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The virtual private network problem (Vpn) models scenarios where traffic is uncertain or rapidly changing. The
goal is supporting at minimum cost a given family of traffic matrices, which are implicitly given by upper bounds
on the ingoing and outgoing traffic at each node. Costs are classically defined by a linear function (linear Vpn),
but we consider here also the more general case of concave increasing costs (concave Vpn).

In this paper we give the first constant factor approximation for concave Vpn, and we improve the best known
approximation factor for linear Vpn. Our approximation results build upon a novel reduction, based on Kőnig’s
theorem, which allows us to turn uncertainty of traffic into non-linearity of the objective function. This way, we
are able to reduce linear Vpn and concave Vpn to the single-sink rent-or-buy problem (Srob) and the single-
sink buy-at-bulk problem (Ssbb), respectively. Using the machinery developed for the latter two problems plus
additional ideas, we are able to improve the approximation ratio for Vpn.

Along the way we also obtain, among other results, an improved approximation algorithm for Ssbb, and a tighter
bound on the gap between the costs of arbitrary solutions and tree solutions for Vpn. Furthermore, solving an
open problem, we show that Vpn remains NP-hard even in the balanced case, where the sum of ingoing and
outgoing traffic bounds is equal.
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1. Introduction. In a classical network design problem, we are given a graph and a traffic matrix,
specifying the amount of flow that we need to route between any pair of nodes. The goal is reserving
capacity on the edges of the graph at minimum cost, so that the traffic can be routed without exceeding
the capacity. Different problems differ in the capacity cost function (linear, concave, etc.), in the nature of
the traffic matrix (single-sink, multi-commodity, etc.), and in the constraints on the flow paths (splittable,
unsplittable, etc.).

A common feature of the above problems is that the traffic matrix is fixed and known. However, real-
world applications often involve uncertain and dynamic traffic. Motivated by that, Fingerhut et al. [13]
and independently Duffield et al. [7] introduced the Hose model. In this model, the capacity reservation
must support a family of traffic matrices rather than just one matrix. This family is implicitly given
by imposing upper bounds on the total amount of flow that each node can send and receive. (Formal
definitions are given in Section 2). The Hose model has been studied by many authors in several variants
[8, 9, 11, 14, 18, 20, 23, 25, 27, 28, 38] (see also the survey by Chekuri [4]).
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In the variant considered here, the so-called (asymmetric) Virtual Private Network problem (Vpn),
we are given an undirected graph G = (V, E), with edge costs (or weights) w : E → Q≥0, and two
integers b+

v and b−v for each node v ∈ V . A traffic matrix is feasible if and only if the total amount of
flow entering and leaving each terminal v does not exceed its bounds b−v and b+

v , respectively. Note that,
in general, the bounds do not need to be symmetric (i.e., possibly b−v 6= b+

v ), and even the cumulative
bound on the total ingoing demand R :=

∑
v b−v can be different from the cumulative bound on the total

outgoing demand S :=
∑

v b+
v (without loss of generality, we will always assume R ≥ S). A solution to

the problem consists of a capacity reservation xe on each edge e, and a flow path Puv for each ordered
pair of nodes (u, v). This solution is feasible if any feasible traffic matrix can be routed according to
paths Puv without exceeding capacities xe. The aim is to find a feasible solution that minimizes the total
cost

∑
e∈E w(e) · xe of the capacity reservation.

We also consider a generalization of the problem, that we call concave Vpn (cVpn), with objective
function

∑
e∈E w(e) · φ(xe), where φ : R≥0 → R≥0 is a non-decreasing concave function, with φ(0) = 0

(capacity cost function). This generalization combines traffic uncertainty with economies of scale.

1.1 Our Results. In this paper we give some new insights into Vpn and related problems1. Our
main achievement is a technique to turn traffic uncertainty into non-linearity of the objective function.
To that aim, we crucially exploit Kőnig’s theorem (see, e.g., [6, 34]): In a bipartite graph the maximum
cardinality of a matching equals the minimum cardinality of a vertex cover. This reduction allows us
to turn the input Vpn instance into a concave-cost flow problem, where the traffic matrix is fixed and
known in advance. The latter problem is then solved with existing approximation algorithms.

The concave-cost flow problems which we consider in this paper are the single-sink rent-or-buy problem
(Srob) and the more general single-sink buy-at-bulk problem (Ssbb). Both problems are well-studied
in the literature [10, 17, 19, 22, 23, 25, 29, 30, 31, 36, 37]. In Ssbb, we are given an undirected graph
G = (V, E), with weights w(e) for each edge e, demands d(v) for each node v, and a capacity cost function
φ(·). A feasible solution is a capacity reservation xe on each edge e, which supports a simultaneous flow
of d(v) units from each node v to a fixed root z ∈ V . The goal is minimizing

∑
e∈E w(e) · φ(xe). Srob

is the special case of Ssbb, where φ(x) = min{x, M} for a given input parameter M ≥ 1.

We next describe our results in more detail.

1.1.1 Concave Virtual Private Network. A O(log n)-approximation for cVpn can be obtained
by embedding the input metric into a tree metric with logarithmic average distortion [1, 12]. We give
the first constant factor approximation for cVpn, showing that a solution of expected cost at most 40.82
times the optimum can be computed in polynomial time.

The key-idea of our approach is showing that there is a solution of cost at most twice the optimum,
where all the traffic passes through a central hub node. Henceforth, for a proper choice of the hub and
of the capacity-cost function, we can reduce the original problem to a Ssbb problem. A this point we
can exploit the machinery developed in the Ssbb literature. In particular, any ρ-approximation for Ssbb
leads to a 2ρ-approximation for cVpn.

The technique used to prove our results is substantially different from the previous approaches known
in the literature. In fact, we reinterpret the known fact that, given a set of paths, the minimal amount
of capacity to install on an edge can be computed by solving a bipartite matching problem on some
auxiliary graph. Using duality and Kőnig’s theorem, we rather focus on minimal vertex covers on such
graphs. This reinterpretation allows us to prove stronger results in a simpler manner.

As a byproduct of our analysis, we also show that there is always a tree solution (that is, a solution
whose support is a tree), with cost at most twice the optimum. This substantially improves the previous
known upper bound of 4.74 on the ratio between optimal tree and graph solutions in [8], which only
applies to the case of linear costs (i.e., to Vpn but not to cVpn).

1.1.2 Linear Virtual Private Network. We improve the approximation factor for the virtual
private network problem with linear costs (Vpn) from 3.39 [3, 9] to 2.80.

The main insight in our proof is again a reduction, based on Kőnig’s theorem, from Vpn to a concave-

1A preliminary version of these results appeared in APPROX’09 [32] and ICALP’10 [21].
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cost flow problem, which this time is Srob. Observe that in Vpn one has a linear cost function but
several traffic matrices to take into account, while in Srob the cost function is non-linear but the traffic
matrix is unique. A straightforward adaptation of the analysis for cVpn implies a 2ρSrob approximation
for Vpn, where ρSrob is the approximation factor for Srob. This gives a 2 · 2.80 = 5.60 approximation,
which does not improve on the previous best result. In order to achieve the claimed approximation, we
use a more tailored algorithm and analysis. In particular, we combine the random sampling based Vpn
algorithm in [9] with the Core-Detouring Technique developed in the context of Srob [10].

Along the way, we also obtain a (2 + εR
S )-approximation algorithm for any fixed ε > 0. Note that the

latter approximation factor is smaller than 2.80 when R = O(S) (quasi-balanced Vpn).

1.1.3 Balanced Virtual Private Network. The balanced Vpn problem is the special case of Vpn
where S = R, i.e. the total ingoing demand equals the total outgoing demand. This subproblem attracted
some attention in the literature, due to its similarities with the symmetric version of Vpn (see Section
1.2), which was recently discovered [18] to be polynomial-time solvable. The authors of [4, 28] pose as
an open problem whether balanced Vpn is polynomial-time solvable as well. We show that this not true
(unless P = NP), even with unit bounds on the nodes.

1.1.4 Single-Sink Buy-at-Bulk. We present an improved approximation algorithm for Ssbb, with
expected 20.41 approximation ratio. This improves over the previous best 23.93 approximation [3, 19].
Note that our reduction from cVpn to Ssbb implies a 2 · 20.41 = 40.82 approximation for the first
problem.

Our approximation algorithm in fact solves a variant CabSsbb of Ssbb, which is better studied in the
literature. In CabSsbb, economies of scale are modeled by defining a set of cable types, each one with a
capacity and a cost. It is assumed that the ratio of cost to capacity decreases from smaller to larger cable
types. The capacity is reserved by installing a proper number of each cable type on each edge. This can be
seen as a discretization of the capacity cost function φ(·) (or vice versa). Any approximation algorithm
for CabSsbb provides an approximation algorithm for Ssbb with essentially the same approximation
factor (see Section 2).

Our improved approximation for CabSsbb is based on a generalization of the Core-Detouring Theorem
in [10]: the Multi-Core Detouring Theorem. The goal of the core-detouring technique is to bound the
cost of connecting a set of client nodes to a random subset of them. This is achieved by detouring
the connection paths through a proper connected subgraph (the core). This technique was successfully
applied in several network design problems, such as connected facility location and single-sink rent-or-buy,
where the choice of a proper core is natural and obvious. Our Multi-Core Detouring Theorem applies
also to more complex network design problems, such as CabSsbb, not exhibiting a convenient core.

Combining our approximation with a simple reduction, we also improve the approximation ratio of an
unsplittable variant UnsSsbb of CabSsbb from 148.48 [3, 29] to 40.82.

Our main results are summarized in Table 1.

1.2 Related Work. All the problems considered in this paper are well-studied in the literature. We
next describe some known results.

1.2.1 Virtual Private Network. The Hose model and Vpn were independently defined by Fin-
gerhut, Suri and Turner [13] and by Duffield, Goyal and Greenberg [7]. Since then, this problem was
studied by various authors in several variants. In particular, due to technological reasons, the solution is
constrained to induce a tree in some variants.

The version of Vpn that we refer to in this paper is also called asymmetric Vpn. Vpn is APX-hard
even when restricted to tree solutions [23]. On the positive side, a O(log n) approximation can be obtained
by applying tree embedding techniques [1, 12]. The same approximation bound holds in the more general
polyhedral model, where one needs to support all the traffic matrices in a given polyhedron [4]. Constant
approximation algorithms are presented in [8, 9, 23, 25, 38]. The current best 3.55 approximation is
due to Eisenbrand, Grandoni, Oriolo, and Skutella [9]. Using the recent improvement of the Steiner tree
approximation factor from 1.55 to 1.39 [3], this approximation bound can be refined to 3.39. It is known
that the optimum solution is not always a tree. Curiously, the algorithms in [23, 25] construct a tree
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Table 1 Comparison between prior work and our results. Expected approximations are marked with ⋆.

Problem This paper Prior work

Ssbb and CabSsbb 20.41⋆ 23.93⋆ [3, 19]
approximation

UnsSsbb 2ρCabSsbb ≤ 40.82⋆ 148.48⋆ [3, 29]
approximation

Vpn 2.80⋆ 3.39⋆ [3, 9]
approximation 2 + εR/S 1 + R/S [9]

2ρSrob

cVpn 2ρSsbb ≤ 40.82⋆ O(log n) [12]
approximation

gap tree/graph 2 4.74 [8]
solution for Vpn
gap tree/graph 2 O(log n) [12]

solution for cVpn

complexity of NP-hard –
balanced Vpn

solution, while the current best algorithm in [9] does not. We will use a variant of the latter algorithm
to achieve our improved approximation bound.

In [9] a (1 + R/S)-approximation is presented. This gives a 2-approximation for the balanced case
S = R, which improves on the 3-approximation by Italiano, Leonardi, and Oriolo [28]. Here we improve
the result in [9], by presenting a 2 + ε approximation whenever R = O(S), for an arbitrary constant
ε > 0. In [28] it is proved that, differently from the asymmetric version, an optimal tree solution for the
balanced case can be computed in polynomial time, and raise the question whether or not the problem
is polynomial-time solvable. Although it has been recently shown that the cheapest solution does not
always have a tree structure [33], the complexity of the balanced Vpn problem is still an open question
[4, 28]. We settle this question by showing that the problem remains NP-hard in that special case as
well.

An important well-studied variant is the symmetric version of Vpn, where b+
v = b−v for each v, and one

needs to use the same path to route the flow from u to v and from v to u. In [13, 23] a 2-approximation
is given for this problem. In the same papers the authors show that an optimal tree solution can be
computed in polynomial time. The famous VPN tree routing conjecture states that symmetric Vpn
always has an optimal tree solution, and hence can be solved in polynomial time. In a breakthrough
paper [18], Goyal, Olver and Shepherd recently proved that this conjecture is true (see also [20, 27] for
former proofs of the conjecture on ring networks, which introduce part of the ideas used in [18]).

In case of concave costs, only the symmetric version of the problem has been investigated so far.
Fiorini, Oriolo, Sanità, and Theis [14] show that the generalization of symmetric Vpn with concave costs
is APX-hard, and give a constant approximation for this problem. More precisely, they show that the
24.92-approximation algorithm for Ssbb in [19] can be turned into a 24.92-approximation algorithm for
symmetric Vpn with concave costs. However, their reduction crucially relies on the fact that the bounds
are symmetric and that there is an optimal solution with a tree structure, which is not true in our setting.
Nevertheless, our results show that a constant approximation exists for the asymmetric case as well.

1.2.2 Buy-at-Bulk and Rent-or-Buy. Ssbb has been extensively studied in the literature, in the
mentioned variant called CabSsbb. This problem is NP-hard, e.g., by reduction from the Steiner tree
problem. Meyerson, Munagala, and Plotkin [31] gave an O(log n) approximation for this problem. Garg,
Khandekar, Konjevod, Ravi, Salman, and Sinha [17] described an O(k) approximation, where k is the
number of cable types. The first constant approximation is due to Guha, Meyerson, and Munagala [22]:
the approximation ratio of their algorithm is roughly 2000. This approximation was reduced to 216 by
Talwar [37]. Gupta, Kumar, and Roughgarden [25] described an improved 76.8 approximation algorithm,
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based on random sampling. Refining their approach, the approximation was later reduced to 65.49 by
Jothi and Raghavachari [29], and eventually to 24.92 by Grandoni and Italiano [19].

One can consider an unsplittable version UnsSsbb of CabSsbb, where the flow from each source to the
sink must be routed along a unique path. The algorithm by Talwar is a 216-approximation for UnsSsbb
as well. Unfortunately, this is not the case for the following improved random-sampling algorithms (i.e.,
those algorithms do not guarantee that the flow is unsplittable). Jothi and Raghavachari [29] show how
to transform the 76.8 approximation algorithm for CabSsbb by Gupta et al. [25] into a 2 · 76.8 = 153.6
approximation algorithm for UnsSsbb. Their approach is algorithm-specific: it would not work with
an (even slightly) different algorithm. (For example, it cannot be applied to the improved CabSsbb
algorithm in the same paper). In Section 2, we will describe a procedure which exploits (as a black box)
any ρ-approximation algorithm for CabSsbb to obtain a 2ρ-approximation algorithm for UnsSsbb. In
particular, this implies a 49.84-approximation for UnsSsbb using the CabSsbb algorithm in [19], and a
40.82-approximation using our refined approximation for CabSsbb.

Srob [23, 30, 36] can be interpreted as the special case of CabSsbb, with only two cable types, one of
very small capacity and cost per unit capacity = 1, and the other of cost M ≥ 1 and very large capacity.
The current best approximation ratio for Srob is 2.92 [10].

The improved Steiner tree approximation algorithm in [3], trivially implies improved approximation
factors 2.80, 23.93, and 148.48 for Srob, CabSsbb (and hence Ssbb), and UnsSsbb, respectively.

1.2.3 Core Detouring. In a seminal work, Gupta, Kumar, and Roughgarden [25] introduced a
random-sampling-based framework to design and analyze approximation algorithms for network design.
This way, they achieved improved approximation algorithms for Vpn, Ssbb and Srob (see also [8, 9, 10,
19, 29]). Generalizations and adaptations of their approach were later successfully applied to several other
problems, including multi-commodity rent-or buy [2, 15, 24], connected facility location [10], stochastic
(online) Steiner tree [15, 16, 26], universal TSP [16, 35] and many others.

One of the key ingredients in Gupta et al.’s approach is connecting a set C of client nodes to a
randomly and independently sampled subset of them. The shortest-path distances from the client set to
the sampled subset are then bounded against the cost of an optimum Steiner tree over the sampled nodes.
In a recent work, Eisenbrand, Grandoni, Rothvoß, and Schäfer gave an improved analytical tool, core
detouring, to bound the connection cost above [10]. The crux of their method is designing a sub-optimal
connection scheme, and bounding its cost. In their scheme connection paths are detoured through a
proper connected subgraph (core). This technique is summarized in their Core Detouring Theorem.

This theorem is existential in flavor: it is sufficient to show the existence of a convenient core G′, of
small cost and sufficiently close to the clients C. For some network design problems, a natural candidate
core is provided by the structure of the optimum solution. For example, the optimum solution for
connected facility location and single-sink rent-or-buy contains a Steiner tree T . Applying the Core
Detouring Theorem to T leads to improved approximation algorithms for those two problems [10]. In
this paper we further extend this framework, by showing that core-detouring can be successfully applied
to other network design problems, where the optimum solution does not exhibit any convenient core. In
particular, this holds for Vpn and Ssbb. As we will see, the construction of a good core for the considered
problems involves a few non-trivial ideas.

1.3 Organization. The rest of this paper is organized as follows. In Section 2 we introduce some
preliminary notions. In Sections 3 and 4 we give our results on cVpn and Vpn, respectively. In Section
5 we show that balanced Vpn is NP-hard. In Section 6 we give our improved algorithm for Ssbb.

2. Preliminaries. Problems cVpn and Vpn are formally defined as follows. A capacity cost function
is any non-decreasing concave function φ : R≥0 → R≥0 , with φ(0) = 0.

Concave Virtual Private Network (cVpn). The input consists of an undirected
graph G = (V, E), with edge weights w : E → Q≥0, ingoing and outgoing traffic upper
bounds b− ∈ QV

≥0 and b+ ∈ QV
≥0, and a capacity cost function φ(·). A traffic matrix

T ∈ QV ×V
≥0 is feasible if, for every v ∈ V ,

∑
u Tu,v ≤ b−v and

∑
u Tv,u ≤ b+

v . The goal is

to compute a set of paths P = {Puv}(u,v)∈V ×V and a capacity reservation x ∈ QE
≥0 such
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that: (1) the cost
∑

e∈E w(e) · φ(xe) is minimized and (2) for any feasible traffic matrix
T ,
∑

Puv∋e Tu,v ≤ xe for every e ∈ E.

Virtual Private Network (Vpn). The special case of cVpn with φ(xe) = xe.

By duplicating nodes, we can assume without loss of generality that, for each v ∈ V , (b+
v , b−v ) is either

(0, 0), (1, 0) (sender node), or (0, 1) (receiver node). Of course, this is not a polynomial reduction.
However, our algorithms and their analysis can be easily adapted to perform this node duplication
implicitly (see also [25]). We next denote as S and R the set of senders and receivers, respectively. That
is, the total ingoing demand is R = |R| and the total outgoing demand is S = |S|. By symmetry reasons,
we can assume |R| ≥ |S| without loss of generality.

Given a collection of paths P , the optimal choice of the capacities xe can be computed in polynomial
time with the following approach [9, 23, 28]. Consider the bipartite graph Ge = (S ∪ R, Ee), where
Ee = {(s, r) | e ∈ Psr}. Then the value of xe is the maximum cardinality of a matching in Ge.

We next define Ssbb and Srob.

Single-Sink Buy-at-Bulk (Ssbb). The input consists of an undirected graph G =
(V, E), with edge weights w : E → Q≥0, a set of sources D ⊆ V , with demands d :
D → N, a sink node z ∈ V , and a capacity cost function φ(·). The goal is to compute
a capacity reservation x ∈ QE

≥0 such that: (1) the cost
∑

e∈E w(e) · φ(xe) is minimized
and (2) it is possible to route simultaneously d(v) units of flow from each v ∈ D to z.

Single-Sink Rent-or-Buy (Srob). The special case of Ssbb where φ(xe) =
min{xe, M}, for an input parameter M ∈ Q≥1.

Also in this case, by duplicating nodes, without loss of generality we can assume that d(v) = 1 for each
source v (see, e.g., [25]). Observe that Srob (and hence Ssbb) is also a generalization of the classical
Steiner tree problem (St): in that case D ∪ {z} gives the set of terminals, and M = 1. We remark that
an optimal solution to Srob consists of a Steiner tree containing the root, whose edges support at least
M paths each, and a shortest path from each source to the Steiner tree.

It is known that Ssbb always admits an optimal tree solution, see e.g. the proof given by Karger and
Minkoff [30]. (A tree solution is a solution which reserves positive capacity on a subtree of the input
graph). Adapting the proof in [30], it is possible to transform any given solution into a tree solution of
the same or smaller cost in polynomial time2: this will be needed in our cVpn algorithm to guarantee
that any Ssbb approximation algorithm can be used as a black box.

Lemma 2.1 Given any solution to Ssbb, there is a polynomial-time deterministic algorithm to obtain a
tree solution which costs no more.

It remains to define CabSsbb and UnsSsbb.

Cable Single-Sink Buy-at-Bulk (CabSsbb). The input consists of an undirected
graph G = (V, E), with edge weights w : E → Q≥0, a set of sources D ⊆ V , with
demands d : D → N, a sink z ∈ V , and a set of cable types 1, 2, . . . , k, with capacities
µ1 ≤ µ2 ≤ . . . ≤ µk and costs (per unit length) σ1 ≤ σ2 ≤ . . . ≤ σk, where δi := σi

µi
is

a decreasing function of i (economies of scale). The goal is to find a cable installation
{ni,e}1≤i≤k,e∈E , with ni,e ∈ N, minimizing

∑
i,e w(e)σi ni,e and such that d(v) units of

flow can be routed simultaneously from each source node v ∈ D to the sink without
exceeding the capacity

∑
i µi ni,e on each edge e.

Unsplittable Single-Sink Buy-at-Bulk (UnsSsbb). The same problem as Cab-
Ssbb, with the extra constraint that the flow from each source to the sink must be routed
along a unique path.

Once again, by duplicating nodes, without loss of generality we can assume unit demands [25]. In order
to obtain a good approximation for Ssbb, it is sufficient to obtain a good approximation for CabSsbb.

2All the lemmas of this Section are proved in the Appendix for the sake of completeness.
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Algorithm 1 cVpn algorithm

(i) For any possible choice of a hub sender s′ ∈ S:

(a) Compute a ρSsbb-approximate Ssbb solution for the input graph, with sources D = S ∪ R,
sink z = s′, and capacity cost function φ′(·) = φ(min{·, |S|}). Turn it into a tree solution
x ∈ QE

≥0 which costs no more.

(b) Compute paths P = {Psr}s∈S,r∈R and capacities x′, with path Psr being the unique simple
path between s and r in the tree defined by the support of xe, and x′

e = min{xe, |S|}.
(ii) Return the pair (P, x′) of smallest cost.

Lemma 2.2 For any ε > 0, given a ρ-approximation algorithm for CabSsbb, there is a (1 + ε)ρ-
approximation algorithm for Ssbb.

Remark 2.1 As noted in [14], the (1 + ε) factor can be avoided with the current best algorithms for
CabSsbb. This is because they implement a preliminary cable-selection step, where consecutive selected
cable types differ in cost and/or cost per unit capacity at least by some multiplicative factor α > 1. This
selection step can be mimicked by performing O(log |D|) binary searches over φ(·).

The proof of the following simple reduction is implicitly given, e.g., in [17, 37]. We explicitly prove it
in the Appendix, for the sake of self-containedness and clarity.

Lemma 2.3 Given a ρ-approximation algorithm for CabSsbb, there is a 2ρ-approximation algorithm for
UnsSsbb.

For a given instance I of an optimization problem P , we denote the corresponding optimal cost as
OPTP(I). We sometimes use OPTP(I) also to denote any fixed solution of that cost. When no confusion
is possible, we will sometimes omit I or P (or both). All the problems that we are considering are
NP-hard minimization problems. In this context a ρ-approximation algorithm, ρ > 1, is an algorithm
which produces in polynomial time a feasible solution of cost at most ρ · OPTP(I). The best known
approximation factor for the Steiner tree problem is denoted by ρSt. Currently ρSt < 1.39 [3]. For a
given undirected graph G = (V, E), with edge weights (or costs) w : E → Q≥0, we let w(u, v) denote
the shortest path distance between nodes u and v. We also define w(u, V ′) := minv∈V ′{w(u, v)} and
w(E′) =

∑
e∈E′ w(e), for any V ′ ⊆ V and E′ ⊆ E. For notational convenience, we sometimes identify a

subgraph G′ of G with its set of nodes V (G′) or its set of edges E(G′). In particular, we use w(u, G′)
and w(G′) as shortcuts for w(u, V (G′)) and w(E(G′)), respectively. We also use v ∈ G′ and e ∈ G′ in
place of v ∈ V (G′) and e ∈ E(G′).

3. Concave Virtual Private Network. In this section we present the first constant factor ap-
proximation algorithm for cVpn.

Let I = (G, w, S, R, φ) be a cVpn instance. Recall that S and R denote senders and receivers
respectively, and |R| ≥ |S| by assumption. Consider Algorithm 1. Note that φ′(x) = φ(min{x, |S|})
is a non-decreasing concave function, with φ′(0) = 0: hence the Ssbb instance constructed in Step (i)a
is well-defined. In Step (i)a we also exploit the fact that given any solution to Ssbb, it is possible to
compute a tree solution of the same or smaller cost in polynomial time (by Lemma 2.1).

Lemma 3.1 Algorithm 1 computes a solution to cVpn in polynomial time.

Proof. The claim on the running time is trivial. Let us show that the capacity reservation x′
e in

fact suffices. Consider an edge e, which is used by k paths in the Ssbb solution. Then the capacity
reservation is x′

e ≥ min{k, |S|}. It is easy to see that this is sufficient for the constructed cVpn solution.
2

It remains to bound the approximation factor of the algorithm. To that aim, we let s∗ be a sender
chosen uniformly at random, and focus on the iteration of the algorithm with s′ = s∗. Then, it is sufficient
to show that the solution computed in that iteration is cheap in expectation.
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Consider the Ssbb instance I ′
s∗ computed in Step (i)a for sender s∗.

Lemma 3.2 Algorithm 1 computes a solution of cost at most ρSsbb · E[OPTSsbb(I ′
s∗)].

Proof. For any choice of s∗, the Ssbb solution computed in Step (i)a equals the cost of the cVpn
solution computed in Step (i)b. The claim follows by an averaging argument. 2

We will now prove that E[OPTSsbb(I ′
s∗)] is at most 2 · OPTcVpn(I). To do that, it is useful to define

a modified cVpn instance Is∗ with the following traffic bounds:

b+
v =

{
|S| if v = s∗;

0 otherwise,
and b−v =

{
1 if v ∈ S ∪ R;

0 otherwise.

In other terms, s∗ can send up to |S| units of flow, and each node in S ∪ R can receive one unit of flow.

Lemma 3.3 OPTSsbb(I ′
s∗) = OPTcVpn(Is∗).

Proof. Let Ps∗v be the paths in a cVpn solution for Is∗ . Consider an edge e ∈ E and let
v1, . . . , vk ∈ S ∪R be the nodes, such that e ∈ Ps∗vi

. If k ≤ |S| we can define a traffic matrix in which s∗

sends 1 unit of flow to all vi’s. If k > |S|, we may send 1 unit of flow from s∗ to each node in v1, . . . , v|S|.
In any case, the needed capacity of e is xe = min{k, |S|}, which costs w(e) · φ(min{k, |S|}). This is the
same amount, which an Ssbb solution pays for capacity k on e ∈ E. The claim follows. 2

s1

s2

s3

r2

r1

r3
r4

Ps1r2

Ps1r1

Ps2r3

Ps3r3

e

(a)

S R

s1

s2

s3

r2

r1

r3

r4

Ce

(b)

Figure 1: Example of a cVpn instance in (a), where terminals are depicted as rectangles, senders are
drawn solid. Only paths, crossing edge e are shown. In (b) the graph Ge with vertex cover Ce is visualized,
implying that xe = 2.

The next lemma is the heart of our analysis: here we crucially exploit Kőnig’s theorem.

Lemma 3.4 E[OPTcVpn(Is∗)] ≤ 2 · OPTcVpn(I).

Proof. Let P = {Psr | s ∈ S, r ∈ R} be the set of paths in the optimum cVpn solution for I and
xe be the induced capacities. We next construct a cVpn solution for Is∗ , consisting of s∗-v paths P ′

s∗v

for v ∈ S ∪ R. Choose a receiver r∗ ∈ R uniformly at random as a second hub. Take P ′
s∗r := Ps∗r as

the s∗-r path. Furthermore concatenate P ′
s∗s := Ps∗r∗ + Pr∗s to obtain a s∗-s path. More precisely, we

shortcut the latter paths, such that they do not contain any edge twice.

We define a sufficient capacity reservation x′
e as follows: Install |S| units of capacity on the path Ps∗r∗ .

Then for each sender s ∈ S (resp., receiver r ∈ R) install in a cumulative manner one unit of capacity
on Psr∗ (resp., on Ps∗r). Note that x′

e is a random variable, depending on the choice of s∗ and r∗. We
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show that E[x′
e] ≤ 2xe. Once we have done this, the claim easily follows from Jensen’s inequality and

the concavity of φ:

E[OPTcVpn(Is∗)] ≤ E
[∑

e∈E

w(e)φ(x′
e)
]
≤
∑

e∈E

w(e)φ(E[x′
e]) ≤ 2 · OPTcVpn(I).

Now consider an edge e ∈ E. Since we want to bound the quantity E[x′
e] in terms of the original capacity

xe, let us inspect how this capacity is determined. Define the bipartite graph Ge = (S∪R, Ee) containing
an edge (s, r) ∈ Ee if and only if e ∈ Psr. Then xe must be the cardinality of a maximal matching in
Ge. Kőnig’s theorem says that there is a vertex cover Ce ⊆ S ∪ R with xe = |Ce| (see Figure 1 for an
illustration).

We now distinguish two cases and account their expected contribution to E[x′
e].

Case: s
∗ ∈ S ∩Ce or r

∗ ∈ R∩Ce. We account the worst case of |S| units of capacity. The expected
contribution is then

Pr[(s∗ ∈ S ∩ Ce) ∨ (r∗ ∈ R ∩ Ce)] · |S| ≤
( |S ∩ Ce|

|S| +
|R ∩ Ce|

|R|

)
· |S|

|R|≥|S|

≤ |Ce|.

Case: s
∗ ∈ S\Ce and r

∗ ∈ R\Ce. We bound the probability of this case by 1. We know that edge
(s∗, r∗) cannot exist in Ge since all edges need to be incident to Ce. Consequently e does not lie on the
path Ps∗r∗ . Thus we have to install 1 unit of capacity for each sender s, such that (s, r∗) ∈ Ee. But only
senders in S ∩Ce may be adjacent to r∗ in Ge, thus this number is at most |S ∩Ce|. A similar argument
holds for the receivers. The expected contribution of this case is consequently upperbounded by

Pr[(s∗ ∈ S \ Ce) ∧ (r∗ ∈ R \ Ce)] · (|S ∩ Ce| + |R ∩ Ce|) ≤ 1 · (|S ∩ Ce| + |R ∩ Ce|) = |Ce|.

Combining the two bounds above we obtain E[x′
e] ≤ 2|Ce| = 2xe, which implies the claim. 2

Lemmas 3.1, 3.2, 3.3 and 3.4 imply the following theorem.

Theorem 3.1 Given an (expected) ρSsbb approximation algorithm for Ssbb, there is an (expected) 2ρSsbb

approximation algorithm for cVpn.

We will prove in Section 6 that there is a randomized approximation algorithm for Ssbb with ρSsbb =
20.41. Together with Theorem 3.1, this immediately gives the following corollary.

Corollary 3.1 There is an expected 40.82-approximation algorithm for cVpn.

Observe that the solution computed by Algorithm 1 is a tree solution. In several frameworks, the
computed solution is constrained to be a tree due to technological reasons. Hence, an interesting question
is how large is the gap between the best tree solution and the best (graph) solution. As a byproduct of
our analysis, we obtain that this gap is at most 2, improving on the previous best bound 3 +

√
3 ≈ 4.74

due to [8] (which only worked in the special case of linear costs).

Corollary 3.2 Any cVpn instance admits a tree solution of cost at most twice the optimal cost.

4. Linear Virtual Private Network. In this section we present an expected 2.80 approximation for
Vpn (in its classical formulation with linear costs). This improves on the previous best 3.39 approximation
for this problem [3, 9]. We start by presenting in Section 4.1 a (2 + ε)-approximation for the quasi-
balanced case, where |R| = O(|S|) (recall that |R| ≥ |S| by assumption). In Section 4.2 we give a
2.80-approximation for the case |R| ≫ |S|.

4.1 The Quasi-Balanced Case. The next lemma is a specialization of Theorem 3.1.

Lemma 4.1 Given a ρSrob approximation algorithm for Srob, there is a 2ρSrob approximation algorithm
for Vpn.
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Algorithm 2 Vpn algorithm.

(i) Choose a receiver r∗ ∈ R uniformly at random.

(ii) Mark each receiver uniformly at random with probability α
|S| . Let R′ be the marked receivers.

(iii) For each s ∈ S, compute a ρSt-approximative Steiner tree Ts spanning {s, r∗} ∪ R′ and install
cumulatively 1 unit of capacity on Ts.

(iv) Install 1 unit of capacity cumulatively on the shortest path from each receiver r to the closest
node in R′ ∪ {r∗}.

Proof. Consider Algorithm 1. Observe that φ(min{xe, |S|}) = min{xe, |S|} since φ(x) = x for Vpn.
Hence the Ssbb instance considered in Step (i)a is indeed an Srob instance with M = |S|, sink s′, and
sources D = S ∪ R. Hence in that step we can use any ρSrob approximation algorithm for Srob. The
claim follows. 2

The above lemma does not directly imply an improvement of the approximation ratio for Vpn, since
the best known approximation factor for Srob is currently 2.80 [3, 10]. However, when |R| = O(|S|), we
can exploit a better approximation algorithm for Srob given in [10].

Theorem 4.1 For any ε > 0, there is a (2 + ε|R|/|S|)-approximation algorithm for Vpn.

Proof. In [10] it is shown that, for any δ > 0, there is a 1+ δ |D|
M

-approximation algorithm for Srob.
Combining this result with the reduction from Lemma 4.1, and choosing δ = ε/4, we obtain the claimed
approximation factor:

2
(
1 + δ

|D|
|M |

)
= 2 + 2δ

|R| + |S|
|S| ≤ 2 + 4δ

|R|
|S| = 2 + ε

|R|
|S| .

2

4.2 The Unbalanced Case. Given the result from Section 4.1, we next assume that |S| ≤ ε|R| for
an arbitrarily small constant ε > 0.

Suppose to be given a Vpn instance I. We consider Algorithm 2, which is a slight adaptation of the
Vpn algorithm in [9]. The quantity α is a positive constant to be fixed later.

From an intuitive point, the analysis proceeds as follows. Replace all the senders with a unique sender
s, chosen randomly, with b+

s = |S|. We will prove that, on average, the optimum cost of the Vpn instance
does not increase. The optimum solution to the new instance will be a tree, consisting of a core Cs (a
tree) with capacity |S|, and paths Us,r from any r ∈ R to Cs, each one contributing with one unit of
capacity to the corresponding set of edges. Let ΣS be the total cost of the cores Cs and let ΣC be the
average of

∑
r∈R w(Us,r) (over all s). Then ΣS +ΣC ≤ OPTVpn. It is not difficult to bound the expected

cost of the Steiner trees Ts in terms of ΣS and ΣC . For any sender s, we can bound the expected distances
of the receivers in R to the nearest marked receiver by applying the Core Detouring Theorem with core
Cs and paths Us,r. By averaging over all s, we again obtain a bound in terms of ΣS and ΣC .

For any sender s ∈ S, let I ′
s be the Srob instance with sources D = R, root z = s and parameter

M = |S|. We will first bound the cost of the solution output by the algorithm with respect to OPTSrob(I ′
s),

and then compare OPTSrob(I ′
s) with OPTVpn(I).

Let Cs be the Steiner tree in OPTSrob(I ′
s), and Us,r the shortest path from r ∈ R to Cs. Define

ΣS :=
∑

s∈S w(Cs) and ΣC := 1
M

∑
s∈S

∑
r∈R w(Us,r). First we upper bound the cost of the M = |S|

Steiner trees computed by Algorithm 2.

Lemma 4.2 E[
∑

s∈S w(Ts)] ≤ ρSt · ΣS + ρSt(α + ε) · ΣC .

Proof. Recall that M/|R| = |S|/|R| ≤ ε. For each s take the core Cs and attach the path Us,r for
all r ∈ R′. Each Us,r, r ∈ R, is used with probability at most α

M
+ 1

|R| , thus there exists a Steiner tree

over {s, r∗} ∪ R′ of expected cost w(Cs) + ( α
M

+ 1
|R|)

∑
r∈R w(Us,r). Multiplying this quantity by the
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Steiner tree approximation factor, and summing over all s we obtain

∑

s∈S

E[w(Ts)] ≤ ρSt

(
∑

s∈S

w(Cs) +

(
α

M
+

1

|R|

)∑

s∈S

∑

r∈R

w(Us,r)

)
≤ ρStΣS + ρSt(α + ε)ΣC .

2

We next bound the cost of connecting each receiver to the closest node in R′ ∪ {r∗}. To that aim, we
exploit the following Core Detouring Theorem developed in the context of Srob [10]3.

Theorem 4.2 (Core-Detouring) [10] Given an undirected graph G = (V, E), with edge weights w :
E → Q≥0, clients C ⊆ V , a connected subgraph G′, a root z ∈ V (G′), and a probability p ∈ (0, 1], mark
each client independently with probability p, and denote the marked clients by C′. Then

E
[∑

v∈C

w(v, C′ ∪ {z})
]
≤ 0.8067

p
w(G′) + 2

∑

v∈C

w(v, G′).

With this tool at hand, the next lemma is easy to prove.

Lemma 4.3 E[
∑

r∈R w(r, R′ ∪ {r∗})] ≤ 0.8067
α

ΣS + 2ΣC .

Proof. Let s ∈ S. Applying the Core Detouring Theorem 4.2 with C = R, G′ = Cs, z = r∗, and
p = α/M ,

E
[∑

r∈R

w(r, R′ ∪ {r∗})
]
≤ 0.8067

α/M
w(Cs) + 2

∑

r∈R

w(Us,r).

Averaging this bound over all s, we obtain

E
[∑

r∈R

w(r, R′ ∪ {r∗})
]
≤ 0.8067M

α

∑

s∈S

1

M
w(Cs) + 2

1

M

∑

s∈S

∑

r∈R

w(Us,r) =
0.8067

α
ΣS + 2ΣC .

2

The crucial part is now to relate the cost of OPTSrob(I ′
s) to the optimum cost OPTVpn(I). Similarly

to Lemma 3.4, the next lemma relies on Kőnig’s Theorem.

Lemma 4.4
∑

s∈S OPTSrob(I ′
s) ≤ |S| · OPTVpn(I).

Proof. In order to prove the lemma, it is convenient to define a Vpn instance Is with the same
receiver set as I, and with sender set {s}, where the out-traffic bound for s is b+

s = |S|. (Recall that
b+
s = 1 for the original problem). Then using Lemma 3.3, we obtain OPTSrob(I ′

s) = OPTVpn(Is).
We now prove that

∑
s∈S OPTVpn(Is) ≤ |S| · OPTVpn(I) by showing that, for a random sender s∗,

E[OPTVpn(Is∗)] ≤ OPTVpn(I). The claim follows by an averaging argument.

Let P = {Psr}(s,r)∈S×R be the optimal paths for I and let x = {xe}e∈E be the induced capacities.
Consider the bipartite graph Ge = (S ∪ R, Ee), with (s, r) ∈ Ee iff e ∈ Psr. Let Ce ⊆ S ∪ R be a
vertex cover for Ge of size xe (which exists by Kőnig’s Theorem). Consider the solution to Is∗ induced
by paths {Ps∗r}r∈R and let x′ = {x′

e}e∈E be the corresponding capacity reservation. Clearly x′
e ≤

min{|Ne(s
∗)|, |S|}, whereby Ne(s

∗) are the nodes adjacent to s∗ in Ge. Let us show that E[x′
e] ≤ xe.

The event {s∗ ∈ S ∩ Ce} happens with probability |S∩Ce|
|S| . In this case we can upper bound x′

e with |S|.
In the complementary case we can upper bound x′

e with |Ne(s
∗)| ≤ |R ∩ Ce|, where we exploit the fact

that s∗ can be only adjacent to nodes of R ∩ Ce (otherwise Ce would not be a vertex cover). Altogether

E[x′
e] ≤

|S ∩ Ce|
|S| · |S| +

(
1 − |S ∩ Ce|

|S|

)
· |R ∩ Ce| ≤ |S ∩ Ce| + |R ∩ Ce| = |Ce| = xe.

The claim follows since

E[OPTVpn(Is∗)] ≤ E
[∑

e∈E

w(e)x′
e

]
≤
∑

e∈E

w(e)xe = OPTVpn(I).

2

3In [10], the right hand side of the inequality contains an extra term e−p|C| · |C| ·w(G′). Since adding dummy clients in

the root does not change the connection costs, our simplified version of the formula follows by a limit argument.
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Figure 1 Vpn instance IVpn. Edges are labeled with their cost. Senders and receivers are depicted as
gray and white squares, respectively.
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. . .
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Lemma 4.5 For a suitable choice of α and |R|/|S| large enough, Algorithm 2 gives an expected 2.80
approximation for Vpn.

Proof. From Lemma 4.4,

ΣS + ΣC =
1

M

∑

s∈S

(
M w(Cs) +

∑

r∈R

w(Us,r)

)
≤ 1

M

∑

s∈S

OPTSrob(I ′
s)

≤ 1

M
|S| · OPTVpn(I) = OPTVpn(I). (1)

By Lemmas 4.2 and 4.3, the expected cost of the solution computed by the algorithm is at most

(ρSt · ΣS + ρSt(α + ε)ΣC) +

(
0.8067

α
ΣS + 2ΣC

)
α=0.5748

≤ 2.80(ΣC + ΣS)
(1)

≤ 2.80 · OPTVpn.

2

Theorem 4.3 There is an expected 2.80-approximation algorithm for Vpn.

Proof. The claim follows from Theorem 4.1 and Lemma 4.5. 2

5. Hardness of Balanced Virtual Private Network. In this section we consider the balanced
case of the Vpn problem, i.e. |S| = |R|. Solving the open problem in [4, 28], we show that even this
special case if NP-hard via a reduction from the Steiner tree problem.

We start by describing the reduction from Steiner tree. Consider a Steiner tree instance ISt, consisting
of a graph G = (V, E), with edge weights w : E → Q≥0, and k + 1 ≥ 4 terminals {v1, v2, . . . , vk, z}. We
construct an instance IVpn of the balanced Vpn problem on a graph G′ = (V ′, E′) as follows. First,
introduce two large numbers: C :=

∑
e∈E w(e) + 1, and M ≫ (k + 1)C. To construct G′ from G,

add a node a4 and make it adjacent to the nodes v1, v2, . . . , vk by edges of cost C. Then, add a path
z, a1, a2, a3, a4, where the first two edges of the path have cost M , while the last two edges have cost
kM . Finally, add k nodes W = {w1, w2, . . . , wk}, each of them adjacent to a2 with a zero cost edge, and
add 2k − 1 nodes U = {u1, u2, . . . , u2k−1}, each of them adjacent to a3 with a zero cost edge. Define the
set of senders as S := {a1} ∪ U and the set of receivers as R := {v1, v2, . . . , vk} ∪ W . Note that indeed
|S| = |R|. Figure 1 illustrates this reduction.

We next show that the optimal solution to the Steiner tree instance ISt has cost W ∗ if and only if the
optimal solution for the balanced Vpn instance IVpn has cost Z∗ = 2k2M + 2M + kC + W ∗. We split
the proof in the if (Lemma 5.2) and only if (Lemma 5.1) parts.
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Lemma 5.1 Given a solution to ISt of cost W ∗, there is a solution to IVpn of cost at most Z∗ =
2k2M + 2M + kC + W ∗.

Proof. Let T ∗ be the considered Steiner tree. We denote as T ∗
uv the unique simple path between

nodes u and v in T ∗. We construct a solution to IVpn by defining the following paths:

• Pa1wi
= {a1, a2} ∪ {a2, wi}, for i = 1, . . . , k;

• Pa1vi
= {a1, z} ∪ T ∗

zvi
, for i = 1, . . . , k;

• Pujwi
= {uj, a3} ∪ {a3, a2} ∪ {a2, wi}, for i = 1, . . . , k and j = 1, . . . , 2k − 1;

• Pujvi
= {uj, a3} ∪ {a3, a4} ∪ {a4, vi}, for i = 1, . . . , k and j = 1, . . . , 2k − 1.

Finally, we install the following amount of capacity on the edges of the graph G′:

xe =





k if e = {a2, a3}, {a3, a4};
0 if e ∈ E \ E(T ∗);

1 otherwise.

The cost of this capacity reservation is W ∗ + 2k2M + 2M + kC = Z∗. To see feasibility, observe that no
path uses the edges E \ E(T ∗), while edges {a1, a2}, {a1, z}, and E(T ∗) are used by a1 only (hence one
unit of capacity is sufficient). Edges {a2, wi}, {a4, vi}, and {a3, uj}, i = 1, . . . , k and j = 1, . . . , 2k − 1,
are used by at most one sender/receiver in every feasible traffic matrix. Edges {a2, a3} and {a3, a4} are
used only by receivers wi and vi, i = 1, . . . , k, respectively. Hence k units of capacity are sufficient on
those edges. 2

Lemma 5.2 Given a solution to IVpn of cost Z∗ = 2k2M + 2M + kC + W ∗, there is a solution to ISt of
cost at most W ∗.

Proof. Let (P, x) be the considered solution to IVpn with cost Z∗. Recall that we may assume x to
be an integer vector. We next argue that in fact this solution must be of the same structure as suggested
in Lemma 5.1.

Claim 5.1 For i = 1, . . . , k, one has {a1, z} ∈ Pa1vi
and {a1, a2} ∈ Pa1wi

.

Proof. Assume for a contradiction that {a1, z} /∈ Pa1vi
for some vi. Then Pa1vi

must contain
{a1, a2}, {a2, a3}, and {a3, a4}. We now investigate how much capacity must be installed on such edges.
First, xa1a2 ≥ 1 (since {a1, a2} is used by at least one path). Now, consider the feasible traffic matrix in
which a1 sends 1 unit of flow to vi and the remaining senders send 2k − 1 units of flow to the remaining
receivers. All senders different from a1 must use a path containing either {a2, a3} or {a3, a4}, while the
path from a1 to vi uses both. This means, that the capacity to be installed on the latter edges fulfills
xa2a3 + xa3a4 ≥ (2k − 1) + 2 = 2k + 1. Therefore, for k ≥ 2, the cost of the emerging solution is at least
2k2M + kM + M > Z∗, yielding a contradiction.

A symmetric argument proves the second part of the claim. 2

Claim 5.2 One has xa2a3 + xa3a4 ≥ 2k.

Proof. Let e = {a2, a3} and e′ = {a3, a4}. All 2k− 1 senders U must use a path containing either e
or e′, therefore xe+xe′ ≥ 2k−1. Let us prove that in fact the inequality is strict. Assume by contradiction
that xe + xe′ = 2k − 1. Define the bipartite graphs Ge and Ge′ as usual, and remove node a1 from them.
Let Ce and Ce′ be corresponding minimum vertex covers. Claim 5.1 implies that the paths of a1 use
neither e nor e′. Hence the edge set of Ge and Ge′ with or without node a1 is the same. We can conclude
by Kőnig’s theorem and the feasibility of the solution that

2k − 1 = xe + xe′ ≥ |Ce| + |Ce′ |.
As a consequence, there is at least one receiver r′ ∈ R that does not belong to any of the two covers.

Now observe that Ge and Ge′ are edge disjoint, since no path can use both e and e′. Furthermore,
Ge ∪ Ge′ is a complete bipartite graph on U × R. This is because any sender ui is forced to use either e
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or e′. Suppose that there exists a sender u′ ∈ U \ {Ce ∪Ce′}. Then edge {u′, r′} is neither covered by Ce

nor by Ce′ , a contradiction. As a consequence, Ce ∪ Ce′ ⊇ U . Since |Ce| + |Ce′ | ≤ 2k − 1 = |U |, we can
conclude that Ce ∪ Ce′ = U and Ce ∩ Ce′ = ∅.

The disjointness of Ce and Ce′ implies that all senders in Ce (resp., Ce′) route to the 2k receivers on
paths containing e (resp., e′). Consider any choice of k senders U ′ ⊆ U . Define a traffic matrix as follows:
if ui ∈ Ce ∩ U ′, send one unit from ui to some vj , and otherwise from ui to some wj . This can be done
in a feasible way, since there are enough receivers vj and wj . This way each sender in U ′ uses both edges
{a1, z} and {a1, a2}. Hence xa1z ≥ k and xa1a2 ≥ k.

Therefore, for k ≥ 3, the cost of the emerging solution is at least kM · (xe +xe′)+M · (xa1z +xa1a2) ≥
kM · (2k − 1) + 2kM > Z∗. This gives the desired contradiction. 2

Claim 5.3 For i = 1, . . . , k and j = 1, . . . , 2k − 1, one has {a3, a4} ∈ Pujvi
and {a2, a3} ∈ Pujwi

.

Proof. Assume by contradiction that there is a path from some uj to some vi that does not contain
e = {a3, a4}. Necessarily, it must contain the edges {a1, a2} and {z, a1}. Consider the feasible traffic
matrix in which uj sends 1 unit of flow to vi and a1 sends 1 unit of flow to some vh, h 6= i. From Claim
5.1, {z, a1} is used by two paths and therefore xza1 ≥ 2. Similarly, one can show xa1a2 ≥ 2. Therefore,
by Claim 5.2, the cost of the emerging solution is at least kM · (xa2a3 + xa3a4) + M · (xza1 + xa1a2) ≥
2k2M + 4M > Z∗, a contradiction.

A symmetric argument shows that there is no path from some uj to some wi that does not contain
e′ = {a2, a3}. 2

Claim 5.4 One has
∑

i=1,...,k xa4vi
≥ k.

Proof. Consider a feasible traffic matrix where k senders in U simultaneously send k units of flow
to v1, . . . , vk. From Claim 5.3, all these senders use paths containing {a3, a4}, and therefore each of those
paths contains at least one edge {a4, vi}. 2

From Claims 5.1, 5.2, and 5.4, the cost of edges not in E is at least

M · (xza1 + xa1a2) + kM · (xa2a3 + xa3a4) + C ·
∑

i=1,...,k

xa4vi
≥ 2k2M + 2M + kC.

Finally, let T be the subset of edges of E that are in the support of the solution. From the discussion
above,

w(T ) ≤ Z∗ − (2k2M + 2M + kC) = W ∗.

Assume by contradiction that T does not contain a Steiner tree on nodes v1, . . . , vk, z. Then there exists
at least one node vi such that the path from a1 to vi contains at least 2 edges with cost C. But in this
case, we would have

∑
i=1,...,k xa4vi

≥ k + 1: In fact, we can define a traffic matrix where a1 sends one
unit of flow to vi and the remaining vj ’s receive one unit of flow from k − 1 senders in U . Thus the cost
of the solution would be at least 2k2M + 2M + (k + 1)C > Z∗, a contradiction. We conclude that indeed
T contains a Steiner tree T ′. Its cost is w(T ′) ≤ w(T ) ≤ W ∗. The claim follows. 2

Theorem 5.5 The balanced Vpn problem is NP-hard.

Proof. The claim follows from Lemma 5.1, Lemma 5.2, and the NP-hardness of the Steiner tree
problem [5]. 2

Remark 5.1 Note that the above reduction is not approximation preserving. In particular, the APX-
hardness of Steiner tree is not conveyed to balanced Vpn. Hence, our reduction does not exclude the
existence of a PTAS for balanced Vpn: This is an interesting open problem.
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Figure 2 All the edges have cost 1, besides the edges incident to the root, which have cost M ≫ 1. In
the optimum CabSsbb solution (left side) exactly one cable on each edge is installed, as shown in the
picture. The graph G′ = G1 is disconnected. On the right, edges of T , with edge labels me. Edges of the
connected subgraph G′′ = {e ∈ T | me ≥ γ/2} (given that γ = 3) are drawn bold.

σ1 = 1, µ1 = 1

σ2 = 1.5, µ2 = 2

σ3 = 2, µ3 = 3

source

sink G′

1 1 1 1 1 1

2 2 2

2 2 2

4 2
G′′

6. Single-Sink Buy-at-Bulk. In this section we present our improved 20.41 approximation algo-
rithm for CabSsbb (and hence for Ssbb).

The main novelty in our approach is the following generalization of the Core Detouring Theorem. For
a given edge-weight function w(·), and a given (possibly disconnected) subgraph G′, we let wG′(v, u) be
the distance from v to u in the graph resulting from the contraction of the connected components of G′.
In other words, wG′(v, u) is the cost of the shortest v-u path, if edges in G′ are for free.

Theorem 6.1 (Multi-Core Detouring) Given an undirected graph G = (V, E), with edge weights
w : E → Q≥0, clients C ⊆ V , a subgraph G′, a root z ∈ V , and a probability p ∈ (0, 1], mark each client
independently with probability p, and denote the marked clients by C′. Then

E
[∑

v∈C

w(v, C′ ∪ {z})
]
≤ 0.8067

p
w(G′) + 2

∑

v∈C

wG′(v, z).

Proof. Let θp(C, G′) := 2
∑

v∈C wG′(v, z) + γ w(G′) with γ := 0.8067
p

. We will find a connected

subgraph G′′ of G with z ∈ V (G′′), having θp(C, G′′) ≤ θp(C, G′). The claim then follows by applying
the Core Detouring Theorem 4.2 to G′′. Let Pvz be the path, attaining the length wG′(v, z), i.e. it is a
shortest v-z path in G, where edges in G′ have cost 0. Since these paths are shortest paths, we may assume
that

⋃
v∈C Pvz induces a tree T , rooted at z (see Figure 2). For e ∈ T , let me := |{v ∈ C | e ∈ Pvz}| be

the number of v-z paths that contain e. Let G′′ be the graph, induced by the edges e ∈ T with me ≥ γ/2
(G′′ := {z} if no such edge exists). Moving from a leaf of T to the root z, the quantity me can only
increase, hence the subgraph G′′ is connected and z ∈ V (G′′). To upper bound θp(C, G′′), we still use Pvz

as the v-z path, even if wG′′(v, z) is attained by a different path. Any edge e ∈ T contributes with a term
γw(e) to θp(C, G′) if e ∈ G′, and with a term 2mew(e) otherwise. Note that γw(e) ≤ 2mew(e) if and
only if me ≥ γ/2. By the definition of G′′, the contribution of e to θp(C, G′′) is min{2mew(e), γw(e)},
which is never larger than the contribution of e to θp(C, G′). Applying the Core Detouring Theorem to
the core G′′ yields

E
[∑

v∈C

w(v, C′ ∪ {z})
]
≤ θp(C, G′′) ≤

∑

e∈T\G′′

2mew(e) +
∑

e∈G′′

γw(e)

=
∑

e∈T

min{2mew(e), γw(e)} ≤
∑

e∈T\G′

mew(e) +
∑

e∈G′

γw(e) = θp(C, G′),

and the claim follows. 2

Next consider the input CabSsbb instance. By adding dummy sources in the sink, we can assume
that |D| is a multiple of all the capacities µi. We will use the aggregation algorithm in [25]. Given a set
of demands x(v) ∈ [0, U), whose total value is a multiple of U > 0, and a tree T , this algorithm computes
a random flow along T to aggregate the demands such that:

(1) The amount of flow along each edge of T is at most U ;

(2) The final demand x′(v) at each node is either 0 or U ;
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Algorithm 3 CabSsbb algorithm.

(i) Select a subset of cable types i(1), . . . , i(k′) in increasing order of capacity, where i(1) = 1 and
i(k′) = k.

(ii) For t = 0, 1, . . . , k′:

(a) (Collection) Let Dt be the set of nodes with positive demand. Each node in Dt is marked
with probability pt = ασi(t)/σi(t+1) (probability 1 if t = 0). Let D′

t be the set of marked
nodes. Each node sends its demand to the closest node in D′

t ∪ {r} along a shortest path,
using cables of type i(t) (type 1 for t = 0). Let d′t(w) be the new demand collected at each
w ∈ D′

t ∪ {r}.
(b) (Aggregation) If t < k′, compute a ρSt-approximate Steiner tree Tt on D′

t ∪ {r}. Apply
the aggregation algorithm to Tt with U = µi(t+1) and x(w) = d′t(w) (mod µi(t+1)) for each
terminal node w. The corresponding flow is supported by installing cables of type i(t + 1)
(at most one for each edge of Tt). Let d′′t (w) be the new demand aggregated at each node
w.

(c) (Redistribution) If t < k′, for each node w ∈ D′
t ∪ {r}, consider the subset of nodes

Dt(w) ⊆ Dt that sent their demand to w during the collection step (including w itself, if

w 6= r). Uniformly select a random subset D̃t(w) of Dt(w) of cardinality d′′t (w)/µi(t+1).

Send µi(t+1) units of flow back from w to each node in D̃t(v) along shortest paths, installing
cables of type i(t + 1).

(3) The expected demand at each node is preserved, that is: Pr[x′(v) = U ] = x(v)/U .

We consider the CabSsbb Algorithm 3, which is a slight variant of the algorithms in [19]. For notational
convenience, we assume σi(k′+1) = ∞ and i(0) = 0. The algorithm initially selects a subset of k′ cable
types i(1), i(2), . . . , i(k′): this step is explained in more details below. Then there is a sequence of k′ + 1
rounds. In each round the demand of the sources (which is initially 1 for each source) is aggregated in a
smaller and smaller subset of sources. At the beginning of round t ≥ 1, the demand at each source is in
{0, µi(t)}. Each round t consists of three steps. Initially the demand is collected at a random subset of
aggregation points (Collection Step). The quantity α in this step is a proper constant to be fixed later.
Then a Steiner tree is computed on the aggregation points, and the demand is aggregated along such
tree via the aggregation algorithm in multiples of µi(t+1) (Aggregation Step). This is possible since the
sum of the d′t(w)’s, and hence of the x(w)’s, is a multiple of µi(t+1). Eventually, the aggregated demand
is redistributed back to the source nodes (Redistribution Step). Only cables of type i(t) and i(t + 1) are
used in round t. At the end of the round the demand at each source is in {0, µi(t+1)}.

It remains to specify how the cable types i(1), . . . , i(k′) are chosen. Let β > 1 be a constant to be
fixed later. Differently from prior work on the topic, we use a randomized cable selection rule.

Randomized Cable Selection Rule. Let i(1) = 1. Given i(t), 1 < i(t) < k, i(t + 1)
is chosen as follows. Let i′(t) > i(t) and i′′(t) > i(t) be the smallest indexes such that
δi′(t)

δi(t)
≤ 1

β
and

σi′′(t)

σi(t)
≥ β, respectively. If no proper i′(t) (resp., i′′(t)) exists, we let

i′(t) = k (resp., i′′(t) = k). If i′(t) ≥ i′′(t), i(t+1) = i′(t). Otherwise, i(t+1) = i′′(t)−1

with probability
σi′′(t)−βσi(t)

σi′′(t)−σi′′(t)−1
, and i(t + 1) = i′′(t) otherwise.

Note that, as required i(1) = 1 and i(k′) = k.

Lemma 6.1 For any t ∈ {1, 2, . . . , k′ − 2} and h ∈ {0, 1, . . . , k′ − t − 1}, and for any s ∈ {1, 2, . . . , k},
i(t′) < s ≤ i(t′ + 1):

(a) δi(t+h) ≤
1

βh
δi(t); (b) E[σi(t+h)] ≥ βhE[σi(t)]; (c) E

[
min

{
σi(t′+1)

σs

,
δi(t′)

δs

}]
≤ β.

Proof.

(a) By economies of scale, δi(t+1) ≤ δi′(t) ≤ δi(t)/β. A simple induction implies (a).
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(b) If i′(t) ≥ i′′(t), σi(t+1) ≥ β σi(t) deterministically for any value of σi(t). Otherwise

E[σi(t+1)|i(t) = η] =
σi′′(t) − β ση

σi′′(t) − σi′′(t)−1
σi′′(t)−1 +

(
1 − σi′′(t) − β ση

σi′′(t) − σi′′(t)−1

)
σi′′(t) = β ση.

Summing over η, we obtain E[σi(t+1)] = β E[σi(t)] for i′(t) < i′′(t). Altogether, E[σi(t+1)] ≥ β E[σi(t)].
Property (b) follows by induction.

(c) Property (c) is trivially true for s = 1, so assume s > 1. Let us condition over t′ = τ ≥ 1. For

i′(τ) ≥ i′′(τ), either s = i(τ + 1) and hence
σi(τ+1)

σs
= 1, or

δi(τ)

δs
≤ δi(τ)

δi(τ+1)−1
< β by the minimality of

i′(τ). Otherwise (i′(τ) < i′′(τ)), being σs ≥ σi(τ) and by the same argument as above,

E

[
σi(τ+1)

σs

]
≤ E

[
σi(τ+1)

σi(τ)

]
=

βσi(τ)

σi(τ )
= β.

The claim follows by summing over all the possible values of τ . 2

Let At be the cost of the t-th round, t ∈ {0, 1, . . . , k′}. Let moreover Ac
t , Aa

t , and Ar
t denote the

collection, aggregation, and redistribution costs of the t-th round, t ∈ {1, . . . , k′ − 1} respectively. By
OPT (s) we denote the cost paid by the optimum solution for cables of type s. The following lemma is
an adaptation of a similar result in [19] (proof in the appendix).

Lemma 6.2 For t′ ∈ {1, . . . , k′} and t ∈ {1, . . . , k′ − 1},

(1) Pr[d ∈ Dt′ |v ∈ D0] =
1

µi(t′)
; (2)A0 ≤ ρSt

∑

s

σi(1)

σs

OPT (s); (3)E[Ak′ ] ≤
∑

s

δi(k′)

δs

OPT (s);

(4)E[Aa
t ] ≤ E

[
∑

s

min

{
ρStα

δi(t)

δs

, ρSt

σi(t+1)

σs

}
OPT (s)

]
; (5)E[Ar

t ] ≤ E

[
δi(t+1)

δi(t)
Ac

t

]
.

Hence it remains to bound E[Ac
t ]. Following [19, 25], it is not hard to show that E[Ac

t ] ≤ 2
α
E[Aa

t ]. We
next present an improved bound based on the Multi-Core Detouring Theorem 6.1.

Lemma 6.3 For all t ∈ {1, 2, . . . , k′ − 1}, E[Ac
t ] ≤ E

[∑
s min

{
2

δi(t)

δs
, 0.8067

α

σi(t+1)

σs

}
OPT (s)

]
.

Proof. Let j ∈ {1, 2, . . . , k} be an integer value to be fixed later. We denote by Gj be the graph
induced by the edges where OPT installs at least one cable of type s > j. Note that this graph might
be disconnected. (See Figure 2). By the Multi-Core Detouring Theorem 6.1 applied with C = Dt, z = r,
p = pt and G′ = Gj ,

E[Ac
t ] := E

[
σi(t)

∑

d∈Dt

w(d, D′
t ∪ {r})

]
≤ E

[
σi(t)

(
2
∑

d∈Dt

wGj
(d, r) +

0.8067

pt

c(Gj)

)]
.

By definition,

E

[
0.8067

pt

σi(t)c(Gj)

]
= E

[
0.8067 σi(t+1)

α
c(Gj)

]
≤ E


0.8067

α

∑

s>j

σi(t+1)

σs

OPT (s)


 .

By Lemma 6.2(1), Pr[d ∈ Dt|d ∈ D] = 1
µi(t)

. Therefore

E

[
2σi(t)

∑

d∈Dt

wGj
(d, r)

]
= E

[
2
σi(t)

µi(t)

∑

d∈D

wGj
(d, r)

]
= E

[
2δi(t)

∑

d∈D

wGj
(d, r)

]
.

Let Lt,j be the cost of routing the flow as in OPT , but paying zero on the edges of Gj , and δi(t) per unit
of flow on the remaining edges. Then trivially δi(t)

∑
d∈D wGj

(d, r) ≤ Lt,j . In turn, OPT pays at least δs

per unit flow on each cable of type s ≤ j, which implies Lt,j ≤∑s≤j

δi(t)

δs
OPT (s). We can conclude that

E

[
2σi(t)

∑

d∈Dt

wGj
(d, r)

]
≤ E



2
∑

s≤j

δi(t)

δs

OPT (s)



 .
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Altogether

E[Ac
t ] ≤ E


2
∑

s≤j

δi(t)

δs

OPT (s) +
0.8067

α

∑

s>j

σi(t+1)

σs

OPT (s)


 .

Since, deterministically, δi(t)/δs is decreasing in t while σi(t+1)/σs is increasing in t, the claim follows by
choosing j properly. 2

We can now state the main result of this section.

Theorem 6.2 There is an expected 20.41 approximation algorithm for CabSsbb.

Proof. From Lemmas 6.2 and 6.3, the cost A of the approximate solution computed by Algorithm
3 satisfies:

E[A] = A0 + E[Ak′ ] +

k′−1∑

t=1

(E[Ac
t ] + E[Aa

t ] + E[Ar
t ])

≤ ρSt

∑

s

σi(1)

σs

OPT (s) +
∑

s

δi(k′)

δs

OPT (s) +

k′−1∑

t=1

E

[
∑

s

min

{
ρStα

δi(t)

δs

, ρSt

σi(t+1)

σs

}
OPT (s)

]

+

k′−1∑

t=1

E

[(
1 +

δi(t+1)

δi(t)

)∑

s

min

{
2
δi(t)

δs

,
0.8067

α

σi(t+1)

σs

}
OPT (s)

]
.

Define

apx(s) :=ρSt

σi(1)

σs

+
δi(k′)

δs

+

+

k′−1∑

t=1

((
1 +

δi(t+1)

δi(t)

)
min

{
2
δi(t)

δs

,
0.8067

α

σi(t+1)

σs

}
+ min

{
ρStα

δi(t)

δs

, ρSt

σi(t+1)

σs

})
,

so that E[A] ≤∑s E[apx(s)]OPT (s). By Lemma 6.1(a),

apx(s) ≤ ρSt

σi(1)

σs

+
δi(k′)

δs

+

k′−1∑

t=1

min

{(
2

(
1 +

1

β

)
+ ρStα

)
δi(t)

δs

,

(
0.8067

α

(
1 +

1

β

)
+ ρSt

)
σi(t+1)

σs

}

≤ ρSt

σi(1)

σs

+
δi(k′)

δs

+ max

{
2

(
1 +

1

β

)
+ ρStα,

0.8067

α

(
1 +

1

β

)
+ ρSt

} k′−1∑

t=1

min

{
δi(t)

δs

,
σi(t+1)

σs

}

≤ δi(k′)

δs

+ max

{
2

(
1 +

1

β

)
+ ρStα,

0.8067

α

(
1 +

1

β

)
+ ρSt

} k′−1∑

t=0

min

{
δi(t)

δs

,
σi(t+1)

σs

}
.

Consider any cable type s, and let i(t′) < s ≤ i(t′ + 1). Assume t′ ≤ k′ − 2 (the analysis is analogous for
t′ = k′ − 1). By Lemma 6.1,

E




k′−1∑

t=0

min

{
δi(t)

δs

,
σi(t+1)

σs

}

 ≤ 1

δs

k′−1∑

t=t′+1

E[δi(t)] + E

[
min

{
δi(t′)

δs

,
σi(t′+1)

σs

}]
+

1

σs

t′−1∑

t=0

E[σi(t+1)]

≤ E[δi(t′+1)]

δs

k′−t′−2∑

j=0

1

βj
+ β +

E[σi(t′)]

σs

∑

j≥0

1

βj
≤ 2β

β − 1
+ β − E[δi(t′+1)]

δs(β − 1)βk′−t′−2
.

Let us set α = 0.531 and β = 2.80. Observe that

δi(k′)

δs

≤ E[δi(k′−1)]

δs

≤ E[δi(t′+1)]

δsβk′−t′−2
≤ max

{
2

(
1 +

1

β

)
+ ρStα,

0.8067

α

(
1 +

1

β

)
+ ρSt

}
E[δi(t′+1)]

δs(β − 1)βk′−t′−2
.

Hence

E[apx(s)] ≤ max

{
2

(
1 +

1

β

)
+ ρStα,

0.8067

α

(
1 +

1

β

)
+ ρSt

}
·
(

2β

β − 1
+ β

)
α=0.531,β=2.80

< 20.41.

The claim follows. 2
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Corollary 6.1 There is an expected 20.41 approximation algorithm for Ssbb.

Proof. The claim follows from Lemma 2.2 and Theorem 6.2 (the rounding mistakes in the proof of
the theorem absorb the extra factor 1 + ε). 2

Corollary 6.2 There is a 2 · 20.41 = 40.82 approximation algorithm for UnsSsbb.

Proof. The claim follows from Theorem 6.2 and Lemma 2.3. 2
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Appendix A. Omitted Proofs.

Proof of Lemma 2.1. Let x = {xe}e∈E be a given non-tree solution to Ssbb. The cost of this
reservation is g(x) :=

∑
e∈E w(e)φ(xe). Observe that g(·) is concave. We will describe a polynomial-time

procedure which computes a different (feasible) capacity reservation x′ of not larger cost and such that
the number of edges with zero capacity in x′ is strictly larger that the same number in x. By applying
this procedure a polynomial number of times one obtains the desired tree solution.

Let P1, . . . , Ph be the flow paths corresponding to x (each one carrying a positive amount of flow). We
can assume h ≤ |E| + |V | by standard max-flow techniques. Let f(e) be the flow along edge e. Without
loss of generality, f(e) = xe: otherwise we could decrease xe hence getting a cheaper feasible solution.
We can also assume that each (undirected) edge e = {u, v} carries a flow directed from u to v or vice
versa. In fact, otherwise we could decrease f(e) (and hence xe) and obtain a cheaper feasible solution.
Let us replace {u, v} with the directed edge (u, v) in the first case, and with (v, u) otherwise. For a node
v, by f(v) we denote the sum of the flows of edges entering v minus the sum of the flows of edges leaving
v. Observe that f(v) = 0 for all nodes but the sources v, where it is −d(v), and the sink z, where it is∑

v∈D d(v).

Since x is not a tree solution, there must be two conflicting paths Pi and Pj that, after meeting, split
at some node w. Let k, h ∈ {i, j}, h 6= k. We define P ′

k as the subpath of Pk from w to the sink z, and
P̃k := P ′

k \ P ′
h. In particular, P̃i ∪ P̃j is the symmetric difference of P ′

i and P ′
j . Observe that P̃i and P̃j

are non-empty sets of (directed) disjoint paths.

Let yk := mine∈P̃k
{f(e)} > 0 be the minimum flow over any edge of P̃k. Consider the flow fk which

is obtained by decreasing f by yk on the edges of P̃k, and increasing f by the same amount on the edges
of P̃h. Let Ev be the edges of P̃k ∪ P̃h incident to v. One of the following two cases must occur: (1)
Ev contains an even number of edges of both P̃k and P̃h; (2) Ev contains exactly one edge of P̃k and
one of P̃h, and these two edges either both leave v or both enter v. It is easy to check that in any case
fk(v) = f(v), and hence fk is a feasible flow.

We constructed two feasible flows f i and f j, which induce two capacity reservations xi and xj , respec-
tively. Note that both xi and xj contain at least one more zero entry with respect to x. Observe also
that x = αxj + (1−α)xi, where α = yi

yi+yj
. Being g(·) concave, g(x) ≥ α g(xj) + (1−α)g(xi), and hence

g(x) ≥ min{g(xi), g(xj)}. In words, one of the two capacity reservations xi and xj is not more expensive
than x. The claim follows. 2

Proof of Lemma 2.2. By Lemma 2.1, there is always an optimal tree solution, and consequently
a capacity reservation with integral values in {0, 1, . . . , |D|}.

Hence, it is sufficient to construct a cable of capacity (1 + ε)i and cost φ((1 + ε)i) for each i =
0, 1, . . . , ⌈log1+ε |D|⌉. This induces a (polynomial-size) CabSsbb instance of cost at most (1 + ε) times
the optimal cost for the input Ssbb instance. In fact, any time the optimum solution installs a capacity
xe on edge e, we can rather install a cable of capacity x′

e, xe ≤ x′
e ≤ (1 + ε)xe on the same edge. The

cost of this cable is φ(x′
e) ≤ φ((1 + ε)xe) ≤ (1 + ε)φ(xe). The claim follows. 2

Proof of Lemma 2.3. Let I be the input UnsSsbb instance. Of course, OPTCabSsbb(I) ≤
OPTUnsSsbb(I). Hence, it is sufficient to show that any CabSsbb solution S to I, and in particular
a ρ-approximate solution, can be turned into a tree solution U of cost at most twice the cost of S:
this solution U induces a feasible solution to the original problem of cost at most 2ρ · OPTCabSsbb(I) ≤
2ρ · OPTUnsSsbb(I).

Let φ∗(xe) be the minimum-cost of a multi-set of cable types of capacity at least xe ≥ 0. Define

φi(xe) =

{
0 if xe = 0;

σi + δi · xe if xe > 0,

and let φ(xe) := mini=1,...,k{φi(xe)} (see also [37] and Figure 3). Observe that φ(·) is concave and
piecewise linear (for xe > 0) with at most k slopes. It can be easily computed in polynomial time.

We next show that
φ∗(xe) ≤ φ(xe) ≤ 2φ∗(xe).
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Figure 3 Example of functions φ∗(xe) and φ(xe), xe ≥ 0.
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For xe = 0 this trivially holds. Now fix a value of xe > 0 and let i be the largest cable, used for obtaining
capacity xe at cost φ∗(xe). Then φ∗(xe) ≥ σi and φ∗(xe) ≥ δi · xe, hence φi(xe) = σi + δi · xe ≤ 2φ∗(xe).
On the other hand choose i such that φ(xe) = φi(xe). We can then install xe units of capacity with ⌈xe

µi
⌉

copies of cable i. Thus φ∗(xe) ≤ ⌈xe

µi
⌉σi ≤ σi + xe · δi = φi(xe) = φ(xe).

Now, let x = {xe}e∈E be the capacity reserved by S, and g∗(x) :=
∑

e∈E w(e)φ∗(xe) be its cost.
Consider the Ssbb instance associated to the capacity cost function φ(·), of total cost

g(x) :=
∑

e∈E

w(e)φ(xe) ≤ 2
∑

e∈E

w(e)φ∗(xe) = 2g∗(x).

By Lemma 2.1, we can construct a new tree solution x′ of cost g(x′) ≤ g(x). We eventually install on
each edge e, ⌈x′

e/µi⌉ copies of cable type i, where i minimizes the cost σi⌈x′
e/µi⌉: this defines the solution

U .

Let j be the cable minimizing φ(x′
e), i.e. φj(x

′
e) = φ(x′

e). Observe that σi⌈x′
e/µi⌉ ≤ σj⌈x′

e/µj⌉ ≤ σj +
x′

e ·δj = φj(x
′
e) = φ(x′

e). We can conclude that the cost of U is at most
∑

e∈E w(e)φ(x′
e) = g(x′) ≤ 2g∗(x).

The claim follows. 2

Proof of Lemma 6.2.

(1) We prove the claim by induction. The claim for t = 1 is a straightforward consequence of the
properties of the aggregation algorithm. Assume that the claim is true for some t ≥ 1. Consider any
d ∈ Dt. Let w be the sampled node which collects the flow from d during the t-th collection step, and
let d′t(w) = b µi(t), for some integer b ≥ 1. Given b,

Pr[d ∈ Dt+1|d ∈ Dt] =
1

b

E[d′′t (w)]

µi(t+1)
=

1

b

d′t(w)

µi(t+1)
=

1

b

b µi(t)

µi(t+1)
=

µi(t)

µi(t+1)
.

We can conclude that

Pr[d ∈ Dt+1|d ∈ D0] = Pr[d ∈ Dt+1|d ∈ Dt] · Pr[d ∈ Dt|d ∈ D0] =
µi(t)

µi(t+1)

1

µi(t)
=

1

µi(t+1)
.

(2) The subgraph G′ induced by OPT satisfies c(G′) ≤ ∑s
1
σs

OPT (s). Since G′ spans D0 ∪ {r}, the
latter quantity is also an upper bound on the cost of an optimum Steiner tree T ∗ over D0 ∪ {r}. The
claim follows by observing that A0 ≤ σ1ρSt c(T ∗).

(3) Suppose we could route the flow along the same paths of OPT , but at cost δi(k′) = δk per unit

capacity. Let C′ be the cost of this routing. Observe that C′ ≤ ∑
s

δk

δs
OPT (s). Now replace each flow

path with a shortest path to the sink, and let C′′ be the corresponding cost: trivially, C′′ ≤ C′. By (1),
in the final step each demand sends µk units of flow to the sink with probability 1

µk
, and at a cost of δk

per unit flow and unit length. Hence E[Ak′ ] = C′′. The claim follows.
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(4) We will construct, for any given j, a random graph Gt spanning D′
t ∪ {r}, of expected cost

E[c(Gt)] ≤
∑

s>j

1

σs

OPT (s) +
∑

s≤j

α δi(t)

δsσi(t+1)
OPT (s).

The latter cost, multiplied by ρStσi(t+1), gives the desired bound for a proper choice of j.

We initially add to Gt all the edges where OPT installs at least one cable of type j + 1 or larger. The
cost of these edges is at most

∑
s>j

1
σs

OPT (s). Then we consider each d ∈ D0. Let P1, . . . , Ph be the
flow paths carrying the (unit) demand of d in OPT , and let fi ∈ (0, 1] be the flow carried by Pi. (Observe

that
∑h

i=1 fi = 1). If d ∈ D′
t, which happens with probability 1

µi(t)

α σi(t)

σi(t+1)
=

α δi(t)

σi(t+1)
, we choose one of the

flow paths Pi at random, according to the probability distribution induced by the fi’s, and add it to Gt.
Observe that the final graph Gt spans D′

t ∪ {r} as required. Consider any edge of Gt introduced during
the second phase only. For the sake of simplicity, assume a unique cable of type s ≤ j is installed on e
by OPT . (The same type of analysis can be carried over on a cable-by-cable basis). Each path Pi using

e, makes e belong to Gt with probability
α δi(t)fi

σi(t+1)
. It follows from the union bound that e belongs to Gt

with probability at most
α δi(t)x

∗

e

σi(t+1)
, where x∗

e ≤ µs is the flow carried by the cable installed on e. Therefore

e contributes with at most
c(e)α δi(t)µs

σi(t+1)
to the cost of Gt in expectation. On the other side, OPT pays

c(e)σs for the cable installed on e. Hence the total cost of the edges added to Gt in the second phase

only is at most
∑

s≤j

c(e)α δi(t)µs

σi(t+1)

1
c(e)σs

OPT (s) =
∑

s≤j

α δi(t)

σi(t+1)δs
OPT (s). The claim follows.

(5) Let us charge to each d ∈ Dt the corresponding collection and redistribution cost during the t-th
round. Source d pays σi(t)w(d, D′

t ∪ {r}) to send µi(t) units of flow to the sampled nodes during the t-th

collection step. By the proof of (1), with probability
µi(t)

µi(t+1)
, d receives µi(t+1) units of flow back during

the t-th redistribution step, at a cost of σi(t+1)w(d, D′
t ∪ {r}). Hence the redistribution cost of d is, in

expectation,
σi(t+1)µi(t)

µi(t+1)

1
σi(t)

=
δi(t+1)

δi(t)
times the collection cost of d. The claim follows. 2


