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We consider a nonhomogeneous stochastic infinite horizon optimization problem whose objective is to minimize
the overall average cost per-period of an infinite sequence of actions (average optimality). Optimal solutions to
such problems will in general be non-stationary. Moreover, a solution which initially makes poor decisions, and
then selects wisely thereafter, can be average optimal. However, we seek average optimal solutions with optimal
short-term, as well as long-term, behavior. Our approach is to first transform our stochastic problem into one
which is deterministic, by the standard device of formulating the problem as one of choosing a sequence of policies
as opposed to actions. Within this deterministic framework, states become probability distributions over the
original stochastic states. Then, by weakening the notion of state reachability, and strengthening the notion of
efficiency traditionally used in the deterministic framework, we prove that such efficient solutions exist and are
average optimal, thus simultaneously exhibiting both optimal long and short run behavior. This deterministic
view of the property of stochastic ergodicity offers the potential to relax the traditional conditions for average
optimality that use coefficients of ergodicity, as well as the opportunity to strengthen the criterion of average
optimality through the property of efficiency.
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1. Introduction. The problem of optimally selecting a sequence of decisions over an infinite horizon
is complicated by the need to select criteria for imposing preferences over the collection of associated cost
streams. Even in the case where the infinite stream of cost flows is discounted, the resulting discounted
total costs will all be infinite when the costs grow sufficiently fast. In a previous paper, Schochetman
and Smith [19] considered the criterion of optimality termed efficiency (see Ryan et al. [18] or sometimes
finite optimality (Halkin[11]). A solution is termed efficient if, roughly speaking, it is optimal to each of
the states through which it passes. Efficiency avoids being overselective in that the existence of efficient
solutions is assured by mild topological conditions. Nor is it underselective since the requirement that
efficient solutions be optimal to each state constrains prior attained states to be along optimal paths to
those states.
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For deterministic problems, it was shown in Schochetman and Smith [19] that efficient solutions are
average optimal under a state reachability condition. The reachability condition roughly required the
existence of decision sequences that eventually reach any feasible state sequence from any given feasible
state. Of course, in the stochastic setting, state reachability fails. As we shall see however, by transform-
ing the problem to a deterministic setting through replacement of actions by policies (see for example
Bertsekas and Shreve [3] for an early use of this device), one can, under appropriate ergodicity condi-
tions, achieve a type of reachability we term near reachability. Within this deterministic framework, the
stochastic states are replaced by deterministic states corresponding to probability distributions over the
original stochastic states. Near reachability holds when there exist policy sequences that can eventually
get arbitrarily close to any feasible state sequence from any given feasible state. Since near reachability
is a weakening of the traditional hypothesis in the deterministic setting, one needs to correspondingly
strengthen the notion of efficiency. We call this notion strong efficiency. It requires that a policy se-
quence be optimal among all policy sequences “close” to states along its path. We show in section 3 that
strongly efficient strategies exist and are average optimal under near reachability. The development is
extremely general to this point, but the intended principal application area is nonhomogeneous infinite
horizon MDP problems which are addressed in section 4. Average cost optimality in the homogenous case
has been extensively studied (see for example Putterman [16] Tijms [22], Federgruen and Tijms [6], Ross
[17], and Derman [4]). The traditional approach to establishing existence of an average optimal policy
is through an optimality equation that is satisfied by the relative value function under certain ergodicity
conditions (see for example, Puterman [16], Dynkin and Yushkevich [5], Sennott in Feinberg and Shwartz
[8]). Although the nonhomogeneous case is formally included within the homogeneous case by the device
of augmenting the state variable with time (see for example Guo et al. [9]), the resulting homogeneous
MDP has a countably infinite state space which can pose severe analytical and algorithmic challenges.
We specifically require a uniform bound on the number of states within each period for the nonhomo-
geneous problem we address in this paper so that this device would yield an MDP problem that would
not satisfy our assumptions. Our use of efficiency and reachability properties for such stochastic decision
problems affords the opportunity to potentially relax traditional ergodicity conditions through their ex-
pression within a purely deterministic framework. We should also note that our approach is restricted to
finding optimal average cost policies among the class of all deterministic policies. This restriction can be
important since it has been shown that nonrandomized strategies may be outperformed by randomized
strategies in the case of the upper limit of average costs (see Dynkin and Yushkevich [5]) while in the
case of the lower limit of average costs for a fixed initial state it is sufficient to consider nonrandomized
policies (Feinberg [7]). We will return to this point later in the Discussion section of this paper.

The paper is organized as follows. The general deterministic average cost optimization problem we
consider is formally introduced in section 2. Section 3 introduces the notions of near reachability and
strong efficiency for these problems and shows that every strongly efficient strategy is average optimal
in the presence of near reachability. In section 4, we illustrate the general theory with our principal
application of average cost optimality in nonhomogeneous MDP problems by transforming these into
deterministic equivalent problems. Here we provide sufficient conditions for MDP problems to exhibit
near reachability. Appendix A gives a formal proof of a folklore result related to coefficients of ergodicity
while in Appendix B we provide a motivating numerical illustration of these results for a problem in
equipment replacement in the presence of machine failures.

2. The General Deterministic Problem. The problem involves choosing a decision or action
yj at the beginning of each period j = 1, 2, . . . . Let Yj = {1, 2, . . . , aj} represent the finite discrete set
of all possible decisions (or controls) available in period j, where we assume that the cardinalities of the
Yj are uniformly bounded, i.e., there exists a > 0 such that 1 ≤ aj ≤ a, ∀j = 1, 2, .... Let S denote the
metric space of all possible (deterministic) states of the system at any time. Let s0 ∈ S denote the initial
state of the system (beginning period 1), and sj−1 the state ending period j−1 (beginning period j). Let
Sj ⊆ S denote the (finite) set of feasible states ending period j (with S0 = {s0}), so that sj ∈ Sj , for all
j = 1, 2, ... . Define Yj(sj−1) ⊆ Yj to be the (finite) non-empty set of decisions available in period j, given
that the system is in state sj−1 ∈ Sj−1 at the start of period j. Then, selecting decision yj ∈ Yj(sj−1),
causes the system to transition to state sj ∈ Sj at the end of period j, by the state transition equation
sj = fj(sj−1, yj), where fj : Fj → Sj is the (given) state transition function in period j, with domain

Fj = {(sj−1, yj) ∈ Sj−1 × Yj : yj ∈ Yj(sj−1)},
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and range
Sj = {fj(sj−1, yj) : sj−1 ∈ Sj−1, yj ∈ Yj(sj−1)}, ∀j = 1, 2, . . . ,

so that each fj is an onto mapping. In particular, we have

S1 = {f1(s0, y1) : y1 ∈ Y1(s0)}.

Let Y denote the product space
∏∞
j=1 Yj of all possible decision sequences over the infinite horizon

(includes both feasible and infeasible sequences). An infinite decision sequence y = {yj}∞j=1 in Y will be
called a strategy. The topological space Y is compact by the Tychonoff theorem and Hausdorff relative
to the topology of componentwise convergence (see Munkres [15]). Due to the discreteness of the Yj ,
componentwise convergence of a sequence yields eventual agreement in each component of the sequence,
i.e., if yn → y in Y , then for each k, there exists a positive integer mk such that n ≥ mk implies ynj = yj ,
for each j = 1, 2, . . . , k. Moreover, the product topology on Y is metrizable (Schochetman and Smith
[20]. For each N , define y ∈ Y to be feasible through period N if yj ∈ Yj(sj−1), where sj = fj(sj−1, yj),
for all j = 1, 2, ..., N . Denote by XN the subset of Y consisting of all such y, and by X, those y which are
feasible through each N = 1, 2, . . .. By our assumptions, the infinite horizon feasible set X is non-empty
and closed in Y , that is, X is compact, and

X ⊆ XN+1 ⊆ XN , ∀N,

i.e., the XN are nested downward. Moreover,

X = ∩∞N=1XN = lim
N→∞

XN ,

in the sense of Kuratowski (see [2], [14]). Now let y = (y1, y2, . . .) be a feasible strategy, i.e., y ∈ X.
For each j ≥ 1, define sj(y) to be the state which y passes through at the end of period j. Hence,
sj(y) = fj(sj−1(y), yj), for all j ≥ 2, with s1(y) = f1(s0, y1). If y ∈ XN , then the previous holds
for j = 1, . . . , N , but not necessarily for j > N . Moreover, suppose y, z ∈ XN , with yj = zj , for all
j = 1, ..., N . Then, sj(y) = sj(z), for all j = 1, ..., N .

Next, we introduce a cost structure. The cost in period j depends on the state sj−1 of the system
and the chosen decision yj , given that state. Thus, let cj(sj−1, yj) denote this real-valued cost, so that
cj : Fj → R. We assume that all costs are uniformly bounded, i.e., there exists 0 < b <∞ such that

|cj(sj−1, yj)| ≤ b, ∀(sj−1, yj) ∈ Fj , ∀j = 1, 2, ... .

Let C(x : j, k) denote the total cost of a strategy x ∈ Xk from period j through period k inclusive, i.e.,

C(x : j, k) =
k∑
i=j

ci(si−1(x), xi), ∀1 ≤ j ≤ k, ∀k = 1, 2, . . . .

In particular, the total cost of reaching state sN (x) at the end of horizon N following strategy x ∈ XN

from period 1 is given by

C(x : 1, N) =
N∑
i=1

ci(si−1(x), xi).

Also, the corresponding average cost-per-period is

A(x : 1, N) =
1
N

N∑
i=1

ci(si−1(x), xi) = C(x : 1, N)/N.

In particular, if x ∈ X ⊆ XN , then (conservatively) the average cost-per-period of x over the infinite
horizon is given by

A(x) = lim sup
N

A(x : 1, N) = lim sup
N

C(x : 1, N)/N.

Note that |A(x)| ≤ b, ∀x ∈ X.

Our goal is to study the existence of average optimal solutions for our problem, i.e., optimal solutions
for the mathematical programming problem (D) given by

infx∈XA(x) (D)
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The set of such optimal solutions will be denoted by Xa, i.e.,

Xa ≡ {x ∈ X : A(x) ≤ A(y), ∀y ∈ X}.

Although X is closed in Y , Xa need not be closed in Y [19]. Moreover, it is well-known that average
optimal strategies can be far from optimal over the short-term, i.e., over finite horizons.

Next, we consider “finite horizon” truncations of (D). Define

KN ≡ {(x1, ..., xN ) ∈ Y1 × · · · × YN : xj ∈ Yj(sj−1), ∀1 ≤ j ≤ N, sj = fj(sj−1, xj), ∀1 ≤ j ≤ N − 1},

so that
XN = KN × YN+1 × YN+2 × . . . .

Hence, each XN is the closed set of all arbitrary infinite extensions of elements of the finite set KN , and
XN is compact, for all N . Note that, the first N decisions of every member of X belongs to KN . For
each N , consider the following problem (DN ):

min
x∈XN

A(x : 1, N), equivalently, min
x∈XN

C(x : 1, N). (DN )

The real-valued functions x→ A(x : 1, N) defined on XN are continuous, since they depend only on KN ,
which is finite. (These functions attain finitely many distinct values on XN .) Let Xa

N denote the set of
average optimal strategies to (DN ), i.e.,

Xa
N ≡ {x ∈ XN : C(x : 1, N) ≤ C(y : 1, N), ∀y ∈ XN}

= {x ∈ XN : A(x : 1, N) ≤ A(y : 1, N), ∀y ∈ XN},

which is not empty, for all N . At each stage, there exists a finite number of decisions, and hence, a
finite number of possible strategies to each horizon. However, there exist infinitely many infinite horizon
extensions of these.

In [19], an infinite horizon feasible strategy is defined to be efficient if it is optimal to each of its
attained states. Accordingly, for each N = 1, 2, . . ., let Xe

N denote the set of N -horizon feasible strategies
which are efficient through period N , i.e.,

Xe
N ≡ {x ∈ XN : C(x : 1, N) ≤ C(y : 1, N), ∀y ∈ XN such that sN (y) = sN (x)}.

These sets are nested downward, i.e.,

Xe
N+1 ⊆ Xe

N , ∀N,

by the Principle of Optimality. Also, let Xe denote the set of infinite horizon efficient strategies, i.e.,

Xe ≡
∞⋂
N=1

Xe
N = lim

N
Xe
N = lim sup

N
Xe
N = lim inf

N
Xe
N ,

where the limits are in the sense of Kuratowski. From [20], it follows that Xe 6= ∅. (Note that in this
reference, Xe and Xe

N are denoted by X and XN , respectively.) In [19], it is shown that under a bounded
reachability condition, we have Xe ⊆ Xa and, in particular, there exists an average optimal solution.

In the next section we introduce a weakening of bounded reachability that we call near reachability.
We show in section 4 that a deterministic equivalent formulation of MDP problems satisfies this property
under a mild ergodicity condition. In section 3, we introduce a strengthening of efficiency we term
strong efficiency and establish such solutions always exist and are moreover average optimal under near
reachability.

3. Near Reachability, Strong Efficiency and Average Optimality. Recall that for those prob-
lems in [19] which have the following bounded time reachability property, efficient solutions (which exist)
are average optimal, i.e., ∅ 6= Xe ⊆ Xa.

Definition 3.1 Bounded Reachability (BR). For problem (D), there exists a positive integer r such that,
for each 1 ≤ k < ∞, each s ∈ Sk, and each finite sequence of states (tk, . . . , tk+r) in Sk × . . . × Sk+r,
there exists k ≤ l ≤ k + r, and w ∈ Xl for which sk(w) = s and sl(w) = tl.
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Bounded reachability requires that it be possible to feasibly reach from any feasible state to any sequence
of feasible states within a uniformly bounded time r.

As we shall see in Appendix B, problem (D) need not have property (BR). Consequently, in order to
obtain further results of the form ∅ 6= Xe ⊆ Xa for (D), we require a weaker reachability property. In
particular, this will be the case in section 4 where we consider a natural deterministic problem corre-
sponding to an infinite horizon, non-homogeneous MDP. Accordingly, we introduce the following near
(state) reachability property. Let ρ denote a metric on S.

Definition 3.2 Near Reachability (NR) For problem (D):

(i) there exists a sequence {bk}∞k=1 of positive real numbers with limk bk/k = 0,

(ii) for each ε > 0, there exists a sequence {lk,ε}∞k=1 of positive integers, and

(iii) for each x, y ∈ X, and positive integer k, there exists z ∈ X (depending on k, ε, x, y) for which

(iiia) sk(z) = sk(y),

(iiib) ρ(sj(x), sj(z)) < ε, ∀j ≥ k + lk,ε,

and

(iiic) |C(x : k + 1, j)− C(z : k + 1, j)| ≤ bk, ∀j ≥ k + lk,ε.

(See Figure 1.)

sj(z)

sj(x)+!

sj(x)-!

z

x

y

sj(x)

s0

sk(z)

k k+lk,! j

| C(x ; k+1, j) - C(z ; k+1, j) | " bk

time

state

sk(y)

!

!

Figure 1. Illustration of Near Reachibility

Near reachability roughly requires that we can reach from any state of a feasible decision sequence to a
state close to a state of any other feasible decision sequence at an average cost which goes to zero as the
period of that state goes to infinity.

Lemma 3.1 For problem (D), property (BR) implies property (NR).

Proof. Suppose Property (BR) holds with r > 0 as in Definition 3.1. Let bk = 2br > 0, ∀k. Given
ε > 0, let lk,ε = r, ∀k. Then limk→∞ bk = limk→∞ 2br/k = 0.
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Next, let x, y be elements of X, with k a fixed positive integer. By Property (BR) (for s = sk(y) and
tl = sl(x)), there exists k ≤ l ≤ k + r and w ∈ X such that sk(w) = sk(y) and sl(w) = sl(x). Define

z ≡ (w1, w2, . . . , wl, xl+1, xl+2, . . .).

Then z ∈ X because sl(z) = sl(w) = sl(x). Also, sk(z) = sk(w) = sk(y). If j ≥ l, then sj(x) = sj(z),
i.e.,

ρ(sj(x), sj(z)) = 0.

In particular, this is true for j ≥ k + lk,ε = k + r ≥ l. For such j, we have

C(x : k + 1, j) = C(x : k + 1, k + r) + C(x : k + r + 1, j)

and
C(z : k + 1, j) = C(z : k + 1, k + r) + C(z : k + r + 1, j).

But zi = xi, for i ≥ l + 1, so that si(z) = si(x) for i ≥ l, and, in particular, for i ≥ k + r + 1. Thus,

C(z : k + r + 1, j) = C(x : k + r + 1, j), ∀j ≥ k + r + 1,

so that ∣∣C(x : k + 1, j)− C(z : k + 1, j)
∣∣ =

∣∣C(x : k + 1, k + r)− C(z : k + 1, k + r)
∣∣

=
∣∣ k+r∑
i=k+1

ci(si−1(x), xi)−
k+r∑
i=k+1

ci(si−1(z), zi)
∣∣

=
∣∣ k+r∑
i=k+1

(
ci(si−1(x), xi)− ci(si−1(z), zi)

)∣∣
≤ [ k + r − (k + 1) + 1]2b
≤ 2br, ∀j ≥ k + r = k + lk,ε.

�

We turn now to strengthening the notion of efficiency. For fixed ε > 0, N = 1, 2, ..., and s ∈ SN , let

Bε(s : N) ≡ {t ∈ SN : ρ(s, t) < ε},

which denotes the (open) ball in SN consisting of all (finitely many) states t which are within ε of s. Also
let

C∗N (s) ≡ min{C(x : 1, N) : x ∈ XN , sN (x) = s},
and A∗N (s) = C∗N (s)/N, ∀s ∈ SN . Then C∗N (s) (resp. A∗N (s)), which is attained, is the smallest total
(resp. average) cost of feasibly transitioning from the initial state s0 to state s at the end of period N .
Also define

S∗N (ε) ≡ {s ∈ SN : C∗N (s) ≤ C∗N (t), ∀t ∈ Bε(s : N)}, ∀N = 1, 2, . . . ,

so that S∗N (ε) is the collection of feasible states s at time N having the smallest associated optimal cost
C∗N (s) of any state t within a distance ε of s. Observe that:

• if ε1 < ε2 then S∗N (ε2) ⊆ S∗N (ε1) ⊆ SN ,

• S∗N (ε) is not empty, since at stage N , there is a finite number of feasible states, and

• if ε is sufficiently small, then Bε(s : N) = {s} and S∗N (ε) = SN , since SN is a finite subset of S.

Definition 3.3 (N -Horizon ε-Efficient Strategies) Let ε > 0 and N = 1, 2, .... A strategy x ∈ XN is
N -horizon ε-efficient if it has least total cost of all strategies y whose states sN (y) are within ε of sN (x)
at time N , i.e.,

C(x : 1, N) ≤ C(y : 1, N), ∀y such that sN (y) ∈ Bε(sN (x) : N).

Hence, if x ∈ XN is N -horizon ε-efficient, then sN (x) ∈ S∗N (ε).
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Let Xe
N (ε) denote the set of such strategies. Observe that:

• if ε1 < ε2 then Xe
N (ε2) ⊆ Xe

N (ε1) ⊆ Xe
N ,

• Xe
N (ε) is not empty,

• if ε is sufficiently small, then Xe
N (ε) = Xe

N .

This notion was motivated by the fact that in the probabilistic framework, it may not be possible to reach
a particular state exactly at some future horizon (as is possible in the deterministic case); so, instead of
optimality to a single state, we allow optimality to a group of states in close proximity to the desired
state. For each N , and each s ∈ SN , let

X∗N (s) ≡ {x ∈ XN : C∗N (s) = C(x : 1, N), sN (x) = s}
= {x ∈ XN : A∗N (s) = A(x : 1, N), sN (x) = s}.

Thus, X∗N (s) is the set of all strategies in XN which attain the given state s at time N at the lowest total
(or average) cost. Observe that X∗N (s) is non-empty and closed. Also, for ε > 0, we have

Xe
N (ε) =

⋃
s∈S∗N (ε)

X∗N (s) ⊆ XN .

Then Xe
N (ε) is the set of all strategies in XN which ε-efficiently pass through states in S∗N (ε) at time N ;

it is closed, compact and non-empty, since it is a finite union of closed, non-empty sets in compact Y .
Observe that these strategies do not necessarily pass through an ε-efficient state (i.e., a state in S∗j (ε)) at
any period j, before or after N . Hence, in particular we lack a “Principle of Optimality” for N -horizon
ε-efficient solutions, i.e., in general, Xe

N+1(ε) 6⊆ Xe
N (ε), for ε > 0.

Lemma 3.2 For all ε > 0, and all N , Xa
N ⊆ Xe

N (ε) ⊆ XN .

Proof. Fix a positive integer N , ε > 0, and suppose x ∈ Xa
N . Then x has the lowest cost (total or

average) of all strategies in XN . Hence, in particular, x has the lowest cost of all strategies to all s in
Bε(sN (x) : N). Thus, x ∈ Xe

N (ε) by definition. �

For the next definition, recall the following. If Vn ⊆ Y, ∀n, then lim supn Vn is the subset of Y
consisting of those y for which there exists a subsequence {Vnk

}∞k=1 of {Vn}∞n=1, and a corresponding
sequence {yk}∞k=1 such that yk ∈ Vnk

, ∀k, and limk→∞ yk = y.

Definition 3.4 (Strong Efficiency) Define

Xse ≡
⋃
ε>0

(
lim sup

N
Xe
N (ε)

)
.

Since for all ε > 0, Xe
N (ε) 6= ∅, there is a sequence xeN (ε), N = 1, 2, . . . in compact Y with xeN (ε) ∈ Xe

N (ε),
for all N and hence a convergent subsequence xeNk

(ε), k = 1, 2, . . . with limit point xe(ε) = lim∞k=1 x
e
Nk

(ε) ∈
lim supN Xe

N (ε), so that
Xse 6= ∅.

We refer to the elements of Xse as strongly efficient strategies. By contrast, note that

lim sup
N

( ⋃
ε>0

Xe
N (ε)

)
= lim sup

N
Xe
N = Xe.

The previous definition is justified by the following.

Lemma 3.3 In general, Xse ⊆ Xe, i.e.,
⋃
ε>0

(
lim supN Xe

N (ε)
)
⊆ lim supN

(⋃
ε>0X

e
N (ε)

)
.

Proof. We have Xe
N ⊇ Xe

N (ε), ∀ε > 0. Then, since the Xe
N are nested downward to Xe [12],

lim sup
N

Xe
N (ε) ⊆ lim sup

N
Xe
N = Xe, ∀ε > 0.
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Hence,
Xse =

⋃
ε>0

(
lim sup

N
Xe
N (ε)

)
⊆ Xe.

�

The following result is our extension of Theorem 4.2 of [19] to the case of problems (D) for which
property (BR) may fail. It is the main result of this section. We show that strongly effficient strategies
are average optimal under property (NR). (In section 4, we will apply this result to nonhomogeneous
MDPs).

Theorem 3.1 (Average Optimality of Strongly Efficient Strategies) Suppose problem (D) has property
(NR). Then, ∅ 6= Xse ⊆ Xa.

Proof. We showed above that Xse 6= ∅. Now suppose x ∈ Xse, so that

x ∈
⋃
ε>0

(
lim sup

N
Xe
N (ε)

)
.

This implies that there exists ε > 0 such that x ∈ lim supN Xe
N (ε). We show that x ∈ Xa, i.e., A(x) ≤

A(y), ∀y ∈ X. Let y ∈ X. Also let {bk}∞k=1 and, for the given ε > 0, let {lk,ε}∞k=1 be as in the definition
of (NR). Since x ∈ lim supN Xe

N (ε), there exists a subsequence {Nn}∞n=1, and a corresponding sequence
{xn}∞n=1 with xn ∈ Xe

Nn
(ε), ∀n, such that xn → x in Y , as n → ∞. Fix k. From section 2, the xn

eventually agree with x in the first k components, i.e., there exists mk large enough so that n ≥ mk

implies xnj = xj , ∀j = 1, 2, ..., k. Choose m such that m ≥ mk and Nm > k+ lk,ε. Observe that xmj = xj
for at least the first k components. Note also that xm ∈ Xe

Nm
(ε) implies that xm ∈ X∗Nm

(s), for some
s ∈ S∗Nm

(ε). Hence, sNm
(xm) = s,

A(xm : 1, Nm) = A∗Nm
(sNm

(xm)) ≤ A∗Nm
(t), ∀t ∈ Bε(sNm

(xm) : Nm).

By Property (NR) applied to k, y and xm, there exists z ∈ X such that:

(iiia) sk(z) = sk(y),

(iiib) ρ(sj(xm), sj(z)) < ε, ∀j ≥ k + lk,ε, and

(iiic) |C(xm : k + 1, j)− C(z : k + 1, j)| ≤ bk, ∀j ≥ k + lk,ε.

Let w denote the strategy
w = (y1, . . . , yk, zk+1, zk+2, . . .).

Then w is feasible since sk(z) = sk(y). Note also that sj(w) = sj(z), ∀j ≥ k+ 1. First, consider the cost
of following strategy xm through period Nm. Since Nm > k + lk,ε, by property (iiib) we have that

ρ(sNm
(xm), sNm

(z)) < ε,

so that
sNm

(w) = sNm
(z) ∈ Bε(sNm

(xm) : Nm),

i.e.,
ρ(sNm

(xm), sNm
(w)) < ε.

Recall that Xe
Nm

(ε) is the set of all v ∈ XNm
for which C(v : 1, Nm) ≤ C(u : 1, Nm), for all u ∈ XNm

such that sNm(u) ∈ Bε(sNm(v) : Nm). Hence, since xm ∈ Xe
Nm

(ε) and sNm(w) ∈ Bε(sNm(xm) : Nm), we
have that

C(xm : 1, Nm) ≤ C(w : 1, Nm)
= C(w : 1, k) + C(w : k + 1, Nm)
= C(y : 1, k) + C(z : k + 1, Nm).

Since xj = xmj , for all j = 1, ..., k, we have sk(x) = sk(xm) and

C(xm : 1, Nm) = C(xm : 1, k) + C(xm : k + 1, Nm)
= C(x : 1, k) + C(xm : k + 1, Nm),
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which implies that

C(x : 1, k) + C(xm : k + 1, Nm) ≤ C(y : 1, k) + C(z : k + 1, Nm),

i.e,
0 ≤ C(y : 1, k)− C(x : 1, k) + C(z : k + 1, Nm)− C(xm : k + 1, Nm)

≤ C(y : 1, k)− C(x : 1, k) +
∣∣C(z : k + 1, Nm)− C(xm : k + 1, Nm)

∣∣.
By (iiic) above, since Nm > k + lk,ε, we have that

|C(z : k + 1, Nm)− C(xm : k + 1, Nm)| ≤ bk.

Thus,
0 ≤ C(y : 1, k)− C(x : 1, k) + bk,

i.e.,
C(x : 1, k) ≤ C(y : 1, k) + bk.

Since k is arbitrary,
C(x : 1, k)

k
≤ C(y : 1, k) + bk

k
, ∀k,

so that

A(x) = lim sup
k

C(x : 1, k)
k

≤ lim sup
k

C(y : 1, k) + bk
k

.

For bounded sequences, we have [9, p.50] that

lim sup
k

C(y : 1, k) + bk
k

≤ lim sup
k

C(y : 1, k)
k

+ lim sup
k

bk
k
,

i.e.,

A(x) ≤ A(y) + lim sup
k

bk
k
,

where lim supk bk/k = 0. Hence, A(x) ≤ A(y). Since y is arbitrary in X, x ∈ Xa. �

4. Application to Nonhomogeneous MDPs. Our goal in this section is to apply the results of
section 3 to a stochastic problem recast as a deterministic optimization problem (D(S)), where (S) is
the stochastic optimization problem corresponding to a general non-homogeneous MDP. In particular,
we give sufficient conditions, in terms of coefficients of ergodicity, for the MDP to have property (NR),
i.e., for (D(S)) to have property (NR).

Consider a system where:

• I = {1, 2, . . . ,m} is the (finite, discrete) set of MDP states i of the system in any period j;

• σ0(i) is the probability that the initial MDP state of the system is i, so that

0 ≤ σ0(i) ≤ 1, ∀1 ≤ i ≤ m,
m∑
i=1

σ0(i) = 1,

and
σ0 = [σ0(1) . . . σ0(m)] ∈ Rm

is the associated probability mass function (pmf).

• Dj(i) is the set of decisions which are admissible in period j, given that the system is currently in MDP
state i ∈ I. We assume that the cardinality |Dj(i)| of Dj(i) is at most c, ∀i and ∀j. Also,

Dj ≡ Dj(1)× · · · ×Dj(m), ∀j = 1, 2, . . . ,

is the set of all admissible policies or decision rules δj in period j, so that the cardinalities |Dj | of the
Dj are uniformly bounded by cm.
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• pj(i, k : d) is the probability, in period j, that the system transitions to MDP state k ∈ I, given that it
was in MDP state i ∈ I ending period j − 1, and admissible decision d ∈ Dj(i) was selected. Necessarily,∑m
k=1 pj(i, k : d) = 1. For each δj ∈ Dj , define the stochastic m×m matrix Pj(δj) as follows:

[Pj(δj)]ik ≡ pj(i, k : δj(i)), ∀i, k ∈ I,

so that
m∑
k=1

[Pj(δj)]ik = 1, ∀i = 1, . . . ,m, ∀j = 1, 2, . . . .

• qj(i, k : d) is the cost in period j, of choosing decision d ∈ Dj(i), given that the system is in MDP state
i ∈ I ending period j − 1, and transitions to MDP state k at the end of period j. We assume that the
qj(i, k : d) are uniformly bounded, i.e., we assume that there exists b > 0 sufficiently large so that

|qj(i, k : d)| ≤ b, ∀d ∈ Dj(i), ∀i, k ∈ I, ∀j = 1, 2, . . . .

If we let γj(i : d) denote the expected cost, in period j, of choosing decision d ∈ Dj(i), given that the
system is in MDP state i ∈ I ending period j − 1, then

γj(i : d) =
m∑
k=1

qj(i, k : d) · pj(i, k : d),

and
|γj(i : d)| ≤ b, ∀d ∈ Dj(i), ∀i ∈ I, ∀j = 1, 2, . . . .

Thus, at the beginning of decision epoch j, the system is in some MDP state i ∈ I, and the decision-maker
chooses a decision d ∈ Dj(i), generating an expected cost γj(i : d). The evolution from the current MDP
state i to the new MDP state k depends on the transition probabilities pj(i, k : d) which, in turn, depend
on the current state i, the new state k, the decision d, and the period j.

The set D =
∏∞
j=1Dj of all strategies is then the feasible region for our optimization problem. In

order to describe the objective function for this problem, let x = (xj)∞j=1 be an arbitrary element of
D. Then the implementation of strategy x generates a sequence of MDP states. At the end of period
j − 1, such a state is determined by the decision rule sequence x1, . . . , xj−1. Let Lj(x1, . . . , xj−1) denote
the (random) MDP state in I ending period j, determined by the feasible strategy x, with j-th decision
xj(Lj(x1, . . . , xj−1)). Consequently, the expected cost of strategy x in period j if we end period j in state
Lj(x1, . . . , xj−1) = i is

Γj(x) = γj(Lj(x1, . . . , xj−1) : xj(Lj(x1, . . . , xj−1))),

whose expected value is given by E[Γj(x)] =
∑
i∈I γj(i : xj(i))P (Lj(x1, . . . , xj−1) = i). Over the first N

periods, the total expected cost of strategy x ∈ X is given by
∑N
j=1E[Γj(x)], and the average expected

cost-per-period by 1
N

∑N
j=1E[Γj(x)].

Our infinite horizon, average cost, stochastic optimization problem (S) is then given by

min
x∈D

A(x), (S)

where

A(x) ≡ lim sup
N

{
1
N

N∑
j=1

E[Γj(x)]
}
, ∀x ∈ D.

In order to proceed, we recast problem (S) in a form (D(S)), which is a particular case of problem
(D). Our goal is to give sufficient conditions for (S), i.e., (D(S)), to admit an average optimal strategy
which is also strongly efficient. Considerable effort has been devoted to solving problem (S) for just an
average optimal strategy. Note that certain standard techniques, such as policy and value iteration fail
since the problem is time-dependent. It is possible to transform the nonhomogeneous problem into one
which is homogeneous, but the state space becomes infinite, and there are no general algorithms for this
case. Some methods for solving the nonhomogeneous MDP include a form of value iteration designed
to recursively uncover a sequence of policies by solving increasingly longer horizon problems. A more
common approach involves a rolling horizon procedure, where a horizon N is fixed, the N -period problem
is solved and the initial policy is implemented. Then the procedure is repeated from the new state, and
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so on. The pitfall with this procedure is that the sequence of policies attained will not in general be
optimal. In [1], a bound on the error generated by the rolling horizon procedure is given.

Not surprisingly, we intend to apply the main result Theorem 3.8 of section 3 to problem (S). Define
the deterministic states of (D(S)) to be probability mass functions, i.e., pmf-states. Accordingly, let
S = [0, 1]m with metric ρ given by

ρ(σ, τ) ≡ ‖σ − τ‖∞ = max
1≤i≤m

|σ(i)− τ(i)|, ∀σ, τ ∈ Rm,

s0 = σ0, S0 = {σ0} and, for all j = 1, 2, . . ., let

Yj ≡ Dj ; sj = σj = [σj(1) . . . σj(m)];

Sj ≡
⋃

σj−1∈Sj−1

{
σj(· : σj−1, δj) : δj ∈ Dj

}
⊆ Rm,

where each σj(· : σj−1, δj) is the pmf-state given by

σj(k : σj−1, δj) =
m∑
i=1

σj−1(i) · pj(i, k : δj(i)), ∀k ∈ I,

so that
m∑
k=1

σj(k : σj−1, δj) = 1, ∀σj−1 ∈ Sj−1, ∀δj ∈ Dj ,

and, in particular,
S1 =

{
σ1(· : σ0, δ1) : δ1 ∈ D1

}
.

Moreover, for each j = 1, 2, . . ., we have:

Yj(σj−1) = Yj = Dj , ∀σj−1 ∈ Sj−1;

Fj = Sj−1 ×Dj ;

and

cj(σj−1, δj) =
m∑
i=1

σj−1(i) · γj(i : δj(i))

=
m∑
i=1

(
σj−1(i) ·

m∑
k=1

qj(i, k : δj(i)) · pj(i, k : δj(i))
)

=
m∑
i=1

m∑
k=1

σj−1(i) · qj(i, k : δj(i)) · pj(i, k : δj(i)),

so that ∣∣cj(σj−1, δj)
∣∣ ≤ m∑

i=1

m∑
k=1

∣∣σj−1(i) · qj(i, k : δj(i)) · pj(i, k : δj(i))
∣∣

=
m∑
i=1

m∑
k=1

σj−1(i) ·
∣∣qj(i, k : δj(i))

∣∣ · pj(i, k : δj(i))

≤ b

m∑
i=1

m∑
k=1

σj−1(i) · pj(i, k : δj(i))

= b

m∑
i=1

(
σj−1(i) ·

m∑
k=1

pj(i, k : δj(i))
)

= b

m∑
i=1

σj−1(i)

= b, ∀σj−1 ∈ Sj−1, ∀δj ∈ Dj .

(Note that even if Pj(δj) = Pj(ηj), it’s possible that cj(σj−1, δj) 6= cj(σj−1, ηj), for some σj−1 ∈ Sj−1

and δj , ηj ∈ Dj . Thus, we do not identify δj with Pj(δj), even if Pj is one-to-one.) Consequently, the
transition functions

fj : Sj−1 ×Dj → Sj
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are given by
fj(σj−1, δj) = σj−1Pj(δj), ∀σj−1 ∈ Sj−1, ∀δj ∈ Dj .

For each x ∈ D,
σj(x) = σ0P1(x1) · · ·Pj(xj)

is then the probability distribution of the MDP states of strategy x at the end of period j, Furthermore,

X = Y = D =
∞∏
j=1

Dj ,

so that all strategies are feasible,

cj(σj−1(x), xj) = E[Γj(x)] =
m∑
i=1

γj(i : xj(i)) · σj−1(x)(i), ∀j = 1, 2, . . . ,

and

C(x : 1, N) =
N∑
j=1

cj(σj−1(x), xj) =
N∑
j=1

m∑
i=1

γj(i : xj(i)) · σj−1(x)(i)

is the total cost of strategy x ∈ D through period N . Finally,

A(x) = lim sup
N

1
N

N∑
j=1

C(x : 1, j) = lim sup
N

{
1
N

N∑
j=1

m∑
i=1

γj(i : xj(i)) · σj−1(x)(i)
}

is the average cost-per-period of any strategy x in D over the infinite horizon. Note that

|C(x : 1, N)| ≤ bN, and |A(x)| ≤ b, ∀x ∈ D.

We leave it to the reader to verify that these ingredients satisfy all the hypotheses of section 2. The
resulting optimization problem (D(S)) has the same feasible strategies and objective function values as
does the stochastic optimization problem (S). Therefore, in particular, the average optimal strategies
are the same.

Recall that a coefficient of ergodicity is a function defined on the m×m stochastic matrices P = [puv],
with values in the closed interval [0, 1], and which is continuous relative to the topology of coordinate-wise
convergence [21]. Two particularly well-known examples are given by

φ(P ) = 1− max
1≤v≤m

{
min

1≤u≤m
puv

}
,

and

ψ(P ) =
1
2

max
1≤u,v≤m

{ m∑
k=1

|puk − pvk|
}
.

The following is the main result of this section (where D = X).

Theorem 4.1 (Sufficient Conditions for Property (NR)) Suppose there exists 0 < α < 1, such that
ψ(Pj(xj)) ≤ α, ∀x ∈ D, ∀j = 1, 2, ... . Then property (NR) holds for problem (D(S)). Consequently,
∅ 6= Dse ⊆ Da and problem (D(S)), equivalently problem (S), admits an average optimal solution which
is also strongly efficient.

Proof. For each k, and ε > 0, define

lk,ε =
⌈

ln( ε
2m )

ln(α)

⌉
> 0 and bk =

2bm
1− α

, ∀k = 1, 2, . . . ,

so that
lim
k→∞

bk
k

= 0.

Fix k, let x, y ∈ D and define
z = (y1, y2, ..., yk, xk+1, xk+2, ...)
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(which is in D =
∏∞
j=1Dj , i.e., z is feasible), so that σk(z) = σk(y), for all 1 ≤ j ≤ k. We next show

that z has the desired properties. Given n = 1, 2, . . . and 1 ≤ j ≤ n, we obtain the stochastic matrices
Pj(xj), ..., Pn(xn) as above. For convenience, define

Tnj (x) ≡
{
Pj(xj) · · ·Pn(xn), for 1 ≤ j ≤ n,
J, for j > n,

where J is the m×m identity matrix. Note that σj(x) = σ0T
j
1 (x). Next, starting at stage k, we compare,

at some later time h, the distance between the states resulting from following x versus z. Observe that
for h ≥ k, σh(x) = σk(x)Thk+1(x). Then

ρ(σh(x), σh(z)) = ‖σh(x)− σh(z)‖∞
= ‖σk(x)Thk+1(x)− σk(z)Thk+1(z)‖∞
= ‖σk(x)Thk+1(x)− σk(z)Thk+1(x)‖∞
= ‖(σk(x)− σk(z))Thk+1(x)‖∞,

since strategy z is the same as strategy x after stage k. By [21],

ψ(Thk+1(x)) = ψ(Pk+1(xk+1) · · ·Ph(xh)) ≤ ψ(Pk+1(xk+1)) · · ·ψ(Ph(xh)) ≤ αh−k, ∀h ≥ k + 1.

Thus, for any column in Thk+1(x), all entries are within 2αh−k of each other. By [21],

ρ(σh(x), σh(z)) = ‖(σk(x)− σk(z))Thk+1(x)‖∞ ≤ 2αh−km.

Since α < 1, i.e., ln(α) < 0, we may let h be sufficiently large such that 2αh−km < ε, i.e.,

h > k +
ln( ε

2m )
ln(α)

implies h ≥ k +
⌈

ln( ε
2m )

ln(α)

⌉
= k + lk,ε.

This establishes part (iiib) of Definition 3.2.

We next show that the cost condition (iiic) holds for the bk. That is, we show that,

|C(x : k + 1, j)− C(z : k + 1, j) | ≤ bk, ∀j ≥ k + lk,ε.

For j ≥ k + 1, we have:

C(x : k + 1, j) =
j∑

h=k+1

m∑
i=1

(
σh−1(x)(i) · γh(i : xh(i))

)
=

j∑
h=k+1

m∑
i=1

(
(σ0T

h−1
1 (x))(i) · γh(i : xh(i))

)
=

j∑
h=k+1

m∑
i=1

(
(σ0T

k
1 (x)Th−1

k+1 (x))(i) · γh(i : xh(i))
)
.

Similarly,

C(z : k + 1, j) =
j∑

h=k+1

m∑
i=1

(
(σ0T

k
1 (z)Th−1

k+1 (z))(i) · γh(i : zh(i))
)

=
j∑

h=k+1

m∑
i=1

(
(σ0T

k
1 (z)Th−1

k+1 (x))(i) · γh(i : xh(i))
)
,

since zh = xh, for k + 1 ≤ h ≤ j. Hence,

|C(x : k + 1, j)− C(z : k + 1, j)| =
∣∣∣∣ j∑
h=k+1

m∑
i=1

(
(σ0(T k1 (x)− T k1 (z))Th−1

k+1 (x))(i) · γh(i : xh(i))
)∣∣∣∣

≤
j∑

h=k+1

m∑
i=1

|(σ0(T k1 (x)− T k1 (z))Th−1
k+1 (x))(i) · γh(i : xh(i))|

=
j∑

h=k+1

m∑
i=1

|(σ0(T k1 (x)− T k1 (z))Th−1
k+1 (x))(i)| · |γh(i : xh(i))|

≤
j∑

h=k+1

m∑
i=1

2b · ψ(Th−1
k+1 (x)) · ‖σ0‖1,
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by Lemma A.3 of the Appendix. Thus, since ‖σ0‖1 = 1, we have

|C(x : k + 1, j)− C(z : k + 1, j)| ≤
j∑

h=k+1

2bm · ψ(Th−1
k+1 (x))

= 2bm
j∑

h=k+1

ψ(Th−1
k+1 (x))

≤ 2bm
j∑

h=k+1

αh−k−1

= 2bm
j−k−1∑
h=0

αh

< 2bm
∞∑
h=0

αh

=
2bm

1− α
= bk, ∀j ≥ k + 1.

In particular,
|C(x : k + 1, j)− C(z : k + 1, j)| ≤ bk, ∀j ≥ k + lk,ε.

For the second part, recall Theorem 3.8. �

In general, ψ(P ) is difficult to evaluate for general P . The following result is of some help, since φ(P )
is, in general, easier to calculate.

Corollary 4.1 If, for 0 < α < 1, we have φ(Pj(xj)) ≤ α, ∀x ∈ D, ∀j = 1, 2, . . ., then the conclusions
of Theorem 4.1 hold.

Proof. In general, ψ ≤ φ [21]. �

See Appendix B for a numerical illustration of these results for a problem in equipment replacement
in the presence of machine failures.

5. Discussion. Although not explored in this paper, we conjecture that for our problem, the in-
troduction of randomized policies (when transformed to our deterministic framework) can deliver exact
reachability, and thereby yield convergence of randomized efficient solutions through liminf, as well as
limsup inclusion, i.e., full Kuratowski convergence. The reason for this belief is that the inclusion of
randomized policies serves to enlarge the set of strategies to the convex hull of purely deterministic
strategies when viewed in the deterministic framework. Nearest point selections, as in [19], could then
lead to a sequence of policies and strategies that converges to an average optimal solution, so that policy
convergence, as well as average value convergence, would hold. A forward algorithm would then be in
hand for recursive discovery of a strongly efficient, and hence average optimal, non-stationary strategy.

Appendix A. Coefficients of Ergodicity We establish a useful property of the coefficient of
ergodicity ψ which plays an important role in the proof of Theorem 4.1. This property is used to prove
Theorem 6 of Hopp, Bean and Smith [12]. However, to our knowledge, there exists no rigorous proof
of the result (see Hopp [13] for its original statement). Consequently, we felt it necessary to provide a
detailed proof of this property.

If v is any element of Rm, define

max(v) ≡ max{vi : i = 1, 2, . . . ,m} and min(v) = min{vi : i = 1, 2, . . . ,m}.

Lemma A.1 For any v in Rm, we have

max(v)−min(v) = max
1≤j,k≤m

|vj − vk|.
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Proof. Left to the reader. �

Lemma A.2 If p, q are arbitrary probability distributions on {1, 2, . . . ,m}, and r ∈ Rm, then

∣∣∣∣ m∑
j=1

(p(j)− q(j))rj
∣∣∣∣ ≤ max(r)−min(r).

Proof. We have:

m∑
j=1

p(j)rj ≤ max(r) ·
m∑
j=1

p(j) = max(r)

and

m∑
j=1

q(j)rj ≥ min(r) ·
m∑
j=1

q(j) = min(r),

so that

m∑
j=1

(p(j)− q(j))rj =
m∑
j=1

p(j)rj −
m∑
j=1

q(j)rj ≤ max(r)−min(r).

Since p and q are arbitrary, we may interchange them to get

m∑
j=1

(q(j)− p(j))rj ≤ max(r)−min(r),

so that

m∑
j=1

(p(j)− q(j))rj ≥ min(r)−max(r) = −(max(r)−min(r)).

This completes the proof. �

Lemma A.3 Let P = [Pij ], Q = [Qij ] and R = [Rij ] be arbitrary stochastic m×m matrices. Recall that

ψ(R) =
1
2

max
1≤i,j≤m

{ m∑
k=1

|Rik −Rjk|
}
.

If v ∈ Rm, then

‖v(P −Q)R‖∞ ≤ 2 ψ(R) ‖v‖1.

Proof. Note that, in particular, the rows of P and Q are probability distributions on {1, 2, . . . ,m}.
Fix i = 1, 2, . . . ,m. Then:

(v(P −Q)R)i =
m∑
h=1

m∑
j=1

vj(Pjh −Qjh)Rhi,
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so that

|(v(P −Q)R)i| =
∣∣∣∣ m∑
h=1

m∑
j=1

vj(Pjh −Qjh)Rhi

∣∣∣∣
=
∣∣∣∣ m∑
j=1

m∑
h=1

vj(Pjh −Qjh)Rhi

∣∣∣∣
=
∣∣∣∣ m∑
j=1

vj ·
( m∑
h=1

(Pjh −Qjh)Rhi
)∣∣∣∣

≤
m∑
j=1

(
|vj | ·

∣∣ m∑
h=1

(Pjh −Qjh)Rhi
∣∣)

≤
m∑
j=1

|vj | ·
(

max
1≤h≤m

Rhi − min
1≤h≤m

Rhi

)
(by Lemma A.2)

= ‖v‖1 ·
(

max
1≤h≤m

Rhi − min
1≤h≤m

Rhi

)
= ‖v‖1 · max

1≤j,h≤m

∣∣Rji −Rhi∣∣ (by Lemma A.1)

≤ ‖v‖1 · max
1≤j,h≤m

m∑
i=1

∣∣Rji −Rhi∣∣
≤ 2 ψ(R) ‖v‖1.

This completes the proof, since i is arbitrary, �

Appendix B. An Example in Equipment Replacement with Unreliable Machines. We
illustrate the results of section 4 in the particular context of equipment replacement in the presence of
machine failures.

We begin by assembling the parameters of the problem to form the expressions for the costs and
transition probabilities for the generic model of section 4. Consider a machine that is either working
(state 1) or has failed (state 2), so that m = 2, I = {1, 2}, S = [0, 1]2 and

ρ(σ, τ) = ‖σ − τ‖∞ = max
{
|σ(1)− τ(1)|, |σ(2)− τ(2)|

}
.

If, at the start of period j, the machine is working, we may either replace it (decision 1) or keep it
(decision 2), so that c = 2,

Dj(1) = {1, 2}, Dj(2) = {1}, Dj =
{

(1, 1), (2, 1)
}
, ∀j = 1, 2, . . . ,

and X = D = {(1, 1), (2, 1)}∞. Suppose that initially, the machine is equally likely to be working or not,
i.e., σ0 = [1/2 1/2]. For each j = 1, 2, . . ., let

[pj(i, 1 : d) pj(i, 2 : d)] =

 [1/2 1/2] if i = 1, d = 2,
[2/3 1/3] if i = 1, d = 1,
[1/3 2/3] if i = 2, d = 1.

For example, at the start of any period j, if the machine is working (i = 1), and we choose to replace it
(d = 1), then at the start of period j + 1, the machine will be working (k = 1) with probability 2/3, and
will have failed (k = 2) with probability 1/3. Thus, for each j, we have

Pj((1, 1)) =
[

2/3 1/3
1/3 2/3

]
and

Pj((2, 1)) =
[

1/2 1/2
1/3 2/3

]
.

We assume that there are no salvage values, and that the costs qj(i, k : d), for all j, i = 1, 2, d ∈ Dj(i)
are arbitrary - with the exception that they are uniformly bounded by b > 0. Consequently, the resulting
non-homogeneous MDP is a special case of that studied in the previous section.
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Let (M) denote the resulting machine failure version of (S), with (D(M)) the corresponding deter-
ministic version. For this model, we have:

[σj(1 : σj−1, δj) σj(2 : σj−1, δj)] =


σj−1

[
2/3 1/3
1/3 2/3

]
, for δj = (1, 1),

σj−1

[
1/2 1/2
1/3 2/3

]
, for δj = (2, 1);

and

cj(σj−1, δj) = [σj−1(1) σj−1(2) ]
[
γj(1 : δj(1))
γj(2 : δj(2))

]
,

∀σj−1 ∈ Sj−1, ∀δj ∈ Dj , ∀j = 1, 2, . . . .

Now let x = (xj)∞j=1 ∈ D be the strategy defined by xj = (1, 1), ∀j, i.e. we replace the machine in
each period whether it is working or not. Then

Pj(xj) =
[

2/3 1/3
1/3 2/3

]
,

Thj (x) =
[

2/3 1/3
1/3 2/3

]h−j+1

, ∀h ≥ j,

and
σj(x) = σ0P1(x1) · · ·Pj(xj)

= σ0T
j
1 (x)

= [ 1/2 1/2 ]
[

2/3 1/3
1/3 2/3

]j

= [ 1/2 1/2 ]
[

2/3 1/3
1/3 2/3

] [
2/3 1/3
1/3 2/3

]j−1

= [ 1/2 1/2 ]
[

2/3 1/3
1/3 2/3

]j−1

...
= [ 1/2 1/2 ] , ∀j = 1, 2, . . . .

In fact, it is immediate that x is the only strategy in D whose state in every period is [ 1/2 1/2 ]. Hence,
being the unique strategy passing through these states, it is necessarily efficient, i.e., x ∈ De.

If we also let y = (yj)∞j=1 ∈ D be the strategy defined by

yj =
{

(2, 1), for j = 1,
(1, 1), for j > 1,

i.e. we initially do not replace a working machine and then replace each period thereafter, then

Pj(yj) =


[

1/2 1/2
1/3 2/3

]
, for j = 1,[

2/3 1/3
1/3 2/3

]
, for j > 1;

Thj (y) =
[

2/3 1/3
1/3 2/3

]h−j+1

, ∀h ≥ j ≥ 2;

σ1(y) = σ0P1(y1)

= [ 1/2 1/2 ]
[

1/2 1/2
1/3 2/3

]
= [ 5/12 7/12 ] ;
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and, by matrix diagonalization,

σj+1(y) = σ0P1(y1)P2(y2) · · ·Pj+1(yj+1)

= σ0P1(y1)T j+1
2 (y)

= σ1(y)T j+1
2 (y)

= [ 5/12 7/12 ]
[

2/3 1/3
1/3 2/3

]j

= [ 5/12 7/12 ]
(

1√
2

[
1 1
−1 1

] [
1/3 0
0 1

]
1√
2

[
1 1
−1 1

])j

=
1
2

[ 5/12 7/12 ]
[

1 1
−1 1

] [
1/3 0
0 1

]j [ 1 −1
1 1

]

=
1
2

[ 5/12 7/12 ]
[

3−j + 1 −3−j + 1
−3−j + 1 3−j + 1

]

=
1
2

[ 5/12 7/12 ]
(

3−j
[

1 −1
−1 1

]
+
[

1 1
1 1

])
=

1
3j

[−1/12 1/12 ] + [ 1/2 1/2 ] , ∀j ≥ 1.

Thus,
σj(y) 6= σj(x), ∀j ≥ 1,

and
lim
j→∞

σj(y) = [ 1/2 1/2 ] ,

i.e., the states of strategy y can never equal the corresponding states of x, but they can come arbitrarily
close, for a sufficiently large horizon. Consequently, property (BR) fails for problem (D(M)) so that
property (BR) is too strong for applicability for all MDP problems. However, as we shall see next,
problem (D(M)) does have property (NR).

Let w = (wj)∞j=1 be an arbitrary element of D. Then, for the coefficient of ergodicity φ, we have

φ(Pj(wj)) = 1− max
1≤k≤m

{
min

1≤i≤m
pj(i, k : wj(i))

}
≤ 1− 1/3 = 2/3 < 1,

since
pj(i, k : wj(i)) ∈

{
1/3, 2/3, 1/2

}
, ∀i, k, j, w.

Hence, the hypothesis of Corollary 4.2 holds since α = 2/3 < 1.

Consequently, for this case of (M), we have that ∅ 6= Dse ⊆ Da by Theorem 3.8 so that this is an
example of an MDP with a strongly efficient strategy that is also average optimal. Note that these results
are valid for any cost structure for (M), as long as cost data are uniformly bounded.

We next show that there exist cost structures for which strategy x although efficient is not average
optimal and hence not strongly efficient, i.e., x /∈ Da, so that x /∈ Dse also. For this purpose, assume
that, for all j = 1, 2, . . .,

[qj(i, 1 : d) qj(i, 2 : d)] =

 [rq rq], for i = 1, d = 2,
[q q], for i = 1, d = 1,
[q q], for i = 2, d = 1,

for arbitrary q > 0 and 0 < r < 1. Then

γj(1 : xj(1)) = γj(1 : 1) = qj(1, 1 : 1) · pj(1, 1 : 1) + qj(1, 2 : 1) · pj(1, 2 : 1) =
2
3
q +

1
3
q = q,
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and

γj(2 : xj(2)) = γj(2 : 1) = qj(2, 1 : 1) · pj(2, 1 : 1) + qj(2, 2 : 1) · pj(2, 2 : 1) =
1
3
q +

2
3
q = q,

so that
cj(σj−1(x), xj) = γj(1 : xj(1)) · σj−1(x)(1) + γj(2 : xj(2)) · σj−1(x)(2)

=
1
2
q +

1
2
q

= q, ∀j = 1, 2, . . . .

Therefore,

A(x) = lim sup
N

1
N
C(x : 1, N) = lim sup

N

1
N

N∑
j=1

cj(σj−1(x), xj) = q.

Now define z = (zj)∞j=1 by zj = (2, 1), ∀j. Then

Pj(zj) = Pj((2, 1)) =
[

1/2 1/2
1/3 2/3

]
,

γj(1 : zj(1)) = γj(1 : 2) = qj(1, 1 : 2) · pj(1, 1 : 2) + qj(1, 2 : 2) · pj(1, 2 : 2) =
1
2
q +

1
2
q = q,

and

γj(2 : zj(2)) = γj(2 : 1) = qj(2, 1 : 1) · pj(2, 1 : 1) + qj(2, 2 : 1) · pj(2, 2 : 1) =
1
3
q +

2
3
q = q,

so that
cj(σj−1(z), zj) = γj(1 : zj(1)) · σj−1(z)(1) + γj(2 : zj(2)) · σj−1(z)(2)

= q · σj−1(z)(1) + q · σj−1(z)(2), ∀j = 1, 2, . . . .

Hence, by matrix diagonalization,

σj(z) = σ0 Pj(zj)j

= [ 1/2 1/2 ]
[

1/2 1/2
1/3 2/3

]j

= [ 1/2 1/2 ]
([

1 3
1 −2

]
·
[

1 0
0 1/6

]
· 1

5

[
2 3
1 −1

])j

= [ 1/2 1/2 ] ·
[

1 3
1 −2

]
·
[

1 0
0 1/6

]j
· 1

5

[
2 3
1 −1

]

=
1
5

[ 1 6−j/2 ]
[

2 3
1 −1

]
=

1
6j

[ 1/10 −1/10 ] + [ 2/5 3/5 ] , ∀j ≥ 1.

Thus, σj(x) 6= σj(z), for all j = 1, 2, . . . . Moreover,

cj(σj−1(z), zj) = rq

(
2
5

+
6−j

10

)
+ q

(
3
5
− 6−j

10

)

=
q

5
(2r + 3) +

q

10 · 6j
(r − 1),
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which implies that

1
N
C(z : 1, N) =

1
N

N∑
j=1

q

5
(2r + 3) +

1
N

N∑
j=1

q(r − 1)
10 · 6j

=
q

5
(2r + 3) +

q(r − 1)
10

· 1
N

N∑
j=1

1
6j

=
q

5
(2r + 3) +

q(r − 1)
10

· 1
N

[
1− 1

6N+1

1− 1/6
− 1
]

=
q(2r + 3)

5
+

6q(r − 1)
50N

− 6q(r − 1)
50N · 6N+1

− q(r − 1)
10N

.

Thus,

A(z) = lim sup
N

1
N
C(z : 1, N) =

q(2r + 3)
5

< q = A(x),

since 0 < r < 1. Therefore, x is not average optimal for this cost structure, i.e., x /∈ Da. Consequently,
x /∈ Dse either (Theorem 4.1). Hence, we see that (non-empty) Dse is strictly contained in De, which is
not contained in Da, in general.

Acknowledgments. This research was supported in part by the National Science Foundation under
Grants DMI–9713723 and DMI–0322114. We are grateful to anonymous referees for several suggestions
that significantly improved the clarity of the exposition.

References

[1] J. M. Alden and R. L.Smith, Rolling Horizon Procedures in Nonhomogeneous Markov Decision Processes,
Operations Research 40 (1992), S183–S194.

[2] J.-P. Aubin, Set-Valued Analysis, Birkhauser, Boston, 1990.

[3] D. Bertsekas and S. Shreve, Stochastic Optimal Control: The Discrete Time Case, Academic Press, San Diego,
1978.

[4] C. Derman, Denumerable state Markovian decision processes average cost case, Annals of Mathematical Statis-
tics 37 (1966), 1545–1554.

[5] E. Dynkin and A. A. Yushkevich, Controlled Markov Processes, Springer, 1979.

[6] A.Federgruen and H. C. Tijms, The Optimality equation in average cost denumerable state semi-Markov
decision problems, recurrency conditions and algorithms., Journal of Applied Probability 15 (1978), 356–373.

[7] E. Feinberg, Controlled Markov Processes with Arbitrary Numerical Criteria, SIAM Theory of Probability and
Its Applications 25 (1982), 486–503.

[8] E. Feinberg and A. Shwartz, Handbook of Markov Decision Processes: Methods and Algorithms, Kluwer,
Boston, 2002.

[9] R. R. Goldberg, Methods of Real Analysis, Blaisdell, Waltham, 1964.

[10] X. Guo, J. Liu and K. Liu, Nonhomogeneous Markov Decision Processes with Borel State Space–The Average
Criterion with Nonuniformly Bounded Rewards, Mathematics of Operations Research 25 (2000), 667–678.

[11] H. Halkin, Necessary conditions for optimal control problems with infinite horizons, Econometrica 42 (1974),
267–272.

[12] W. Hopp, J. Bean and R. L. Smith, A new optimality criterion for nonhomogeneous Markov decision pro-
cesses, Operations Research 35 (1987), 875–883.

[13] W. Hopp, Nonhomogeneous Markov decision processes with applications to R & D planning, Ph.D. Disserta-
tion, The University of Michigan , 1984.

[14] K. Kuratowski, Topologie I, II, Academic Press, New York, 1966.

[15] J. R. Munkres, Topology: A First Course, Prentice-Hall, New Jersey, 1975.

[16] M. L. Puterman, Topology: A First Course, Prentice-Hall, New Jersey, 1975.

[17] S. M. Ross, Non-discounted denumerable Markovian decision models, Annals of Mathematical Statistics 39
(1968), 412–2423.

[18] S. Ryan, J. Bean and R. L. Smith, A tie-breaking rule for discrete infinite horizon optimization, Operations
Research 40 (1992), S117–S12.



Wachs, Schochetman and Smith : Average Optimal Solutions for a Nonhomogeneous MDP
Mathematics of Operations Research 00(0), pp. xxx–xxx, c©20xx INFORMS 21

[19] I. E. Schochetman and R. L. Smith, Existence and discovery of average optimal solutions in deterministic
infinite horizon optimization, Mathematics of Operations Research 20 (1998), 416–432.

[20] I. E. Schochetman and R. L. Smith, Convergence of selections with applications in optimization, Journal of
Mathematical Analysis and Applications 155 (1991), 278–292.

[21] E. Seneta, Non-negative Matrices and Markov Chains, Springer-Verlag, New York, 1981.

[22] H. C. Tijms, A First Course in Stochastic Models, Wiley, New York, 2003.


