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We consider a class of n-player stochastic games with the following properties: (1) in every state, the transitions are controlled
by one player; (2) the payoffs are equal to zero in every nonabsorbing state; (3) the payoffs are nonnegative in every absorbing
state. We propose a new iterative method to analyze these games. With respect to the expected average reward, we prove the
existence of a subgame-perfect �-equilibrium in pure strategies for every �> 0. Moreover, if all transitions are deterministic,
we obtain a subgame-perfect 0-equilibrium in pure strategies.
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1. Introduction. In the theory of average reward stochastic games (with finite state and action spaces), a
major open problem is whether or not �-equilibria exist for all � > 0. The famous game called the Big Match,
which was introduced by Gillette [6] and solved by Blackwell and Ferguson [2], and the game in Sorin [21]
demonstrated that 0-equilibria do not necessarily exist, and moreover, that history-dependent strategies are indis-
pensable for establishing �-equilibria. For two-player zero-sum games, Mertens and Neyman [12] showed the
existence of �-equilibria, in terms of �-optimal strategies. Later, Vieille [24,25] provided a proof that �-equilibria
exist in all two-player stochastic games. For more than two players, however, only partial results are available,
under rather restrictive conditions. For results on the existence of �-equilibria in special classes, we refer to
Thuijsman and Raghavan [22], Solan [17], Solan and Vieille [19], Simon [16], and Flesch et al. [3–5].
About subgame-perfect �-equilibria even less is known. Lately, the class � of n-player recursive games with

perfect information has received considerable attention. Here, recursive refers to the property that the payoffs
are equal to zero in all nonabsorbing states, whereas perfect information means that, in any state of the game,
at most one player has more than one action (this player controls the state). Let �+ denote the subclass of
games in � in which all the payoffs are nonnegative in all absorbing states. In �+, the players have an incentive
to eventually reach an absorbing state. It is known that subgame-perfect 0-equilibria do not always exist in �
(cf. Solan and Vieille [20]) and also that stationary strategies are, in general, not sufficient for subgame-perfect
�-equilibria in �+ (cf., for example, Kuipers et al. [7], or Example 4 below).
We remark that, although Thuijsman and Raghavan [22] showed the existence of 0-equilibria for all games

in class �, their construction is not subgame perfect, in general, because it involves punishments, where n− 1
players minimize a deviating player without regard to their own payoffs.
Solan [18] showed for a subclass of games in � that subgame-perfect �-equilibria exist for all � > 0. His

proof requires two restrictions for games in �: (1) each player controls exactly one nonabsorbing state and
(2) each player in his own state has the choice between two actions: one absorbing action leading immediately
to an absorbing state, and a nonabsorbing one leading to the n nonabsorbing states according to a probability
distribution. It is essential that this probability distribution is the same for all n nonabsorbing actions. His proof
is based on the analysis of a specific type of differential inclusions. A generalization of this result to periodic
probability distributions can be found in Mashiah-Yaakovi [11].
For a subclass of games in �+, called free transition games, Kuipers et al. [7] proved the existence of

subgame-perfect 0-equilibria in pure strategies. A game G ∈�+, with T denoting the set of nonabsorbing states
of G, is called a free transition game if it satisfies the following condition: in any state s ∈ T , the action space of
the controlling player is is exactly �0	∪T , where action 0 is absorbing and leading immediately to an absorbing
state, and where action a ∈ T is nonabsorbing and leads to nonabsorbing state a with probability 1.
In this paper, we prove the existence of subgame-perfect �-equilibria in pure strategies, for all � > 0, within

the whole class �+. For the subclass of games with deterministic transitions, the proof simplifies, and we
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obtain subgame-perfect 0-equilibria in pure strategies. We introduce an inductive method to analyse these games.
Although this method relies on the properties of the class �+, it is very natural and may initiate further results
outside this class.1

We also wish to mention two related models, in which there is an ongoing investigation regarding the existence
of equilibria and subgame-perfect equilibria. First, we mention a class of Dynkin games, where in each state (of
a possibly infinite state space), the controlling player has one nonabsorbing action, called “continue,” and one
absorbing action, called “quit” (cf., for example, Solan and Vieille [20], Solan [18], or Mashiah-Yaakovi [10,11]).
Another related model is the class of so-called stopping games, where in contrast with Dynkin games, several
players may choose simultaneously between actions “continue” and “quit” (cf., for example, Shmaya et al. [15],
Shmaya and Solan [14]).
For a coalitional game model where the transitions are deterministic, Vartiainen [23] independently proved

a result that is similar to ours. He formulates an equilibrium concept requiring that an active coalition or any
subcoalition thereof cannot benefit by deviating from a proposed well-defined strategy that specifies, for each
history of coalitional moves, an active coalition and its move. Here, “well-defined” means that the strategy even-
tually leads to an outcome for which no further move is prescribed. Thus, this equilibrium concept applied to a
coalitional game model resembles the notion of subgame-perfect equilibria applied to positive recursive games
with deterministic transitions. Vartiainen [23] proves that a strategy satisfying his equilibrium concept exists.
Moreover, his proof is based on the iterative application of majorization operations, similar to the iterative scheme
presented in this paper.
This paper is structured as follows. In §2, we present the model and the main results together with the main

idea behind the proof. In §3, we prove a useful lemma claiming that, for the main theorem, it suffices to consider
games in a subclass ��+ of �+. In §4, we introduce notions that will play an important role in our analysis.
Finally, in §5, we present the proof of the main theorem for the subclass ��+.

2. The model and the main results.

The class �+ of stochastic games. An n-player stochastic game in class �+ is given by (1) a nonempty
set of players N = �1� 
 
 
 � n	, (2) a nonempty and finite set of states S, (3) for each state t ∈ S, an associated
controlling player it ∈N , (4) for each state t ∈ S, a nonempty and finite set of actions At , (5) for each state t ∈ S
and each action a ∈ At , a transition probability distribution pt�a�= �pt�a�u��u∈S , (6) for each state t ∈ S and
each action a ∈At , a payoff r it �a� ∈� to each player i such that the payoffs are equal to 0 in all non-absorbing
states and the payoffs are nonnegative in all absorbing states. Here, a state t is called absorbing if pt�a� t�= 1
for all actions a ∈At; otherwise t is called nonabsorbing.
The game is to be played at stages in � in the following way. At any stage m, in the present state sm ∈ S,

the controlling player ism has to choose an action am from the action set Asm . The chosen action am induces a
payoff rjsm�am� to each player j , and a transition to a new state according to the transition probability distribution
psm�am�, where play will continue at stage m+ 1. We assume complete information (i.e., the players know all
the data of the stochastic game), full monitoring (i.e., the players observe the present state and the action chosen
by the controlling player), and perfect recall (i.e., the players remember all previous states and actions). The
game starts in an initial state s ∈ S.

Strategies. A mixed action in state t ∈ S for player it is a probability distribution on At . The set of these
mixed actions is denoted by Xt . For a ∈ At , let St�a�= �u ∈ S � pt�a�u� > 0	 denote the set of states to which
transition occurs with a positive probability when action a is taken at state t. Let Hs� t denote the set of all
possible sequences �s = s1� a1� 
 
 
 � sm�am� sm+1 = t� of arbitrary but finite length, where for every k= 1� 
 
 
 �m
we have that (1) sk is a state and ak is an action of the controlling player isk in state sk, (2) sk+1 ∈ Ssk �ak�. Thus,
Hs� t is the set of all possible histories starting in initial state s and ending in state t.
A strategy �i for player i and initial state s is a decision rule that, for any history h ∈ Hs� t with i = it ,

prescribes a mixed action �i�h� ∈ Xt . We use the notation �i
s for the set of strategies for player i and initial

state s.2 A strategy �i ∈�i
s is called pure if every prescription �

i�h� places probability 1 on one action. If the

1 One of the referees suggested an approach, which is based on the main result, to prove the existence of subgame-perfect �-equilibria in
all perfect information stochastic games, with finite state and action spaces, when each player evaluates his sequence of payoffs by taking
the limit superior.
2 In this paper, a strategy provides prescriptions for histories with a given initial state, and it provides no prescriptions for other initial states.
This is to conform with the concept of a continuation strategy, to be defined later on.
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mixed actions prescribed by a strategy only depend on the final state of h, then the strategy is called stationary.
We use the notation �s for the set of joint strategies � = ��i�i∈N with �i ∈ �i

s for i ∈ N . A joint strategy
� = ��i�i∈N is pure if �i is pure for all i ∈N , and it is stationary if �i is stationary for all i ∈N .
Consider a strategy �i ∈�i

s and a history h ∈Hs� t . The continuation strategy �i�h� ∈�i
t for player i and initial

state t prescribes mixed actions for histories h′ ∈ Ht�u with iu = i according to �i, but as if h had happened
before h′. More formally, the continuation strategy �i�h� prescribes the mixed action �i�h��h′�=�i�h⊕h′� in
state u. Here, h⊕ h′ is the history obtained by concatenation of h and h′ (where t, the final state of h and the
initial state of h′, merge to one state t in h⊕ h′). We use the notation ��h� to denote the joint continuation
strategy, associated with � = ��i�i∈N and h ∈Hs� t .

Rewards. For initial state s ∈ S and a joint strategy � ∈�s , the sequences of payoffs are evaluated by the
expected average reward, which is given for player i by

 i��� != lim inf
M→�

Ɛ�

(
1
M

M∑
m=1

Rim

)
= lim inf

M→�
1
M

M∑
m=1

Ɛ��R
i
m��

where Rim is the random variable for the payoff for player i at stage m, and where Ɛ� stands for expectation
with respect to play according to the joint strategy �.

Equilibria. A joint strategy � = ��i�i∈N ∈�s is called a (Nash) �-equilibrium for initial state s for some
�≥ 0 if

 i�$i� ��j�j∈N−�i	�≤ i���+ � ∀$i ∈�i
s� ∀ i ∈N�

which means that no player can gain more than � by a unilateral deviation. A strategy profile � = ��s�s∈S , with
�s ∈�s for all s ∈ S, is called a (Nash) �-equilibrium for some �≥ 0 if �s is an �-equilibrium for initial state
s for all s ∈ S. As we mentioned in the introduction, a 0-equilibrium exists in every game in the class �+ (even
in �), but not in stationary strategies in general.

Subgame-perfect equilibria. A joint strategy � ∈ �s is called a subgame-perfect �-equilibrium for ini-
tial state s for some � ≥ 0 if for any t ∈ S and history h ∈ Hs� t , the joint continuation strategy ��h� is an
�-equilibrium for initial state t. A strategy profile � = ��s�s∈S with �s ∈�s for all s ∈ S, is called a subgame-
perfect �-equilibrium for some � ≥ 0 if �s is a subgame-perfect �-equilibrium for initial state s for all s ∈ S.
Subgame perfection is a refinement of the equilibrium concept.
Our main results concern the existence of subgame-perfect �-equilibria in the class �+ of stochastic games.

We will pay special attention to the case when all transitions are deterministic, i.e., when for every state s ∈ S
and action a ∈As , there exists a state t ∈ S such that ps�a� t�= 1.
Main Theorem. Every stochastic game G in class �+ has a subgame-perfect �-equilibrium in pure strate-

gies for every � > 0. Moreover, if all transitions in G are deterministic, then G has a subgame-perfect
0-equilibrium in pure strategies.

The idea of the construction. Take an arbitrary game G ∈ �+. We assume that, in all absorbing states s,
player is has only one action. (Otherwise, we reduce the game by deleting all actions in state s except one that
offers player is the highest payoff.) This will imply that, as soon as absorption takes place, play is over from a
strategic point of view. For a real vector %= �%s�s∈S and a starting state s ∈ S, let Vs�%� denote the set of joint
pure strategies � with the following properties:
(1) � is absorbing, i.e., according to �, absorption occurs eventually with probability 1.
(2) For any history h ending in a state t ∈ S, the joint strategy � offers player it an expected continuation

reward of at least %t , i.e.,  
it ���h��≥ %t .3

Let ' denote the set of all vectors %= �%s�s∈S such that Vs�%� is nonempty for all s ∈ S. For any % ∈' and
state s ∈ S, let

(s�%� !=max
a∈As

inf
�t∈Vt�%�� ∀ t∈S

∑
t∈S
�ps�a� t� · is ��t��)

Intuitively, (s�%� is player is’s best reward when he plays an action a in state s, and subsequently, starting from
the next state t, all players (including player is) minimize player is’s reward by playing some joint strategy
�t ∈ Vt�%�. In fact, (s�%� can be seen as some punishment level for player is in state s, given punishment can
only be executed within the sets �t ∈ Vt�%�, t ∈ S. Let (= �(s�s∈S .
3 In the formal proof, we will use a slightly different definition for the sets Vs�%�.
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Sufficient conditions for subgame-perfect 0-equilibria in �+. Assume that there exists an %̄ ∈' such that
(1) %̄ is a fixed point of (, i.e., (�%̄�= %̄;
(2) the infimum is attained in the definition of (s�%̄� for all states s ∈ S, i.e., there are �s

t ∈ Vt�%̄�, ∀ t ∈ S,
such that

(s�%̄�=max
a∈As

∑
t∈S
�ps�a� t� · is ��s

t ��)

Under these conditions, one can construct a subgame-perfect 0-equilibrium �̄ as follows. Take an initial state
s ∈ S and an arbitrary game plan � ∈ Vs�%̄�. When starting in state s, the joint strategy �̄ prescribes to play
according to �1 !=�, as long as all players follow the prescriptions of �1. If, on the other hand, in some state
t, the controlling player it deviates to another action, by which play moves to some state u, then �̄ prescribes to
switch to �2 !=�t

u. Then, �
2 will be used as long as all players follow the prescriptions by �2. And similarly,

if, in a state w, player iw deviates by which play moves to state z, then �̄ prescribes to switch to �
3 !=�w

z , and
so on.
The main point of the construction of �̄ is the following. Suppose that the players are currently using �1

and play is in state t. Because of property (2) for �1, player it expects a reward of at least %̄t from �1. On the
other hand, if player it decides to deviate in state t, then, by property (2), the new �

2 offers player it a reward
of at most (t�%̄� in expectation. By property (1), (t�%̄�= %̄t , which implies that such a single deviation is not
profitable.
Based on this observation, we now provide an intuitive argument why �̄ is a subgame-perfect 0-equilibrium.

Because play is similar in any subgame, we only argue that �̄ is a 0-equilibrium. Suppose that some player i
intends to deviate by choosing another strategy ,i. Because player i cannot profit from preventing absorption
completely (recall that all payoffs in the absorbing states are nonnegative), we can assume that ��̄−i� ,i� is
absorbing. Therefore, ,i only deviates from �̄i finitely many times, with probability 1. Because we already argued
that a single deviation cannot be profitable, it will follow that ,i does not yield a better reward to player i than �̄i.
Unfortunately, it is not clear whether or not all games in �+ satisfy properties (1) and (2) above. We will

show, nevertheless, that every game G ∈�+ with deterministic transitions does have these two properties. As a
consequence, G admits a subgame-perfect 0-equilibrium.

The existence of subgame-perfect �-equilibria in �+. Regarding subgame-perfect �-equilibria, however, it
is possible to make progress even without properties (1) and (2). We propose the following iterative method. Let
%0s = 0 for all states s ∈ S.4 Obviously, for any s ∈ S, the set Vs�%0� consists of all joint pure strategies, which
are absorbing. Thus %0 ∈'. For a general k, given %k ∈', we let %k+1 = (�%k�. We then prove that %k+1 ∈'.
This sequence %k in ' turns out to be nondecreasing. Because the payoffs are bounded, we may conclude that
the sequence %k has a finite limit, which we denote by %∗. Although we can show that %∗ ∈', it is not clear
whether (�%∗�= %∗ holds (cf. the second concluding remark). Nevertheless, by exploiting the fact that %∗ is a
limit point of a successive application of (, we are able to construct a subgame-perfect �-equilibrium. It has a
similar structure as �̄ above, only the underlying sequence ��m�m∈� has to be chosen in a more clever manner.

Related iterative methods. Beside the method in Vartiainen [23], which was discussed in the introduction,
we also mention an iterative method applied in Maitra and Sudderth [8, 9]. Their iterative method was used to
show the existence of the value in two-player zero-sum stochastic games. They consider some auxiliary games,
called leavable games, in which player 1 can decide when to “stop.” The terminal payoff corresponding to
stopping is a variable. They define an inductive process in which these terminal payoffs are, in turn, determined
by the value of another leavable game. They show that the obtained sequence of values is monotonic and
convergent.

3. A reduction. In this section, we will show that, for our main results, it is sufficient to guarantee the
existence of pure subgame-perfect �-equilibria in a subclass of �+. Let ��+ denote the class of games in �+,
which satisfy
(1) From any state, the players have a joint strategy such that absorption eventually occurs with probability 1.

(One can show that it is sufficient to consider pure stationary strategies.)
(2) In any absorbing state s, player is has precisely one action.
(3) In any nonabsorbing state s, any action of player is either leads to nonabsorbing states only, or it leads to

one absorbing state with probability 1. In this sense, we will speak of nonabsorbing and absorbing actions.
(4) In any nonabsorbing state s, player is has precisely one absorbing action.

4 In the formal proofs, we choose other initial values.
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Now, we will provide a natural transformation, which reduces an arbitrary game G ∈ �+ into a game �G ∈ ��+.
So, take a game G ∈�+. We obtain �G in four steps as follows:
Step 1 for property (1). If G does not satisfy this property, then there must exist a state s such that, irrespective

of the strategies of the players, the probability that play ever absorbs is zero. This means the payoffs are
zeros regardless of what happens. For this reason, we replace all such states by absorbing states in which the
controlling player has one action and all payoffs are equal to zero.
Step 2 for property (2). In any absorbing state s, we delete all actions of player is except one that offers

player is the highest payoff in state s.
Step 3 for property (3). Suppose that, in some nonabsorbing state s, some action a of player is does not satisfy

this property. Then, action a leads to the set of absorbing states with a positive probability. Given absorption
takes place through action a, let wj denote the conditional expected payoff for player j in the set of absorbing
states. More formally,

wj =
∑

u ∈ S, u is absorbing�ps�a�u� · rju�∑
u ∈ S, u is absorbing ps�a�u�

�

where rju denotes the unique payoff (cf. property (2)) for player j in absorbing state u. Then, (i) we add two
new states: (ia) we add a new absorbing state s∗ in which the controlling player has one action and the payoff
for every player j is equal to wj , (ib) we add a new nonabsorbing state s′ with one action for the controlling
player from which transition occurs to state s∗ with probability 1, and (ii) we replace each transition through
action a to an absorbing state by a transition to state s′. We apply the same transformation to all actions that
violate property (3).
Step 4 for property (4). If in some nonabsorbing state s, player is has more than one absorbing action, then

we delete all absorbing actions of player is , except one that offers player is the highest payoff at absorption. We
apply the same transformation to all such states. Suppose now, on the other hand, that there is a nonabsorbing
state s in which player is has no absorbing action. Let S

0 denote the set of these states. Then, (i) we raise all
payoffs in the absorbing states by 1, (ii) we add a new absorbing state t∗ in which the controlling player has
one action and all payoffs are equal to 0, (iii) in each state in S0, we add a new absorbing action leading to
state t∗.
It is clear that the new game �G satisfies all four properties, thus �G ∈ ��+.

Lemma 1. Take an arbitrary game G ∈ �+, and transform G, according to the rules above, into a game
�G ∈ ��+. If a subgame-perfect �-equilibrium exists in �G in pure strategies for all � > 0, then one also exists
in G. Moreover, if a subgame-perfect 0-equilibrium exists in �G in pure strategies, then one also exists in G.

Proof. We only show the second part, as the proof for the first part on subgame-perfect �-equilibria is
almost identical. Now, let � denote a pure subgame-perfect 0-equilibrium in the game �G. We will show that �
induces a pure subgame-perfect 0-equilibrium for the original game G.
We will only argue for the transformation in Step 4, as it is obvious for the other three steps. It is enough to

show that � never prescribes to choose the new absorbing actions in states in S0. Suppose S0 �= �, otherwise
the statement is obvious. Let T denote the set of states after the transformation in Step 3 (T can differ from
the original state space S because of Step 3). Because of the transformation in Step 1, T − S0 �= �. Consider
first a state s ∈ T − S0. In this state, player is can obtain a payoff of at least 1 by playing his absorbing action.
Hence, his continuation reward from state s with regard to � is always at least 1. Notice that the payoffs in any
absorbing state are either all at least 1 or all equal to 0. Hence, each player’s (expected) continuation reward
from state s with regard to � is always at least some -s > 0. Because of the transformation in Step 1, there
exists a state t ∈ S0 with an action a such that action a leads to S−S0 with a positive probability; say, qa. Then,
if player it plays action a in state t, his continuation reward with respect to � is at least qa ·mins∈S−S0 -s > 0)
Hence the continuation reward of player it from state t with regard to �, and consequently, for all other players
as well, is at least some -t > 0. This means, in particular, that player it never plays his new absorbing action in
state t. If S0− �t	=�, then we are done. On the other hand, if S0− �t	 �= �, then we can continue as before,
since there exists again a state u ∈ S0 − �t	 with an action b such that action b leads to �T − S0�∪ �t	 with a
positive probability. Since the number of states is finite, we obtain in finitely many steps a - > 0 such that the
continuation rewards of the players with regard to � are always at least -. Hence the new absorbing actions in
states in S0 are never chosen, as desired. �
Because of the above lemma, we may restrict our investigation to games in the class ��+.
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An equivalent interpretation of games in ��+. Note that, in every state s of a game belonging to ��+, if
player is plays his absorbing action, then play moves with probability 1 to the absorbing state associated with
s; say, t�s�. Play is over from a strategic point of view once t�s� is reached, and each player j receives an
(expected) reward equal to rjt�s�. From now on, we will use the following equivalent interpretation of games
in ��+: in every nonabsorbing state s ∈ S, if player is plays his absorbing action, then play terminates, with
payoff rjs != rjt�s� to every player j . If the players never use their absorbing actions, play continues forever with
payoff 0 to every player. In this interpretation, the absorbing states play no role. Playing the absorbing action
in a nonabsorbing state will be called quitting. Moreover, the absorbing actions will be called quitting actions,
and all other actions will be called nonquitting actions.

4. Game plans and viability. Take a stochastic game G ∈ ��+ and an initial state s ∈ S. For a joint pure
strategy � ∈�s , let H

� denote the set of those histories, which have a positive probability with respect to �.
A function g from histories to actions is called a complete game plan for initial state s if g equals the restriction
��H� of some joint pure strategy � ∈�s to the set H

� . Let Hg =H� denote the domain of g. Thus g�h�=��h�
for all h ∈Hg . Clearly, different joint pure strategies can induce the same complete game plan. The idea of a
complete game plan is that it provides a prescription for the choice of an action during the whole play, if no
player ever deviates from the plan. We say that a game plan g is stationary if g�h� only depends on the final
state of h.
It is also possible to construct a complete game plan g for initial state s inductively as follows:
(1) At stage 1, an action g�s� ∈As is chosen. Define Hg�1 = ��s�	.
(2) At stage m+1 (m≥ 1), an action g�h� ∈Au is chosen for all histories h of the form h= hm⊕�t� g�hm��u�,

where hm ∈Hg�m, where t denotes the final state of hm, and where u ∈ St�g�hm��. Let Hg�m+1 denote the set of
such histories h.
The domain of such a constructed game plan g is given by Hg =⋃

m∈�Hg�m.
A function g from histories to actions is called a truncated game plan for initial state s if g equals the

restriction ��W of a joint pure strategy � to a set W � H� of histories such that W satisfies: if h ∈W is an
arbitrary history; say up to stage m, then, for any stage l < m, the part of h up to stage l also belongs to W .
An equivalent formulation of this property of the set W is that if a history does not belong to W , then neither
does any extension of this history up to larger stages. Note that if the players follow the prescriptions of a
truncated game plan g, then it may happen that a history h ∈H� −W occurs. In this case, g provides no further
prescriptions, and we will say that g expires. Also, for the truncated game plan g, let Hg =W denote the domain
of g.
Example 1. Consider a game G with three players and three states s, t, and u. In state s, player 1 can

either play a nonquitting action as leading to state s with probability
1
2 and to state t with probability

1
2 , or

quit. In state t, player 2 can either play a nonquitting action at leading to state u with probability 1, or play
the quitting action. In state u, player 3 can only quit. Consider state s as the initial state. An example of a
complete game plan is ĝ, which prescribes action as in state s until play arrives at state t and then quits in state
t. More formally, Hĝ consists of all histories that are either of the form �s� as� s� as� 
 
 
 � s� as� s� or of the form
�s� as� s� as� 
 
 
 � s� as� t�, and ĝ assigns action as to the former ones and quitting to the latter ones. An example
of a truncated game plan is g′, which prescribes action as in state s until play arrives at state t. More formally,
Hg′ consists of all histories of the form �s� as� s� as� 
 
 
 � s� as� s�, and g

′ assigns action as to all these histories.
Consider a (complete or truncated) game plan g for initial state s. For any h ∈ Hg , we can define the

continuation game plan g�h� of g with respect to h by g�h��h′�= g�h⊕ h′� for all h′ with h⊕ h′ ∈ Hg , just
as in the case of strategies. Notice that g�h� is a game plan for the final state of h. In the following, we will
sometimes use the notation Hg

t to denote the histories in Hg with final state t. Thus, if h ∈Hg
t , then g�h� is a

game plan for state t. Note that g�h� is complete if g is complete.
A complete game plan g is called quitting, if playing according to g eventually leads to quitting, with

probability 1. For a quitting game plan g, the expected payoff to a player i is denoted by  i�g�. Note that any
continuation game plan g�h� of a quitting game plan g is also quitting.
Take a real vector %= �%t�t∈S . A quitting game plan g is called viable with respect to % if  it �g�h�� ≥ %t

holds for all t ∈ S and all h ∈Hg
t . This means that, whenever play is in some state t, and play is according to

g, the controlling player it can expect a payoff of at least %t . In particular, since g always prescribes one action
with probability 1, viability of g with respect to % implies that termination can only take place at states t with
the property r itt ≥ %t . A state t with the property r itt ≥ %t is called a quitting state with respect to %.
Let Vs�%� denote the set of game plans for initial state s that are viable with respect to %. A specific viable

game plan will be denoted by v. Note that, for a game-plan v ∈ Vs�%� and a history h ∈Hv with final state t, the
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continuation game plan v�h� is a viable game plan in Vt�%�. Notice that viable game plans are, by definition,
always quitting and complete.
Example 2. Consider the game G from Example 1 and game plan ĝ for initial state s as defined in that

example. Let the payoff vectors be given by �2�2�2�, �3�1�2�, and �1�2�2� for s, t, and u, respectively. Let
%s = %u = 2 and %t = 1. According to ĝ, whenever play is in state s, player 1’s expected payoff is equal to
3> 2= %s , and whenever play is in state t, player 2 receives 1= %t . Hence ĝ is viable with respect to %.
Consider two states t, u ∈ S, and a real vector %= �%t�t∈S . We define

5t�u�%�=



inf
v∈Vu�%�

 it �v� when Vu�%� �= �

� otherwise�

which is the highest lower bound for the payoff to player it with regard to viable game plans starting in state u.
We do not know if the infimum is always attained.
Now, we can also define such a bound for an action a ∈At of player it in state t as follows:

6t�a�%�=



∑
u∈S
pt�a�u�5t�u�%� if action a is nonquitting

r
it
t if action a is quitting.

Furthermore, let
(t�%�=max

a∈At
6t�a�%�)

Recall from §2 that (t�%� can be seen as a punishment level for player it in state t, given punishment can only
be executed with game plans that are viable for %.
We finally define Bt�%� as the set of those actions a for player it in state t for which 6t�a�%�= (t�%�)
By the definition of (t�%�, the set Bt�%� is always nonempty. Observe that if (t�%�=�, then Bt�%� consists

of those nonquitting actions a in state t for which there is a state u ∈ St�a� with Vu�%�=�.
The following lemma provides useful properties of these functions. Its proof follows straightforwardly from

the definitions.

Lemma 2. If %≥ %̄, then we have for all states t ∈ S that
(1) Vt�%�⊆ Vt�%̄�;
(2) 5t�u�%�≥ 5t�u� %̄� for all u ∈ S;
(3) 6t�a�%�≥ 6t�a� %̄� for all a ∈At8
(4) (t�%�≥ (t�%̄�.

5. Subgame-perfect �-equilibria in pure strategies in ��+. In this section, we prove the existence of
subgame-perfect �-equilibria, in pure strategies, for all games in the class ��+. So, consider an arbitrary game
G ∈ ��+. We start with an iterative scheme (cf. §2), which will appear to converge to a finite limit. We define a
sequence %0�%1� 
 
 
 of vectors, where %k = �%kt �t∈S ∈��S� by

%kt =
{
r
it
t if k= 0
(t�%

k−1� if k > 0

for all states t ∈ S.
Lemma 3. For all k≥ 0, it holds that %k+1 ≥ %k.
Proof. The proof is by induction. Let at denote the quitting action in state t. For k = 0, we have for any

state t ∈ S that
%1t = (t�%0�≥ 6t�at�%0�= r itt = %0t )

Assume now that %k ≥ %k−1 holds for some k≥ 1. Then, by Lemma 2–4, we obtain for any state t ∈ S that
%k+1t = (t�%k�≥ (t�%k−1�= %kt �

which completes the proof. �
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Observe the following. For any state t ∈ S, at any iteration level k, either %kt =� or %kt is bounded from
above by the maximal payoff of the game. Since the sequence %kt (k= 0�1� 
 
 
 ) is nondecreasing, %kt will either
converge to a finite limit, or, after a finite number of iterations, %kt = �. We will call this limit %∗

t , and set
%∗ = �%∗

t �t∈S .
Example 3. Consider the following game G. There are four players, so N = �1�2�3�4	. The state space is

S = �s1� s2� s3� s4	 with player i controlling state si. In state si, player i’s action space is Asi = �ai1� ai2� ai3� ai4	,
where action aij with j �= i, leads to state sj with probability 1, whereas action aii is quitting. The payoffs for
quitting are

rs1 = �1�1�3�1�� rs2 = �1�1�1�1�� rs3 = �1�2�2�1�� rs4 = �2�1�1�2�)
Obviously, G ∈ ��+ and all transitions in G are deterministic. We are going to perform the iteration scheme
defined above, and we will see that it allows us to construct a pure subgame-perfect 0-equilibrium. For simplicity,
a quitting game plan for initial state t1 ∈ S will be denoted by �t1� t2� 
 
 
 � tm�∗�, where tl �= tl+1 for all l =
1� 
 
 
 �m−1, with the interpretation that in state t1 action at1t2 should be played, leading to state t2, then in state
t2 action a

t2
t3
should be played, leading to state t3, and so on until quitting should take place in state tm.

Step 0. Initially, %0s1 = %0s2 = 1 and %0s3 = %0s4 = 2. Notice that, since player 4 receives less than %0s4 = 2 in all
states except his own state s4, all game plans, which are viable with regard to %

0 and which start in state s4,
will eventually quit in state s4.
Regarding player 1: Because of the above observation, we obtain 5s1�s4�%

0� = 2 and a14 ∈ Bs1�%0�. Hence
%1s1 = 2.
Regarding player 2: We have 5s2�s1�%

0� = 1 as the game plan �s1� s4�∗� (or simply quitting in state s1
immediately) is viable with regard to %0. Also, 5s2�s3�%

0�= 1� as �s3� s1�∗� is viable with regard to %0. Clearly,
5s2�s4�%

0�= 1) Thus 5s2�t�%0�= 1 for all states t ∈ S, yielding %1s2 = 1.
Regarding player 3: Since �s1� s2�∗� is viable with respect to %0, it follows that %1s3 = 2.
Regarding player 4: Of course, %1s4 = 2.
Step 1. We obtained %1s1 = %1s3 = %1s4 = 2 and %1s2 = 1. The main difference is that quitting in state s1 is no

longer viable for player 1. This means that �s3� s1�∗� is not viable with regard to %1. Hence 5s2�s3�%1� = 2
yielding %2s2 = 2. Thus %2t = 2 for all states t ∈ S.
Step 2. We obtained %2t = 2 for all states t ∈ S. It is easy to see that %k = %2 for all k > 2, implying %∗

t = 2
for all states t ∈ S.
Consider the following game plans, which are all viable with respect to %∗:

gs1 = �s1� s4�∗�� gs2 = �s2� s3�∗�� gs3 = �s3�∗�� gs4 = �s4�∗�)
Now, we obtain a pure subgame-perfect 0-equilibrium as follows. From any initial state s ∈ S, game plan gs

should be played. If any player along the way deviates from gs to a nonquitting action, by which play moves
to state t, then game plan gt should be played from state t. And similarly, if a deviation occurs from gt to a
nonquitting action leading to state u, then game plan gu should be played from state u, and so on. It is easy to
check that this prescription provides a subgame-perfect 0-equilibrium.
The first part of the proof for the main result is to show that viable game plans exist for any starting state

with respect to %k for all k (cf. part 1 of Lemma 8). We start with the following lemma, which states that the
concatenation of a best action for %k−1 or %k with a viable game plan for %k is also a viable game plan for %k.

Lemma 4. Suppose Vt�%
k� �= � and let vt ∈ Vt�%k� for all t ∈ S. Choose an initial state s ∈ S, and an action

a ∈As . Construct a game plan v for initial state s as follows:
(1) At stage 1, player is plays action a;
(2) If action a is nonquitting and play reaches state t ∈ Ss�a�, then from stage 2 onwards, game plan vt will

be played (with forgetting the history before stage 2 and considering state t as the initial state).
If either a ∈ Bs�%k−1� or a ∈ Bs�%k�, then v ∈ Vs�%k�.
Proof. First assume that a is the quitting action. If a ∈ Bs�%k−1�, then (s�%k−1�= 6s�a�%

k−1�; hence, we
obtain

%ks = (s�%k−1�= 6s�a�%k−1�= r iss )
If a ∈ Bs�%k�, then (s�%k�= 6s�a�%k�, hence

%ks ≤ %k+1s = (s�%k�= 6s�a�%k�= r iss �
where the inequality follows from Lemma 3. In either case, quitting is viable with respect to %k.
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Now, assume that a is nonquitting. Since vt ∈ Vt�%k� for every state t ∈ Ss�a�, we conclude that the game
plan v is quitting and that  iu�v�h��≥ %ku holds for any u ∈ S and any history h ∈ Hv

u that reaches stage 2. It
remains to show that  is �v�≥ %ks . As

 is �v�= ∑
t∈Ss�a�

ps�a� t� 
is �vt�≥

∑
t∈Ss�a�

ps�a� t�5s�t�%
k�= 6s�a�%k��

it suffices to verify 6s�a�%
k�≥ %ks . We distinguish two cases: a ∈ Bs�%k−1� or a ∈ Bs�%k�. If a ∈ Bs�%k−1�� we

obtain
%ks = (s�%k−1�= 6s�a�%k−1�≤ 6s�a�%k��

where the inequality follows from Lemmas 2–3 and 3. On the other hand, if a ∈ Bs�%k�� we have
%ks ≤ %k+1s = (s�%k�= 6s�a�%k��

where the inequality follows from Lemma 3. Hence  is �v�≥ %ks as desired. �
The next lemma, which is a generalization of Lemma 4, states that if players start by playing best actions

for %k−1 or %k, and eventually switch to playing a viable game plan for %k, then this concatenation is a viable
game plan for %k.

Lemma 5. Suppose Vt�%
k� �= � and let vt ∈ Vt�%k� for all t ∈ S. Choose an initial state s ∈ S, and let g be

a truncated game plan for s that only uses actions from the sets Bu�%
k−1� and Bu�%k� for every state u ∈ S, and

that expires with probability 1. Let v denote the complete game plan for initial state s, according to which
(1) from stage 1 onward, game plan g is executed, and
(2) when g expires; say, in state t, game plan vt will be played (with forgetting the history induced by g and

considering state t as the initial state).
Then v ∈ Vs�%k�.
Proof. It is clear that v is a quitting game plan. We need to prove that v is viable with respect to %k. For any

m ∈�, consider the following game plan vm, by adapting v: if, at stage m, the game plan g has not expired yet,
and play is in some state t, then start game plan vt . Note that vm is viable with respect to %

k for all m, which
follows by repeated application of Lemma 4. Let � > 0. Since g expires with probability 1, we can choose m
so large that the probability that g expires before stage m is so close to 1 that

 is �vm�≤ is �v�+ �)
Because vm ∈ Vs�%k�, we have

 is �vm�≥ %ks )
Therefore

 is �v�≥ is �vm�− �≥ %ks − �)
Because �> 0 was arbitrary, we proved  is �v�≥ %ks .
Observe that, for any t ∈ S and any history h ∈Hv

t , the above reasoning can also be given for v�h� to show
that  it ��h��≥ %kt . Hence v ∈ Vs�%k�. �
Let k ∈�. For two states s and t, we write s �k t if state t can eventually be visited with a positive probability

when starting in s, by only using actions in the sets Bu�%
k�, u ∈ S. This relation �k is obviously transitive.

With respect to �k, a nonempty set Q ⊆ S is called closed, if for every s ∈Q there is no t ∈ S −Q such that
s �k t. A closed set Q ⊆ S is called minimal closed if Q contains no proper subset, which is closed. We will
call every minimal closed set a persistent set and its elements persistent states with respect to %k) It is clear that
there always exists a persistent set. Thus we have the following properties for persistent states: (1) from any
nonpersistent state, we can eventually reach the set of persistent states with probability 1, by only using actions
in the sets Bu�%

k�, u ∈ S, (2) a persistent set Pk cannot be left through actions in the sets Bu�%k�, u ∈ Pk, and
(3) if s and t �= s belong to the same persistent set Pk, then t can eventually be visited when starting in s with
probability 1, by only using actions in the sets Bu�%

k�, u ∈ Pk.
The following two lemmas demonstrate useful properties of persistent states, which are still needed to show

that viable game plans exist for any starting state with respect to %k for all k (cf. part 1 of Lemma 8). Assume
that viable game plans exist for every state at a given iteration step. The next lemma states that a quitting action
in a persistent state is always a best action for %0. Moreover, for a persistent state, best actions from the previous
iteration step are still best actions.
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Lemma 6. Suppose that Vu�%
k� �= � for all u ∈ S. Take a persistent state s ∈ S with respect to %k. Then

(1) For k= 0: If a is quitting, then a ∈ Bs�%0�.
(2) For k > 0: If a ∈ Bs�%k−1�, then a ∈ Bs�%k�.
Proof. Let a ∈ Bs�%k−1� if k > 0 or let a be quitting if k= 0. We will show that a ∈ Bs�%k�. Let Pk denote

the persistent set with respect to %k that state s belongs to. For every state t ∈ Pk, we define a game plan vt ,
starting in state t, according to which
(1) From stage 1 onward, starting in state t, a truncated game plan will be used to eventually visit state s,

by only using actions in the sets Bu�%
k�, u ∈ Pk. Such a game plan exists by property (3) of persistent states.

(If t = s, then this truncated game plan is empty.) Notice that the game plan expires in state s with probability 1.
(2) When s is reached; say, at stage m≥ 1, action a will be played.
(3) If a is nonquitting, choose viable game plans wu ∈ Vu�%k� for all u ∈ Ss�a�. From stage m+ 1 onward, if

u′ ∈ Ss�a� denotes the state at stage m+ 1, the viable game plan wu′ will be played (with forgetting the history
before stage m+ 1 and considering state u′ as the initial state).
We will now show that vt ∈ Vt�%k� for all t ∈ Pk. We distinguish between two cases.
If k > 0, then a ∈ Bs�%k−1�. If a is quitting, then %ks = (s�%k−1�= 6s�a�%k−1�= r iss , hence quitting is viable

with respect to %k. Therefore vt ∈ Vt�%k� because of Lemma 5. If a is nonquitting, then vt ∈ Vt�%k� follows
directly from Lemma 5.
If k = 0, then a is quitting, and as quitting is always viable with respect to %0, viability of vt follows by

Lemma 5.
We claim that

5s�t�%
k�≤ 6s�a�%k�

for all t ∈ Pk. As vt ∈ Vt�%k� for all t ∈ Pk, we have 5s�t�%k�≤ is �vt�. If a is quitting, then each game plan vt
terminates at s with payoff r iss for is , in which case the claim follows from:

5s�t�%
k�≤ is �vt�= r iss = 6s�a�%k�)

If a is nonquitting, then each game plan vt induces the payoff

 is �vt�=
∑

u∈Ss�a�
ps�a�u� 

is �wu�)

The claim now follows from

5s�t�%
k�≤ ∑

u∈Ss�a�
ps�a�u�

[
inf

wu∈Vu�%k�
 is �wu�

]
= ∑

u∈Ss�a�
ps�a�u�5s�u�%

k�= 6s�a�%k��

because the choice of wu was arbitrary in Vu�%
k� for all u ∈ Ss�a�.

Now, take b ∈ Bs�%k�. We claim that
6s�b�%

k�≤ 6s�a�%k�)
If b is quitting, this claim follows from 6s�b�%

k�= r iss ≤ 6s�a�%k�. If b is nonquitting, then, because of s ∈ Pk
and b ∈ Bs�%k�, we have Ss�b�⊆ Pk. Therefore the claim follows from:

6s�b�%
k�= ∑

t∈Ss�b�
ps�b� t�5s�t�%

k�≤ ∑
t∈Ss�b�

ps�b� t�6s�a�%
k�= 6s�a�%k�)

Because b ∈ Bs�%k�, we may derive
(s�%

k�= 6s�b�%k�≤ 6s�a�%k��
which implies a ∈ Bs�%k� as desired. �

Lemma 7. If t is a quitting state with respect to %k and if t is persistent with respect to %k, then t is a
quitting state with respect to %k+1.

Proof. Let t be a persistent quitting state with respect to %k and let a denote the quitting action. If k= 0,
then a ∈ Bt�%k� by Lemma 6. If k > 0, then a ∈ Bt�%k−1�, since (t�%k−1�= %kt = r itt = 6t�a�%k−1�. So if k > 0,
a ∈ Bt�%k� also follows by Lemma 6. Consequently, %k+1t = (t�%k�= 6t�a�%k�= r itt . �
We are now ready to prove that viable game plans exist for any starting state with respect to %k for all k, and

consequently, that the iterative scheme converges to a finite limit.
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Lemma 8. (1) Vs�%
k� �= � for all k≥ 0 and all s ∈ S,

(2) Every persistent set with respect to %k contains quitting states with respect to %k.
(3) The limit %∗ of the iterative process %k is finite.

Proof. We prove 1 and 2 by induction on k. Notice that both 1 and 2 are trivially true for k = 0. Now,
assume 1 and 2 are true for some k≥ 0.
To prove claim 1 for k+1, notice that a truncated game plan for s ∈ S exists that only uses actions in the sets

Bu�%
k� (u ∈ S), and that expires with probability 1 in a persistent set with respect to %k. This follows by property

(1) of persistent states. Moreover, the truncated game plan can be extended to a truncated game plan that expires
with probability 1 at a quitting state with respect to %k, only by actions in the sets Bu�%

k�, by property (3) of
persistent sets and by the assumption that 2 holds for k. We then complete the game plan, which we denote by
ws , by choosing the quitting action when a quitting state with respect to %

k is reached. By Lemma 7, the state
is also quitting with respect to %k+1, and we may apply Lemma 5, to derive that ws ∈ Vs�%k+1�.
To prove 2 for k+1, let Pk+1 be a persistent set with respect to %k+1, choose s ∈ Pk+1 arbitrarily, and construct

the game plan ws ∈ Vs�%k+1� as above. We claim that the game plan ws only visits states in P
k+1. This is trivial

for state s visited at stage 1. Assume it is true for a state t visited at stage m. By construction of ws , the action
at state t is chosen from Bt�%

k�. By Lemma 6, this action is also in Bt�%
k+1�. Therefore the state visited at stage

m+1 is again in Pk+1, by property (2) of persistent sets. This demonstrates that ws terminates with probability 1
in Pk+1. Because ws ∈ Vs�%k+1�, it follows that Pk+1 contains quitting states with respect to %k+1.
To prove 3, notice that because of 1, each %ks is finite for all s ∈ S and k ∈ �. Moreover, as each %ks is a

convex combination of payoffs in the game, it is bounded from above by the maximal payoff. Since the sequence
�%k�k∈� is nondecreasing, it converges to a finite limit. �
Now, we are ready to show the Main Theorem restricted to games in ��+.

Theorem 9. In every stochastic game G in class ��+, there exists a subgame-perfect �-equilibrium in pure
strategies for every � > 0. Moreover, if all transitions in G are deterministic, then G has a subgame-perfect
0-equilibrium in pure strategies.

Proof (General Transitions). We start by showing the case of general transitions. Take a stochastic game
G in ��+. We assume that all payoffs at quitting are at least 1; otherwise we can raise all payoffs at quitting by 1
(for any �≥ 0� any subgame-perfect �-equilibrium in this modified game is also a subgame-perfect �-equilibrium
in the original game). Take an initial state s ∈ S. Let �> 0 and let k ∈� be so large that

�%∗ −%k� ≤ �

4�S� �

where the norm is the maximum norm, and where �S� equals the number of states.
We will now define a joint pure strategy ��� and show that �� is a subgame-perfect �-equilibrium for initial

state s.
Step 1. Definition of ��. We will define the joint pure strategy �� inductively. Let s1 = s and take an arbitrary

game plan v1 ∈ Vs1�%k�. When starting in state s1, the joint strategy �� prescribes to play according to the game
plan v1, as long as all players follow the prescriptions of v1. If, on the other hand, in some state, the controlling
player ignores the prescription by v1 and deviates to a nonquitting action, by which play moves to some state
s2, then �� prescribes to switch to a certain new game plan v2 ∈ Vs2�%k+1�. This game plan v2, to be specified
later, will be used as long as all players follow the prescriptions by v2. Similarly, if deviation occurs at some
point to a nonquitting action, then �� prescribes another new game plan v3 ∈ Vs3�%k+2� from the state s3 right
after the deviation, and so on. Thus, with respect to ��, a game plan is active at any point during play.
We will now describe the choice of these game plans after a deviation takes place. Suppose the players are

expected to use game plan vm, but in state t, player it deviates to nonquitting action a. Let s
m+1 denote the state to

which transition occurs through action a. Then, the new game plan vm+1 is chosen such that vm+1 ∈ Vsm+1�%k+m�
and the expected reward satisfies

 it �vm+1�≤ 5t�sm+1�%k+m�+
�

2m+1
)

Such a game plan exists by Lemma 8 and by the definition of the function 5.
Step 2. �� is a subgame-perfect �-equilibrium for initial state s. To prove this, we will show that �� is an

�-equilibrium for initial state s. Since the structure of any continuation strategy ���h� is almost identical to that
of �� (the only difference is that ���h� starts with a continuation game plan of vm for some m), a similar proof
can be given that ���h� is an �-equilibrium in the subgame after an arbitrary history h.
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Take a player i, and a pure strategy �$i for player i. We will show that player i cannot improve his expected
payoff by more than � if he deviates from the strategy ���i to �$i, i.e.,

 is� �$i����−i�≤ is���� i����−i�+ �) (1)

Note that it suffices to only consider pure deviations for player i, as for every ( > 0, every player has a pure
(-best response to any joint strategy of his opponents. This follows from the fact that against fixed strategies of
his opponents, every strategy for player i is equivalent with a mixed strategy, i.e., with a convex combination of
pure strategies (cf. Aumann [1]); cf. also Theorem 1 in Monash [13].
Let $i be the strategy for player i, which follows the prescriptions of �$i until, during play, a history h occurs,

with a final state u controlled by player i such that either
(1) the probability that � �$i�h�����−i�h�� ever prescribes quitting is less than 1/r̄ , where r̄ is the maximal

payoff in the game, or
(2) �$i�h� prescribes to quit at u.
In both cases, $i�h� tells player i to play according to �i���h�. Notice that the expected payoff for player i

with regard to � �$i�h�����−i�h�� is at most his expected payoff with regard to �$i�h�����−i�h��. In case �$i�h�
prescribes quitting, this follows from the fact that ���h� is viable with respect to %∗, and since %∗

u ≥ r iu. In
case the probability on quitting is at most 1/r̄ , then the expected payoff for player i is at most 1, while his
payoff is at least 1 if he follows $i�h�. (Recall our assumption that all quitting payoffs are at least 1.) Notice
that whenever �$i����−i� deviates from ��, it is by a nonquitting action. Moreover, �$i����−i� leads to quitting
eventually with probability 1.
Because

 i�$i����−i�≥ i� �$i����−i��

it suffices to show
 i�$i����−i�≤ i���� i����−i�+ � (2)

to prove (1). For any m ∈�∪ �0	, let $im be the modification of $i, which does not deviate from ��� i anymore
if game plan vm+1 becomes active. This means that $im deviates at most m times. Note that $i0 = ��� i. Let dm
denote the expected payoff for player i with respect to �$im��

��−i� and initial state s, i.e.,

dm = i�$im����−i�)

Because �$i����−i� from initial state s leads to quitting eventually, with probability 1, we must have

 i�$i����−i�= lim
m→� 

i�$im��
��−i�= lim

m→�dm)

Let H�1� ⊆ Hv1 denote the set of histories h such that (1) player i controls the final state of h; say, u,
(2) $i�h� prescribes to deviate by playing some action a ∈Au. For h ∈H�1�, let ,�1� h� denote the event that h
occurs. The construction of $i guarantees that a is nonquitting, hence some game plan v2 will be chosen after
the deviation. With Ɛ denoting the expectation with respect to �$i����−i�, we have by the choice of v2

Ɛ� i�v2��,�1� h�� ≤ ∑
s2∈Su�a�

pu�a� s
2�5u�s

2�%k+1�+ �/4

= 6u�a�%
k+1�+ �/4

≤ (u�%
k+1�+ �/4

= %k+2u + �/4
≤ %ku+ �%k+2u −%ku�+ �/4
≤  i�v1�h��+�%k+2−%k�+ �/4�

where the last inequality follows from the viability of v1 with respect to %k. Thus, with � denoting the probability
of an event with respect to �$i����−i�, we obtain

d1−d0 =
∑

h∈H�1�
���,�1� h�� · �Ɛ� i�v2� � ,�1� h��− i�v1�h���	≤ �%k+2−%k�+ �

4
)
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In a similar fashion,
d2−d1 ≤ �%k+3−%k+1�+ �

8
�

and, in general,
dm+1−dm ≤ �%k+m+2−%k+m�+ �

2m+2
)

Hence

dm−d0 ≤
k+m−1∑
l=k

�%l+2−%l�+
m+1∑
l=2

�

2l
≤

�∑
l=k

�%l+2−%l�+ �

2
)

The choice of k implies
�∑
l=k

�%l+2−%l� ≤
�∑
l=k

∑
u∈S
�%l+2u −%lu�

= ∑
u∈S

�∑
l=k
�%l+2u −%lu�

= ∑
u∈S
��%∗

u−%ku�+ �%∗
u−%k+1u ��≤ �

2
)

Then
 is�$

i����−i�= lim
m→�dm ≤ d0+

�

2
+ �

2
= is����+ ��

which completes the proof of (2).
Deterministic Transitions: Now, suppose, additionally, that all transitions in the game G are deterministic.

Then, every quitting game plan induces one specific history, which ends when a specific player quits. Thus,
quitting game plans can only induce finitely many different payoffs. As a consequence, in the definition of
5s�t�%

∗�, the infimum is attained for all s� t ∈ S. Moreover, (t�%∗�= %∗
t for all t ∈ S, since %∗

t = %k+1t = (�%k�=
(�%∗� for k sufficiently large. For these reasons, the proof for the general case can be applied with �= 0. �
Example 4. Consider the following example with three players and three states. Player i controls state i

and has three actions; namely, one quitting action and two nonquitting actions that lead to states i+1 and i+2,
respectively (where 4 and 5 correspond to states 1 and 2, respectively). If player 1 quits, the payoff is (2, 1, 4); if
player 2 quits, the payoff is (4, 2, 1), and if player 3 quits, the payoff is (1, 4, 2). It is shown in Kuipers et al. [7]
that this game does not admit a stationary 0-equilibrium, and one can similarly verify that it does not admit
stationary �-equilibria either for small �> 0.
Our iterative method yields %k = %∗ = �2�2�2� for all k. Recall from Example 3 that a quitting game plan for

initial state t1 ∈ S is denoted by �t1� t2� 
 
 
 � tm�∗�. We obtain the following viable game plans for state 1 with
respect to %∗: V1�%∗� = ��1�∗�� �1�2�∗�	.5 For the other two states, we have V2�%∗� = ��2�∗�� �2�3�∗�	 and
V3�%

∗�= ��3�∗�� �3�1�∗�	. Therefore, a subgame-perfect 0-equilibrium for initial state 1 is as follows. Player 1
is supposed to execute game plan �1�∗�, i.e., to quit. If player 1 deviates by playing the action, which leads to
state 2, then the players are supposed to execute game plan �2�3�∗�� which minimizes player 1’s payoff among
the game plans in V2�%

∗�. On the other hand, if player 1 deviates by playing the action, which leads to state 3,
then player 3 is supposed to execute game plan �3�∗�. Any further deviations are countered in a similar fashion.

Concluding remarks. (1) Pure subgame-perfect 0-equilibria. In all examples we have analyzed, we found
a pure subgame-perfect 0-equilibrium. Whether or not this holds, in general, is unclear. Nevertheless, in every
game in �+ for which (1) ( has a fixed point %̄, i.e., (�%̄�= %̄ and (2) the infimum is attained in the definition
of the function 5 with respect to %̄, the existence of a pure subgame-perfect 0-equilibrium follows. We do not
know if all games in �+ satisfy these properties, but as we have shown, all games in �+ with deterministic
transitions do have these properties, and consequently, they possess subgame-perfect 0-equilibria. (See also the
discussion in §2).
(2) Whether or not %∗ is a fixed point of (. One can prove that Vt�%

∗� �= � for all t ∈ S. The reason is
that the constructed game plans in the proof of Lemma 8 are all stationary. Thus, for a given state t, one can
choose stationary game plans vkt ∈ Vt�%k� for all k≥ 0. Since there are only finitely many stationary game plans,
it follows that �vkt �k∈� contains a constant subsequence, and it is straightforward to prove that this constant is a
stationary game plan in Vt�%

∗�. Even though Vt�%∗� �= � holds for all t ∈ S, it remains unclear whether or not
(�%∗�= %∗. So, it also remains open if ( has a fixed point at all.

5 For simplicity, we leave out all game plans of the form �1�2�1�2� 
 
 
 �1�2�∗� other than �1�2�∗�.
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(3) A polynomial time algorithm for deterministic transitions. In the case of deterministic transitions,
a polynomial time algorithm exists to determine the vector %∗. Also, the game plans in a subgame-perfect
equilibrium can be determined during play when needed, in polynomial time. To see this, note that for every
t ∈ S, the number %kt can only have �S� different values. Since every such number is nonincreasing, it follows
that the vector %k can change at most ��S�− 1��S� times before %k+1 = %k. Hence the calculation of %∗ requires
at most ��S� − 1��S� iterations. As one iteration requires the calculation of �S�2 numbers 5s�t�%k�, it suffices to
show that 5s�t�%� can be calculated in polynomial time. Since transitions are deterministic, we have

5s�t�%�=min�r isu � v ∈ Vt�%� exists that terminates in u	)
Hence the calculation of 5s�t�%� can be done by a check for every u ∈ S whether a viable game plan for t with
respect to % exists that terminates in u. To do the check, construct the digraph with vertex set

V = �u′ ∈ S � %u′ ≤ r iu′u 	
and arc set

A= ��u′� u′′� � an action a ∈Au′ exists such that pu′�a�u′′�= 1	)
Now, observe that a viable game plan for t with respect to % terminating in u exists if and only if the digraph
�V �A� has a directed path from t to u. Because the construction of each digraph and the detection of a directed
path can be done in polynomial time, it follows that the calculation of 5s�t�%� requires polynomial time.
(4) Uniformity. Consider a game G ∈�+ with some initial state s. Let Gm denote the game, which is identical

to G, except that each player’s reward is the average of his payoffs during the first m stages.6 (One could also
think of Gm as a game in which play ends after stage m.) We claim that, for any � > 0, the joint strategy ��

constructed in the proof of the Main Theorem is not only an �-equilibrium in the infinite game G, but is also a
2�-equilibrium in the game Gm, given m is sufficiently large. We argue as follows. For any m ∈�, let  m�is denote
the reward for player i in game Gm. Since �� leads to absorption in G with probability 1, we have that  m�is ��

��
converges to  is��

�� as m tends to infinity. Hence there exists an M such that � m�is ��
��− is����� ≤ � holds for

all m≥M . We now prove that �� is a 2�-equilibrium in Gm for all m≥M . Take some m≥M . Consider for
player i an arbitrary pure deviation ,i from the strategy ���i. Notice that  m�is �,

i����−i�≤  is�,i����−i� as all
absorbing payoffs are nonnegative (with regard to any play, payoffs from stage m+ 1 onward are never lower
than the payoffs up to stage m). Hence

 m�is �,i����−i�≤ is�,i����−i�≤ is����+ �≤ m�is ����+ 2��
where the second inequality follows from the fact that �� is an �-equilibrium in G. This means that �� is a
2�-equilibrium in Gm indeed.
Of course, after any history h� we can choose an Mh such that the continuation strategy ���h� is a

2�-equilibrium in Gm�h� given m≥Mh. Our construction does not guarantee, however, that we can choose an
M independent of h. For the special case of deterministic transitions, however, such an M exists. The reason is
that, as already discussed for games with deterministic transitions, each game plan leads to absorption in one
state with probability 1, and therefore it suffices to consider finitely many different game plans (cycles before
absorption can be left out).
(5) Negative payoffs. Our method strongly relies on the fact that, if all the payoffs are nonnegative, there

exists a subgame-perfect �-equilibrium for every � > 0, which is both pure and absorbing. However, when
there are negative payoffs, the players may not have an incentive to quit, and pure and absorbing subgame-
perfect �-equilibria may fail to exist. Consequently, our method is no longer applicable in its present form to
negative payoffs. For a game without pure subgame-perfect �-equilibria, we refer to Solan and Vieille [20]. The
following game, with two players and two nonabsorbing states, demonstrates that absorbing subgame-perfect
�-equilibria may also fail to exist: Player 1 controls state 1 and has two actions. His first action leads to state 2
with probability 1, whereas his second action, a quitting action, yields a payoff of �−2�−1� . Player 2 controls
state 2. His first action brings the game to state 1 with probability 1 and his second action is a quitting action,
resulting in a payoff of �−1�−2�. It is obvious that, for any � ∈ �0�1�, the unique �-equilibrium is to never quit,
which yields a payoff of (0, 0). Note that our iterative method yields %k = %∗ = �−2�−2� for all k.
6 We are considering the original interpretation of games in �+� as in §2, when play is infinite (and no quitting is possible). We, however,
do assume that the controlling players in the absorbing states have only one action (see point (2) of the reduction in §3).
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(6) Games without perfect information. When we allow more than one player to choose actions simulta-
neously in every state, the situation changes drastically. Take, for instance, the following two-player zero-sum
game with three states. In state 1, both players have two actions: a and b for player 1, and c and d for player 2.
If the pair of actions chosen by the players is �a� c� or �b�d�, then a transition occurs to state 2 with probability
1, whereas if the pair of actions is �a�d� or �b� c�, then a transition occurs to state 3 with probability 1. State 2
is absorbing with payoffs �1�−1�, whereas state 3 is absorbing with payoff �−1�1�. Notice that the game with
initial state 1 is strategically equivalent with a one-shot game, and the unique equilibrium is a mixed one in
which both players choose both actions with probability 1

2 . Because we have only examined pure game plans,
it is not completely clear if our iterative method can be extended to games without perfect information.
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