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Abstract

We consider the problem of computing optimal policies of finite-state, finite-action Markov De-
cision Processes (MDPs). A reduction to a continuum of constrainedMDPs (CMDPs) is presented
such that the optimal policies for theseCMDPs constitute a path in a graph defined over the de-
terministic policies. This path contains, in particular, an optimal policy of the originalMDP. We
present an algorithm based on this new approach that finds this path and thus an optimal policy. In
the general case this path might be exponentially long in number of states and actions. We prove
that the length of this path is polynomial if theMDP satisfies a coupling property. Thus we obtain a
strongly polynomial algorithm forMDPs that satisfy the coupling property. We prove that discrete
time versions of controlledM/M/1 queues induceMDPs that satisfy the coupling property. The
only previously known polynomial algorithm for controlledM/M/1 queues in the expected aver-
age cost model is based on linear programming (and is not known to be strongly polynomial). Our
algorithm works both for the discounted and expected average cost models, and the running time
does not depend on the discount factor.

Keywords: Markov Decision Process (MDP), Constrained Markov Decision Process (CMDP), Con-
trolled Queues, Linear Programming,M/M/1 Queue, Optimization.

1 Introduction

The problem of designing a strongly polynomial algorithm for finding an optimal policy in a Markov
Decision Process (MDP) has been a long standing open problem [4]. The parameters ofanMDP are:n -
the number of states,k - the number of actions, andB - the length of the input in bits. In the discounted
cost model there is an addition parameterβ < 1 called the discount factor. Recently, Ye [26] presented
a strongly polynomial combinatorial algorithm for the discounted cost model. This algorithm is based
on a predictor-corrector interior-point algorithm.

The well known algorithms for solvingMDPs are: value iteration, policy iteration, and linear pro-
gramming [6, 9, 12, 18]. The running times of the value iteration and policy iteration algorithms in the
discounted cost model are polynomial inn, k,B and1/(1− β) [12, 26]. The dependence on1/(1− β)
implies that the algorithm is not strongly polynomial (e.g., whenβ = 1 − 2−n). The only nontrivial
upper bound on the number of iterations of the policy iteration algorithm (for two actions) that does not
depend on the discount factor isO(2n/n) [14].

In the expected average cost model, the only polynomial algorithm is based on a reduction discovered
nearly50 years ago to linear programming [5, 7, 13]. Linear programming is not known to have strongly
polynomial algorithms [20]. Hence the problem of developing a strongly polynomial algorithm forMDPs
remains open in the expected average cost model.
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Contribution. We introduce a new approach for solvingMDPs in the discounted cost model and ex-
pected average cost model. The approach is based on adding anartificial constraint with parameterα
to obtain a constrainedMDP denoted byCMDP(α). We consider the whole range of values forα so that
it also includes the value that an optimal policy of theMDP attains. Our approach is based on a new
structural lemma that proves that the set of optimal policies of CMDP(α) (for all values ofα) constitutes
a path in a graph over the deterministic policies. We presentan algorithm that finds all the deterministic
policies along the path. The optimal policy of theMDP is simply the min-cost policy along this path. We
can not rule out the possibility that this path may be exponentially long, and hence the running time of
this algorithm might be exponential.

We overcome the problem of a long path by introducing a coupling property. We prove that, if the
coupling property holds and if a specific artificial constraint is chosen, then the length of the path is
polynomial (i.e.,n · k). Hence the algorithm becomes strongly polynomial. We prove that the coupling
property is satisfied in discrete versions of controlled birth-death processes such as single server con-
trolled M/M/1 queues. Such controlled birth-death processes are among the most studied examples of
MDPs [25, 1, 10, 23].

When the coupling property holds, the running time of the algorithm is O(n4 · k2). This running
time holds both in the discounted cost model and the expectedaverage cost model. This compares with
the running time of Ye’s algorithm which isO(n4 · k4 · log(nk/(1 − β))). Thus, in addition to coping
with the expected average cost model, we reduce the running time in the discounted cost model.

Organization. In Sec. 2 we briefly overview definitions related toMDPs andCMDPs. In Sec. 3 and 4
we present two properties: uniqueness and coupling. We prove that uniqueness can be obtained by ran-
domly perturbing the cost vector. We prove that the couplingproperty holds in discrete time controlled
M/M/1 queues. In Sec. 5 we study the structure of optimal policies of CMDP(α), for all values ofα.
Lemma 17 proves that these optimal policies are a path in a graph over the deterministic policies. In
Sec. 6 we present a new algorithm for computing an optimal policy of an MDP. In Sec. 7 we present
a strongly polynomial algorithm that works under the assumption that the coupling property holds. We
conclude with a discussion of the assumptions that theMDP is irreducible and satisfies the uniqueness
property.

2 Background

In this section we briefly overview the topics ofMDPs, CMDPs, and their linear programming formula-
tions. See [1, 18, 19, 22, 23] for more material on these topics.

2.1 Definition of MDP and CMDP.

An MDP is a4-tuple〈X,U,P, c〉, whereX = {0, . . . , n−1} is a finite set ofstates, U = {0, . . . , k−1}
is a finite set ofactions, P : X2 × U → [0, 1] is a transition probability function, andc : X × U → R

is acost function. The probability of the transition from statex to statey when the actionu is chosen is
specified by the functionP and denoted byP (y|x, u). The cost associated with selecting the actionu
when in statex equalsc(x, u). We often refer to the cost function as a vectorc ∈ R

nk.
An MDP is a generalization of a Markov chain, where in a Markov chainthere is only one possible

action in each state. For simplicity, we assume that the initial state is fixed and we denote it byx0. In
fact, Assumption 1 implies that the initial state does not affect the optimal policy. In the discounted cost
model, one could could assume any initial probability distribution over the states.

Time is discrete, and in each time unitt, let xt denote the random variable that equals the state at
timet. Similarly letut denote the random variable that equals the action selected at timet. The sequence
of states{xt}

∞
t=1 defines an infinite random walk over the set of statesX.
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A (stationary) policy1 is a functionπ : X × U → [0, 1] such that
∑

u∈U π(x, u) = 1, for every
x ∈ X. A policy controls the action selected in each state as follows: the probability of selecting action
u in statex equalsπ(x, u). If for a statex and an actionu the policyπ satisfiesπ(x, u) = 1 , then we
say thatπ is deterministicin statex. In this case we abuse notation and writeπ(x) = u. If there exists
an actionu such that0 < π(x, u) < 1, then we say thatπ is randomizedin statex. A deterministic
policy is a policy that is deterministic in all states.

Definition 1 A policy π is strictly 1-randomizedif: (i) It is deterministic in all states but one state.
(ii) Let x denote the state in whichπ is not deterministic. Then, the set{u : π(x, u) > 0} contains only
two actions.

The goal is to find a policy that minimizes the costC(π) defined below. We consider two cost
models: discounted cost and expected average cost, defined below.

Discounted cost model. In the discounted cost model, the parameterβ ∈ (0, 1) specifies the rate in
which future costs are reduced. LetP π(xt = x, ut = u) denote the probability of the eventxt = x and
ut = u when the initial state equalsx0 and the (randomized) policy isπ. The expected costEπ

t [c(xt, ut)]
equals

Eπ
t [c(xt, ut)] =

∑

x∈X,u∈U

c(x, u) · P π(xt = x, ut = u).

The infinite horizon discounted expected costC(π) is defined by

C(π)
△
= (1− β) ·

∞
∑

t=0

βt · Eπ
t [c(xt, ut)]. (1)

Expected average cost model. In the expected average cost model, the costC(π) is defined by

C(π)
△
= lim

T→∞

(

∑T−1
t=0 Eπ

t [c(xt, ut)]

T

)

. (2)

It can be shown that this limit exists for every stationary policy [18].

Definition of CMDP. A constrainedMDP is an MDP with an additional input consisting of a cost
functiond : X × U → R and a parameterα. The costD(π) of π is defined similarly toC(π) in both
models based onEπ

t [d(xt, ut)] =
∑

x∈X,u∈U d(x, u) ·P π(xt = x, ut = u). The additional input defines
the constraintD(π) = α that a feasible policy must satisfy. The optimization problem inCMDP(α) is to
find a policyπ that satisfies the constraintD(π) = α and minimizesC(π).

Occupation measures. Every policyπ induces a probability measure over the state-action pairs.We
call this probability measure theoccupation measurecorresponding toπ and denote it byρπ. The
definition ofρπ depends on the cost model.

In the discounted cost modelρ(x, u)
△
= (1 − β) ·

∑∞
t=0 βt · P π(xt = x, ut = u). In the expected

average cost modelρ(x, u)
△
= limT→∞

(P

t<T P π(xt=x,ut=u)

T

)

.

Given an occupation measureρ(x, u) over X × U , the policy πρ induced byρ is defined by

πρ(x, u)
△
= ρ(x, u)/

∑

u′ ρ(x, u′). (Note that if
∑

u′ ρ(x, u′) = 0, then one may defineπρ(x, u) ar-
bitrarily as long as

∑

u πρ(x, u) = 1.)
We refer to an occupation measureρ as deterministic (resp., strictly1-randomized) ifρ = ρπ for a

deterministic (resp., strictly1-randomized) policyπ.
1By the general theory ofMDPs andCMDPs [18, 1], under our conditions there exists an optimal stationary policy. Therefore

we restrict our attention to such policies.
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Irreducibility Assumption.

Definition 2 (Irreducibility) An MDP is irreducible if every deterministic policyπ induces an irre-
ducible Markov chain.

Throughout the paper we assume the following.

Assumption 1 We assume that theMDP is irreducible.

2.2 Linear Programming Formulation of CMDPs

In this section we formulateMDP and CMDP(α) as linear programs. We denote the linear program
corresponding toMDP (resp.,CMDP(α)) by LP (resp. LP(α)). The linear programLP is of the form
min{cT · ρ | Aρ = b, ρ ≥ 0}. The linear programLP(α) is of the formmin{cT · ρ | A · ρ = b, dT · ρ =
α, ρ ≥ 0} (the transpose of a row vectorv is denoted byvT ). The matrixA and the vectorb in the linear
programs depend on the number of states, actions, transition probabilities and the cost model.

Given anMDP 〈X,U,P, c〉, whereX = {0, 1, . . . , n− 1} andU = {0, 1, . . . , k − 1}, we represent
the cost functionc as a column vector inRnk indexed by pairs inX × U , namely,cx,u = c(x, u). We
begin with the LP formulation in the discounted cost model.

Discounted cost model. We define the matrixA as follows. For each actionu ∈ U , let P (u) denote

then×n square matrix whose entries are defined byP (u)y,x
△
= P (y|x, u). The matrixA is ann× (nk)

matrix obtained by concatenating the square matricesI − βP (u), namely,A = [I − βP (0) . . . I −
βP (k−1)]. The column vectorb ∈ R

n is defined byb = (1−β, 0 . . . , 0)T , where the zeroth coordinate
corresponds to the initial state.

The occupation measure is the variable of the linear programLP and is represented by the column
vectorρ ∈ R

nk indexed by pairs inX × U . For a state-action pair(x, u), the componentρx,u denotes
the value of the occupation measureρ(x, u).

Expected average cost model. In the expected average cost model, the matrixA is an(n + 1)× (nk)
matrix obtained by adding a row~1 consisting of ones to the concatenation of the matricesI−P (u). The
vectorb is a unit vector, where the coordinate of the one correspondsto the row~1 in A. Note that the
constraint~1 · ρ = 1 implies thatρ(x, u) is a probability distribution.

The following theorem was proved for various cost models in [5, 6, 7, 13]. A more recent textbook
proof appears in [1, Theorem 3.3].

Theorem 1 (equivalence ofCMDP (α) and LP (α)) CMDP(α) is feasible if and only ifLP(α) is fea-
sible. Moreover, ifρ∗ is an optimal solution ofLP(α), thenπρ∗ is an optimal policy ofCMDP(α).

3 The Uniqueness Property

Consider anMDP and a fixed cost functiond(·).

Definition 3 (Uniqueness)An MDP satisfies theuniquenessproperty if the following holds for every
α ∈ R: If π∗ is deterministic and optimal forCMDP(α) and if π 6= π∗ is any stationary policy, then
eitherD(π) 6= α or C(π) > C(π∗).

Uniqueness has the following geometric interpretation. Consider the polytope generated by all the
deterministic occupation measure (i.e., the feasible solutions of LP). Intersect this polytope with a hy-
perplanedT · ρ = α to obtain the feasible solution ofLP(α). If this intersection has an optimal solution
that is a deterministic occupation measure, then this optimal solution is unique.
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The following proposition follows from the fact that every basic feasible solution ofLP(α) is either
deterministic or strictly1-randomized (Theorem 7).

Proposition 2 An MDP satisfies the uniqueness property if for everyα ∈ R, every deterministic policy
π∗, and every deterministic or strictly1-randomized policyπ 6= π∗, if π∗ is optimal forCMDP(α), then
π is not optimal forCMDP(α).

Uniqueness is, in a sense, a generic property, that is, it holds for most values of the parameters. We
show this by adding a small random perturbationε ∈ R

nk to the cost vectorc to obtain the perturbed cost
vectorcε = c+ε. Given any positiveµ1 andµ2, we choose the components of the vectorε randomly and
independently so that the cost differs from that of the original model by at mostµ2, and the probability
that uniqueness does not hold is at mostµ1.

Let Cε(π) denote the cost of a policyπ with respect to the perturbed cost vectorcε. Define each

coordinateεi of ε by εi
△
= ri

2p1
· 2−p2 , wherep1, p2 are positive integers andri is uniformly distributed

over the set{0, . . . , 2p1−1}. The following lemma proves that a random perturbation meets the require-
ments while increasing the length of each component of the cost vectorc by O(n · log k + log 1

µ1·µ2
)

bits. This is done by choosing appropriate values forp1, p2.

Lemma 3 If p1 ≥ log2
k3n

µ1
andp2 ≥ log2(nk/µ2), then (1) the uniqueness property holds with proba-

bility at least1− µ1, and (2) for every policyπ, |C(π)− Cε(π)| ≤ µ2.

Proof: We prove part (1) as follows. Fix a realization of the vectorε, and suppose thatcε does not obtain
uniqueness forCMDP(α). This implies that there exists a deterministic policyπ that is optimal with
respect to the perturbed costcε and is not unique. Letρπ denote the occupation measure corresponding
to π. Sinceρπ is not the only optimal solution ofLP(α) (with respect to the perturbed cost vectorcε),
there exists a basic feasible solution (bfs)ρ that is also optimal (with respect to the same perturbed cost
vectorcε). Since bothρπ andρ are optimal, it follows that

cε · ρπ = cε · ρ. (3)

We conclude that the event that perturbation byε fails implies the existence of anα and a pairρπ 6= ρ
of occupation measures that satisfy: (1)d · ρπ = d · ρ = α, (2) ρπ is induced by a deterministic policy
π, (3) ρ is a bfs ofLP(α), and (4)cε · ρπ = cε · ρ. Sinceε is random, the quantitiescε, π, ρπ, ρ, which
depend onε, are random as well. By the proof of Theorem 7, every bfs corresponds to a deterministic
or strictly 1-randomized policy.

Let Rα denote the collection of all pairs(ρ1, ρ2) of bfs of LP(α) such thatρ1 corresponds to a
deterministic policy. By Theorem 7,ρ2 corresponds either to a deterministic or to a strictly 1-randomized
policy. Note thatRα does not depend onε and is not a random set. LetR =

⋃

α Rα.
We claim that|R| < k3n. There arekn deterministic policies, thus we need to consider at mostkn

values ofα. For eachα, there are at mostkn +
(

kn

2

)

< k2n basic feasible solutions ofLP(α). Indeed,
a basic feasible solution is either deterministic or strictly 1-randomized. We now bound the number of
strictly 1-randomized basic feasible solutions ofLP(α). Every strictly1-randomized policy is a convex
combination of two deterministic policies that disagree ina single state (there are less than

(kn

2

)

such
pairs). For each such pair of deterministic policies, at most one convex combination induces a bfs of
LP(α). This follows from Proposition 14, since if every convex combination is optimal, then none is
an extreme point ofLP(α). Therefore, the number of strictly1-randomized basic feasible solutions is
bounded by

(kn

2

)

, and|R| < k3n as claimed.
Consider a pair(ρ1, ρ2) ∈ R. Without loss of generality,ρ1 andρ2 disagree in the first coordinate.

Let c1
ε denote the first coordinate ofcε and letc−1

ε denote the vectorcε with the first coordinate removed,
so thatcε = (c1

ε, c
−1
ε ). We use identical notation for any vector. The equationcερ1 = cερ2 implies that

c1
ερ

1
1 + c−1

ε · ρ
−1
1 = c1

ερ
1
2 + c−1

ε · ρ
−1
2 .
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Now

P (cε · ρ1 = cε · ρ2) = P (c1
ε · (ρ

1
1 − ρ1

2) = c−1
ε · (ρ

−1
2 − ρ−1

1 ))

≤ 2−p1

The last line follows from the fact that, givenρ1, ρ2 andε−1, the eventc1
ε ·(ρ

1
1−ρ1

2) = c−1
ε ·(ρ

−1
2 −ρ−1

1 ))
occurs for at most one value ofε1.

We now bound the probability that perturbation fails, namely, Eq. 3 holds. Since(ρπ, ρ) ∈ R ,

P (cε · ρπ = cε · ρ) ≤ P
(

cε · ρ1 = cε · ρ2 for some(ρ1, ρ2) ∈ R
)

≤
∑

(ρ1,ρ2)∈R

P (cε · ρ1 = cε · ρ2)

≤ k3n2−p1.

We conclude that ifp1 ≥ log2
k3n

µ1
then the probability of non uniqueness is bounded byµ1.

Part (2) requires that the perturbation does not change the cost of the optimal policy by more than
µ2. It suffices to show that, for every occupation measureρ, |(cε− c) ·ρ| ≤ µ2. Sinceρ is an occupation
measure, it follows that|(cε− c) · ρ| ≤

∑

i εi ≤ n · k · 2−p2 . Hence, part (2) holds ifp2 ≥ log2(nk/µ2).
�

In the light of Lemma 3 we assume the following throughout thepaper.

Assumption 2 TheMDP satisfies the uniqueness property.

4 The Coupling Property

Definition 4 Two deterministic policies areneighborsif they disagree in a single state.

Definition 5 Given a deterministic policyπ and an actionj 6= π(i), the neighbor policyπi,j is defined
by:

∀x ∈ X : πi,j(x)
△
=

{

j if x = i

π(x) otherwise.

Thus two deterministic policiesπ andτ areneighborsif there exists a statei and an actionj such
thatτ = πi,j .

Suppose that for every statei, there is a linear order overU . We denote the linear order overU
corresponding to statei by ≤i. In addition, we consider the natural linear order over the set of states
X = {0, . . . , n− 1}.

The polynomial algorithm in Sec. 7 for finding an optimal policy depends on a property that we call
the coupling property defined below.

Definition 6 (coupling property) The coupling propertyholds with respect to the linear orders
{≤i}i∈X if for every deterministic policyπ, every statei, and every actionj,

π(i) ≤i j ⇒ ∀x < i ∀u ∈ U : ρπ(x, u) ≤ ρπi,j (x, u).

4.1 Examples of MDPs with The Coupling Property

In this section we present a “one dimensional”MDP, and prove that it satisfies the coupling property
in the expected average cost model. We begin with a controlled nonabsorbing random walk. We then
continue with a one dimensionalMDP that corresponds to a discrete time controlled M/M/1 queue.
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4.1.1 A controlled nonabsorbing random walk

A controlled nonabsorbing random walk is a simple example ofan MDP that satisfies the coupling
property. We formally describe it below.

TheMDP hasn states{0, . . . , n − 1}. For i < n − 1 there is a transition from statei to statei + 1
with probability P (i + 1|i, j) ∈ (0, 1). For i > 0 there is a transition from statei to statei − 1 with
probabilityP (i− 1|i, j) = 1− P (i + 1|i, j). For i = 0 there is a self-loopP (0|0, j) = 1− P (1|0, j),
and similarly, for staten− 1 there is a self-loopP (n− 1|n− 1, j) = 1− P (n− 2|n− 1, 0).

We assume that allP (i + 1|i, j) transition probabilities are positive. Hence theMDP is irreducible.
The linear orders≤i are defined as follows for each statei ≥ 1.

j′ ≤i j′′ ⇔ P (i− 1|i, j′)≤ P (i− 1|i, j′′).

Namely, the transition from statei to its left neighbori − 1 is not more likely under the actionj′ than
under the actionj′′. The linear order≤i is defined arbitrarily fori = 0.
The proof of the following lemma appears in Appendix B.

Lemma 4 The coupling property holds for a controlled nonabsorbing random walk.

4.1.2 A controlled discrete-time M/M/1 queue

We now consider a discrete-time version of a controlledM/M/1 queue obtained from a continuous-time
controlledM/M/1 queue by a technique called uniformization (see Appendix A). A discrete controlled
M/M/1 queue is similar to the controlled nonabsorbing random walk with the addition of self-loops in
each state. Formally, the set of states is{0, . . . , n− 1}. Fori < n− 1 there is a transition from statei to
statei+1 with probabilityP (i+1|i, j) ∈ (0, 1). Fori > 0 there is a transition from statei to statei−1
with probabilityP (i− 1|i, j) ∈ (0, 1). In addition, for every statei, there is a self-loop with probability
P (i|i, j). Assumption 1 holds by the reduction from the continuous M/M/1 queue.

We assume that the actions do not affect the arrival rates, hence the probabilitiesP (i + 1|i, j) do
not depend on the actionj. Moreover, the reduction from an M/M/1 queue implies that, for all statesi,
the transitions from statei to statei + 1 have the same probability. We therefore denoteP (i + 1|i, j)
simply byq. This means that the control only affects the service rates,and hence only the probabilities
P (i− 1|i, j) andP (i|i, j) depend on the actionj.

For each statei ≥ 1, the linear order≤i in the discrete controlled M/M/1 queue is defined as follows:

j′ ≤i j′′ ⇔ P (i− 1|i, j′)≤ P (i− 1|i, j′′).

We prove the following lemma for the expected average cost model. The same lemma can be proved if
the control affects the arrival rates and does not affect theservice rate.
The proof of the following lemma appears in Appendix B.

Lemma 5 The coupling property holds for the controlled discrete time M/M/1 queue.

5 Structure of Optimal Policies

5.1 Deterministic Policies

Notation. Given a policyπ, let Iπ denote the set of pairs(i, j) for which π(i, j) > 0. These pairs
define columns of the matrixA. Let Bπ denote the submatrix ofA consisting of the projection ofA to
the columns inIπ. Let ρπ denote the occupation measure corresponding to the policyπ. Let ρ̃π denote
the vector obtained by projectingρπ to coordinates inIπ.

The next proposition proves that, under Assumption 1, the mappingπ 7→ ρπ between deterministic
policies and the corresponding occupation measure is one-to-one.
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Proposition 6 If π is a deterministic policy forCMDP(α), then: (i) ρ̃π is the unique solution of the
equationsBπ · ρ̃ = b, and (ii) the rank ofBπ is n.

Proof: Part (ii) follows from part (i). We now prove part (i). By the definition of Iπ, if (x, u) 6∈ Iπ,
thenρπ(x, u) = 0. HenceA · ρπ = b if and only if Bπ · ρ̃π = b. In the model of discounted cost, the
matrix Bπ is invertible by Gersgorin’s Theorem [8], hence uniquenessfollows.

In the model of expected average cost, if theMDP satisfies the Assumption 1, then by the Peron-
Frobenius Theorem [8], the systemBπ · ρ̃π = b has a unique solution, and the proposition follows.
�

5.2 Properties of Optimal Policies

The following theorem, proved for the various cost models in[5, 6, 7, 13], states that, ifCMDP(α)
is feasible, there always exists an optimal policy that is either deterministic or strictly1-randomized.
The theorem is stated in terms of the occupation measure (i.e., the optimal solution of theLP(α)). This
theorem and its proof are an extension of the theorem that every MDP has an optimal policy that is
deterministic.

Theorem 7 If LP (α) is feasible, then there exists an optimal solutionρ∗ of LP (α) that is deterministic
or strictly 1-randomized.

Proof: The rank of the constraints inLP(α) is at mostn + 1. This implies that in every basic feasible
solution (bfs) there are at mostn + 1 nonzero variables. Fix an optimal bfsρ∗. By Assumption 1,
∑

u ρ∗(x, u) > 0, for each statex. Hence, for each statex, except perhaps for one,ρ(x, u) is positive
for exactly one action, and the theorem follows. �

5.3 Policies Along An Edge

Notation. Let π0 andπ1 denote two deterministic policies that disagree in a singlestate. Letπq △
=

q · π1 + (1− q) · π0, for 0 ≤ q ≤ 1. Note thatπq is a strictly1-randomized policy if0 < q < 1. We say
that a policyπ agrees with the zerosof policy π∗ if π(x, u) = 0 wheneverπ∗(x, u) = 0.

Let Ax,u denote the column ofA corresponding tox ∈ X andu ∈ U . Complementary slackness
implies the following optimality condition.

Proposition 8 Let ρ andw denote feasible solutions ofLP(α) and the dual linear programDLP , re-
spectively. The following two conditions are equivalent: (1) ρ andw are optimal. (2) For everyx ∈ X
andu ∈ U , eitherρ(x, u) = 0 or the dual constraint is tight (i.e.,wT ·Ax,u = c(x, u)).

Proposition 9 ([28]) Letπ∗ denote an optimal policy forCMDP(α∗). Letπ denote a policy that agrees
with the zeros ofπ∗. Then,π is an optimal policy forCMDP(D(π)).

Proof: Let ρ∗ = ρπ∗ andρ = ρπ. Note thatρ∗(x, u) = 0 implies thatρ(x, u) = 0. Let w∗ denote a
dual optimal solution ofLP(α∗). By Proposition 8 it follows that, for every(x, u), eitherρ∗(x, u) = 0
or the dual constraint is tight (i.e.,(w∗)T · Ax,u = c(x, u)). Note thatw∗ is also a feasible solution of
theDLP corresponding toCMDP(D(π)). It follows thatρ andw∗ also satisfy the optimality condition,
and hence, by Proposition 8,ρ is optimal, as required. �

Proposition 10 For every two policiesπ′ and π′′, such thatD(π′) < D(π′′), there exists a policyπ
such thatD(π′) < D(π) < D(π′′).
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Proof: Denoteπq △
= q · π′′ + (1− q) · π′. DefineD(q)

△
= D(πq). SinceD(π) is continuous inπ [28],

it follows thatD(q) is continuous inq. It follows that the image ofD(q) over the interval[0, 1] contains
the interval[D(π′),D(π′′)]. �

Proposition 9 and the proof of Proposition 10 imply the following.

Corollary 11 ([28]) If πq∗ is an optimal policy forCMDP(α∗) and q∗ ∈ (0, 1), then, for each
α ∈ [inf0≤q≤1 D(πq), sup0≤q≤1 D(πq)], there existsqα ∈ [0, 1] such thatπqα is an optimal policy
for CMDP(α).

Consider the strictly1-randomized policyπ1/2 = (π0 + π1)/2. ThenIπ1/2 is the set of pairs(i, j)
for which π1/2 > 0.

Let B(d) denote the(n+1)× (n+1) square matrix obtained by first augmenting the matrixA with
the rowdT , and then projecting the augmented matrix on the columns inIπ1/2 .

Lemma 12 The following three conditions are equivalent:

(i) D(π0) = D(π1).

(ii) B(d) is not of full rank.

(iii) D(πq) = D(π0), for all q ∈ [0, 1].

Proof: (i) => (ii). Fix α = D(π0). The occupation measuresρπ0 andρπ1 (induced by the deterministic
policiesπ0 andπ1, respectively) are distinct feasible solutions ofLP(α). Hence, both̃ρπ0 and ρ̃π1 are
distinct solutions of the system of equationsB(d) · ρ̃ =

(b
α

)

. This implies thatB(d) is not of full rank.
(ii) => (iii). Both policiesπ0 andπ1 induce occupation measures that are feasible solutions ofLP.

By convexity, for everyq ∈ [0, 1], the occupation measureρπq is also a feasible solution ofLP. SinceB
has rankn, if B(d) is not of full rank, the last row (corresponding to the constraint dT · ρ = α) depends
on the other rows. Hence, every occupation measureρ that is a feasible solution ofLP and whose support
is contained inIπ1/2 has the same costdT · ρ. This implies thatD(πq) = D(π0), for all q ∈ [0, 1], as
required. Finally, the implication (iii)=> (i) is trivial, and the lemma follows. �

Proposition 13 If D(π0) 6= D(π1), thenC(πq) is linear inD(πq) over the rangeq ∈ [0, 1].

Proof: We consider two cases:

1. SupposeB(d) is of full rank. In the model of discounted cost,B(d) is an(n+1)× (n+1) square
matrix, and thus invertible. Hence,ρ̃πq = B(d)−1 · (b,D(πq))T . Therefore,C(πq) = c̃ · ρ̃πq =
c̃ · B(d)−1 · (b,D(πq))T , andC(πq) is linear inD(πq), as required. In the model of expected
average cost, one needs to remove first a dependent row fromB(d) to make it square and thus
invertible.

2. If B(d) is not of full rank, then by Lemma 12,D(π0) = D(π1), a contradiction.

�

Proposition 14 Fix a value ofα. Consider the set of policiesE(0,1)
△
= {πq : 0 < q < 1}. Exactly one

of the following cases holds:

1. Every policy inE(0,1) is an optimal policy ofCMDP(α).

2. No policy inE(0,1) is an optimal policy ofCMDP(α).

3. Exactly one policy inE(0,1) is an optimal policy ofCMDP(α).
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Proof:
If B(d) is of full rank then by Proposition 13, either exactly one policy in E(0,1) is an optimal policy

of CMDP(α) or no policy inE(0,1) is an optimal policy ofCMDP(α).
If B(d) is not of full rank, then by Lemma 12,D(πq) = D(π0), for q ∈ [0, 1] and thus, either every

policy in E(0,1) is a feasible policy ofCMDP(α) or no policy inE(0,1) is a feasible policy ofCMDP(α).
By Proposition 9, if one policy inE(0,1) is an optimal policy ofCMDP(α), then every policy inE(0,1) is
optimal as well. �

In the following lemmas, we abbreviate, and refer to a policyπ as optimal if it is an optimal policy of
CMDP(D(π)).

Lemma 15 Let q∗ ∈ (0, 1). If πq∗ is an optimal strictly1-randomized policy, then the functionD(q)
△
=

D(πq) is strictly monotone in the intervalq ∈ [0, 1].

Proof: The functionD(q) is continuous because the policyπq is continuous inq, andD(π) is con-
tinuous inπ. If D(q) is not strictly monotone, then there existq′ < q′′ such thatD(q′) = D(q′′).
By Proposition 9 each of the policiesπq′ andπq′′ is optimal forCMDP(α), whereα = D(q′). By the
uniqueness assumption (Assumption 2), neitherπq′ or πq′′ is deterministic. Hence0 < q′ < q′′ < 1.

Let ρ′ (resp.ρ′′) denote the occupation measure that corresponds to the policy πq′ (resp.πq′′). We
first prove thatρ′ 6= ρ′′. Assume thatπ0 andπ1 disagree in states, and, without loss of generality,
assume thatπ0(s) = 0 andπ1(s) = 1. By Assumption 1, both occupation measuresρ′ andρ′′ assign
positive probability to states. However, the ratiosρ′(s, 0)/ρ′(s, 1) 6= ρ′′(s, 0)/ρ′′(s, 1).

On the other hand, since the support ofρ′ andρ′′ are equal, it follows that the bases corresponding to

ρ′ andρ′′ are the same. Hence,ρ′ andρ′′ are different solutions of the system̃B · ρ =

(

b
α

)

, whereB̃

is the basis matrix. We consider two cases. IfB̃ is invertible, then we have immediately a contradiction.
If B̃ is not invertible, then by Lemma 12,D(π0) = D(π1) = α. Therefore, bothπ0 and π1 are
feasible policies ofCMDP(α). On the other hand, bothπ0 andπ1 are optimal, henceC(π0) = C(π1), a
contradiction to the uniqueness assumption (Assumption 2). �

Lemma 16 Letπ′ 6= π′′ denote two distinct optimal policies ofCMDP(α′) andCMDP(α′′), respectively.
If π′ andπ′′ are either deterministic or strictly1-randomized, thenα′ 6= α′′.

Proof: Assume for the sake of contradiction thatD(π′) = D(π′′). Recall that by definitionα′ = D(π′)
andα′′ = D(π′′). Since bothπ′ andπ′′ are optimal, it follows thatC(π′) = C(π′′). If eitherπ′ or π′′

is deterministic, then the lemma follows from the uniqueness assumption. If both policies are strictly
1-randomized, then letπ′ (resp. π′′) be a convex combination of two deterministic policiesπ0 andπ1

(resp. τ0 andτ1). By Lemma 15,D increases along the edge betweenπ0 andπ1 (resp. τ0 andτ1).
Without loss of generality,D(τ0) ≤ D(π0) ≤ D(π′). It follows that Assumption 2 is violated for
α = D(π0). �

5.4 Graph Representation

Definition 7 (policy graph) Thepolicy graphis a graphG = (V,E), whereV is the set of deterministic
policies, andE is the set of pairs of neighboring deterministic policies (i.e. policies that disagree in
exactly one state).

In the case of two actionsk = 2, the policy graph is isomorphic to then dimensional hypercube.
In the general case, the policy graph is isomorphic to the Cartesian product ofn copies of the complete
graph overk vertices.
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We consider the edge(π0, π1) between neighboring deterministic policies as a representation of all
convex combinationsπq = (1 − q) · π0 + q · π1 of π0 andπ1. In such a case we say thatπq belongsto
the edge(π0, π1).

Let Γ denote the set of deterministic or strictly1-randomized feasible policies forCMDP(α), for all
values ofα. LetΓ∗ ⊆ Γ denote the subset of optimal policies inΓ. In light of Proposition 9,Γ∗ consists
of vertices (i.e. deterministic policies) and edges (i.e. deterministic and strictly1-randomized policies).

Lemma 17 The setΓ∗ is a path in the policy graphG.

Proof: Let G∗ denote the subgraph ofG that consists of the vertices and edges inΓ∗. The proof consists
of the following stages: (1) Prove thatG∗ is connected. (2) Prove that the degree of every vertex inG∗

is at most two.
Denote the connected components ofG∗ by U1, U2, . . . , Us. By continuity, the image of the function

D() over each connected component is an interval. Denote the image ofUi by Ii. By Lemma 16, the
intervalsI1, . . . , Is are pairwise disjoint. By Proposition 10 the union of the intervalsI1 ∪ · · · ∪ Is is
an interval. To avoid a contradiction, we conclude thatG∗ contains only a single connected component.
HenceG∗ is connected, as required.

If the degree of a vertexπ is at least3, consider three edges inΓ∗ that are incident toπ. By
Lemma 15,D(π) is strictly monotone as one travels along each of these edgesincident tov. Moreover,
for at least two edges, the slope ofD(π) as one approachesv has the same sign, namely, monotone
increasing (or decreasing). Two such edges inΓ∗ contain two optimal policiesπ′ 6= π′′ ∈ Γ∗ such that
D(π′) = D(π′′). This contradicts Lemma 16, and the lemma follows. �

The next corollary follows from Lemma 16 and Lemma 17.

Corollary 18 D(π) is strictly monotone along the pathΓ∗.

6 A General Algorithm

In this section we present a general algorithm for computingoptimal policies of irreducibleMDPs that
satisfy the uniqueness property. Although we can not prove that the running time of this algorithm is
polynomial in general, in the next section we prove strong polynomiality of a variant when the coupling
property holds.

6.1 Geometric Interpretation of The Algorithm

The algorithm is based on Lemma 17 that states that the setΓ∗ of optimal deterministic and strictly
1-randomized policies form a path in the policy graph. Consider the polytopeP generated by the
deterministic occupation measures. We introduce a cost vector d. Let Pα denote the intersection ofP
with the hyperplanedT · ρ = α. Let αmin (resp.,αmax) denote the minimum (resp., maximum) value of
α for which Pα is not empty. For eachα ∈ [αmin, αmax], the polytopePα contains a single occupation
measureρ(α) that corresponds to a policyπ(α) ∈ Γ∗.

The algorithm assigns a zero-one cost vectord so thatαmin = 0 andαmax = 1. Moreover, it is
trivial to find the optimal deterministic policyπ such thatD(π) = 0. Given a prefix ofΓ∗ ending in
a deterministic policyπ, the algorithm finds the next deterministic policyτ alongΓ∗ as follows. First,
note thatτ must be a neighbor ofπ. Namely, there exists a statei and an actionj such thatτ = πi,j.
This limits the number of candidates forτ to nk. Second, by Coro. 18,D(τ) > D(π). Thus if we depict
the neighboring policies on a(C,D)-plane (see Fig. 1), thenτ is simply the policy with the smallest
slope.

The algorithm ends when all neighborsτ of π satisfy D(τ) ≤ D(π). Thus, the algorithm has
reached the last policy alongΓ∗.
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C(τ3)

C(π)

C(τ2)

C(τ1)

D(π) D(τ3) D(τ1) D(τ2)

C(·)

D(·)

Figure 1: Suppose a prefix ofΓ∗ ends in a deterministic policyπ. The algorithm has to compute the
next policy alongΓ∗ among the neighboring policiesτ1, τ2, τ3. The costsC(·) andD(·) of each policy
are depicted in the graph. The algorithm chooses the policyτ3 since the segment between(D(π), C(π))
and(D(τ3), C(τ3)) has the smallest slope.

6.2 Notation

Given a deterministic policyπ, we define the gradient∇i,j as follows:

∇i,j
△
=

C(πi,j)− C(π)

D(πi,j)−D(π)
(4)

The parameters in the definition of∇i,j can be easily computed as follows. Recall thatBπ denotes
the projection of the columns of the matrixA on the pairs inIπ (i.e., the basis matrix corresponding to
the basic feasible solutionρπ). For a vectorρπ, the projection to the coordinates inIπ is denoted by
ρ̃π. Sinceπ is a deterministic policy, by Proposition 6 the corresponding occupation measureρπ when
projected toIπ is the unique solution forBπ · ρ̃π = b. HenceC(π) = c̃π · ρ̃π, D(π) = d̃π · ρ̃π, and the
analogous computations hold forC(πi,j) andD(πi,j).

6.3 Algorithm Description

The algorithm adds a new artificial cost functionD(π) specified by a cost vectord ∈ {0, 1}nk. TheMDP

with the constraintD(π) = α is denoted byCMDP(α). In the linear programming formulation,LP(α) is
the linear program obtained by adding the constraintdT · ρ = α to LP. The algorithm computes the set
Γ∗ of optimal (deterministic or strictly1-randomized) policies forCMDP(α), for every value ofα. This
set is found by computingΓ∗. Finally, an optimal policy for theMDP is chosen as a deterministic policy
in Γ∗ with minimum costC(·).

A listing of the algorithm appears as Algorithm 1. In line 1, the algorithm assigns zero-one costs
d(i, j). For each state, one (arbitrary) action is assigned zero cost, and the other actions are assigned unit
cost. In line 2, the initial policy is set. This policy simplychooses the zero cost action for each state.
This initial policy π achieves the minimum value forD(π). The pathp begins with the initial policy as
its starting point.

The algorithm builds the pathp by adding a new edge in each iteration of the while-loop. The last
policy (vertex) added top is denoted byπ. In each iteration of the while-loop the pathp is augmented
by a new edge(π, πi,j). In line 4, this new edge(π, πi,j) is chosen such that(i, j) = argmin{∇i,j |
∀(i, j) such thatD(πi,j) > D(π)}. In line 5, the new edge is added to the pathp. In line 6, the new
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endpoint ofp is updated. In lines 7-8, the minimum cost policy alongp is updated, if necessary. In line
11, a minimum cost policy is returned.

Algorithm 1 A heuristic for finding an optimal policy for theMDP min{c · ρ | A · ρ = b}. We assume
that theMDP is irreducible and satisfies the uniqueness property.

1: Define

d(i, j)
△
=

{

0 if j = 0

1 otherwise.

2: Initialize:

π ← (0, . . . , 0) {π chooses the “zero” action in each state}

opt← π {best policy so far}

p← {π} {pathp starts withπ}

3: while exists (i, j) such that D(πi,j) > D(π) do
4: (i, j) ← argmin{∇i,j | ∀(i, j) such thatD(πi,j) > D(π)}
5: add the edge(π, πi,j) to p
6: π ← πi,j {πi,j becomes the current endpoint ofp}
7: if C(πi,j) < C(opt) then
8: opt← πi,j {opt is the best policy so far}
9: end if

10: end while
11: return opt

6.4 Correctness

We now prove that Algorithm 1 finds an optimal policy. To provethis we prove that the algorithm
computesΓ∗, the path of optimal solutions ofLP (α) (for all values ofα) in the policy graph.

Theorem 19 The pathp computed by the algorithm 1 equalsΓ∗.

Proof: We prove by induction on the number of iterations of the while-loop thatp is a prefix ofΓ∗

in each iteration. Since the costsd(x, u) are in{0, 1}, it follows that for every policyτ , D(τ) ≥ 0.
Hence,LP (α) is feasible only ifα ≥ 0. Clearly the initial policyπ0 = (0, . . . , 0) satisfiesD(π0) = 0.
We claim that the initial policy is the only policy withD(π) = 0. Consider an optimal policyπ 6= π0.
Consider a statex and actionu for which π(x, u) > 0 while π0(x, u) = 0. By the Assumption 1,
ρπ(x, u) > 0. Sinced(x, u) = 1, it follows that D(π) > 0. We conclude that the initial policy is
optimal forα = 0. Moreover, the initial policy is the endpoint of the pathΓ∗ with smallest costD(·),
and the induction basis holds.

The induction step is proved as follows. Letπ denote the last policy added top. Let πi,j denote the
next policy added top, namely,(i, j) ← argmin{∇i,j | ∀(i, j) such thatD(πi,j) > D(π)}. Let πı̂,̂

denote the next policy alongΓ∗ afterπ. We wish to prove that(i, j) = (̂ı, ̂).
Assume for the sake of contradiction that(i, j) 6= (̂ı, ̂). By Coro. 18,D(πı̂,̂) > D(π). Let

D′ = min{D(πı̂,̂),D(πi,j)}. Since the costD(τ) is a continuous function of the policyτ , the costD′

is obtained in two policies:π1 along the edge betweenπ andπi,j andπ2 along the edge betweenπ and
πı̂,̂. For example,π1 = πi,j andπ2 is a convex combination ofπ andπı̂,̂. The policyπ2 is also an
optimal policy. However, by Proposition 13 and the definition of (i, j), it follows thatC(π1) ≤ C(π2).
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This contradicts the optimality ofπ2 (if C(π1) < C(π2)) or the uniqueness of the solution (ifC(π1) =
C(π2)). Hence,(i, j) = (̂ı, ̂), which completes the induction step.

We now prove that when the algorithm terminates,p cannot be augmented anymore, and hence,p
equalsΓ∗, as required. Indeed, ifp is a proper prefix ofΓ∗, then the costD(·) increases fromπ to the
next deterministic policy inΓ∗. In this case, the algorithm would not have terminated yet because the
set{(i, j) : D(πi,j) > D(π)} is not empty. �

Corollary 20 Algorithm 1 computes an optimal policy of theMDP.

Proof: The MDP has an optimal policyπ∗ that is deterministic. This policy is also inΓ∗. By Theo-
rem 19,π∗ appears in the sequence of policies scanned by the algorithm. �

Let |Γ∗| denote the number of deterministic policies inΓ∗.

Proposition 21 The complexity of Algorithm 1 isO(|Γ∗| · n3 · k).

Proof: In each deterministic policy (vertex alongΓ∗), the algorithm checks at mostn · k options for
the next policy. The running time of each check is dominated by matrix inversion. Matrix inversion is
applied to a basis matrix that is obtained from a adjacent basis, namely, a change in a single column.
By the Sherman-Morrison Formula [16], the inverse matrix can be computed in timeO(n2). Thus, the
complexity of the algorithm isO(|Γ∗| · n3 · k), as required. �

7 A Strongly Polynomial Algorithm: when coupling property h olds

7.1 Notation

For every deterministic policyτ , let ρmin(τ)
△
= min{ρτ (i, τ(i)) : i ∈ X}. Similarly, ρmax(τ)

△
=

max{ρτ (i, τ(i)) : i ∈ X}. Let ρmin
△
= minτ ρmin(τ) andρmax

△
= maxτ ρmax(τ), where the minimum

and maximum are taken only over deterministic policies. Assumption 1 implies thatρmin > 0.
The algorithm uses a parameterR that satisfies

R ≥
1 + ρmax

ρmin
. (5)

There is no need to precisely compute the right hand side of Eq. 5; instead we use an upper bound
based on Assumption 1 as follows. Obviouslyρmax < 1. In the expected average cost model, we lower
boundρmin by ρ̃min = pn

min, wherepmin is the minimum nonzero transition probability in theMDP. This
lower bound holds simply by considering all paths of lengthn with nonzero transition probabilities to a
given state. In the discounted cost model, we lower boundρmin by ρ̃min = (1 − β) · βn−1 · pn−1

min . The
algorithm uses the following value forR:

R
△
= max

{

2

ρ̃min
, nk

}

. (6)

7.2 Algorithm Description

A listing of the algorithm appears as Algorithm 2. The algorithm works under the additional assumption
that the coupling property holds. The algorithm is a variation of Algorithm 1. The only difference is in
the definition of the new artificial cost constraintdT · ρ = α. This definition now relies on the linear
orders≤i and the parameterR. The costsd(i, j) are exponential functions ofi andj.

In line 1, the algorithm sorts the actions in each state, namely, it computes the linear orders≤i over
U for each statei ∈ X. In line 2, costsd(i, j) are assigned to each pair(i, j) ∈ X × U . In line 3,
the initial policy is set. This policy simply chooses the first action (according to the order≤i) for each
statei. This initial policyπ achieves the minimum value forD(π). The remaining lines are identical to
corresponding lines in Algorithm 1.
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Algorithm 2 A strongly polynomial algorithm for finding an optimal policy for the MDP min{c · ρ |
A · ρ = b}. We assume that theMDP is irreducible and satisfies both the uniqueness and coupling
properties.

1: Sort the actions for each statei ∈ X according to the order≤i. Let ji
0 ≤i ji

1 ≤i · · · ≤i ji
k−1 denote

the actions sorted according to the order≤i.
2: Defined(i, ji

ℓ)
△
= Rk·(n−i)+ℓ.

3: Initialize:

π ← (j0
0 , . . . , jn−1

0 ) {π chooses the “first” action in each state}

opt← π {best policy so far}

4: while exists (i, j) such that D(πi,j) > D(π) do
5: (i, j) ← argmin{∇i,j | ∀(i, j) such thatD(πi,j) > D(π)}
6: π ← πi,j

7: if C(πi,j) < C(opt) then
8: opt← πi,j {opt is the best policy so far}
9: end if

10: end while
11: return opt

7.3 Correctness

The following lemma is used both for proving the correctnessand running time of Algorithm 2. Consider
two neighboring deterministic policiesπ andτ . By Lemma 15, it follows that the costD(·) is strictly
monotone along the edge in the policy graph fromπ to τ . The following lemma determines whether
D(·) increases or decreases along the edge(π, τ). The lemma relies on both Assumption 1 and the
coupling assumption.
For two actionsj1 andj2 we say thatj1 <i j2 if j1 ≤i j2 andj1 6= j2.

Lemma 22 Letπ 6= τ denote two neighboring deterministic policies, i.e.,τ = πi,j. Then,π(i) <i τ(i)
if and only ifD(π) < D(τ).

Proof: We first prove thatπ(i) <i τ(i) implies thatD(π) < D(τ). The proof is based on a coupling
argument and the exponential growth ofd(x, u) asx is closer to the initial state0. By definition,

D(τ)−D(π) =
∑

x∈X,u∈U

d(x, u) · (ρτ (x, u)− ρπ(x, u)). (7)

We partition this difference into three parts:

δ1
△
=
∑

x<i

∑

u∈U

d(x, u) · (ρτ (x, u)− ρπ(x, u)).

δ2
△
=
∑

x>i

∑

u∈U

d(x, u) · (ρτ (x, u)− ρπ(x, u)).

δ3
△
=
∑

u∈U

d(i, u) · (ρτ (i, u)− ρπ(i, u)).

Sinceπ(i) <i τ(i), the coupling property states thatρπ(x, u) ≤ ρτ (x, u), for everyx < i and every
u ∈ U . Therefore,δ1 ≥ 0.

15



We now boundδ2 as follows. Note that, for everyx > i andu ∈ U , it follows that d(x, u) ≤
Rk·(n−i)−1. Hence,

δ2 ≥
∑

x>i

∑

u∈U

d(x, u) · (0− ρπ(x, u))

≥ −ρmax · (n− i) · k ·Rk·(n−i)−1

> −Rk·(n−i),

where the last line follows fromρmax < 1 andR ≥ kn > k · (n− i).
We now boundδ3 as follows. Denote the index ofπ(i) andτ(i) in the order≤i asℓ(π) andℓ(τ),

respectively. The assumptionπ(i) <i τ(i) implies that0 ≤ ℓ(π) < ℓ(τ) < k. Sinceπ and τ are
deterministic it follows that

δ3 = d(i, j) · ρτ (i, j) − d(i, π(i)) · ρπ(i, π(i))

≥ Rk·(n−i) · (ρmin · R
ℓ(τ) − ρmax ·R

ℓ(π))

≥ Rk·(n−i),

where the last line follows fromR ≥ (1 + ρmax)/ρmin andℓ(τ) ≥ ℓ(π) + 1. Note that the second line
requires thatρτ (i, j) > 0. Indeed, Assumption 1 implies thatρτ (i, j) > 0.

It follows thatδ1 + δ2 + δ3 > 0−Rk·(n−i) + Rk·(n−i) = 0, as required.
The converse direction is proved as follows. By contraposition, D(π) < D(τ) implies thatπ(i) ≤i

τ(i). We rule out equality (namely,π(i) = τ(i)) sinceπ 6= τ andτ = πi,j. �

Corollary 23 The initial policyπ0 = (j1
0 , . . . , jn

0 ) in Algorithm 2 is an optimal policy ofCMDP(α0) for

α0
△
= D(π0). Moreover,LP (α) is not feasible forα < α0.

Proof: Consider the policyτ of minimum costD(·) in Γ∗. By Lemma 15,τ is a deterministic policy.
Suppose, for the sake of contradiction, thatτ 6= π0. Let i denote a state for whichπ0(i) 6= τ(i). By the
definition ofπ0 it follows thatπ0(i) <i τ(i). Let π = τ i,π0(i). Note thatπ andτ satisfy the premises of
Lemma 22. HenceD(π) < D(τ), contradicting the minimality ofD(τ). It follows thatπ0 is the unique
policy in Γ∗ whose cost isD(π0), as required. �

Theorem 24 Algorithm 2 returns an optimal deterministic policy ofMDP if the coupling property holds.

Proof: The proof follows the proof of Theorem 19 and Coro. 20 . The only modification, based on
Coro. 23, is the justification that the initial policy is an endpoint ofΓ∗ . �

7.4 Running Time

Proposition 25 If the coupling property holds, then|Γ∗| ≤ n · k.

Proof: By Coro. 18, the costD(·) increases alongΓ∗. Let π immediately precedeτ alongΓ∗. Suppose
τ = πi,j. By Lemma 22,π(i) <i τ(i). This implies that the length of the path is bounded byn · k. �

Corollary 26 The complexity of Algorithm 2 isO(k2 · n4).

Proof: Follows directly from Propositions 21 and 25. �
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8 Discussion

We presented an algorithm for computing an optimal policy ofan irreducibleMDP. A variation of this
algorithm runs in strongly polynomial time if theMDP satisfies the coupling property, e.g., a controlled
discrete time M/M/1 queue. The algorithm is based on two assumptions: irreducibility and uniqueness.

The uniqueness property is shown in Lemma 3 to hold with high probability if the cost function is
randomly perturbed. Therefore, if theMDP does not satisfy the uniqueness property, then the need for a
random perturbation implies that the algorithm is a randomizedε-approximation algorithm.

The irreducibility assumption of theMDP (i.e., Assumption 1) is used several times in the proofs to
show that the occupation measure is positive for every state. In the discounted cost model (i.e.,β < 1),
irreducibility can be replaced with the more relaxed assumption that, for every deterministic policy,
every state is reachable from the initial state with positive probability.
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A Uniformization of A Birth-Death Process

Uniformization [3, 21, 22] is a technique that transforms a continuous time Markov process into a
discrete one while preserving the occupation measure. In the case of a controlled Markov process, uni-
formization also preserves the optimality of policies and their costs. We apply uniformization to trans-
form a controlled continuous time birth-death process [11](i.e., one-dimensional queue) to a discrete
MDP.
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The queue dynamics are determined by service completions, which are independent exponentially-
distributed random variables with ratesµ(i, u), that depend on the statei and the actionu, and an
independent Poisson arrival process with rateλ (that does not depend on the state or the action). Equiv-
alently, the inter-arrival times are exponentially distributed with rateλ.

We now use the following fact. Given two independent exponential random variablesX,Y with
ratesa andb resp. and a numberc > a + b, we can construct the two variables as follows. Choose
a Poisson process with ratec. When the process jumps, throw an (independent) 3-sided die. With
probabilitya/c claim thatX occurred. With probabilityb/c claim thatY occurred, and with probability
(c− a− b)/c neither occurred—in which case we repeat. This gives the same probabilistic behavior as
the original variables.

Now denote byvi(u) the rate by which the queue leaves statei if the selected action isu. To apply
the previous argument, setvi(u) = λ + µ(i, u) as the total rate in statei. Let v = maxi,u(vi(u)). The
transition rates of the uniformized process are now independent of the state and of the actions chosen in
each state, and are equal tov. Once a transition occurred, its type is determined according to

P (j|i, u) =











λ
v for j = i + 1
µ(i,u)

v for j = i− 1

1− λ+µ(i,u)
v for j = i

(8)

with the appropriate modifications ati = 0 and i = n − 1. We have obtained a process that shares
the probabilistic description of the original, except thatself-loops were introduced. In the new process,
times between events (including self-loops) are independent, identically distributed (exponential with
ratev).

To obtain a discrete time process we observe the process at jump times (including times of self
loops). Since inter-jump times are i.i.d., we can simply count the number of jumps, where the transition
probabilities are determined by Equation 8, and obtain a discrete-time process. The properties of the
inter-jump times imply that, under any deterministic policy, the occupation measure of the original
process agrees with that of the discrete time process, and inparticular all cost functionals agree as well.

B Proof That Coupling Property Holds

Proof of Lemma 4. We prove the lemma for the expected average cost model. We usethe following
abbreviated notation. Fix a deterministic policyπ. For each statex, let ρ(x) denote the occupation

measure for statex under the policyπ, namely,ρ(x)
△
=
∑

u∈U ρπ(x, u). Let ρ′(x)
△
=
∑

u∈U ρπi,j (x, u).

Let p(x)
△
= P (x− 1|x, π(x)) andq(x)

△
= P (x + 1|x, π(x)). Similarly, letp′(x)

△
= P (x− 1|x, πi,j(x))

andq′(x)
△
= P (x+1|x, πi,j(x)). For state0, let p(0)

△
= P (0|0, π(0)), and for staten−1 let q(n−1)

△
=

P (n− 1|n− 1, π(n − 1)).
We claim that the following holds, for every statex ≥ 1:

ρ(x) =
q(x− 1) · q(x− 2) · · · q(0)

p(x) · p(x− 1) · · · p(1)
· ρ(0). (9)

The proof of 9 is similar to the analytic solution of the equilibrium probabilities of continuous time
birth-death queuing systems [11]. We prove Eq. 9 by induction onx. The basis forx = 1 is equivalent
to ρ(1) · p(1) = q(0) · ρ(0). Indeed, the first constraint ofLP implies that

ρ(0) · p(0) + ρ(1) · p(1) = ρ(0) · p(0) + ρ(0) · q(0).

This is in fact the balance equation [11, 23] that compares the probability of transitions entering state0
with the probabilities of the transitions emanating from state0.
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Assume that Eq. 9 holds forx ≤ k. The induction step forx = k + 1 uses theLP constraint for state
k (i.e., the balance equation for statek). Namely,

ρ(k − 1) · q(k − 1) + ρ(k + 1) · p(k + 1) = ρ(k)(p(k) + q(k)).

Rearranging, we obtain,

ρ(k + 1) =
1

p(k + 1)
· (ρ(k)(p(k) + q(k))− ρ(k − 1) · q(k − 1)).

Dividing ρ(k)/ρ(k − 1), and substituting according to Eq. 9 givesρ(k) · p(k) = ρ(k − 1) · q(k − 1).
Therefore,

ρ(k + 1) =
1

p(k + 1)
· (ρ(k) · q(k))

=
q(k) · q(k − 1) · · · q(0)

p(k + 1) · p(k) · · · p(1)
· ρ(0),

which completes the proof of Eq. 9.
Our goal is to prove that ifπ(i) ≤i j, thenρπ(x) ≤ ρπi,j (x), for every x < i. Let γ(x)

△
=

q(x−1)·q(x−2)···q(0)
p(x)·p(x−1)···p(1) . Similarly, letγ′(x) denote the above ratio with respect to the policyπi,j.

We claim that for every statex, γ(x) ≥ γ′(x). Indeed, forx < i, γ(x) = γ′(x) since the ratio
differs only whenx ≥ i. Forx = i it follows thatγ(x)/γ′(x) = p′(i)/p(i) ≥ 1 sinceπ(i) ≤i j. For
x > i it follows thatγ(x)/γ′(x) = p′(i)

p(i) ·
q(i)
q′(i) ≥ 1.

Recall first that sinceρ is an occupation measure, it follows that
∑

x∈X ρ(x) = 1. Hence, by Eq. 9,

1 =
∑

x∈X

ρ(x) = ρ(0) ·
∑

x∈X

γ(x)

1 =
∑

x∈X

ρ(x) = ρ′(0) ·
∑

x∈X

γ′(x).

Since
∑

x∈X γ(x) ≥
∑

x∈X γ′(x), it follows thatρ(0) ≤ ρ′(0). For every statex < i we have
γ(x) = γ′(x), hence by Eq. 9 it follows thatρ(x) ≤ ρ′(x), as required. �

Proof of Lemma 5. We use the same notation as in the proof of Lemma 4. We claim that the following
holds, for every statex ≥ 1:

ρ(x) =
qx

p(x) · p(x− 1) · · · p(1)
· ρ(0). (10)

The proof of Eq. 10 is by induction onx. The basis forx = 1 is equivalent toρ(1) · p(1) = q · ρ(0).
Indeed, it holds because of the balance equation [11, 23]:

ρ(0) · p(0) + ρ(1) · p(1) = ρ(0) · p(0) + ρ(0) · q

that compares the probability of transitions entering state 0 with the probabilities of the transitions
emanating from state0. Note that this balance equation does not hold in the discounted cost model.

Assume that Eq. 10 holds forx ≤ k, the induction step forx = k + 1 uses the balance equation for
statek. Namely,

ρ(k − 1) · q + ρ(k) · P (k|k, π(k)) + ρ(k + 1) · p(k + 1) = ρ(k)(p(k) + P (k|k, π(k)) + q).

Rearranging, we obtain,

ρ(k + 1) =
1

p(k + 1)
· (ρ(k)(p(k) + q)− ρ(k − 1) · q).
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By dividing Eq. 10 forρ(k) andρ(k − 1) it follows thatρ(k) · p(k) = ρ(k − 1) · q. Therefore,

ρ(k + 1) =
1

p(k + 1)
· (ρ(k) · q)

=
q(k+1)

p(k + 1) · p(k) · · · p(1)
· ρ(0),

which completes the proof of Eq. 10.
Our goal is to prove that ifπ(i) ≤i j, thenρπ(x) ≤ ρπi,j (x), for every x < i. Let γ(x)

△
=

qx

p(x)·p(x−1)···p(1) . Similarly, letγ′(x) denote the above ratio with respect to the policyπi,j.

We claim that for every statex, γ(x) ≥ γ′(x). Indeed, forx < i, γ(x) = γ′(x) since the ratio
differs only whenx ≥ i. Forx ≥ i it follows thatγ(x)/γ′(x) = p′(i)/p(i) ≥ 1 sinceπ(i) ≤i j.

Recall first that sinceρ is an occupation measure, it follows that
∑

x∈X ρ(x) = 1. Hence, by Eq. 10,

1 =
∑

x∈X

ρ(x) = ρ(0) ·
∑

x∈X

γ(x)

1 =
∑

x∈X

ρ(x) = ρ′(0) ·
∑

x∈X

γ′(x).

Since
∑

x∈X γ(x) ≥
∑

x∈X γ′(x), it follows thatρ(0) ≤ ρ′(0). For every statex < i we have
γ(x) = γ′(x), hence by Eq. 10 it follows thatρ(x) ≤ ρ′(x), as required. �
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