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Abstract

We consider the problem of computing optimal policies oftérstate, finite-action Markov De-
cision Processesvipprs). A reduction to a continuum of constrainedps (CMDPS) is presented
such that the optimal policies for thesabDpPs constitute a path in a graph defined over the de-
terministic policies. This path contains, in particulam, @ptimal policy of the originambp. We
present an algorithm based on this new approach that finslpéth and thus an optimal policy. In
the general case this path might be exponentially long inbrrof states and actions. We prove
that the length of this path is polynomial if thwDP satisfies a coupling property. Thus we obtain a
strongly polynomial algorithm fomDPs that satisfy the coupling property. We prove that discrete
time versions of controlled//M/1 queues induceiDps that satisfy the coupling property. The
only previously known polynomial algorithm for controlled /A//1 queues in the expected aver-
age cost model is based on linear programming (and is not kriowe strongly polynomial). Our
algorithm works both for the discounted and expected aweragt models, and the running time
does not depend on the discount factor.

Keywords: Markov Decision Processvippr), Constrained Markov Decision ProcessvppP), Con-
trolled Queues, Linear Programmindy; /M /1 Queue, Optimization.

1 Introduction

The problem of designing a strongly polynomial algorithm fioding an optimal policy in a Markov
Decision Processv(DP) has been a long standing open problem [4]. The parametensnbp are:n -
the number of stateg, - the number of actions, and - the length of the input in bits. In the discounted
cost model there is an addition parametex 1 called the discount factor. Recently, Ye [26] presented
a strongly polynomial combinatorial algorithm for the disaeited cost model. This algorithm is based
on a predictor-corrector interior-point algorithm.

The well known algorithms for solvingiDps are: value iteration, policy iteration, and linear pro-
gramming [6, 9, 12, 18]. The running times of the value iteratnd policy iteration algorithms in the
discounted cost model are polynomiakink, B and1/(1 — 3) [12, 26]. The dependence ari(1 — 3)
implies that the algorithm is not strongly polynomial (e.gheng = 1 — 27"). The only nontrivial
upper bound on the number of iterations of the policy iteratlgorithm (for two actions) that does not
depend on the discount factorGg2" /n) [14].

In the expected average cost model, the only polynomiatifgo is based on a reduction discovered
nearly50 years ago to linear programming [5, 7, 13]. Linear prograngns not known to have strongly
polynomial algorithms [20]. Hence the problem of develgpanstrongly polynomial algorithm fonbps
remains open in the expected average cost model.
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Contribution.  We introduce a new approach for solvingpPps in the discounted cost model and ex-
pected average cost model. The approach is based on addartjfenial constraint with parameter

to obtain a constrainedDpP denoted bycMDP(«). We consider the whole range of values foso that

it also includes the value that an optimal policy of thep attains. Our approach is based on a new
structural lemma that proves that the set of optimal paicBcMDP(«) (for all values ofa) constitutes

a path in a graph over the deterministic policies. We preasraigorithm that finds all the deterministic
policies along the path. The optimal policy of thep is simply the min-cost policy along this path. We
can not rule out the possibility that this path may be exptiaky long, and hence the running time of
this algorithm might be exponential.

We overcome the problem of a long path by introducing a cogptiroperty. We prove that, if the
coupling property holds and if a specific artificial congtitais chosen, then the length of the path is
polynomial (i.e.,n - k). Hence the algorithm becomes strongly polynomial. We eritnat the coupling
property is satisfied in discrete versions of controlledtbifeath processes such as single server con-
trolled M /M /1 queues. Such controlled birth-death processes are amemgdst studied examples of
MDPS [25, 1, 10, 23].

When the coupling property holds, the running time of theodtgm is O(n?* - k2). This running
time holds both in the discounted cost model and the expestexdige cost model. This compares with
the running time of Ye’s algorithm which i9(n?* - k* - log(nk/(1 — 3))). Thus, in addition to coping
with the expected average cost model, we reduce the runinirggin the discounted cost model.

Organization. In Sec. 2 we briefly overview definitions relatedMmmps andcmbpps. In Sec. 3 and 4
we present two properties: uniqueness and coupling. Weegtat uniqueness can be obtained by ran-
domly perturbing the cost vector. We prove that the couptiraperty holds in discrete time controlled
M/M/1 queues. In Sec. 5 we study the structure of optimal policiesmMpP(«), for all values ofa.
Lemma 17 proves that these optimal policies are a path inghgoser the deterministic policies. In
Sec. 6 we present a new algorithm for computing an optimatyaf anmMbpP. In Sec. 7 we present

a strongly polynomial algorithm that works under the asstiompthat the coupling property holds. We
conclude with a discussion of the assumptions thatvbe is irreducible and satisfies the uniqueness

property.

2 Background

In this section we briefly overview the topics mbps, cmDPs, and their linear programming formula-
tions. See [1, 18, 19, 22, 23] for more material on these topic

2.1 Definition of MDP and CMDP.

An MDP is a4-tuple (X, U, P, c¢), whereX = {0,...,n— 1} is afinite set obtatesU = {0, ...,k —1}

is a finite set ofactions P : X2 x U — [0, 1] is atransition probability functionandc : X x U — R
is acost function The probability of the transition from stateto statey when the action: is chosen is
specified by the functio®® and denoted by’ (y|z,u). The cost associated with selecting the action
when in stater equalsc(z, u). We often refer to the cost function as a veatar R"*,

An MDP is a generalization of a Markov chain, where in a Markov chihgre is only one possible
action in each state. For simplicity, we assume that th&lrstate is fixed and we denote it by. In
fact, Assumption 1 implies that the initial state does ntgcifthe optimal policy. In the discounted cost
model, one could could assume any initial probability disttion over the states.

Time is discrete, and in each time unjtlet x; denote the random variable that equals the state at
timet. Similarly letu, denote the random variable that equals the action selettisdest. The sequence
of states{x, };°, defines an infinite random walk over the set of states



A (stationary) policy is a functionr : X x U — [0,1] such that}", ., m(z,u) = 1, for every
x € X. A policy controls the action selected in each state asvi@idhe probability of selecting action
w in statex equalsr(z,u). If for a statex and an action: the policy 7 satisfiesr(x,u) = 1, then we
say thatr is deterministicin statex. In this case we abuse notation and write:) = u. If there exists
an actionu such thatd < n(z,u) < 1, then we say that is randomizedn statex. A deterministic
policy is a policy that is deterministic in all states.

Definition 1 A policy 7 is strictly 1-randomizedif: (i) It is deterministic in all states but one state.
(i) Let = denote the state in whichis not deterministic. Then, the sgi : 7(x,u) > 0} contains only
two actions.

The goal is to find a policy that minimizes the c@str) defined below. We consider two cost
models: discounted cost and expected average cost, detimal b

Discounted cost model. In the discounted cost model, the parametes (0, 1) specifies the rate in
which future costs are reduced. Lt (x; = x,u; = u) denote the probability of the event = = and
u; = uw when the initial state equals and the (randomized) policy is The expected co#t] [c(z¢, u¢)]
equals

Etﬂ—[c(xtyut)] == Z C(:E,u) . Pﬂ—(xt =T, U = u)
zeX,uclU

The infinite horizon discounted expected c6%tr) is defined by

C(m) = (1=p)-> B Efclwr,up)). @
=0

Expected average cost model. In the expected average cost model, the ¢gst) is defined by

Tl prie Ty, Uy
C(ﬂ') éTh_fgo <zt:0 EtjE ( )]) )

It can be shown that this limit exists for every stationaryiqo[18].

()

Definition of CMDP. A constrainedvbp is an MDP with an additional input consisting of a cost
functiond : X x U — R and a parametef. The costD(x) of 7 is defined similarly ta”(7) in both
models based 0BT [d(x¢, ut)] = >, c x yep (2, w) P (¢ = z,u; = u). The additional input defines
the constraintD (7) = « that a feasible policy must satisfy. The optimization pesblinCMDP(«) is to
find a policyr that satisfies the constraift(r) = a and minimizes”' ().

Occupation measures. Every policyr induces a probability measure over the state-action p@ies.
call this probability measure theccupation measureorresponding tar and denote it byp,. The
definition of p,, depends on the cost model.

In the discounted cost modelz, u) = (1 — 3) - Sorgo Bt P™(zy = z,u; = u). Inthe expected

2 PT(@i=2,ui=0)

average cost modelz, u) = limp_. ( :
Given an occupation measugx,u) over X x U, the policy 7” induced byp is defined by
m(z,u) = p(x,u)/ S, plz,u'). (Note that ifS,, p(z,u') = 0, then one may define”(z, ) ar-
bitrarily as long asy_,, 7 (x, u) = 1.)
We refer to an occupation measyr@s deterministic (resp., strictlirrandomized) ifp = p, for a
deterministic (resp., strictly-randomized) policyr.

1By the general theory ofipps andcMDPs [18, 1], under our conditions there exists an optimal stetiy policy. Therefore
we restrict our attention to such policies.



Irreducibility Assumption.

Definition 2 (Irreducibility) An mMDP is irreducible if every deterministic policyr induces an irre-
ducible Markov chain.

Throughout the paper we assume the following.

Assumption 1 We assume that theDp is irreducible.

2.2 Linear Programming Formulation of cMDPs

In this section we formulateiDp and cMDP(«) as linear programs. We denote the linear program
corresponding tovDP (resp.,CMDP(«)) by LP (resp. LP(«)). The linear program.p is of the form
min{c’ - p | Ap = b, p > 0}. The linear programp(«) is of the formmin{c’ - p| A-p=b,d" -p =
a, p > 0} (the transpose of a row vectoiis denoted by’). The matrixA and the vectob in the linear
programs depend on the number of states, actions, tramgitababilities and the cost model.

Given anmpP (X, U, P, c¢), whereX = {0,1,...,n — 1} andU = {0,1,...,k — 1}, we represent
the cost functiore as a column vector ilR™* indexed by pairs inX x U, namely,c, , = c(x,u). We
begin with the LP formulation in the discounted cost model.

Discounted cost model. We define the matrix4 as follows. For each action € U, let P(u) denote
then x n square matrix whose entries are definedy.), , £ P(y|z,u). The matrix4 is ann x (nk)
matrix obtained by concatenating the square matrices3P(u), namely,A = [I — P(0)...1 —
BP(k—1)]. The column vectob € R is defined by» = (1—3,0...,0)”, where the zeroth coordinate
corresponds to the initial state.

The occupation measure is the variable of the linear progmamand is represented by the column
vectorp € R™ indexed by pairs inX x U. For a state-action pait, u), the componenp, ,, denotes
the value of the occupation measuie:, u).

Expected average cost model. In the expected average cost model, the matrig an(n + 1) x (nk)
matrix obtained by adding a roiconsisting of ones to the concatenation of the matrices”(u). The
vectorb is a unit vector, where the coordinate of the one corresptmdse row1 in A. Note that the
constraintl - p = 1 implies thatp(z, u) is a probability distribution.

The following theorem was proved for various cost models5n6], 7, 13]. A more recent textbook
proof appears in [1, Theorem 3.3].

Theorem 1 (equivalence of M DP(«) and LP(«))) cMDP(«) is feasible if and only itP(«) is fea-
sible. Moreover, ip* is an optimal solution ofP(«), thenr?" is an optimal policy oEMDP(«).

3 The Uniqueness Property

Consider aimDp and a fixed cost functiod(-).

Definition 3 (Uniqueness) An MDP satisfies theuniquenesgroperty if the following holds for every
a € R: If 7* is deterministic and optimal focMDP(a) and if 7 # #* is any stationary policy, then
either D(w) # aor C(m) > C(7*).

Unigueness has the following geometric interpretationngiaer the polytope generated by all the
deterministic occupation measure (i.e., the feasibletiwois of LP). Intersect this polytope with a hy-
perplaned” - p = o to obtain the feasible solution eP(«). If this intersection has an optimal solution
that is a deterministic occupation measure, then this @dtaolution is unique.
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The following proposition follows from the fact that evergdic feasible solution afP(«) is either
deterministic or strictlyl-randomized (Theorem 7).

Proposition 2 An MDP satisfies the uniqueness property if for evarg R, every deterministic policy
7, and every deterministic or strictlixrandomized policyr # 7*, if 7* is optimal forcMDP(«), then
7 is not optimal forcMDP(«).

Uniqueness is, in a sense, a generic property, that is, dshfol most values of the parameters. We
show this by adding a small random perturbation R™* to the cost vector to obtain the perturbed cost
vectorc. = c+e. Given any positivg; andyo, we choose the components of the veetcandomly and
independently so that the cost differs from that of the md$jmodel by at mosti», and the probability
that uniqueness does not hold is at most

Let C.(m) denote the cost of a policy with respect to the perturbed cost vector Define each
coordinates; of € by ¢; = s - 27 P2, wherepy, p2 are positive integers and is uniformly distributed
over the sef0,...,2P* —1}. The following lemma proves that a random perturbation s\&et require-
ments while increasing the length of each component of tisé @xctorc by O(n - log k + log m?m)
bits. This is done by choosing appropriate valuespfop,.

Lemma 3 If p; > log, ’% andps > logy(nk/us), then (1) the uniqueness property holds with proba-
bility at leastl — p;, and (2) for every policyr, |C(7) — Co(m)| < pa.

Proof: We prove part (1) as follows. Fix a realization of the veetornd suppose that does not obtain
uniqueness focMbP(«). This implies that there exists a deterministic polieythat is optimal with
respect to the perturbed castand is not unique. Lei, denote the occupation measure corresponding
to w. Sincep, is not the only optimal solution afP(«) (with respect to the perturbed cost vectgy,
there exists a basic feasible solution (highat is also optimal (with respect to the same perturbed cost
vectorc.). Since bothp,, andp are optimal, it follows that

Ce " Pr = Ce " P- 3

We conclude that the event that perturbatiorz ligils implies the existence of anand a paip,. # p
of occupation measures that satisfy: {L)p, = d - p = «, (2) p» is induced by a deterministic policy
7, (3) pis abfs ofLP(«), and (4)c. - pr = c. - p. Sinces is random, the quantities, =, p., p, which
depend orx, are random as well. By the proof of Theorem 7, every bfs apoads to a deterministic
or strictly 1-randomized policy.

Let R, denote the collection of all pair§;, p2) of bfs of LP(«) such thatp; corresponds to a
deterministic policy. By Theorem py corresponds either to a deterministic or to a strictly ld@mized
policy. Note thatR, does not depend anand is not a random set. L& = (J , R,.

We claim thati R| < k3". There arék™ deterministic policies, thus we need to consider at mast
values ofa. For eachy, there are at most” + (¥,) < k?" basic feasible solutions aP(«). Indeed,

a basic feasible solution is either deterministic or difidtrandomized. We now bound the number of
strictly 1-randomized basic feasible solutionsL®f(«). Every strictly1-randomized policy is a convex
combination of two deterministic policies that disagreairingle state (there are less tr'(éfﬁ) such
pairs). For each such pair of deterministic policies, atinooe convex combination induces a bfs of
LP(«). This follows from Proposition 14, since if every convex damation is optimal, then none is
an extreme point ofP(«). Therefore, the number of strictli-randomized basic feasible solutions is
bounded by(")), and|R| < k*" as claimed.

Consider a paifp1, p2) € R. Without loss of generalityp; andp, disagree in the first coordinate.
Letc! denote the first coordinate of and letc-* denote the vectar. with the first coordinate removed,
so thate. = (¢}, c1). We use identical notation for any vector. The equatign = c.p, implies that

1 -1

1.1 -1, - 1.1 -1
CcprtCe p =cCpytce -py
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Now

Plec pr=ce p2) =Plct (p1 —p3) =c=' - (p5' = p11)

< 2—1171

The last line follows from the fact that, given, p, ande 1, the event! - (p} —p3) = = (p; ' —p1'1))
occurs for at most one value of.
We now bound the probability that perturbation fails, namel. 3 holds. Sincép,,p) € R,

P(ce pr=ce-p) < P(ca - p1 = ¢ - po for some(py, p2) € R)
< Z P(ce - p1 = cc- p2)
(p17p2)eR
< k3ngP

We conclude that ip; > log, %’L then the probability of non uniqueness is bounded:py

Part (2) requires that the perturbation does not changedsieof the optimal policy by more than
ue. It suffices to show that, for every occupation meagutgc. — c) - p| < uso. Sincep is an occupation
measure, it follows tha{c. —c) - p| < Y. &; < n-k-27P2, Hence, part (2) holds ji; > log, (nk/pu2).
[ |
In the light of Lemma 3 we assume the following throughoutghper.

Assumption 2 TheMDP satisfies the uniqueness property.

4 The Coupling Property
Definition 4 Two deterministic policies ameeighborsf they disagree in a single state.

Definition 5 Given a deterministic policy and an actionj # = (i), the neighbor policyr* is defined
by:

. j if 2=
Voe X : 7i(z) & J " Z_
m(x) otherwise.

Thus two deterministic policies andr are neighborsif there exists a statéand an actiory such
thatr = 7%,

Suppose that for every statethere is a linear order ovdf. We denote the linear order ovér
corresponding to stateby <;. In addition, we consider the natural linear order over tbedf states
X ={0,...,n—1}.

The polynomial algorithm in Sec. 7 for finding an optimal jpylidepends on a property that we call
the coupling property defined below.

Definition 6 (coupling property) The coupling propertyholds with respect to the linear orders
{<;}iex if for every deterministic policy, every state, and every actior,

(i) <; 7 = Ve<iVueU:pr(z,u) <prii(x,u).

4.1 Examples of MDPs with The Coupling Property

In this section we present a “one dimensionslbP, and prove that it satisfies the coupling property
in the expected average cost model. We begin with a condrolt@mabsorbing random walk. We then
continue with a one dimensionsIbP that corresponds to a discrete time controlled M/M/1 queue.
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4.1.1 A controlled nonabsorbing random walk

A controlled nonabsorbing random walk is a simple examplammiDpP that satisfies the coupling
property. We formally describe it below.

ThemDP hasn states{0,...,n — 1}. Fori < n — 1 there is a transition from stateto state; + 1
with probability P(i + 1|i,j) € (0,1). Fori > 0 there is a transition from stateto state; — 1 with
probability P(: — 1|i,j) = 1 — P(i + 1|, j). Fori = 0 there is a self-loogP (00, j) = 1 — P(1]0, j),
and similarly, for state: — 1 there is a self-loofP?(n — 1jn — 1,j) =1 — P(n — 2|n — 1,0).

We assume that alP(i + 1|4, j) transition probabilities are positive. Hence ther is irreducible.

The linear orders<; are defined as follows for each state 1.

j'<ii" e P@—1)i.j") < P(i - 1i,5").

Namely, the transition from stateto its left neighbori — 1 is not more likely under the actioji than
under the actiorj”. The linear ordek; is defined arbitrarily for = 0.
The proof of the following lemma appears in Appendix B.

Lemma 4 The coupling property holds for a controlled nonabsorbiagadom walk.

4.1.2 A controlled discrete-time M/M/1 queue

We now consider a discrete-time version of a controlléd)/ /1 queue obtained from a continuous-time
controlledM /M /1 queue by a technique called uniformization (see AppendixAdiscrete controlled
M/M/1 queue is similar to the controlled nonabsorbing ramdwalk with the addition of self-loops in
each state. Formally, the set of state§(s...,n — 1}. Fori < n — 1 there is a transition from statdo
statei + 1 with probability P(i + 1|i, j) € (0,1). Fori > 0 there is a transition from staido statei — 1
with probability P(i — 1|7, 5) € (0,1). In addition, for every statg there is a self-loop with probability
P(ili, 7). Assumption 1 holds by the reduction from the continuous Kl/ueue.

We assume that the actions do not affect the arrival rates;ehthe probabilities (i + 1z, 5) do
not depend on the actigh Moreover, the reduction from an M/M/1 queue implies that,dll states,
the transitions from statéto statei + 1 have the same probability. We therefore denBte + 1|i, j)
simply byq¢. This means that the control only affects the service rated,hence only the probabilities
P(i—1Ji,7) and P(i]i, j) depend on the action

For each staté> 1, the linear ordek; in the discrete controlled M/M/1 queue is defined as follows:

j<ii" & P(i—1]i,j") < P(i - 1]i,5").

We prove the following lemma for the expected average costahd’ he same lemma can be proved if
the control affects the arrival rates and does not affecsémeice rate.
The proof of the following lemma appears in Appendix B.

Lemma 5 The coupling property holds for the controlled discretedi/M/1 queue.

5 Structure of Optimal Policies

5.1 Deterministic Policies

Notation. Given a policyr, let I; denote the set of pairg, j) for which 7 (i, ) > 0. These pairs
define columns of the matrid. Let B, denote the submatrix od consisting of the projection of to
the columns in/;.. Let p, denote the occupation measure corresponding to the polityet 5. denote
the vector obtained by projecting. to coordinates ;.

The next proposition proves that, under Assumption 1, thppimg = — p, between deterministic
policies and the corresponding occupation measure is@oed.
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Proposition 6 If 7 is a deterministic policy focMDP(«), then: (i) o is the unique solution of the
equationsB;; - p = b, and (ii) the rank ofB is n.

Proof: Part (ii) follows from part (i). We now prove part (i). By theefinition of I, if (z,u) & I,
thenp,(z,u) = 0. HenceA - p, = bif and only if B, - pr = b. In the model of discounted cost, the
matrix B, is invertible by Gersgorin’s Theorem [8], hence uniquerfedsws.

In the model of expected average cost, if thep satisfies the Assumption 1, then by the Peron-
Frobenius Theorem [8], the systeBy. - 5. = b has a unique solution, and the proposition follows.
[ |

5.2 Properties of Optimal Policies

The following theorem, proved for the various cost models[# 6, 7, 13], states that, EMDP(«)
is feasible, there always exists an optimal policy that ikezi deterministic or strictlyl-randomized.
The theorem is stated in terms of the occupation measurgtfieeoptimal solution of thep(«)). This
theorem and its proof are an extension of the theorem that ewepr has an optimal policy that is
deterministic.

Theorem 7 If LP(«) is feasible, then there exists an optimal solutidrof L P(«) that is deterministic
or strictly 1-randomized.

Proof: The rank of the constraints itP(«) is at mostn + 1. This implies that in every basic feasible
solution (bfs) there are at most+ 1 nonzero variables. Fix an optimal bfg. By Assumption 1,
> . P (x,u) > 0, for each state:. Hence, for each state, except perhaps for ong(z, u) is positive
for exactly one action, and the theorem follows. |

5.3 Policies Along An Edge

Notation. Let 7% andx! denote two deterministic policies that disagree in a sistpg¢e. Letr? =

q-m +(1—q)- 7% for0 < ¢ < 1. Note thatr? is a strictly1-randomized policy if) < ¢ < 1. We say
that a policyr agrees with the zerasf policy 7* if 7(z,u) = 0 wheneverr* (z, u) = 0.

Let A" denote the column ofl corresponding ta: € X andu € U. Complementary slackness
implies the following optimality condition.

Proposition 8 Let p and w denote feasible solutions oP(«) and the dual linear progranD L P, re-
spectively. The following two conditions are equivaledf { andw are optimal. (2) For everyg € X
andu € U, eitherp(x,u) = 0 or the dual constraint is tight (i.ew” - A%* = ¢(x,u)).

Proposition 9 ([28]) Let7* denote an optimal policy fotMDP(a*). Letm denote a policy that agrees
with the zeros of*. Then,r is an optimal policy focMDP(D(7)).

Proof: Let p* = pr« andp = p,. Note thatp*(z,u) = 0 implies thatp(z,u) = 0. Letw* denote a
dual optimal solution ofP(a*). By Proposition 8 it follows that, for everyr, u), eitherp*(xz,u) = 0
or the dual constraint is tight (i.e(w*)7 - A®* = c(x,u)). Note thatw* is also a feasible solution of
the DL P corresponding teMDP(D(7)). It follows thatp andw* also satisfy the optimality condition,
and hence, by Proposition 8js optimal, as required. [ |

Proposition 10 For every two policiest’ and 7/, such thatD(7') < D(x"), there exists a policyr
such thatD(7’) < D(w) < D(=").



Proof: Denoter? = ¢- 7" + (1 — q) - 7. DefineD(g) = D(x4). SinceD(r) is continuous inr [28],
it follows that D(q) is continuous iny. It follows that the image o (q) over the interval0, 1] contains
the interval[D(7"), D(x")]. ]

Proposition 9 and the proof of Proposition 10 imply the faling.

Corollary 11 ([28]) If 77" is an optimal policy forcMbP(a*) and ¢* < (0,1), then, for each
a € [infocg<t D(79),supg<, <1 D(7?)], there existsy, € [0,1] such thatr? is an optimal policy
for cMDP(«).

Consider the strictlyi-randomized policyr!/? = (70 + «')/2. ThenI_.,. is the set of pairgi, j)
for which '/ > 0.

Let B(d) denote thén + 1) x (n+ 1) square matrix obtained by first augmenting the matriwith
the rowd”, and then projecting the augmented matrix on the columis.in.

Lemma 12 The following three conditions are equivalent:
(i) D% = D(rY).

(i) B(d) is not of full rank.

(i) D(x?) = D(x%), for all ¢ € [0, 1].

Proof: (i) => (ii). Fix o = D(n"). The occupation measurgs andp,: (induced by the deterministic
policiest® andr!, respectively) are distinct feasible solutionsLef«). Hence, bothpo andp,: are
distinct solutions of the system of equatiaB$éd) - p = (i) This implies thatB(d) is not of full rank.
(i) => (iii). Both policies7¥ and~! induce occupation measures that are feasible solutions.of
By convexity, for every; € [0, 1], the occupation measurg. is also a feasible solution aP. SinceB
has rankn, if B(d) is not of full rank, the last row (corresponding to the coasttd” - p = o) depends
on the other rows. Hence, every occupation meagtinat is a feasible solution ef and whose support
is contained in_.,» has the same cost - p. This implies thatD(7?) = D(x°), for all ¢ € [0, 1], as
required. Finally, the implication (iii}=> (i) is trivial, and the lemma follows. |

Proposition 13 If D(7") # D(x!), thenC(79) is linear in D(74) over the rangey € [0, 1].

Proof: We consider two cases:

1. Suppose3(d) is of full rank. In the model of discounted cogt(d) is an(n+ 1) x (n+ 1) square
matrix, and thus invertible. Hencg,« = B(d)~! - (b, D(w?))’. Therefore,C(n9) = ¢ ppa =

é¢-B(d)~' - (b,D(r))", andC(79) is linear in D(77), as required. In the model of expected
average cost, one needs to remove first a dependent rowB@mto make it square and thus
invertible.

2. If B(d) is not of full rank, then by Lemma 12)(7°) = D(=!), a contradiction.

Proposition 14 Fix a value ofa. Consider the set of policiesg ;) = {m?:0 < ¢ < 1}. Exactly one
of the following cases holds:

1. Every policy inE(q ;) is an optimal policy oEMDP(«).
2. No policy inEq ; is an optimal policy oEMDP(«v).

3. Exactly one policy it ;) is an optimal policy oEMDP(«).
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Proof:

If B(d) is of full rank then by Proposition 13, either exactly oneippin E( ) is an optimal policy
of cMDP(«a) or no policy inE(q 1) is an optimal policy ocMDP(«v).

If B(d) is not of full rank, then by Lemma 12)(79) = D(x), for ¢ € [0, 1] and thus, either every
policy in E 1) is a feasible policy oEMDP(«v) or no policy inEq 1) is a feasible policy oEMDP(«).
By Proposition 9, if one policy irfq ;) is an optimal policy oicMDP(«), then every policy inF( ) is
optimal as well.

In the following lemmas, we abbreviate, and refer to a poticgs optimal if it is an optimal policy of
CMDP(D(7)).

Lemma 15 Letg* € (0,1). If 7¢" is an optimal strictlyl-randomized policy, then the functidn(q) =
D(m7) is strictly monotone in the interval € [0, 1].

Proof: The functionD(q) is continuous because the poligy is continuous ing, and D(r) is con-
tinuous inw. If D(q) is not strictly monotone, then there exigt < ¢” such thatD(¢') = D(q¢").
By Proposition 9 each of the policies’ and=?" is optimal forcMpP(«), wherea = D(¢'). By the
uniqueness assumption (Assumption 2), neittferor 74" is deterministic. Hence < ¢’ < ¢” < 1.

Let o/ (resp. p”") denote the occupation measure that corresponds to they pdli (resp. 7¢"). We
first prove thaty’ # p”. Assume thatr® and«! disagree in state, and, without loss of generality,
assume that%(s) = 0 andr!(s) = 1. By Assumption 1, both occupation measupégind o assign
positive probability to state. However, the ratiog’(s,0)/p'(s,1) # p”(s,0)/p" (s, 1).

On the other hand, since the supporpbéndy” are equal, it follows that the bases corresponding to

¢ andp” are the same. Hencg,andp” are different solutions of the systeR- p = ( 2 > , whereBB

is the basis matrix. We consider two cases3lis invertible, then we have immediately a contradiction.
If B is not invertible, then by Lemma 12)(7°) = D(x') = a. Therefore, bothr® and 7' are
feasible policies oEMDP(«). On the other hand, botk’ andr! are optimal, henc€'(7°) = C(r'), a
contradiction to the uniqueness assumption (Assumption 2) [ |

Lemma 16 Letn’ # =" denote two distinct optimal policies oMDP(«’) andcMDP(a), respectively.
If 7/ and 7 are either deterministic or strictly-randomized, then’ # «o”.

Proof: Assume for the sake of contradiction tHatr’) = D(=”). Recall that by definitiom’ = D(x")
anda” = D(n”). Since bothr’ and=” are optimal, it follows that(#") = C(x"). If either =’ or 7"
is deterministic, then the lemma follows from the uniquenassumption. If both policies are strictly
1-randomized, then let’ (resp. 7”’) be a convex combination of two deterministic policiesand 7
(resp. 7 and71). By Lemma 15,D increases along the edge betweghand ! (resp. 7% andr1).
Without loss of generalityD(7%) < D(x°) < D(x'). It follows that Assumption 2 is violated for
a = D(n9). [ |

5.4 Graph Representation

Definition 7 (policy graph) Thepolicy graphis a graphG = (V, E), whereV is the set of deterministic
policies, andF is the set of pairs of neighboring deterministic policieg.(ipolicies that disagree in
exactly one state).

In the case of two actions = 2, the policy graph is isomorphic to the dimensional hypercube.
In the general case, the policy graph is isomorphic to theeS&m product of. copies of the complete
graph overk vertices.
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We consider the edger’, 7') between neighboring deterministic policies as a represient of all
convex combinations? = (1 — ¢q) - 7 + ¢ - 7' of 7 and7!. In such a case we say thet belongsto
the edggr’, 7!).

LetI" denote the set of deterministic or stricilyrandomized feasible policies fambpr(«), for all
values ofa. LetI™ C I' denote the subset of optimal policieslinin light of Proposition 9]™* consists
of vertices (i.e. deterministic policies) and edges (i&tedministic and strictlyl-randomized policies).

Lemma 17 The sef™ is a path in the policy grapl-.

Proof: LetG* denote the subgraph 6fthat consists of the vertices and edgeEinThe proof consists
of the following stages: (1) Prove that® is connected. (2) Prove that the degree of every vertex*in
is at most two.

Denote the connected component&:6fby U, Us, . . ., Us. By continuity, the image of the function
D() over each connected component is an interval. Denote thgeim&l/; by I;. By Lemma 16, the
intervals Iy, ..., I, are pairwise disjoint. By Proposition 10 the union of theemtls/; U --- U I is
an interval. To avoid a contradiction, we conclude tfyatcontains only a single connected component.
HenceG* is connected, as required.

If the degree of a vertex is at least3, consider three edges ii* that are incident tar. By
Lemma 15,D() is strictly monotone as one travels along each of these edgietent tov. Moreover,
for at least two edges, the slope Df(w) as one approacheshas the same sign, namely, monotone
increasing (or decreasing). Two such edgeF-ircontain two optimal policies’ # 7’ € T'* such that
D(x") = D(="). This contradicts Lemma 16, and the lemma follows. [ |

The next corollary follows from Lemma 16 and Lemma 17.

Corollary 18 D(m) is strictly monotone along the patti.

6 A General Algorithm

In this section we present a general algorithm for compudipgmal policies of irreducible1bps that
satisfy the uniqueness property. Although we can not prbeaé the running time of this algorithm is
polynomial in general, in the next section we prove stroniympamiality of a variant when the coupling
property holds.

6.1 Geometric Interpretation of The Algorithm

The algorithm is based on Lemma 17 that states that th&*sef optimal deterministic and strictly
1-randomized policies form a path in the policy graph. Coesithe polytopeP generated by the
deterministic occupation measures. We introduce a cosorveéc Let P, denote the intersection a?
with the hyperplane” - p = a. Let ami, (resp.,cumax) denote the minimum (resp., maximum) value of
« for which P, is not empty. For each € [amin, max], the polytopeP,, contains a single occupation
measure(«a) that corresponds to a poliey(a) € I'*.

The algorithm assigns a zero-one cost vect@o thata,,;, = 0 andama.x = 1. Moreover, it is
trivial to find the optimal deterministic policy such thatD(w) = 0. Given a prefix ofl™* ending in
a deterministic policyr, the algorithm finds the next deterministic policyalongI™ as follows. First,
note thatr must be a neighbor af. Namely, there exists a statend an actiory such thatr = 7%/,
This limits the number of candidates foto nk. Second, by Coro. 18)(7) > D(x). Thus if we depict
the neighboring policies on @, D)-plane (see Fig. 1), thenis simply the policy with the smallest
slope.

The algorithm ends when all neighborsof = satisfy D(7) < D(x). Thus, the algorithm has
reached the last policy alorg'.

11



C(n) 1

T T T T D)

D(r) D(73) D(m1) D(r2)

Figure 1. Suppose a prefix @ ends in a deterministic policy. The algorithm has to compute the
next policy alongl™ among the neighboring policies, 72, 73. The costs”(-) and D(-) of each policy
are depicted in the graph. The algorithm chooses the palisynce the segment betweeb (7), C(r))
and(D(r3),C(73)) has the smallest slope.

6.2 Notation

Given a deterministic policyr, we define the gradient; ; as follows:

o & C) - C(m)

¥ " D) = Dir) @

The parameters in the definition 8f; ; can be easily computed as follows. Recall tBatdenotes
the projection of the columns of the mattikon the pairs in/; (i.e., the basis matrix corresponding to
the basic feasible solution,). For a vectorp,, the projection to the coordinates In is denoted by
pr. Sincer is a deterministic policy, by Proposition 6 the correspogdoccupation measuyg. when
projected tal; is the unique solution foB; - p, = b. HenceC(n) = ¢, - pr, D(7) = dy - pr, and the
analogous computations hold f6Y(7%7) and D (7).

6.3 Algorithm Description

The algorithm adds a new artificial cost functidr{r) specified by a cost vectare {0,1}™*. Thempp
with the constraintD(7) = « is denoted bycMDP(«). In the linear programming formulationp(«) is
the linear program obtained by adding the constrdint p = « to LP. The algorithm computes the set
'™ of optimal (deterministic or strictlyt-randomized) policies focMDP(«), for every value ofx. This
set is found by computing*. Finally, an optimal policy for theiDP is chosen as a deterministic policy
in I'* with minimum costC'(+).

A listing of the algorithm appears as Algorithm 1. In line hetalgorithm assigns zero-one costs
d(i, 7). For each state, one (arbitrary) action is assigned zetoaod the other actions are assigned unit
cost. In line 2, the initial policy is set. This policy simpthooses the zero cost action for each state.
This initial policy = achieves the minimum value f@» (7). The pathp begins with the initial policy as
its starting point.

The algorithm builds the path by adding a new edge in each iteration of the while-loop. Hse¢ |
policy (vertex) added t@ is denoted byr. In each iteration of the while-loop the pgths augmented
by a new edgér, 7). In line 4, this new edgér, 7/) is chosen such thdt, j) = argmin{V, ; |
V(i,4) such thatD(7/) > D(x)}. In line 5, the new edge is added to the pathin line 6, the new
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endpoint ofp is updated. In lines 7-8, the minimum cost policy algnig updated, if necessary. In line
11, a minimum cost policy is returned.

Algorithm 1 A heuristic for finding an optimal policy for th®bpP min{c-p | A- p = b}. We assume
that themDP is irreducible and satisfies the uniqueness property.

1: Define
0 ifj=0
d .’ . é
(0,9) {1 otherwise.

2: Initialize:

m—(0,...,0) {7 chooses the “zero” action in each state

opt«— 7 {best policy so fay
p— {m} {pathyp starts withr}

3: while exists (i,7) such that D(7%7) > D(x) do

4 (i,7) < argmin{V,; | V(i, j) such thatD(7*’) > D(m)}
5. add the edgér, 7%/) top
6
7
8

T i {r"/ becomes the current endpoint;of
if C(7%7) < C(opt) then
: opt «— 77 {optis the best policy so far
9. endif
10: end while

11: return opt

6.4 Correctness

We now prove that Algorithm 1 finds an optimal policy. To proves we prove that the algorithm
computed™, the path of optimal solutions df P(«) (for all values ofa) in the policy graph.

Theorem 19 The pathp computed by the algorithm 1 equdls.

Proof: We prove by induction on the number of iterations of the wiilep thatp is a prefix ofI'*
in each iteration. Since the costéz, u) are in{0, 1}, it follows that for every policyr, D(7) > 0.
Hence,L P(«) is feasible only ifoe > 0. Clearly the initial policyry = (0,...,0) satisfiesD(mg) = 0.
We claim that the initial policy is the only policy with)(7) = 0. Consider an optimal policy # .
Consider a state and actionu for which 7(z,u) > 0 while my(xz,u) = 0. By the Assumption 1,
pr(x,u) > 0. Sinced(z,u) = 1, it follows that D(w) > 0. We conclude that the initial policy is
optimal forae = 0. Moreover, the initial policy is the endpoint of the pdth with smallest cosD(-),
and the induction basis holds.

The induction step is proved as follows. Lzetlenote the last policy added to Let 7%/ denote the
next policy added te, namely, (i, 7) « argmin{V,; | ¥(i, ) such thatD(z*/) > D(r)}. Letx®l
denote the next policy alorig” after7. We wish to prove thati, j) = (7, 7).

Assume for the sake of contradiction thdtj) # (i,7). By Coro. 18,D(r*)) > D(x). Let
D’ = min{D(7"7), D(z%7)}. Since the cosD(r) is a continuous function of the policy, the costD’
is obtained in two policiest; along the edge betweenandz?/ andm, along the edge betweenand
7. For exampley; = 7%/ andm, is a convex combination af and 7. The policy, is also an
optimal policy. However, by Proposition 13 and the defimitaf (4, 5), it follows thatC'(7m1) < C(m9).
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This contradicts the optimality ofs (if C(71) < C(m2)) or the uniqueness of the solution (f(7;) =
C(m2)). Hence((i, j) = (2, ), which completes the induction step.

We now prove that when the algorithm terminategannot be augmented anymore, and hepce,
equalsl™, as required. Indeed, if is a proper prefix of™*, then the cosD(-) increases fromr to the
next deterministic policy if™*. In this case, the algorithm would not have terminated yetbse the
set{(i,j) : D(z"7) > D(m)} is not empty. [ |

Corollary 20 Algorithm 1 computes an optimal policy of thi®p.

Proof: TheMDP has an optimal policyr™ that is deterministic. This policy is also irt*. By Theo-
rem 19,7 appears in the sequence of policies scanned by the algorithm |
Let |T*| denote the number of deterministic policiedih

Proposition 21 The complexity of Algorithm 1 Q(|T*| - n3 - k).

Proof:. In each deterministic policy (vertex aloig), the algorithm checks at most- £ options for
the next policy. The running time of each check is dominatgdnlatrix inversion. Matrix inversion is
applied to a basis matrix that is obtained from a adjacentspaamely, a change in a single column.
By the Sherman-Morrison Formula [16], the inverse matrin ba computed in timé&(n?). Thus, the
complexity of the algorithm i©)(|T*| - n? - k), as required. |

7 A Strongly Polynomial Algorithm: when coupling property h olds

7.1 Notation

For every deterministic policy, let puin(7) = min{p.(i,7(i)) : i € X}. Similarly, ppax(7) =
max{p,(i,7(7)) : 1 € X}. Let ppin £ min, Pmin(T) @Nd ppax £ max, Pmax(7T), Wwhere the minimum
and maximum are taken only over deterministic policies.ulsggtion 1 implies thap,,;, > 0.

The algorithm uses a parameterthat satisfies

1 + pmax ) (5)
Pmin

There is no need to precisely compute the right hand side obEigstead we use an upper bound
based on Assumption 1 as follows. Obviougly.x < 1. In the expected average cost model, we lower
boundpmin BY pmin = P, Wherepyiy is the minimum nonzero transition probability in thi®p. This
lower bound holds simply by considering all paths of lengtiith nonzero transition probabilities to a
given state. In the discounted cost model, we lower bqund by pmin = (1 — 3) - 71 -pg;nl. The
algorithm uses the following value fdt:

Rémax{~2 nk} ©6)

Pmin

R >

7.2 Algorithm Description

A listing of the algorithm appears as Algorithm 2. The algfum works under the additional assumption
that the coupling property holds. The algorithm is a vaoiatdf Algorithm 1. The only difference is in
the definition of the new artificial cost constraiit - p = a. This definition now relies on the linear
orders<; and the parameteR. The costsi(i, j) are exponential functions éfand;.

In line 1, the algorithm sorts the actions in each state, gmeomputes the linear orders; over
U for each stateé € X. In line 2, costsd(i,j) are assigned to each pairj) € X x U. In line 3,
the initial policy is set. This policy simply chooses thetfastion (according to the ordet;) for each
states. This initial policy = achieves the minimum value f@» (7). The remaining lines are identical to
corresponding lines in Algorithm 1.
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Algorithm 2 A strongly polynomial algorithm for finding an optimal pojidor the MDP min{c - p |
A - p = b}. We assume that theDp is irreducible and satisfies both the uniqueness and cayplin
properties.
1: Sort the actions for each statee X according to the order;. Letj{ <; ji <; --- <; j¢_, denote
the actions sorted according to the order

2: Defined(i, ji) = RF-(n=0+L,
3: Initialize:
e (50, .., 507 {m chooses the “first” action in each state
opt— 7 {best policy so fay
4: while exists (i, 7) such that D(x%7) > D(m) do
5 (i,7) « argmin{V;; | V(i, j) such thatD(7"’) > D(m)}
6: e I
7. if C(7%) < C(opt) then
8: opt «— 77 {optis the best policy so far
9: endif
10: end while

11: return opt

7.3 Correctness

The following lemma is used both for proving the correctrasd running time of Algorithm 2. Consider
two neighboring deterministic policies andr. By Lemma 15, it follows that the cog®(-) is strictly
monotone along the edge in the policy graph freno 7. The following lemma determines whether
D() increases or decreases along the e@dge’). The lemma relies on both Assumption 1 and the
coupling assumption.

For two actionsj; andjs we say thatj; <; jo if j1 <; jo andj; # jo.

Lemma 22 Letw # 7 denote two neighboring deterministic policies, ie= 7. Then,x(i) <; 7(i)
if and only if D(7) < D(7).

Proof: We first prove thatr(i) <; (i) implies thatD(7) < D(r). The proof is based on a coupling
argument and the exponential growthddf, «.) asz is closer to the initial state. By definition,

D() = > d@u) - (pr(z,u) — prl@, ). 7

zeX,uclU

We patrtition this difference into three parts:

6 = ZZd (z,u) - (pr(z,u) — pr(x,u)).

<t uelU
25:2{:‘i$ u pT z u) pw(x>u)»
>t uelU
03 =) " d(i,u) - (priu) — pr(i,w)).
uelU

Sincen (i) <; 7(¢), the coupling property states that(z, ) < p,(x,u), for everyz < i and every
u € U. Thereforep; > 0.
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We now boundi, as follows. Note that, for every > i andu € U, it follows thatd(z,u) <
RF(=)-1 Hence,

522> 30N d(au) - (0~ pa(au)

z>1 uelU
2 —Pmax ° (n — 'l) . k; . Rk'(n_i)_l
> _Rk-(n—i)’

where the last line follows frormpy,.x < 1 andR > kn > k- (n — 7).

We now boundj; as follows. Denote the index af(i) and (i) in the order<; as/(x) and/(r),
respectively. The assumptian(i) <; 7(:) implies that0 < ¢(7) < ¢(7) < k. Sincer andr are
deterministic it follows that

53 = d(%]) ' pT(iaj) - d(% 71-(Z)) : pw(@ ﬂ-(l))
Z sz-(n—i) : (pmin : RZ(T) — Pmax ° Re(ﬂ))
where the last line follows fron > (1 + pmax)/pmin @nd4(7) > £(x) + 1. Note that the second line
requires thap, (i, j) > 0. Indeed, Assumption 1 implies that(, j) > 0.
It follows thatd; + ds + d3 > 0 — RF (=) 4 Rk(n—0) — 0 as required.

The converse direction is proved as follows. By contrapmsitD (7) < D(7) implies thatr (i) <;
7(7). We rule out equality (namely;(i) = 7(i)) sincer # 7 andr = 7. |

Corollary 23 The initial policyry = (j3, ..., &) in Algorithm 2 is an optimal policy afMDP(ay) for
ag = D(my). Moreover,L P(«) is not feasible fory < «y.

Proof: Consider the policy- of minimum costD(-) in I'*. By Lemma 15, is a deterministic policy.
Suppose, for the sake of contradiction, that (. Leti denote a state for whichy (i) # 7(i). By the
definition of g it follows thatmo (i) <; 7(i). Letw = 7%™(), Note thatr andr satisfy the premises of
Lemma 22. Hencé®(w) < D(7), contradicting the minimality oD (7). It follows that is the unique
policy in I"* whose cost i9 (), as required. [ |

Theorem 24 Algorithm 2 returns an optimal deterministic policymbp if the coupling property holds.

Proof: The proof follows the proof of Theorem 19 and Coro. 20 . Theyanbdification, based on
Coro. 23, is the justification that the initial policy is andgoint of ['* . [ |

7.4 Running Time
Proposition 25 If the coupling property holds, thei™*| < n - k.

Proof: By Coro. 18, the cosD(-) increases along*. Letr immediately precede alongI'™*. Suppose
T =%, By Lemma 2257(i) <; 7(i). This implies that the length of the path is boundechbyc. W

Corollary 26 The complexity of Algorithm 2 i9(k? - n*).

Proof: Follows directly from Propositions 21 and 25. [ |
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8 Discussion

We presented an algorithm for computing an optimal policawfirreduciblembp. A variation of this
algorithm runs in strongly polynomial time if theDpP satisfies the coupling property, e.g., a controlled
discrete time M/M/1 queue. The algorithm is based on tworagsions: irreducibility and uniqueness.

The uniqueness property is shown in Lemma 3 to hold with higibability if the cost function is
randomly perturbed. Therefore, if thedP does not satisfy the uniqueness property, then the need for a
random perturbation implies that the algorithm is a randmué-approximation algorithm.

The irreducibility assumption of theDp (i.e., Assumption 1) is used several times in the proofs to
show that the occupation measure is positive for every.shatihe discounted cost model (i.¢.,< 1),
irreducibility can be replaced with the more relaxed assimnpthat, for every deterministic policy,
every state is reachable from the initial state with posifwobability.
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A Uniformization of A Birth-Death Process

Uniformization [3, 21, 22] is a technique that transformsoatciuous time Markov process into a
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formization also preserves the optimality of policies anelit costs. We apply uniformization to trans-
form a controlled continuous time birth-death process [L&], one-dimensional queue) to a discrete
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The queue dynamics are determined by service completidnishvare independent exponentially-
distributed random variables with ratesi, ), that depend on the stateand the actioru, and an
independent Poisson arrival process with ra{ghat does not depend on the state or the action). Equiv-
alently, the inter-arrival times are exponentially distried with rate\.

We now use the following fact. Given two independent exptiasknandom variablesX, Y with
ratesa andb resp. and a number > « + b, we can construct the two variables as follows. Choose
a Poisson process with rate When the process jumps, throw an (independent) 3-sided \digh
probability a /¢ claim thatX occurred. With probability/c claim thatY” occurred, and with probability
(¢ — a — b)/c neither occurred—in which case we repeat. This gives theegababilistic behavior as
the original variables.

Now denote byv;(u) the rate by which the queue leaves staifethe selected action is. To apply
the previous argument, sef(u) = X\ + p(7, u) as the total rate in state Letv = max; ,(v;(u)). The
transition rates of the uniformized process are now inddpenof the state and of the actions chosen in
each state, and are equaktoOnce a transition occurred, its type is determined acogrth

forj=i+1
P(jli,u) = { 400 o forj=i-1 ®)
1— L“v(l’“) for j =i

with the appropriate modifications at= 0 andi = n — 1. We have obtained a process that shares
the probabilistic description of the original, except thatf-loops were introduced. In the new process,
times between events (including self-loops) are independdentically distributed (exponential with
ratev).

To obtain a discrete time process we observe the processnat fimes (including times of self
loops). Since inter-jump times are i.i.d., we can simplyrddhe number of jumps, where the transition
probabilities are determined by Equation 8, and obtain erelis-time process. The properties of the
inter-jump times imply that, under any deterministic pglithe occupation measure of the original
process agrees with that of the discrete time process, gatiicular all cost functionals agree as well.

B Proof That Coupling Property Holds

Proof of Lemma 4. We prove the lemma for the expected average cost model. Wiheadellowing
abbreviated notation. Fix a deterministic policy For each state;, let p(z) denote the occupation
measure for state under the policyr, namely,p(z) = > ouer Pr(w,u). Letp' () = Y wer Pria (1),
Letp(z) £ P(x — 1|z, 7(x)) andg(z) £ P(z + 1|z, =(z)). Similarly, letp/(z) £ P(z — 1|z, 79 ()
and¢/ (z) = P(z+ 1|z, 7" (x)). For statep, let p(0) = P(0]0,7(0)), and for state — 1 let g(n — 1) =
P(n—1n—1,7(n—1)).
We claim that the following holds, for every state> 1:
q(z —1)-q(z —2)---q(0)

A= @ e Y ©

The proof of 9 is similar to the analytic solution of the edrilum probabilities of continuous time
birth-death queuing systems [11]. We prove Eqg. 9 by inductioz. The basis forr = 1 is equivalent
to p(1) - p(1) = ¢(0) - p(0). Indeed, the first constraint @b implies that

p(0) - p(0) + p(1) - p(1) = p(0) - p(0) + p(0) - g(0).

This is in fact the balance equation [11, 23] that comparegtbbability of transitions entering stale
with the probabilities of the transitions emanating fromtso.
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Assume that Eq. 9 holds far < k. The induction step far = &£ + 1 uses the.p constraint for state
k (i.e., the balance equation for stdte Namely,

plk—1)-q(k —1) + p(k +1) - p(k + 1) = p(k)(p(k) + q(k)).
Rearranging, we obtain,

1
p(k+1)

Dividing p(k)/p(k — 1), and substituting according to Eq. 9 gives) - p(k) = p(k — 1) - q¢(k — 1).
Therefore,

pk+1) = (p(k)(p(k) + q(k)) — p(k = 1) - q(k — 1)).

1
p(k +
q(k) -
p(

pk+1) = ~(p(k) - q(k))

)
alk—1) - q(0)
1) p(R)-p(1)

?T‘

which completes the proof of Eq. 9.

Our goal is to prove that ifr(i) <; j, thenp;(x) < pLiji(x), for everyx < i. Let~y(z)
q(p:”(;)l,;(qm(i)z) (q()o) Similarly, lety/ () denote the above ratio with respect to the pokiéy.

We claim that for every state, v(z) > +/(z). Indeed, forz < i, v(z) = ~/(x) since the ratio
differs only whenxz > i. Forz = i it follows that~(x)/+/(z) = p/(i)/p(i) > 1 sincen (i) <; j. For
z > iit follows thaty(z)/y/(z) = 22 - 5 > 1.

Recall first that since is an occupation measure, it follows that, _ - p(x) = 1. Hence, by Eq. 9,

= plx)=p(0)- > ()

A

zeX reX
= plx)=00)> ()
reX zeX

Sinced” .y v(x) > > cx ¥ (x), it follows that p(0) < p'(0). For every state: < i we have
v(z) = ~'(x), hence by Eqg. 9 it follows that(z) < p'(z), as required. [ |
Proof of Lemma 5. We use the same notation as in the proof of Lemma 4. We claitittbdollowing
holds, for every state > 1:

xT

- q
) = S e =D P

The proof of Eq. 10 is by induction an The basis for: = 1 is equivalent tg(1) - p(1) = ¢ - p(0).
Indeed, it holds because of the balance equation [11, 23]:

p(0) - p(0) + p(1) - p(1) = p(0) - p(0) + p(0) - ¢

that compares the probability of transitions enteringestatvith the probabilities of the transitions
emanating from staté. Note that this balance equation does not hold in the digedurost model.

Assume that Eq. 10 holds far < k, the induction step for = k + 1 uses the balance equation for
statek. Namely,

p(k—=1) - q+ p(k) - P(k|k, (k) + p(k +1) - p(k + 1) = p(k)(p(k) + P(k[k, 7(k)) + q).

Rearranging, we obtain,

-p(0). (10)

plk+1) =

bt D) (p(k)(p(k) +q) — p(k —1) - q).
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By dividing Eq. 10 forp(k) andp(k — 1) it follows thatp(k) - p(k) = p(k — 1) - q. Therefore,
1
k4+1)=——(p(k) -
p(k+1) pr (p(k) - q)
_ gkt
p(k+1)-p(k)---p(1)

which completes the proof of Eq. 10.

Our goal is to prove that ifr(i) <; j, thenp,(z) < ppi(z), for everyz < i. Lety(z) =
IWM. Similarly, let+'(z) denote the above ratio with respect to the policy.

We claim that for every state, v(z) > +/(z). Indeed, forz < i, v(z) = +/(z) since the ratio
differs only whenz > i. Forx > i it follows that~(z)/+'(xz) = p/(:)/p(i) > 1 sincer (i) <; j.

Recall first that since is an occupation measure, it follows that, . - p(z) = 1. Hence, by Eq. 10,

= ) =p(0)- > (=)

reX zeX
= plx) =00 > ().
reX zeX

Sinced " . x v(x) > > cx ¥ (x), it follows that p(0) < p/(0). For every stater < i we have
v(z) = ~+'(x), hence by Eqg. 10 it follows that(z) < p(z), as required. [ |
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