities and assign the clients to those facilities so that the
total cost (i.e. the sum of opening and assignment costs) is minimized.

In the 2-stage stochastic facility location problem, the set of clients to be assigned is not known in
advance. Instead, we have scenarios Ai,..., Ay, where each scenario A specifies a subset D4 C D of
clients to be assigned. Moreover, the opening cost of a facility depends on the stage. Specifically, facility
1 € F has a first-stage opening cost of fo(i) > 0 and a scenario—dependent second-stage opening cost of
fa(i) > 0. Note that the assignment of clients to opened facilities occurs in the second stage, and hence
the assignment costs are relevant only in the second stage. We assume that the assignment costs are the
same across the scenarios, and that they satisfy the triangle inequality. Now, our goal is to minimize the
total opening and assignment costs w.r.t. the risk measure ¢, where « € [0,1) is the risk aversion level.
Specifically, we are interested in the following optimization problem:

N
1
minimize Z fold)z; + 5+ m (q(z, A) — ﬁ)+
i€F k=1
subject to z; € {0,1} Vie F
B=>0
where:
q(z,A) = minimize Z fa@)ra;+ Z Z CijYA,ij
iR i€F jeDa
subject to ZyAvij >1 Vi€ Dy
icF
Yaij S Tit+Ta VieF,jeDa
TAjis YA, ij 6{0,1} ViEF,jEDA

Here, the variable z; indicates whether the facility ¢« € F' is opened in the first stage, and the variable
r4,; indicates whether ¢ € F' is opened in the second stage when scenario A is realized. The variable y4 ;;
indicates whether client j € D is assigned to facility ¢« € F' when scenario A is realized.
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It is clear that the LP relaxation, which is obtained by replacing the binary constraints with non-

negativity constraints, can be solved in polynomial time. Let (55*77“217 cos Ty YAy Ya,) be an
optimal fractional solution to the LP relaxation. Upon applying the rounding algorithm of Shmoys et
al. [22], we can get a feasible integral solution (Z,74,,...,7Ay,JAss--->Pay) such that:

IN

> foli)z % > foli)ay

icF i€l

S Faliras £ 7Y falidr, vA

i€l i€l
_ 6 ,
> cisliai < 17 2 i VjeDa, A
i€EF 1€EF

for some t € (0,1). By choosing t = 1/4, we know that the first—stage cost given by the solution Z is at
most 8 ) . fo(i)x}. Moreover, for each scenario A, we have:

q(@, A) =Y fali)rai+ Y D cijjai; < 8q(a”, A)

i€EF i€F jeEDA

This, together with the monotonicity and positive homogeneity of ¢, implies the following theorem:

THEOREM 4.2 There exists an 8—approzimation algorithm for the risk—adjusted 2—stage stochastic facility
location problem.

4.3 Steiner Tree Problem Let G = (V, E) be an undirected graph with a given root vertex r € V.
Recall that in the usual (deterministic) Steiner tree problem, we are given a non—negative weight function
c¢: EF — Ry on the edges and a set of terminals S C V with r € S, and the goal is to find a minimum—
weight subgraph of G that spans S. In the 2—stage stochastic Steiner tree problem, the set of terminals
is known only in the second stage. Specifically, each scenario A in the second stage specifies a set of
terminals S4 C V. Without loss of generality, we assume that » € S4. Furthermore, each edge e € E has
a first-stage weight cg(e) > 0 and a scenario—dependent second-stage weight c4(e) > 0. Now, a solution
to the 2—stage stochastic Steiner tree problem consists of a set Ey of edges to be selected in the first
stage, and for each scenario A, a set F4 of edges to be selected in the second stage, so that the subgraph
induced by the edges in Ey U E4 spans S4. Our goal is to minimize the total weight of the subgraph
w.r.t. the risk measure @, where a € [0,1) is the risk aversion level. In other words, we are interested
in the following optimization problem:

minimize E co(e) + pa
ecEy

Z cA(e)l subject to Fyp U E4 spans S4 for every scenario A
eeEE

In the sequel, we shall write co(E') =3 g co(e) and ca(E') = 3 .y ca(e) for any E' C E and scenario
A. Now, using the properties of ¢, we can prove the following structural lemma, which generalizes the
corresponding results of Gupta et al. [II, Lemma 3.1] and Dhamdhere et al. [6l Lemma 4.1] to the
risk—adjusted setting.

LEMMA 4.1 The following hold for the risk—adjusted 2-stage stochastic Steiner tree problem.

(a) There exists a first-stage solution Eo C E and a subset A C {Ay,..., Ax} of scenarios such that
Ey is a minimal feasible solution to the scenarios in A.

(b) The first-stage solution Ey C E can be extended to a solution to the remaining scenarios in the
second stage such that the value of the final solution (w.r.t. p.) is at most twice the optimal.

Proor. Let Ej be the optimal integral first-stage solution, and let E; be the optimal integral
second—stage solution when scenario A; is realized, where ¢ = 1,..., N. Using the procedure in Lemma
4.1 of Dhamdhere et al. [], we can construct a first-stage solution Ey C E such that (i) co(Ep) < 2¢o(Ef),
and (ii) Ey is a minimal feasible solution to a subset of scenarios. Moreover, we also obtain second-stage
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solutions (Ey,..., Ex) such that ca, (E;) < 2ca,(E?) for i = 1,..., N. Thus, using the monotonicity and
positive homogeneity of ¢,, we conclude that:

c0(Eo) + a (ca(E) < 2[eolE§) + palea (ED)]
as desired. O

As in [I1I [6], the upshot of Lemma [T is that it implies the existence of a near—optimal solution
(EO, Ei,..., EN) to the risk—adjusted 2-stage stochastic Steiner tree problem in which the first—stage
solution Fy forms a tree containing the root vertex r. In particular, this implies that in the near—optimal
solution, the path from any terminal to the root will consist of a portion of second—stage edges, followed
by a portion of first—stage edges. Consequently, we can use the following flow—based integer programming
formulation to find that near—optimal solution (cf. [I1, [6]):

N +
minimize Z co(e)xe + 8+ ﬁ Z (Z ca,(€)ra,.e— ﬁ)

ecE i=1 \e€FE
subject to Z (Yo,e(t) +yae(t)) >1 VteSa, VA (24)

€€5+(t)

> Woe®) +yac®) = Y (Moelt) +yaclt) Vog {rth,Vte Sa VA (25)
e€dy(v) e€d_(v)

D we® < Y voel) Yod {rt},VteSs, VA (26)
e€d_(v) e€dq (v)
yO,e(t) < Te, yA,e(t> < TAe Vec E, YVt e SA, VA (27)
Te, TAes Yo,e(t), ya,e(t) € {0,1} Vee E,Vte Sa, VA (28)
B=>0

Here, the variable z. indicates whether the edge e € E is selected in the first stage, and the variable r4
indicates whether e € E is selected in the second stage when scenario A is realized. The variable yo .(t)
indicates whether the edge e € E is selected in the first stage as part of terminal ¢’s path to the root.
Similarly, for each terminal t € S4 in scenario A, the variable y4 .(t) indicates whether the edge e € E is
selected in the second stage as part of ¢’s path to the root. The variables yo (t) and ya () are directed
in the sense that for e = (u,v) € E, the variable y 4 (4. (t) denotes t’s flow along a second-stage edge in
the direction of u to v. Given these directed flow variables, we can define the cut sets d4(S) and d_(S5)
for any S C V as follows:

+(S) = {e=(u,v)eE:ue S vgS}
6-(8) = 6+(V\5)

We remark that the variables {z.}. and {ra.}a . are undirected, and the graph G itself remains undi-
rected.

Now, constraint (24]) ensures that there is one unit of flow leaving each terminal ¢ € S4 in each scenario
A, and constraint (28] imposes flow conservation at each non—terminal vertex v € V. As argued earlier,
in the near—optimal solution, the path from any terminal to the root will consist of a portion of second—
stage edges, followed by a portion of first—stage edges. Thus, at each non-terminal vertex v € V, the net
first—stage inflow corresponding to each terminal ¢ € S4 must be bounded above by the net first-stage
outflow. This is enforced by the constraint (26]). Finally, constraint (27)) ensures that edges with flow are
indeed paid for in the objective function.

By Lemma 1] the optimal value of the above integer program is at most twice the value of the
optimal solution to the risk-adjusted 2-stage stochastic Steiner tree problem. Now, by relaxing the
binary constraints ([28) in the straightforward manner, we obtain a linear program that can be solved in
polynomial time. Let (x*,77% ,...,7%,) be an optimal fractional solution to the LP relaxation. Using
the rounding algorithm of Gupta et al. [I1], we can get an integral solution (Fy, E1, ..., Ex) with the
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properties that (i) the subgraph induced by the edges in Ey U E; spans Sa, for i =1,..., N, and (ii) we
have:

co(Ep) < 20 Z co(e)x)
ecE

CAi(Ei)S2OZCAi(e>TZi,e Vi=1,...,N
ecE
Thus, upon using Lemma 1] and the monotonicity and positive homogeneity of ¢,, we obtain the
following theorem:

THEOREM 4.3 There exists a 40—approximation algorithm for the risk—adjusted 2—stage stochastic Steiner
tree problem.

5. Conclusion and Future Work In this paper we have motivated the use of a risk measure
to capture robustness in stochastic combinatorial optimization problems. By generalizing the sampling
theorem in [3], we have shown that the risk-adjusted objective can be efficiently treated by the SAA
method. Furthermore, we have exhibited approximation algorithms for various stochastic combinatorial
optimization problems under the risk-adjusted setting. Our work opens up several interesting directions
for future research. For instance, it would be interesting to develop approximation algorithms for other
stochastic combinatorial optimization problems under the risk—adjusted setting. Also, there are other
risk measures that can be used to capture robustness (see, e.g., [20]). Can theorems similar to those
established in this paper be proven for those risk measures? Finally, it would be worthwhile to study
multistage versions of the risk—adjusted stochastic optimization problems considered in this paper. One
immediate research problem would be to extend our sampling theorem to the multistage setting (cf. [25]).
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