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1. Introduction. One of the most prominent mysteries in convex geometry is the question whether the
diameter of polyhedra is polynomial in the number of its facets or not. If the largest diameter of a d-dimensional
and possibly unbounded polyhedron with n facets is denoted by �u�d� n�, then the best-known upper bound
is �u�d� n� ≤ n1+logd, shown by Kalai and Kleitman [12]. For a long time, the best-known lower bound was
�u�d� n� ≥ n−d+�d/5�, attributable to Klee and Walkup [14]. Recently, Santos [19] has given a lower bound
of �u�d� n� ≥ �1+ ���n− d�, where d� 	 are fixed and n is arbitrarily large. The gap that is left open here is
huge, even after decades of intensive research on this problem.
Interestingly, the above upper bound holds also for simple combinatorial abstractions of polyhedra, by which

term we (loosely) mean a rigorously defined set of purely combinatorial properties of the polyhedra in question
that are strong enough to allow nontrivial conclusions about its geometry. In the quest of bounding �u one can
restrict attention to nondegenerate polyhedra (we call a polyhedron nondegenerate if each vertex is contained
in exactly d facets) because, by perturbation, any polyhedron can be turned into a nondegenerate polyhedron,
whose diameter is at least as large as the one of the original polyhedron. For this reason we also allow ourselves
this simplifying assumption of nondegeneracy (all our results, though, perfectly hold without it).
Combinatorial abstractions have been studied in the literature for a long time (Kalai [10], Adler et al. [3],

Adler [1]). The subject of this paper is a simple base abstraction, which is defined by one single feature, common
to all previously studied abstractions from which lower and upper bounds have been previously derived. As extra
evidence (besides simplicity) that our framework is quite natural, we give for it three different descriptions that
all turn out to be pairwise equivalent.
Even if our abstraction is more general than those previously considered, we nonetheless show that all known

upper bounds do hold here with natural and simple proofs. On the other hand, we prove an almost quadratic
lower bound on the diameter in this abstraction, and this constitutes the main concrete result of this paper.
While only one feature of the previously studied abstractions suffices to derive the best-known upper bounds,

our lower bound also shows the limits of this natural base abstraction for the purpose of proving linear upper
bounds on the diameter. To prove such a bound, more features of the geometry of polyhedra will have to be
understood and used than the single one that we identify here. Let us, however, note that a polynomial (or even
quadratic!) upper bound in this framework still remains a possibility.
In the first description (see §2 for equivalent definitions), our base abstraction is a connected graph

G = �V � E�. Here1 V ⊆ (

n�

d

)
and the edges E of G are such that the following connectivity condition holds:

(i) For each u� v ∈ V there exists a path connecting u and v whose intermediate vertices all contain u∩ v.
Let �d� n be the set of all graphs G with the above property; the largest diameter of a graph in �d� n will be
denoted by D�d� n�. We call d the dimension and n the number of facets of the abstraction.
Before we proceed, let us understand why this class contains the 1-skeletons of nondegenerate polyhedra in

dimension d having n facets. In this setting, each vertex is uniquely determined by the d facets in which it

1
(


n�

d

)
is the family of all d-element subsets of 
n� = �1� � � � � n�.
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is contained. If the facets are named �1� � � � � n�, then a vertex is uniquely determined by a d-element subset
of �1� � � � � n�. Furthermore, for every pair of vertices u� v there exists a path that does not leave the minimal
face in which both u and v are contained. This is reflected in condition (i). Thus if �u�d� n� is the maximum
diameter of a nondegenerate polyhedron with n facets in dimension d, then �u�d� n� ≤ D�d� n� holds.
Our main result is a superlinear lower bound on D�d� n�, namely, D�n/4� n� = ��n2/ logn�. The nontrivial

construction relies on the notion of disjoint covering designs and to prove the existence of such designs with
desired parameters we use the Lovász local lemma.
At the same time the bound of Kalai and Kleitman [12], �u�d� n� ≤ n1+logd, as well as the upper bound

of Larman [15], �u�d� n� ≤ 2d−1 · n, which is linear when the dimension is fixed, continue to hold for a base
abstraction. While the first bound is merely an adaptation of the proof in Kalai and Kleitman [12], our proof of
the second bound is much simpler than the one that was proved for polyhedra in Larman [15].
We strongly believe that the study of abstractions, asymptotic lower bounds, and upper bounds for those and

the development of algorithms to compute bounds for fixed parameters d and n should receive more attention
because they can help understanding of the important features of the geometry of polyhedra that may help to
improve the state-of-the-art of the diameter question.

Related abstractions. Abstractions of polyhedra were already considered by Adler et al. [3], who studied
abstract polytopes. Here, in addition to the condition (i) of our base abstraction, the graph has to satisfy the
following two conditions:
(ii) The edge �u� v� is present if and only if �u∩ v� = d − 1.
(iii) Each e ∈ (


n�

d−1
)
is either contained in two vertices of G, or it is not contained in any vertex of G.

Notice that this is an abstraction of nondegenerate d-dimensional polytopes with n facets, because condition (iii)
only holds for bounded polyhedra. Adler and Dantzig [2] showed that the diameter of abstract polytopes is
bounded by n − d if n − d ≤ 5. This shows that the d-step conjecture2 is also true up to dimension 5 for
abstract polytopes. Klee and Walkup [14] proved that the d-step conjecture is true if and only if the famous
Hirsch conjecture3 is true. Klee and Walkup [14] were the first to prove that the d-step conjecture is true up to
dimension 5.
A big advantage of any abstraction is that bounds on the diameter of abstract polytopes for fixed dimension d

and number of facets n can be automatically checked with a computer. For example, Bremner and Schewe
describe an automatic approach to check the d-step conjecture using a different abstraction based on oriented
matroids (Bremner and Schewe [5]). They were able to verify this conjecture up to dimension 6. However, a
recent construction of Santos [19] shows that the Hirsch conjecture, and thus also the d-step conjecture, are
false in general.
The situation for lower bounds on the diameter of abstract polytopes in the setting of Adler et al. [3] is as

follows. Mani and Walkup [16] have provided an example of an abstract polytope with d = 12 and n = 24,
whose diameter is larger than 12 (see also Klee and Kleinschmidt [13]), and the construction of Santos [19]
naturally applies to abstract polytopes as well. However, superlinear lower bounds on the diameter of abstract
polytopes are still not known.
Kalai [10] considered the abstraction in which, additionally to our base abstraction, only (ii) has to hold. He

called his abstraction ultraconnected set systems and showed that the upper bound Kalai and Kleitman [12] can
also be proved in this setting. As demonstrated by our work, the condition (ii) is not necessary and this bound,
together with the linear bound in fixed dimension of Larman [15], also holds for the base abstraction, which
does not require condition (ii).
We also want to mention recent progress in the study of abstractions of linear optimization problems. Kalai [9]

and Matoušek et al. [17] were able to give subexponential upper bounds on the expected running time of
randomized, purely combinatorial algorithms for linear programming. This prompted the study of various types
of abstract optimization problems (Gärtner [7]). For unique sink orientations of cubes, which capture much
of the interesting structure of these abstractions, Schurr and Szabó [20] proved a nontrivial lower bound of
��n2/logn� for the running time of any deterministic algorithm, while the best known upper bound even in the
acyclic case is still an expected running time of O�n3e2

√
n� (Gärtner [8]).

2 The d-step conjecture states that the diameter of a d-dimensional polytope with 2d facets is bounded by d.
3 The Hirsch conjecture states that the diameter of a d-dimensional polytope with n facets is bounded by n−d.
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2. Base abstraction, connected layer families, and interval evaluations. Let G = �V � E� ∈ �d� n be a
graph of our base abstraction. Recall that this means that V ⊆ (


n�

d

)
and that the edges are such that the con-

nectivity condition (i) holds. Denote the length of a shortest path between two vertices u and v by dist�u� v�.
Suppose that the diameter of G is the shortest path between the nodes s and t and suppose that dist�s� t� = l. If
we label each vertex v ∈ V with its distance to s, then we obtain nonempty subsets �i ⊆

(

n�

d

)
for i = 0� � � � � l

with �i = �v ∈ V � dist�s� v� = i�. The sets �i satisfy the following conditions.
(a) Disjointness: for all 0≤ i �= j ≤ l, �i ∩�j =�.
(b) Connectivity: for all 0≤ i < j < k ≤ l and u ∈�i, v ∈�k, there is a w ∈�j such that u∩ v ⊆ w.
While condition (a) clearly holds, let us argue why condition (b) is also satisfied. Because we have the

connectivity condition (i) from our base abstraction, there exists a path from u ∈�i to v ∈�k whose intermediate
vertices all contain the intersection u∩ v. These intermediate vertices have distance labels. Clearly, all distance
labels between i and k must appear on this path, which means in particular that the label j appears on this path.
This shows that �j contains a vertex w containing u∩ v.
A sequence of nonempty sets �i ⊆

(

n�

d

)
, i = 0� � � � � l that satisfies (a) and (b) is called a connected layer

family, where the sets �i are referred to as layers. The elements of the ground set �1� � � � � n� are the symbols
of the connected layer family (they correspond to facets), and d is its dimension. The elements of each layer
(subsets of �1� � � � � n� of cardinality d) are again referred to as vertices of the layer. The height of this connected
layer family is l + 1. We have argued above that a base abstraction of diameter l naturally yields a connected
layer family of height l+ 1.
On the other hand, a connected layer family of height l + 1 yields a base abstraction of diameter l by

connecting all pairs of vertices u� v where u ∈ �i and v ∈ �i+1 or u ∈ �i and v ∈ �i. We therefore have the
following result.

Theorem 2.1. The maximum diameter of a d-dimensional base abstraction with n symbols is the largest
height of a d-dimensional connected layer family with n symbols minus one.

The following is an example of a 2-dimensional connected layer family with six symbols and seven layers. A
set of symbols w is active on a layer �i if there exists a vertex of �i containing w. In our example, we highlight
the symbol 4 and, because of condition (b), the layers on which 4 is active are consecutive. This holds for each
symbol, and thus the following example is a 2-dimensional connected layer family:

�0 = ��1�6���

�1 = ��1�2�� �2�6���

�2 = ��2�5�� �1�3�� �4�6���

�3 = ��2�4�� �1�5�� �3�6���

�4 = ��2�3�� �1�4�� �5�6���

�5 = ��4�5�� �3�4���

�6 = ��3�5�� 

Let us provide yet another visualization of our abstraction. An integer interval is a (possibly empty) subset
I ⊆ � of the form �x ∈ � � a ≤ x ≤ b�. An interval evaluation on n symbols of dimension d is a mapping %

that maps (

n�

≤d

)
&= �f ⊆ 
n� � �f � ≤ d�

into the set Int of all integer intervals such that the following properties hold:
Antimonotonicity f ⊆ g ⇒ %�g� ⊆ %�f �;
Continuousness �f � < d ⇒ %�f � ⊆⋃

g⊃f %�g�;
Dimensionality restriction �v� = d ⇒ �%�v�� ≤ 1.
The height of an interval evaluation % is �%����.
Theorem 2.2. The largest height of a d-dimensional connected layer family with n symbols is equal to the

largest height of an interval evaluation %&
(


n�

≤d

)→ Int.
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Proof. Given a connected layer family �0��1� � � � ��l, we let

%�f � &= �i � ∃v ∈�i& v ⊇ f � 

The fact that % is an integer interval readily follows from the connectivity condition while all other properties
in the definition of an interval evaluation are obvious.
In the opposite direction, given an interval evaluation %, we may assume w.l.o.g. that %��� = �0�1� � � � � l�.

Now we let

�i &=
{

v ∈
(


n�

d

)∣∣∣∣%�v� = �i�

}
 

�i are obviously disjoint. Using continuousness, we prove by induction on ) = 0� � � � � d that %��� ⊆⋃
f∈�
n�

) � %�f �, and then antimonotonicity implies that actually %��� =⋃
f∈�
n�

) � %�f �. This, along with the dimen-
sionality restriction, implies that �i are nonempty. Finally, if 0 ≤ i < j < k ≤ l and u ∈ �i, v ∈ �k, then by
antimonotonicity we conclude that %�u ∩ v� ⊇ 
i� k�, hence j ∈ %�u ∩ v�. Arguing by induction as before, we
find w ⊇ u∩ v with �w� = d and %�w� = �j�. This gives connectivity. �

3. Upper bounds on the diameter of the base abstraction. Before we prove upper bounds on D�d� n�,
we need an operation on connected layer families. This operation is motivated by the fact that the face of a
polyhedron is again a polyhedron. Let s ∈ �1�2� � � � � n� be a symbol in a connected layer family. The induction
on s is the following operation.
(i) Remove all vertices from the connected layer family that do not contain s.
(ii) Remove s from all vertices.
(iii) Remove empty layers (and relabel nonempty labels starting from 0).

This operation looks particularly natural in the interval representation (Theorem 2.2): %&
(


n�

d

)→ Int gives rise
to the induced interval representation %s&

(

n�\�s�

d−1
)→ Int defined simply by %s�f � &= %�f ∪ �s��.

Either way, the next lemma follows directly from definitions.

Lemma 3.1. Given a d-dimensional connected layer family with n symbols, induction on any symbol s results
in a �d − 1�-dimensional connected layer family with n− 1 symbols.
Induction on 4 of the layered family in our example above results in the following connected layer family.

� ′
0 = ��6���

� ′
1 = ��2���

� ′
2 = ��1���

� ′
3 = ��5�� �3�� 

The quasipolynomial bound �u�d� n� ≤ n2+logd of Kalai and Kleitman [12] is, up to now, the best-known
bound on �u�d� n�. We prove this in the setting of our base abstraction by showing that this is also an upper
bound on the height of a d-dimensional connected layer family with n symbols. All logarithms are to base 2.

Theorem 3.1. The maximum diameter D�d� n� of a d-dimensional base abstraction with n symbols is
bounded by n1+logd − 1.

Proof. By Theorem 2.1 it is enough to show that the maximal height h�d� n� of a d-dimensional connected
layer family with n symbols is bounded by n1+logd. To this end, let �0� � � � ��l be a connected layer family. Let
l1 ≥−1 be maximal such that the union of the vertices in �0� � � � ��l1

contains at most �n/2� many symbols.
Let l2 ≤ l + 1 be minimal such that the union of the vertices in �l2

� � � � ��l contains at most �n/2� symbols.
Because ��0 ∪ · · · ∪�l1+1�, ��l2−1 ∪ · · · ∪�l� > n/2, there exists a symbol s ∈ �1� � � � � n� belonging to both of
these sets, and this s is active on all layers �l1+1� � � � �l2−1 (see Figure 1).
Now we observe that �0� � � � ��l1

and �l2
� � � � ��l are d-dimensional connected layer families with at most

�n/2� symbols each. After inducing on the symbol s, which is active on all layers �l1+1� � � � �l2−1 we obtain
a d − 1-dimensional connected layer family with n− 1 symbols of height at least l2− l1− 1. Thus, we get the
recursion

h�d� n� ≤ 2 ·h�d� �n/2��+h�d − 1� n− 1� (1)
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0 l1 l2 l

Figure 1. Illustration of the proof of Theorem 3.1.

The bound is then proved by induction on n. Note that h�1� n� = n and h�d� n� = 0 if d > n. Suppose now
that d� n ≥ 2. Applying (1) repeatedly, we obtain

h�d� n� ≤ 2 ·h�d� �n/2��+h�d − 1� n�

≤ 2 ·
d∑

i=2
h�i� �n/2��+h�1� n� 

By induction, this is bounded by

h�d� n� ≤ 2�d − 1��2d�logn−1+ n

= �2d�logn−1[2�d − 1�+ n/�2d�logn−1]
≤ �2d�logn 

In the last inequality we have used d ≥ 2 and, thus, �2d�logn−1 ≥ n2/4. Because n ≥ 2, one can conclude
n/�2d�logn−1 ≤ 4/n ≤ 2. �

Remark 3.1. Notice that our bound on D�d� n� is slightly better than the bound on �u�d� n� in Kalai and
Kleitman [12]. Kalai [11] pointed out that the n2+logd bound can be improved to n1+logd, which matches the
upper bound for the diameter of base abstractions that we provide above.

3.1. A linear bound in fixed dimension. Next we provide a linear upper bound on D�d� n� in the case
in which the dimension d is fixed. The original proof for polyhedra is attributable Larman [15]. We would
like to point out that the proof in our setting is much simpler than the original one. Our constant, however, is
slightly worse, because our base case of induction is weaker. Larman’s bound on the diameter of polyhedra is
�u�d� n� ≤ 2d−3n.

Theorem 3.2. The maximum diameter D�d� n� of a d-dimensional base abstraction with n symbols is
bounded by 2d−1 · n− 1.

Proof. Let F = ��0� � � � ��l� be a connected layer family with n symbols of dimension d. We prove the
claim by induction on d. For d = 1, one has at most n vertices, which implies that the height h�1� n� is bounded
by n.
For a symbol s, let 
L�s�� U�s�� ⊆ �0� � � � � l� be the interval that corresponds to the layers on which s is

active, i.e.,

L�s� =min�i � ∃u ∈�i& s ∈ u��

U�s� =max�i � ∃u ∈�i& s ∈ u�

(in the interval representation, 
L�s�� U�s�� is simply %��s��).
Next we define a sequence si of symbols. The symbol s1 is the one whose interval of active layers con-

tains the starting layer �0 and reaches farthest among those whose interval starts at 0. In other words, s1 =
argmaxs∈�1� � � � �n��U�s� � L�s� = 0�. If s1� � � � � sj are given and U�sj� < l, the symbol sj+1 is the one that reaches
farthest among all symbols that are active in the layer U�sj�+ 1. In other words,

sj+1 = argmax
s∈�1� � � � �n�

{
U�s� � L�s� ≤ U�sj�+ 1

}
 

The starting points of these intervals hash the connected layer family F = ��0� � � � ��l� into connected layer
families F1 = ��L�s1�

� � � � ��U�s1�
� and Fi = ��U�si−1�+1� � � � ��U�si�

� for i = 2� � � � � k (see Figure 2). The important
observation attributable to our construction is the following: the symbols in Fi and Fj are disjoint if �i − j� ≥ 2
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s1

s2

s3

…

…
sk

F1 F2 F3 Fk

0 U(s1)L(s2) L(sk) l. . .

Figure 2. Illustration of the proof of Theorem 3.2.
Notes. Suppose the x-axis denotes level indices. The black lines denote intervals 
L�si�� U�si��, where si is active, while gray lines denotes
the layers contained in families Fi .

(otherwise, any symbol in their intersection should have been chosen instead of smin�i�j�+1). Let ni denote the
number of symbols in Fi. The above observation implies that

∑k
i=1 ni ≤ 2 · n.

Because the symbol si is active on each layer of Fi, induction on si leaves the height unchanged. This
implies that

height�F � =
k∑

i=1
height�Fi� ≤

k∑
i=1

h�d − 1� ni�

≤
k∑

i=1
2d−2ni ≤ 2d−1n �

4. A lower bound on the diameter of the base abstraction. Our goal is to construct a d-dimensional
connected layer family with n symbols that has a large number of layers. The difficult condition to meet is
connectivity (b). Our first idea is to satisfy this condition by enforcing that each �d − 1�-subset of the symbols
is contained in a vertex of each layer of the connected layer family (and then we boost this construction). If
this holds, then (b) is clearly satisfied. How many layers can a d-dimensional connected layer family have that
satisfies the property above? This question is related to the question of covering designs, a classical topic in
combinatorics.
Let X be a ground set of size n. Extending previously used notation, by

(
X

d

)
we denote the family of all its

d-element subsets. Fix natural numbers r < k < n. An element b ∈ (
X

k

)
will be called a block. A collection C

of blocks is called an �n� k� r�-covering design or, simply, a covering if every a ∈ (
X

r

)
is contained in at least

one of the blocks in C. The smallest size (number of blocks) of an �n� k� r�-covering has been well-studied.
Rödl [18], for example, proved a longstanding conjecture of Erdős and Hanani [6] on the asymptotic size of
covering designs for fixed k and r .
Now the layers (covering designs) have to be disjoint from each other. This means that we need disjoint

families of �n� d� d − 1�-covering designs. We want as many disjoint covering designs as possible.
The question of how many disjoint �n� d� d − 1�-coverings exist has, to the best of our knowledge, not been

studied before. Because every a ∈ (
X

d−1
)
can be covered by precisely �n−d+1� blocks b ∈ (

X

d

)
, �n−d+1� is an

obvious upper bound on their number. The next section is devoted to proving an almost-matching ��n/ logn�
lower bound based upon a simple application of Lovász’s local lemma.

4.1. Disjoint covering designs. We denote the maximum size of a family of disjoint �n� k� r�-coverings by
DC�n� k� r� and, given our motivations, we are mostly interested in the case k = r +1. As we already observed,
D�n� r + 1� r� ≤ n− r ; on the other hand we have the following theorem.

Theorem 4.1. Let 1≤ r < n. Then DC�n� r + 1� r� ≥ ��n− r�/�3 lnn��.
Proof. Set l &= ��n− r�/�3 lnn��. Pick a random coloring �&

(
X

r+1
)→ 
l� of

(
X

r+1
)
into l colors, and let

Ci &=
{

b ∈
(

X

r + 1
)∣∣∣∣��b� = i

}
 

It suffices to show that the event “every Ci is an �n� r + 1� r�-covering design” has a nonzero probability.
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Rephrasing it differently, for any a ∈ (
X

r

)
, denote by Ea the event that the set

Sh�a� &=
{

b ∈
(

X

r + 1
)∣∣∣∣b ⊇ a

}

of cardinality �n − r� does not intersect at least one Ci (i.e., this particular a violates the covering condition
for some i ∈ 
l�). Then the event we are interested in is complementary to

∨
a∈�X

r �
Ea and, thus, we need to

prove that

P
[ ∨

a∈�X
r �

Ea

]
< 1 (2)

The probability p of any individual Ea is easy to estimate:

p &= P
Ea� ≤ l · P
Sh�a�∩Ci =�� = l · �l− 1�n−r

ln−r
≤ l · e−�n−r�/l ≤ n−2� (3)

where the last inequality holds because of our choice of l. On the other hand, Ea is mutually independent of all
events Ea′ with �a′ ∩a� < r − 1 (since �a′ ∩a� < r − 1 implies that Sh�a′�∩Sh�a� =�). As ∣∣{a′ ∈ (

X

r

) ∣∣ �a′ ∩a� =
r − 1}∣∣ = r�n − r� ≤ n2/4, (2) follows from our bound (3) on p by Lovász’s local lemma (see e.g., Alon and
Spencer [4, Corollary 5.1.2]). �

4.2. Connected layer families. Let A and B be two disjoint sets of symbols with �A� = �B� = m, and let
0 < i� j < m. We first define the main building block of our construction, the mesh ��A� i6 B� j�. This is a
connected layer family of dimension i+ j with the set of symbols A∪B, but it also satisfies additional conditions
that will allow us to stack different meshes together.
Fix a family �= �CA

0 � � � � � CA
l−1� of disjoint �m� i� i − 1�-coverings with the ground set A and, likewise, let

�= �CB
0 � � � � � CB

l−1� be a family of disjoint �m� j� j − 1�-coverings on B. We assume that

l =min{DC�m� i+ 1� i�� DC�m� j + 1� j�
}
� (4)

and we can also assume without loss of generality that � and � are complete in the sense that
⋃l−1

7=0CA
7 = (

A

i

)
and

⋃l−1
7=0CB

7 = (
B

j

)
. Now, for k ∈ �0� � � � � l− 1�, define layers

�k &= ⋃
7+8=k

�CA
7 ⊗CB

8 ��

where addition is modulo l and ⊗ is defined by CA
7 ⊗CB

8 &= �f ∪̇g � f ∈ CA
7 � g ∈ CB

8 �. That is, vertices are formed
by combining i symbols from A with j symbols from B, and we call a set of this form an �A� i6 B� j�-set. The
layers �0� � � � ��l−1 (arbitrarily ordered) form the mesh ��A� i6 B� j� (see Figure 3).

Lemma 4.1. The mesh ��A� i6 B� j� is a �i + j�-dimensional connected layer family whose vertices are
�A� i6 B� j�-sets. Furthermore, all proper subsets of each �A� i6 B� j�-set are active on all layers.

Proof. Because CA
7 and CB

8 are pairwise disjoint, each �A� i6 B� j�-set appears at most once during the
construction. Thus condition (a) holds.
Consider an �A� i6 B� j − 1�-set f . Because � is complete, f ∩A is contained in a block of CA

7 for some 7.
Furthermore, f ∩B is covered by every CB

8 , 0≤ 8 < l. Therefore, f is covered by every CA
7 ⊗CB

k−7, 0≤ k < l,
and thus f is active on every layer. An analogous argument applies to �A� i − 16 B� j�-sets. This shows that
all proper subsets of �A� i6 B� j�-sets are active on all layers. In particular, condition (b) of the definition of
connected layer families holds. �

�0 = CA
0 ⊗CB

0 ∪ CA
1 ⊗CB

l−1 ∪ CA
2 ⊗CB

l−2 ∪ · · · ∪ CA
l−1⊗CB

1 �

�1 = CA
0 ⊗CB

1 ∪ CA
1 ⊗CB

0 ∪ CA
2 ⊗CB

l−1 ∪ ∪ CA
l−1⊗CB

2 �

�2 = CA
0 ⊗CB

2 ∪ CA
1 ⊗CB

1 ∪ CA
2 ⊗CB

0 ∪ · · · ∪ CA
l−1⊗CB

3 �

 
 
 

 
 
 

 
 
 

�l−1 = CA
0 ⊗CB

l−1 ∪ CA
1 ⊗CB

l−2 ∪ CA
2 ⊗CB

l−3 ∪ · · · ∪ CA
l−1⊗CB

0  

Figure 3. Illustration of the mesh ��A� i6 B� j�.
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Fix now the dimension d and stack d− 1 meshes of dimension d together in the following order to form the
layers of the final construction:

��A� d − 16 B�1��

��A� d − 26 B�2��

� � �

��A�16 B� d − 1� 
We take first all layers of the first mesh, then append all layers of the second mesh, and so on, so that the
total number of layers obtained is the sum of the number of layers of all d − 1 meshes that are used in the
construction.

Lemma 4.2. The sequence of layers in the order described above is a d-dimensional connected layer family
with 2m symbols.

Proof. One can easily check that each d-subset of A∪B appears at most once as a vertex.
To verify condition (b), one has to check that all sets f ∈ (

A∪B

≤d−1
)
are active in contiguous subsequences of

layers. This is immediate from the following description based upon Lemma 4.1:

f is active on any given layer of the mesh ��A� i6 B� j� if and only if i ≥ �f ∩A� and j ≥ �f ∩B�.
(In other words, in the interval representation %�f � consists of the meshes ��A� �f ∩ A�6 B� d − �f ∩ A���
��A� �f ∩A� + 16 B� d − �f ∩A� − 1�� � � � ���A� d − �f ∩B�6 B� d − �f ∩B��). �

We are now ready to prove our main result, an almost quadratic lower bound on the largest diameter D�d� n�
of our base abstraction of dimension d with n symbols.

Theorem 4.2. D�n/4� n� = ��n2/ logn�.

Proof. By Theorem 4.1 and (4) with m = n/2, in the previously described construction, every mesh con-
tributes ��n/ logn� layers, and altogether there are n/2− 1 meshes. �

5. Final remarks. There are many interesting questions related to abstractions that deserve further
inspection.
First and foremost, is D�d� n� bounded by a polynomial in n? We note that even if we have proved an almost

quadratic lower bound on D�d� n�, it appears as if the ideas underlying our construction completely break apart
beyond that point.
Another interesting question is whether the addition of one or two of the conditions (ii) or (iii) strengthens the

base abstraction, or whether the diameters of the corresponding abstractions are related via polynomial factors.
In the latter case, the diameter of any abstraction would be polynomial if and only if this was the case for the
base abstraction.
Finally, can we remove the annoying logarithmic factor in our bound on the number of disjoint �n� r + 1� r�-

covering designs in Theorem 4.1?
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