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Abstract

A simple relaxation of two rows of a simplex tableau is a mixed integer set consisting of two equations
with two free integer variables and non-negative continuous variables. Recently Andersen et al. [3] and
Cornuéjols and Margot [I7] showed that the facet-defining inequalities of this set are either split cuts
or intersection cuts obtained from lattice-free triangles and quadrilaterals. Through a result by Cook et
al. [I5], it is known that one particular class of facet-defining triangle inequality does not have a finite
split rank. In this paper, we show that all other facet-defining triangle and quadrilateral inequalities have
a finite split-rank. The proof is constructive and given a facet-defining triangle or quadrilateral inequality
we present an explicit sequence of split inequalities that can be used to generate it.

1 Introduction

Recently Andersen et al. [3] and Cornuéjols and Margot [I7] analyzed the facet-defining inequalities of the
convex hull of the following mixed integer set:

P(R, f) :={(z,5) € (Z* xRY) | f + Rs = a}, (1)

where f € Q*\ Z? and R = [r!,r?,...,7*] € Q**F. These inequalities are either split cuts or intersection cuts
(Balas [B]) (the so called triangle and quadrilateral inequalities).

The motivation for studying P(R, f) is the following: Given two rows of a simplex tableau corresponding
to integer basic variables that are at fractional values, P(R, f) is obtained by relaxing the non-basic integer
variables to be continuous variables and by relaxing the basic non-negative integer variables to be free integer
variables. As P(R, f) can be obtained as a relaxation of any mixed integer program, valid inequalities for
the convex hull of P(R, f) can be used as a source of cutting planes for general mixed integer programs.
Empirical experiments with some classes of related cutting planes by Espinoza [25] show that these new
inequalities may be useful computationally. Various extensions to the basic relaxation P(R, f) have also been
recently studied where the inequalities are related to triangles and quadrilaterals; see for example Dey and
Wolsey [22], Andersen et al. [2], Dey and Wolsey [24], Basu et al. [I2], Conforti et. al [I4], Fukasawa and
Giinliik [26].

The aim of this paper is to obtain a better understanding of the triangle and quadrilateral inequalities
vis-a-vis split inequalities. The motivation comes from the following well-known fact: One particular class
of facet-defining triangle inequality for does not have a finite split rank, i.e., it cannot be obtained by
repeated application of split cuts (Cook et al. [I5]). This leads to the following natural question: Which
facet-defining inequalities for have a finite split rank? We prove that the split rank of all the facet-defining
inequalities of conv(P (R, f)) is finite except for the particular class of triangle inequalities discussed in Cook
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et al. [15]. For all facet-defining inequalities of the convex hull of that have a finite split rank, we present
an explicit sequence of split inequalities that can be used to generate them.

The paper is organized as follows. In Section [2] we present some necessary definitions, the characterization
of facet-defining inequalities for the convex hull of P(R, f), and introduce the notation used in the rest of the
paper. In Section 3] we formally present the main result and provide an outline of its proof. The rest of the
paper is devoted to the various steps of this proof. In particular, in Section [4 and Section [§] we present some
general properties of split ranks that allow us to condense the analysis of inequalities for sets with at most
four continuous variables. In Sections [6] [7] and [8] we present split rank results for facet-defining inequalities
of sets with two, three, and four continuous variables respectively.

2 Preliminaries

We assume that P(R,f) # 0. If R = [r},...,r%,...,7"], then we say r® € R. We assume that if r € R,
then r # (0,0). We begin this section with a definition of split rank. We then present a characterization of
facet-defining inequalities for conv(P(R, f)).

2.1 Split Rank

Consider a general mixed integer set Q := {(z,y) € ZP xR?| Gx+ Hy < b} where G € Qm*P, H € Q™*4, and
be Qm*t Let Q0 := {(x,y) € RP xR?| Gz + Hy < b} denote the linear programming relaxation of Q. Given
a vector m € ZP and my € Z, any vector x € ZP satisfies the split disjunction defined as (77z < mo) V (772 >
mo+1). An inequality that is valid for QF | := conv((Q"N{(z,y)|n "z < mo})U(Q°N{(x,y)|x"x > mo+1}))
is called a split inequality (Balas [6]).

The concept of split rank follows from the concept of split closure of a mixed integer program introduced
in Cook et al. [15].

Definition 2.1 (Split closure) Given the linear programming relaxation Q° = {(z,y) € R? x R?|Gx +
Hy <b} of @ ={(x,y) € ZP x R |Gz + Hy < b}, the first split closure Q' is defined as Nreze xyez, Q%

™, 70 "

The first split closure of a mixed integer set is a polyhedron (Cook et al. [I5]) (see Andersen et al. [II,
Vielma [30] and Dash et al. [19] for alternative proofs of this result.) Balas and Saxena [9] and Dash et
al. [T9] conducted empirical studies of the strength of the first split closure. Cornuéjols and Li [I6] compare
the closure with respect to 18 different classes of general purpose cuts. Recently Basu et al. [10] have made a
comparison of the first split closure of P(R, f) with the closure based on ¢riangle and quadrilateral inequalities.
Andersen et al. [4] have generalized these results for sets with more rows.

The split closure procedure applied to the polyhedron Q' gives the second split closure Q2. In general,
we denote the k' split closure by QF.

Definition 2.2 (Split rank) The split rank of an inequality o™ z+ 3Ty < v wrt Q° is defined as the smallest
non-negative integer k such that oz + Ty < v is a valid inequality for Q.

The split rank of a valid inequality for conv(Q) depends on the ‘formulation’, i.e., the split rank of an
inequality a2 + 87y < v wrt Q° may be different from the split rank wrt 0'° where Q = Q' = {(z,y) €
ZP x R1|G'x + H'y <V} but Q° # Q" as (G, H,b) # (G', H,b'). If Q" is clear from context, then we will
typically not write the phrase ‘wrt to QV°.

Upper bounds on split rank of inequalities is known to be finite in some cases. For example, Balas [7],
Nemhauser and Wolsey [29], Balas et al. [8] show that the split rank of all valid inequalities is at most n for
a mixed binary program with n binary variables. Dash and Giinliik [I8] prove an upper bound of n on the
split rank of a mixing inequality based on n rows.



2.2 Facets of conv(P(R, f))

We first begin with a discussion on valid inequalities of conv(P(R, f)). A set S C R? is called lattice-free if
interior(S) N Z? = (). Lattice-free convex sets can be used to construct intersection cuts for conv(P(R, f)) as
described in the next proposition.

Proposition 2.1 (Valid inequality from lattice-free convex set) Let R € Q*** and f € Q*\ Z2. Let
B be a closed lattice-free convex set containing f in its interior. Let OB represent the boundary of B. Define
the vector ¢(B) € RE as

¢(B)i =

0 if r* € reccesion cone of B )
A ifA>0and f+ 5 €9B.

Then the inequality

is a valid inequality for conv(P(R, f)).

Note that the computation of the vector ¢(B) depends on B, f, and R. However, we removed a reference to
f and R in the notation ‘¢p(B)’ for simplicity.

Valid inequalities that are not a conic combination of the inequalities s; > 0 are called non-trivial inequal-
ities. Every non-trivial valid inequality for conv(P(R, f)) induces a lattice-free set as described next. (see
Andersen et al. [3], Borozan and Cornuéjols [13], Cornuéjols and Margot [17], Zambelli [31]).

Proposition 2.2 (Lattice-free convex set from valid inequality) All non-trivial valid inequalities for
conv(P(R, f)) can be written in the form Zle a;s; > 1 where a; > 0V1 < i <k. Then the set

L, = conv <Ua7;>0 {f + ;} U f> + cone (Ug;—o{r'}) (4)
is lattice-free and convex.

We call the set L, as the induced lattice-free set. The induced lattice-free set L, depends on the coeffi-
cients ;, f, and on the columns ', ..., 7*. However, we removed a reference to f and R in the notation ‘L,’
for simplicity.

Observe that when cone{r!,....,r*} = R? L, = conv (Uai>0 {f + g—l}) +cone (Uaizo{ri}). Starting with
a lattice-free set B such that f € int(B), it can be verified that
Lysy € B. (5)

We next present necessary conditions for an inequality to be facet-defining (see Andersen et al. [3] for a
proof). See Cornuéjols and Margot [I7] for sufficient conditions for an inequality to be facet-defining.

Proposition 2.3 Let Zle a;s; > 1 be a facet-defining inequality for conv(P([r', ...,7*], f)). Ifcone{r!, ..., r*} =
R2, then f € int(L,) and L, is one of the following lattice-free sets:

1. Subset of Split Set: {(x1,22) | mo < mx1 + Moy < W + 1} where w1, wo, 7o € Z.

2. Type 1 triangle (T*): Triangle with integral vertices and exactly one integer point in the relative interior
of each side.
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Figure 1: Different cases of L, (other than split sets) where «
conv(P(R, f)) and cone(R) = R2.

Ts > 1 is a facet-defining inequality for

3. Type 2 triangle (T?): Triangle with at least one non-integral vertex v and the opposite side containing
multiple integer points (not necessarily all in the relative interior). Let S' and S? be the two sides
incident to v, and let S3 be the third side. Then T? is further classified as:

(a) T?>A: S' and S? contain one integer point in their relative interior.
(b) T?B: S contains one integer point in its relative interior and S* does not contain any integer

point in its relative interior. This triangle is a subset of some triangle of type T?4.

4. Type 3 triangle (T?): Triangle with exactly three integer points on the boundary, one in the relative
interior of each side and the vertices are mon-integral.

5. Type 1 quadrilateral (Q'): A subset of T?>A or T' such that one side contains multiple integer points,
two sides contain at least one integer point and the fourth side contains mo integer point in its relative
nterior.

6. Type 2 quadrilateral (Q?): A quadrilateral containing exactly one integer point in the relative interior
of each of its sides and non-integral vertices.

The various cases in Proposition [2.3] are illustrated in Figure

3 Main Result

We prove the following result in this paper.

Theorem 3.1 Let R =[r!,...,7%] € Q** and f € Q*\ Z2. Let Zle a;s; > 1 be a non-trivial facet-defining
inequality for conv(P(R, f)). The split rank of Zle a;8; > 1 14s finite if and only if its induced lattice-free
set L is not a triangle of type T".



The proof of Theorem is technical and is presented in the rest of the paper. We next outline the
various steps in the proof of Theorem [3.1]

= If L, is a triangle of type T, then the inequality does not have a finite split rank. This follows from the
proof in Cook et al. [I5]. Also see Li and Richard [28].

< For the opposite direction, we need to show that the split rank of all facet-defining inequalities that
are not split cuts (trivially) and whose induced lattice-free set is not a triangle of type T is finite. Instead
of considering only facet-defining inequalities, we analyze the split rank of the larger set of valid inequalities
whose induced lattice-free set is described in Proposition [2.3| (for the case where cone,.icp{r'} = R?) and the
facet-defining inequalities where cone,..cp{r} # R?.

1. Restricting the proof to the case where cone,icp{r'} = R? (Section - Section @: We can assume that
the dimension of cone,cr{r} is 2, since otherwise the facet-defining inequalities for conv(P(R, f)) are

the split inequalities. We show in Proposition that if Zle a;8; > 1 is a facet-defining inequality for
conv(P([r!,...,7¥], f)) and cone{r!,r2 .....r*} C R?, then there exists a column 7**! € R? and ay41 €
R such that cone{r!, ..., 7% r*+1} = R2, Zfill a;s; > 11is facet-defining for P([r!,...,r* rk¥1], f) and
the induced lattice-free set of the inequality Zfill a;s; > 1 is not a triangle of type T'. We show in
Proposition that if Zf:ll a;s; > 1 is a valid inequality of P([r!,...,7* r*+1] ) of split rank 5 wrt
P([rt,...,7% rk+1] £)0) then Ei;l a;s; > 1 has a split rank at most n wrt P([r}, ..., 7%], £)°.

Thus it is sufficient to verify that the split rank of facet-defining inequalities for conv(P(R, f)) is finite
(except when induced lattice-free set is T') where cone,.icp{r'} = R2.

2. Restricting the proof to sets with at most four continuous variables (Section @: We show in Lemma
that the split rank of an inequality Zf;l als; > 1 for conv(P(R!, f1)) is lesser than (or equal to) the
split rank of an inequality 21;21 a?s; > 1 for conv(P(R?, f?)) if Lo1 C L. Specifically given P(R, f)

1=

and the valid inequality for conv(P(R, f)),
k
Zaisi Z 1, (6)
i=1

let A={ie{1,. ., k}|f+ ;—l is a vertex of L, }. Then consider the set

xzf—i—Zrisi 5; >0, xelZ? (7)
i€A

and the valid inequality

ZO@SZ‘ Z 1, (8)

i€A

for . The split rank of is equal to the split rank of @ as the induced lattice-free sets for the
inequalities and @ are identical. Since Proposition shows that the induced lattice-free sets of
all the facet-defining inequalities of conv(P(R, f)) have at most four vertices (|A| < 4), it is sufficient
to show that the split rank of facet-defining inequalities for conv(P(R, f)) is finite (except when their
induced lattice-free set is T'), where cone,icp{r'} = R, R € Q*** and k < 4.

Henceforth we call P(R, f) as a k variable problem when R € Q?**.

3. Restricting the proof to ‘standard’ triangles and quadrilaterals (Section @: We remark in Observation
[-1)that translating f by an integral vector and multiplying R and f by a unimodular matrix M does not
change the split rank of a corresponding inequality. Thus the problem reduces to considering ‘standard’
triangle and quadrilateral inequalities for problems with a maximum of four continuous variables.



4. Two variable problems (Section @: We prove in Proposition that the split rank of a facet-defining
inequality for conv(P([r'r?], f)) is at most 2. Note that cone{r!,r?} C R2. However, this case is
analyzed since this result is required for showing that the split rank of inequalities whose induced
lattice-free set is a triangle (except T'!) is finite.

5. Three variable problems (Section @: The induced lattice-free set of a valid inequality not dominated
by a split inequality, for the set conv(P([rlr?r3], f)) is a triangle when cone{r!, r? r3} = R2. We first
consider triangles of type T?. As discussed in Proposition T? is subdivided into two classes: T24
and T22. We show in Proposition that the split rank of an inequality whose induced lattice-free set
is a triangle of type T2% is finite. This is the most technical part of the proof and is subdivided into
four cases. The proof involves giving an explicit sequence of split disjunctions that yields the triangle
inequality in a finite number of steps.

It is then shown that the split rank of an inequality whose induced lattice-free set is either 724 or
T3 is at most one more than the split rank of a suitable constructed valid inequality whose induced
lattice-free set is a triangle of type T25.

6. Four variable problems (Section[§): For the four variable case, if the induced lattice-free set is not a
triangle, then it is a quadrilateral of type either Q' or Q2. If the induced lattice-free set is a quadrilateral
of type Q! and this quadrilateral is a subset of a triangle of type 724, then by Proposition the split
rank of the inequality is finite. We show in Proposition [B1] that the split rank of inequalities whose
induced lattice-free set is a quadrilateral of type Q! is finite, even when this quadrilateral is a proper
subset of a triangle of type T''. In this case the split rank is at most one more than the maximum of the
split ranks of two suitably constructed inequalities with induced lattice-free set of type T?. We show
in Proposition that the split rank of inequalities whose induced lattice-free set is a quadrilateral
of type Q2 is finite. This split rank is at most one more than the maximum of the split ranks of two
suitably constructed inequalities with induced lattice-free set of type Q' or T2.

4 Analyzing L, when cone{r!, ... r*} g R?

Proposition describes the shapes of L, when cone{r!, = R2. We now present a result to handle
the case when cone{r!,...,7*} C R? for the proof of Theorem - We need the following preliminary result

proven in Andersen et al. [3 [ ].

Lemma 4.1 Let Zk_l a;s; > 1 be a valid inequality for Conv( (R, f)) such that Ly, is not contained in any
split set {(xl,xg) €R? | mo < 7lax < my+ 1} where m € Z2, 7w € Z. Then L, is bounded and «; > 0 for all
1=1,...,k

Proposition 4.1 Let Zle a;s; > 1 be a facet-defining inequality for conv(P([r,...,7*], f)) that is not
dominated by any split inequality. If dim(cone{r!,...,7¥}) = 2 and cone{r!,...,r*} C R2, then there exists a
column 1 € R? and ag+1 > 0 such that

(i) cone{rt, .. rk rF*1} = R2

(i) ZZ | a;s; > 1is a facet-defining inequality for conv(P([r!,...,7kT1], f)),

(iii) L' := conv (U1§¢§k+1 {f + g}) the induced lattice-free set of the inequality Z 1 a;s; > 1 is not a
triangle of type T'.

Proof: We present the proof for the case where cone{r!,...,7*} is not a half-space. The other case can be
similarly handled. Then WLOG let cone{r!,...,r*} = cone{r!,r?}.



Since L, is not contained in any split set, it is a bounded set. Moreover «; > 0 Vi, and hence L, =
conv (Ulgigk {f + Z;T} U {f}) Choose any vector r € Q? such that cone{r!,r% r} = R2. Let

o= inf{ﬁ € Ry | conv <U1§i§k {f + Z} U {f + ;}) is lattice—free} . (9)

Claim: v > 0 and there exists B € R, such that v = 3. Assume by contradiction that v = 0. Then the
set S := conv <U1gigk {f + g—l}) + cone(r) is lattice-free. Observe that f € S. This would imply that

conv (Ulgigk {f + g} u {f}) + cone(r, —r) is lattice-free (see Basu et al. [11]), contradicting the fact that
the set conv (U1§i§k {f + (’;—1} U {f}) is not contained in any split set. Therefore, v > 0. Now choose a
suitably small B > 0 such that the set conv (Ulgigk {f + 2—1} U {f + g}) is not lattice-free. Since L, is
bounded, we obtain that the set conv (U1§¢gk {f + ;—Z} U {f + %}) is bounded. Therefore there exists a fi-
nite number of integer points in its interior. Moreover if [?1 > 32, then conv (U1gi§k {f + g—} U {f + é}) -

conv (Ulgigk {f + 2—} U {f + #}) Thus, it is possible to choose 3 such that v = .

Claim: Zle a;s; +vspy1 > 1 is a facet-defining inequality for conv(P([r!,...,7], f)). By construction of =,

either the line segment between f + 2711 and f+ % or between f+ 2—22 and f+ % contains an integer point (that
does not belong to L,). Let wlog p = f + Ar + A1r! be this integer point where A > 0. Thus the inequality
Zle a;s; +vsk41 > 1 satisfies at equality the feasible point (z,s) := (p,5) € P([r---r*+1], f) where
0 ifi#lk+1
8 = A ifi=k+1 (10)
A ifi=1.

The result follows from the fact that Zle a;s; > 1 is facet-defining for conv(P([r!---r¥], f)).
Now there are two cases:

k+1

1. f+ % is not integral: Then set r =71, apy1 = 7 and observe that conv <U1§i§k+1 {f + (:Tl}) is

not a triangle of type 1.

2. f —l—% is integral: Observe that the line segment between f+ g—ll and f+ %, and the line segment between
f+ ;—z and f + 2 belong to the boundary of conv (Ulgigk {f + ZTL} U {f + %}) If any one of these
line segments does not contain an integer point in its relative interior, then set r**! := r agq == v

and observe that conv (Ulgigk—i-l {f + géj}) is not a triangle of type 7. If both these line segments

contain an integer point in the relative interior, then let p be one of these integer points. Observe that
there exists a vector 7 € Q? such that cone{r!,r% r'} = R? and the ray f + A\r’, A > 0 intersects the

boundary of conv (Ulgigk-',-l {f + 271} U {f + %}) at a non-integral point between the points p and
f+ % (this is possible since the set {7 € R?|cone{r',r? 7} = R?} is an open set). Now by setting

r*+1 .= ¢ and aj4; := ) such that f + \r’ lies on the line segment between p and f + %, the result
follows. 0

5 Properties of Split Rank

Section deals with results that allow us to compare the split rank of two inequalities (for two different
sets that may have some common columns r*) based on the shape of the induced lattice-free set. Section
presents an operation on P(R, f) under which the split ranks of related inequalities remain invariant.



Figure 2: Example

5.1 Split Rank and the Shape of Induced Lattice-free Set

Lemma 5.1 (Shape) Let Zf;l a;s; > 1 be a valid inequality for conv(P(R?, f)) with R* € Q>**1 and let
Zfil ;si > 1 be a valid inequality for conv(P(RP, f)) with R® € Q?**2. We denote by n, and ny, the split
rank of Zf;l a;s; > 1 and Zfil Bisi > 1 respectively. If cone(R’) = R? and Lo, C Lg, then 0, < np.

(Proof in Section [5.1.1]). Lemmais straightforward to prove if R* and R are the same set of columns, since
the statement of Lemmathen implies that Zfil B;s; > 1 dominates Zf;l «;s; > 1. While the statement of
Lemma [5.1{ holds when P(R?, f) and P(R®, f) involve possibly different columns for the continuous variables,
it is important to note that the two problems have same ‘right-hand-side’ f.

Example 5.1 Consider the set

) ., (05 —0.5 1 1.5 —0.5
{”CEZ seR o= ( 0.5 )+< 15 )51+( 0 )52+( 0.5 )53+( 0.5 )S‘*}'
Let B be the lattice-free triangle of type T with vertices (0,0), (2,0), and (0,2). Then using (@, ¢(B) is

$1+ 8o+ 83 +54 > 1. (11)

The induced lattice-free set of 18 B and therefore the split rank of the inequality is not finite. Now
consider the set where s3 is dropped, i.e.,

0.5 —0.5 1 —0.5
{xEZ2,81752,54€R+|x:<O.5>+( 15 >81+<O>S2+(—0.5>84}'
Again using B as the lattice-free triangle with vertices (0,0), (2,0), and (0,2) we obtain the inequality ¢(B)

s1+ 82+ 854> 1. (12)

The induced lattice-free set of (19) is C' := conv{(0,0), (1.5,0.5),(0,2)} C B (See Figure[5.1). The split rank
of this inequality is finite; in fact 2. (The lower bound on the split rank is proven in Andersen et. al [3] and it



can be verified that the inequality can be obtained by sequentially applying the disjunctions (xo < 0)V (zg > 1)
and (z1 < 0) V (z1 > 1)). Now consider the set

0.5 —-0.5 1 -0.5 —0.5
{er2,31,52,54,556R+|x:<0.5>+< 15 )51—&-(0)32—%(_0.5)544-( 1 >55}.

Again using B as the lattice-free triangle with vertices (0,0), (2,0), and (0,2) we obtain the inequality
81+ 82+ 84+ 85 > 1. (13)
The induced lattice-free set of is again C. Therefore the split rank of is also 2.

Besides illustrating the shape lemma, Example [5.1] also illustrates the fact that the finiteness of the split
rank of an inequality Zle a;s; > 1 depends on its induced lattice-free set and not on a lattice-free convex
set B that is used to generate it (i.e. some B such that ¢(B) = «).

Notice that in the case of L, C Lg, Lemma does not imply that split rank of o wrt (P(R%, f))° is
strictly lesser that the split rank of a® wrt (P(R?, f))°. Indeed, the following milder result implies that it is
possible to have L, € Lg and yet have that the split rank of a wrt (P(R%, f))° equal to the split rank of 8
wrt (P(R?, £))°.

Proposition 5.1 (General Lifting) Let Zle a;s; > 7 be a valid inequality of conv(P(R, f)) of split rank
1. Then there exists a1 > 0 such that Zle Q8+ 18K41 > 7Y 15 a valid inequality for conv(P([R r*1], f))
and has a split rank of at most n wrt P([R r*+1], £)°.

5.1.1 Proof of Lemma [5.1| and Proposition [5.1

In Proposition [5.2] presented next, we analyze the split rank of an inequality when one variable is dropped
from the description of the set. Proposition [5.2] is used in the proof of Lemma [5.1] and also directly in the
rest of the paper.

Proposition 5.2 (Projection) Let R = [r!,...,r*]. Let Zf:rll a;s; > 7 be a valid inequality of P([R r*+1], f)
of split rank 1. Then Zle a;s; > 7 has a split rank at most n wrt (P(R, f))°.

Proof: If n = 400, then the result is true. Therefore assume that 7 is finite. We prove this result by proving
that if Proj, , . (P([R7*], £))7 := {(s, sx41) € RE xRy | As+ A’spyy > b} for some A € QiXh, A e Q!
and b € Qﬂ'_“, then Proj,(P(R, f))" C {s € R | As > b}. (The non-negativity of A and A’ follows from
Proposition . The proof is by induction on 1. For n = 0 the statement is obvious. Assume that the
statement is true forn =1,...,n — 1.

Let ProjS)SkH(P([Rr’”‘lLf))”_1 = {(s,sk4+1) € RE x Ry | As + A’s1 > b}. Let Zf:ll a;s; > v be a
valid inequality of P([Rr**1], f)». This inequality must be dominated by a positive combination of a finite
number of facet-defining inequalities Zfill ol s; > ~7 of P([Rr**1], )™, where the inequality Zf:ll ol s; >~
is obtained by applying the disjunction (7 Tx <)V (@) Tx > 7} +1) to P([Rr*1), f)n= (Y4, nf € 72
and 7)) € Z). Thus to prove Proj (P(R, f))" C {s € R% |As > b} it suffices to prove the following claim.

Claim: Let Zf;l a;s; >~y be a valid inequality of P([Rr*+1], f)" obtained by applying the disjunction
(7Tz < mo) V (nTz > my + 1) to P([Rr¥*1Y], f)»~ 1. Then Zle a;8; > v is a valid inequality for P(R, f)™:
Note that the inequalities 772z < 7y and 772 > my + 1 can be rewritten in terms of s, sy, variables as
—aTRs — aTrktls y > —mo+ 77 f and 77 Rs + w7 rktls, 1 > mo + 1 — 77 f respectively. Therefore, the



validity of the inequality Zfill a;s; > 7y is equivalent to existence of u!, v! € Qi_x @+ such that

A A

Ul |: _,n.TR _ﬂ-T/rk"f‘l S [al ag ... O[k-+1} (14)
ut b _ > (15)

—mo+ 7L f |~ v

A A

ot [ TR Tk < og s ... ag1] (16)
vt b _ > (17)

mo+1—7Tf |~ v

By the induction hypothesis,

Proj, (P(R, f))"* C {s € Rk |As > b}. (18)

Now using , 1) 1) , and , Zle a;s; > is a valid inequality for P(R, f)™. |
Next we analyze the split rank for the case when one variable is added to the description of the set without
changing the shape of the induced lattice-free set.

Proposition 5.3 (Simple Llftlng) Let Z _1a;8; > 1 be a valid inequality of conv(P (R, f)) of split rank
n. Let r**1 € cone,cr{r}. Then ZZ L Qi8; + Qpy1Sk+1 > 7y is a valid inequality of conv(P([Rr* 1, f)) of
P+
€ 0L,.
1

split rank at most n where a1 s such that f + =

Proof: If n = 400, then the result holds. We assume that 7 is finite.
o, there exist 7%, r® € R such that r*+t1 = \%r® 4 \br® and

apr1 = A% + \ba® where A%, A\’ > 0. WLOG assume that a = 1 and b = 2.

Claim: If (Z, 51, 52, ..., 5k, 8k+1) € P([R r¥*1], )P, then (z, 51 + A'5541, 52 + A25k41, 83, ..., 58) € P(R, f)P.
The statement is true for p = 0. Assume the claim is true for p = 1,...,n. We need to show that
if (.f‘,gl,gg, veey Sk §k+1) € P([R ’I’k+1],f)n+1, then (f,gl + )\1§k+17«§2 + )‘2§k+1> ...,§k> € P(R, f)n+1. As
P([R r*+1, f)ntt C P([R r**1], f)", we obtain (7,351, 82, ..., 5k, 5k+1) € P([R r**1], ). By the induc-
tion argument, (z,5; + A'5.41,52 + A28x41,...,5k) € P(R, f)". Now consider any disjunction of the form
(7Tz < m) V (rTz > m + 1) applied to P(R, f)". We obtain the following cases (let P(R, f)? =

T,T0

conv((P(R, f)" N {(x,s) € RZ x R¥ | 772 < mo}) U(P(R, )" N{(z,s) € RZ x R¥ | 7Tz > 75 + 1}))):

1. 77z < my or 772 > mp + 1. Then (z,51 + A'8p41,52 + A25441, ..., 51) € P(R, f)°

™, 70"

2. o < ml'T < mo + 1. Since (Z,51,582, ..., 5%, 5k41) € P([R ¥, /)" and my < 772 < mp + 1, there

exist two points (21,51, s3, 53, ..., s, 1), (2%, 53, 83,53, ..., 57,,) € P([R r*1], /)" such that

o 1zt < 7o, 7lg? >+ 1
e (,51,89,..., 5k, 8k+1) is a convex combination of (z!,s1, s} 81, ..., s,lﬁ_l) and (22,52, 53,52, ..., 3z+1)'

This implies however by the induction argument that (z!,s} + Alskﬂ,s% + )\28,1€+1,s:1;, ), (22,87 +
Ms? 1,83+ A%s7,,93,...) € P(R, f)" such that

o mlal <y, wTa? > 7o+ 1

o (Z,51+A'5k41,52+ A28, 41, .., 5k) i a convex combination of (z!, s%+)\13,1€+1, s%—l—)\gs}ﬁ_l, 8%,y 1)

2 2 \1.2 2 \2.2 2 2
and (2%, 57 + A5y 1,85 + A%5{ 1,55, 85)-

In other words, (Z,51 + A'5,41,52 + A25,41, ..., 5k) € P(R, f)"

T, "
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Now we return to the proof of the proposition: Assume by contradiction that the inequality Zle o;8; +
(Mal + X2a?)s,41 > v has a split rank greater than 7. Therefore, there exists (Z, 31, 32, ..., 5k, Sk+1) €
P([R r**1], )7 such that Zle a;3i+(AMag+A2a2)8,1 < 7. This implies, o (81 + A 8,41)+az(52+A25541)+
Zf:?, a;5; < 7. However note now from the claim that (z,5; + A'5541,52 + A28p41, 83, ..., 5x) € P(R, f)".
This implies that the inequality Zle a;s; > 7 has a rank greater than n wrt (P(R, f))°, a contradiction. O]

Using Proposition [5.2] and Lemma [5.1] can be verified.

Proof of Lemma Let R = R*U R and consider the set P(R¢, f). Then the inequality,

> A0h)si =1 (19)

ri€ R*URY

where v := ¢(Lg) is valid for P(R¢, f). Note that by definition L, C L. However, since every column of
R® belongs to R® and the corresponding coefficients of v and 3 are equal, every vertex (resp. ray) of Lg is a
vertex (resp. ray) of L. Thus, L, D Lg or L, = Lg.

Let 7. be the split rank of wrt (P(RC, f))°.

Now starting from P(R¢, f) and the inequality , by the application of Proposition iteratively for
every column of R®\ R®, we obtain that 1. > n;,. However, since L., = Lg, by the application of Proposition

(starting from P(R?, f) and Zfil Bis; > 1 and then simple lifting all the columns in R%\ RY), we obtain
Ne < Mp. Therefore, 1. = np.

Again by application of Proposition and the fact that a(r?) > ~(r") Vr* € R® (since L, C L), we
obtain that 7. > n,. This completes the proof. |

Proof of Proposition Proposition is proven by showing that if Proj,(P([r!,...,7*], f))" := {s €
R: | As > b} for some A € Q7" and b € Q7*", then Projg o (P([r', s ?F,rM 1 )T C {(s,8041) €
RY x Ry)|As+ A'spy1 > b} for some A’ € Qiﬂ. This is similar to the proof of Proposition

5.2 For Standardization

The following result allows us to consider ‘standard’ triangles and quadrilateral. Related observations for
split cuts were made in Dash et al. [19].

Observation 5.1 (Integral Translation and Unimodular Bijection) Let w € Z? and M € Z**? be a
unimodular matriz. Then

1. A walid inequality Zle a;s; >y for P(R, f) is facet-defining for P(R, f) if and only if Zle ;S; >y
is valid and facet-defining for P(M R, M(f + w)).

2. The split rank of Zle a;s; > v wrt P(R, )Y is n if and only if the split rank of Zle ;8 >y wrt
P(MR,M(f +w))° is n.

6 Two Variable Problems

Proposition 6.1 Consider a non-trivial facet-defining inequality a1s1 + agss > 1 for conv(P([rt,r?], f)).
Then its split rank is at most two.

Proof: Since ais; + asse > 1 is facet-defining, it satisfies at equality two or more feasible points of
P([r',7?], f). By suitable integral translation and unimodular transformation, we can assume that

1. fo > 0.

2.0< £ < 1.

11



. / X2<0 \

ri r2

Figure 3: The idea behind the proof of Proposition [6.1

3. The = component of the feasible points that satisfy ajs; + agse > 1 at equality are (0,0), (1,0) , ...,
(9,0) where h <0 and g > 1.

4. ri r3 <o.
5. The inequality a;s1 + asse > 1 is equivalent to xo < 0.

See Figure [3]| for an illustration. There are two cases.

If fo < 1 (see left frame in Figure[3), then P([r!,7?], f) N {x | 22 > 1} = 0 because 4,72 < 0. Therefore
29 < 0 is valid for conv((P([rt,r?], f) N {x | 22 < 0}) U (P([rt, 7], f) N {z | 22 > 1})).

Now consider the case where fo > 1 (see right frame in Figure . Let v/ :={z €R? |z =f+ rjsj, 55 >
0}N{z eR? |z =j—1},j=1,2.

Claim: v3 < 1 and v3 < 1: Assume vi > 1. Then, we have (0,v3),(0,0) € Proj,((P(R, f))°). By
convexity, we conclude that (0,1) € Proj, ((P(R, f))°) which is the required contradiction since x5 < 0 is a
valid inequality for conv(P(R, f)). Similarly, we can verify that v3 < 1.

Observe that (z, s1,s2) := (21, A1,0) (for a suitable A\; > 0) is the only vertex of the set Q< := P(R, f)°N
{(z,s) € RZxR?|z; <0} and (x, s1, s2) := (22,0, \2) is the only vertex of the set Q= := P(R, f)°N{(x,s) €
R? x R? |z > 1}. The extreme rays of conv(Q< U Q=) are (r!,(1,0)) and (r2,(0,1)). As 7,73 < 0, there
exists 0 < § < 1 such that zo < 1 —§ is valid for conv(QS U Q=). Define @ := {(z,s) € R? xR3 |z =
f+ Rs,x5 <1 —6}. Observe that x5 < 0 is valid for conv({Q N {(z,5) | 72 <0} UQ N {(x,8) | 22 > 1}). O

7 Three Variable Problems

In this section, we consider the split rank of facet-defining inequalities Zle a;s; > 1for conv(P([rt,r%,73], f))
where cone{r!, r? r3} = R%

7.1 T°B

We prove the following result in this section.

Proposition 7.1 The split rank of an inequality whose induced lattice-free set is a triangle of type T?P is
finite.

In Section we discuss the standard triangle of type T25. In Section we present some useful
definitions and an outline of the proof of Proposition There are four main subcases in the proof of
Proposition [7.]] that differ in the details. These cases correspond to Sections -

12



Figure 4: The case where g = 0

7.1.1 Standardization of triangles of type 722

Let Zle a;s; > 1 be a facet-defining inequality for conv(P([r!,r2 r3], f)) such that L, is a triangle of type

T?B. By a suitable integral translation and unimodular transformation (Dey and Wolsey [23]), we can assume
that (1) the vertices of L, are (a) w! := (—4,0) where 0 < § < 1 and w! = f+Airt, Ay > 0, (b) w? := (g+¢,0)
where 0 < e < 1,9 € Z, and w? = f+ Aar? Ao > 0, (¢) w? := (Z,y) where § > 1 and 0 < Z < 1, and
w3 = f+ X313, A3 > 0. (2) The side w'w? of L, contains the integer point (0,1) in its relative interior. (3)
The side w'w? of L, contains multiple integer points. (4) The side w?w? of L, does not contain any integer
point in its relative interior.

However while w? = g+ ¢ can be less than 1, it is convenient to work with triangles with w? > 1. Consider
the case where g = 0 (see Figure . In this case it is possible to consider a different set P([#!,72, 73], f) and
a corresponding inequality Z?zl &;s; > 1 where 7t =71, 72 =73 72 = (1 — f1,—f2), and &1 = a1, a3 = as,
and @y = 1. Observe that L, C Ls (see Figure [4)) and therefore by Lemma the split rank of o wrt
(P(R, f))? is less than or equal to the split rank of & wrt (P(R, f))°.

Hence we consider the standard 728 as presented next.

Proposition 7.2 (Standard 727) Let Zle a;s; > 1 be a facet-defining inequality for conv(P([rt,r% r3], f))
such that Ly, is a triangle of type T*B. By a suitable integral translation and unimodular transformation, we
can assume that

1. The vertices of L, are

(a) w' := (—6,0) where 0 < § <1 and w' = f + A\t A\ >0,
(b) w? = (g+¢,0) where 0 <e<1, g€ Zy\ {0} and w? = f + Xar?, A2 > 0,
c) w’ = (x,y) wherey >1 an <z <1, and w’ = f+ A3r°, A3 > 0.

3 h 1 and 0 1, and w3 = f + A3, A3 > 0

2. The side wlw? of L, contains the integer point (0,1) in its relative interior.
3. The side w?w? of L, does not contain any integer point in its relative interior.

4. r3 <0, <0,72 <0,7? >0 and r3 > 0.

7.1.2 Some Definitions and Proof Outline

Before outlining the proof of Proposition we present a couple of definitions linking a point z € R? to
s € Rﬁ_ such that © = f + Rs. These definitions simplify the presentation of the proofs in the remainder of
the paper.

13



Definition 7.1 (A Notation) Let 7 € R? such that there exists i € {1,...,k} and X > 0 with & = f + Ar’.
For convenience, we denote

AZ) = A\
Definition 7.2 (Minimal Representation) Consider the set P([r',...,7*], f) and let & € R%. Then
1 Ifz = f4 X irt + X\jrd with \j,\j > 00 # j and r* # vrd for allv € R, we define M (z) € RE

o 0 ifl+#14,5
M) (z) = A ifl=1 (20)
A ifl=
2. If 7 = f+ X" with X\ >0 (i.e. NZ)=\), we define M"*(z) € as MY (Z); = X\ for | =i and

MU (E); =0 for | # .

Note that when there are only three variables and cone{r!, 7% r3} = R?, every 7 € R? satisfies exactly one of
the two cases in the definition of minimal representation. Moreover, in the first case if Z = f + X\ir’ + \jrd
and A;, A; > 0, then ¢ and j are unique as well. Therefore if k& = 3, we use M(Z) to represent the unique
minimal representation for each vector z.

Proposition 7.3 Let 3 € Rk have posztwe components for some indices i,j € {1,....,k}. Then Zle Bl./\/lf’j (z) <
1 if and only if T € rel.int(conv{f, f + 5 L+ })

Proof: We present the proof for the case where ¢ # j. The proof is sunllar for the other case. Observe that
xEmt(conv{f,f—&—B Jf+5 }) 1ff3:—,uof—|—ul(f—|— )—&—,uj(f—k ) f—l—”‘ l—!—”’rj where 1 > pg > 0.

Also since r¢ # vrd for all v e R, we obtain that M”( )i = & M 7( )j = ﬂ , and /\/l”( Yy =0ifl #1,5.
Thus, & € int(conv{f, f + 5, f + 5 }) iff S, M7 (7) = 1 — o < 1. O

Note that when k = 3 and cone(r!, r?,r3) = R?, Proposition is equivalent to Zl 1 ﬂZMl’j( ) < 1if
and only if Z € int(Lg).
In the proof of Proposition we typically consider (P(R, f))" along with one inequality, i.e., the set

Q:={(z,s) € R* x Ri |z = f4+risy +1risy +1r°s3, 151 + agsy + azss > 1} (21)
Corresponding to some disjunction (772 < 7%) v (772 > 7% + 1) we consider the two sets
QS :=Qn{(x,s) |77z <m}, Q= :=Qn{(x,s) |7z >m+1}. (22)

We would like to prove that an inequality B1s1 + B2s2 + B3s3 > 1 (where 1, 82,83 > 0), is valid for
conv(QS U QZ). Note that the support of the s-component of the vertices of @< and Q7 is at most 2. More
precisely the following observation can be verified.

Observation 7.1 Let Q< be as in (@ Then the vertices of Q< are of the form (Z, M(Z)) where T is of
the form:

1. f+X, A>0, or
2. the intersection points of the boundary of L, and the line segment mix1 + Toxs = 7g.

Note that the extreme rays of conv(Q<UQZ) are (r!,el), (72, ¢e?), (r3,e?). The s-component of these rays
satisfy (181 + B252 + PB3s3 > 0. Therefore using Proposition @ and the above observation, checking validity
of the inequality (151 + (G252 + (383 > 1 is simplified and is recorded in the next Proposition.

Proposition 7.4 Let Q,Q<,QZ be as in and , Then (181 + Bass + (383 > 1 is a valid inequality
for conv(Q= U Q=) if for every vertex (Z, M(Z)) of Q< and Q=, T ¢ int(Lg).
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Since we will repeatedly reference the z-components of the vertices of either Q< or QZ to check the
validity of an inequality, for simplicity we will refer to the z-component of the vertices of Q< and Q= as the
z-vertices.

Outline of the proof of Proposition [7.1} Apply a sequence of two disjunctions (z; < 0) V (z1 > 1) and
(72 < 0)V (22 > 1) successively. At each step, select one inequality valid for conv(Q=UQ?Z) (ignoring all the
other inequalities) and then proceed with the next disjunction. We will show that this procedure converges
to the desired inequality in a finite number of steps. Observe that as we keep exactly one inequality at each
step, the validity of the inequality that is selected can be checked by the use of Proposition [7.4]

We distinguish between four cases that differ slightly in the sequence of disjunctions used for the proof of
convergence:

1.O<f1§1andrz1”<0.

2. fgglandri’<0.

@

r3 = 0.
4. 73 > 0.

It can be verified that all scenarios are covered in the above four cases. The following notation is used
throughout this section.

Notation 7.1 (i) We define QI := (P(R, f))°. Let Ej?:l ﬁj[-i]sj > 1 be the inequality obtained in step
i—1. We define QU := {(z,5) e R2 xR3 |z = f + RS,Z?:l ﬁjmsj >1}.
(ii) Corresponding to each r°, we define the intersection points
vli= {x6R2 \xzf—!—/\ri,/\z(),a:l =0 oraz =1}
for all i = 1,2,3. Note that if 0 < fi < 1, then v' is uniquely determined for all i.
(iii) If fo > 1, we denote w* :={x € R? |z = f + A%, XA > 0,29 = 1}.

(iv) ¢ = (q1,1) is the intersection point of the line segment w?w?> with the line {x € R? | zo = 1}. (Remember
that w', w?, and w® are the vertices of Ly,).

Finally, we introduce a construction that is useful in the presentation of the proof of Proposition [7.1

Construction 7.1 (A) Let {i,j,k} be a permutation of {1,2,3}. Let X,Y,Z € R? be three affinely inde-
pendent points such that X,Y € f + cone{r’ 17} and Z € f + cone{r’ r*}. Suppose that there exists p’, p’,
p* € R? such that

(i) p' is the intersection point of the line XY with the ray {x € R?| f + A\rf, A > 0},
(ii) P’ is the intersection point of the line XY with the ray {x € R%| f + A\ri, X\ > 0},
(iii) p* is the intersection point of the line p'Z with the ray {x € R?| f + ArF X > 0}.

Then we denote A(XY Z) := conv{p’,p’, p*}. Note that the ordering of the points X, Y, and Z in the notation
AN(XY Z) is not relevant. Therefore, we interchangeably use A(XZY) or A(ZY X) to denote AN(XY Z).
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7.1.3 Case 1: 0< f; <1 and r} < 0.

Let o be an inequality for conv(P([r!r2r3], f)) such that L, is a standard 72F triangle, 0 < f; < 1, and
r3 < 0. We present a sequence of split disjunctions and the rule for the selection of a valid inequality resulting
from the split disjunction that eventually converges to a.

Disjunction Sequence 7.1

1. Initialization Step (Step 0): Let Q% := (P(R, f))°. Let Q*= := Q1% N {(x,s) € R? x R? |z, < 0}
and Q%= = QM N {(x,s) € R? x R3|z; > 1}. The z-vertices of Q¥ and Q*Z are v',v? v3. Let
Bl = p(A(v'v?v?)). Define dlM = v2.

2. Inductive step: At the beginning of step j, consider the set QU = {(z,s) € R? x R} |z =f+

Rs, Z?Zl ﬂlmsi > 1}. At an even step, consider the disjunction (ze < 0)V (x2 > 1) while at an odd step,
consider the disjunction (z1 < 0)V (z1 > 1). We now give the details of each particular step.

(a) Step 2j —1: Let Q¥ 1= := QP Un{(z,s) e RZxR3 |z <0} and Q¥ 12 := Q¥ ~-1Un{(x,s) €
R? x R3 | 2o > 1}. The z-vertices of conv(Q¥~H=UQ¥~12) are (0,1),v°, ¢ w' w?, where /]
is the intersection point of dLgzs+y with the line {x € R?|xy = 1} different from (0,1). At this
stage either ¢(A(w'w?(0,1))) or ¢p(A(w'w?cl?)) is valid. Observe that ¢(A(w'w?(0,1))) is
the goal inequality . Therefore, if it is valid, we have proven that its split rank is at
most 2j. If not, then set 312 .= ¢(A(w'w?cl?1)).

(b) Step 2j: Let Q= := Q¥In{(z,s) € R2xR3 |z, < 0} and Q%= := Q¥In{(z,s) € R2xR3 |z, >
1}. The z-vertices of conv(Q¥ 1= U Q¥~52) are w',w?,v%,(0,1),v,d*+1 where dPi+1 s
obtained as the intersection of O (w'w?cl?1) with {x € R? | xy = 1} which is different from (1,0).
The inequality ¢(A(wh,v3, d2H1)) is valid. Set B2+ .= ¢(A(v'w3dPIHY)) and proceed to the
next step.

(c) j—j+1. O

See Figure [5] for an illustration of the sequence of inequalities obtained using Disjunction Sequence

In Lemmas to we prove that the different steps in Disjunction Sequence are well-defined, i.e.,
the proposed points are z-vertices and the proposed inequalities are indeed valid. For the sake of clarity we
repeat the definition of ¢/l and d[2/+1) next.

Notation 7.2 Define dl!! :=v2. Forj =1,2, ...

o 7l € R? is the intersection point of Lgp;—v := A(v'v®d?I 1) and the line {x € R? | x5 = 1} which is
different from (0,1).

o d%HY € R? is the intersection point of Lgzy = A(wrw?c®) and the line {x € R? | 21 = 1} which is
different from (1,0).

Lemma 7.1 (z-vertices for step 2j — 1, r§ <0) The z-vertices of Q2~1= := QZ=1'n {(z,5) € R? x
R? |2y < 0} are w' and w?. The z-vertices of Q12 .= QPRI N {(z,s) € R2 x R3 |y > 1} are (0,1),
03, and .

Proof: See for example frames (b) and (d) in Figure
By construction, the z-vertices of Q71 namely v', v and d*=1 do not satisfy x5 < 0. Therefore the
z-vertices of Q?7~11= are at the intersection of the rays {x € R?|z = f 4+ Ar', A > 0} and {z € R? |2 =
f+Ar2, X > 0} with the line {x € R?|zy = 0}. We conclude that the z-vertices of Q% ~1:= are w! and w?.
By construction v! and d?=1 do not satisfy z; > 1 whereas v® does. Therefore v3 is a z-vertex of
Q1?7112 All remaining a-vertices are at the intersection of dLgz;—1 with {# € R? |25 = 1} i.e. (0,1) and
cl2d], O
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(b)

(d)

Figure 5: In each frame, the dotted triangle is L,. The dashed triangle is the induced lattice-free set of the
inequality obtained in the previous step. The circles are the z-vertices obtained by the application of the
disjunction. The solid triangle is the induced lattice-free set of the inequality that is valid for these z-vertices.
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Lemma 7.2 (Finding ], r$ < 0) At stage 2j — 1, at least one of the following holds
(i) A(wrw?c) € A(w'w?(0,1)) and B2 := ¢(A(w'w?cl?)) is walid for conv(Q 1= U QRI-11:2),
(i) A(w'w?cP) D A(w'w?(0,1)) and B! := ¢(A(w'w?(0,1))) is valid for conv(Q 1= U QRI—11.2),

Proof: See Figure[5] frames (b) and (d) for example of case (i), and frame (f) for example of case (ii).

The triangles A(w'w?c) and A(w'w?(0,1)) share the side w'w?. By definition, the third vertex of
both these triangles lie on the ray {z € R? |z = f + A3, X > 0}. It follows that, if we compare the two
vertices, one of them must be closer to f. The triangle for which the third vertex is closer to f is therefore
included in the other.

It remains to verify that the inequality corresponding to the included triangle is valid for COI’IV(Q[zj -1l=y
Qi _1]’2). To do that, it suffices to check that all x-vertices given by Lemma do not lie in the interior of
the triangle. Observe that it is sufficient to check only whether v3 does not lie in the interior of the smaller
triangle as the other z-vertices cannot lie in the interior of A(w'w?cl?1) and A(w'w?(0,1)).

Claim: v* ¢ A(w'w?(0,1)). By hypothesis, wj < 0, v = 0, and v§ > 1. It follows that v3 lies above
the line w!(0,1). As the third vertex, (i.e. w?) lies below the same line, it follows that v3 ¢ A(ww?(0,1)).
This implies that if A(w'w?(0,1)) € A(w'w?cl?), then no z-vertex lies in the interior of this triangle
and the corresponding inequality is valid. On the other hand, if A(w'w?c) C A(w'w?(0,1)), as v? ¢
A(wlw?(0,1)), then it also follows that the corresponding inequality is valid. O

Lemma 7.3 (x-vertices for step 2j, r3 < 0) The z-vertices of Q2= .= QRIIN{(x,s) e R2xR3 | z; <0}
are w', (0,0), v3, and a point T which satisfies T = 0 and 0 < To < 1. The x-vertices of QPIlLz =
QN {(x7s) € R2 x R3|zy > 1} are d¥ Y, w?, and (1,0).

Proof: See for example frames (c) and (e) of Figure

We start by computing all the z-vertices of Q?/I'=. Since w! is a z-vertex of Q[ and is valid for
{z € R?|2; < 0}, it is an z-vertex of Q?}=. The other a-vertices come from the intersection of either
OL gz or the ray {o € R? |z = f 4 A3r®, A3 > 0} with the line {# € R? |z = 0}. In the first case, we obtain
(0,0) and Z. In the second case we obtain v® as an x-vertex.

Consider now Q[?71:2, Similar to w! in the previous case, w? is an 2-vertex as it is satisfies {z € R? |z > 1}.
The other z-vertices come from the intersection of dL gz with {z € R? | 21 = 1}. We obtain therefore di+1]
and (1,0). O

2

Lemma 7.4 (Finding &+, r8 < 0) The inequality S+ := ¢(A(v3(0,1)dPI+1)) is valid for conv(QP=U
Q2il:2).

Proof: See for example frames (c) and (e) of Figure

It suffices to check that all z-vertices given in Lemma [7.3[ do not lie in the interior of A(v3(0,1)dl?+1).
Observe that ((0 0), M(0,0)) and ((1,0), M(1,0)) can be obtained as convex combination of (w!, M(w?'))
and (w?, M(w?)). Therefore it is not necessary to verify that (0,0) and (1,0) do not lie in the inte-
rior of A(v (0,1)d2+1), Also it is easily observed that the z-vertices Z and v* do not lie in interior of
A(v*(0,1)d [2”1])

Claim: w' & A(v3(0,1)d?I*1). The side (v3(0,1)) of the triangle satisfies 1 = 0 and the third vertex
z lies on the set {z € R?|x = f+ A%, X > 0}, with z; > f;. As fi > 0 and 7? > 0, we conclude that
all points in the triangle A(v3(0,1)d/*+1) have a non-negative first coordinate. As w] < 0, we obtain
w' & A(v3(0,1)dl7+1),

Claim: w? ¢ A(v(0,1)d*1), From the previous step, we know that one side of A(w'w?cl?]) passes
through the points w? and d?*1 and one point v of the form v = f 4+ A3r®, A3 > 0 such that Aw) > A(v3).
We conclude that the side of A(v3(0,1)d?7+1) that links v® to d®+1) intersects {x € R? |z = f+ M2, A > 0}
at a point z such that z = f + Aor?, with A\(2) < A(w?). In particular this implies that 2z > 0 and that
the side of A(v3(0,1)d**1) linking a point on {z € R? | 2 = f + A’ A\ > 0} to z is always above the axis
x93 = 0. Therefore w? & A(v3(0,1)dl2+1]). O
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We now want to understand the convergence of this procedure. To do that, we denote ¢/ =: ¢. The next
Proposition indicates how ¢27 can be computed recursively.
Lemma 7.5 Denote w? =: (e,0) and v3 =: (0,a). The previous sequence of split disjunctions provides the

Tecursion

2+l — (g %
e — C[l ]}

i+l _ [ a—1
c = —.1].
(CL _ d[22]+1] >

Proof: The point d?/*! is obtained by intersecting the line {z € R? |x; = 1} with the line joining ¢! with
w?. The point ¢l?12 is obtained by intersecting the line {z € R? |z, = 1} with the line joining d?/*1 with
v3. By computing the different equations of the lines, we obtain the desired result. O

Finally, we show that the Disjunction Sequence converges to the goal inequality a. Remember ¢ is the
point of the form f + Aar? 4+ A3r3, A2, A3 > 0 such that o = 1 and L, = A(w'w?(0,1)) = A(w'w?q). At
the end of step 2j — 1 in Disjunction Sequence if e[12j I < q1, then we select the inequality corresponding
to the triangle A(w'w'c). If e[12j] > ¢1, then A7 := o. Hence to prove the result we will prove the
following: limiﬁooc[lzj s 1 in Lemma This shows that in a finite number of iterations, j*, the inequality
corresponding to A(w!w?(0,1)) will be valid at the end of step 2;* thus completing the proof.

To simplify notation let c[12j J = ¢ and d[;j @,
Lemma 7.6 (Finite Convergence; r} < 0) lim;_.ooc’ = C where C =min {1, (1 — L) e} > ¢1.
Proof: Since v3 > 1, we obtain a > 1. Since w} > 1, we obtain e > 1.

Claim: min {1, (1 — 1) e} > 1. By assumption 0 < w} < 1. Therefore A(v*) > A(w®). This implies that
(1 — %) e > ¢q1. Also by definition of ¢, we obtain ¢; < 1.

We assume 0 < ¢ < 1 and ¢ < (1 - %) e (otherwise there remains nothing to prove). We now prove this
result in the following steps:

e C > sup{c'}: Note that ¢ < 1 and ¢ < (1 — %) e. Assume by the induction that ¢* < 1 and
F<(1-1)evke{0,..,n}.

1. Now observe that d* = £=L < 1 since ¢ < 1. Therefore,

e S Rt 23
c a—d”f ‘ ( )
2. Observe that
1
" < <1—>6
a
e
e—c" > -
a
1 a
S —
e—c" e
-1 1
¢ < (1—)@ [since e > 1> c",a > 0]
e—ch e
1
dt < (1)a
e
a—d* > 4
e
n+1 a—1 1 . n
T = < [(1—=)e [sincea>1>d"e>0. (24)
a—dv a

—
Nej



e {c'} is a non-decreasing sequence: By algebraic manipulations we obtain,

T e e @

By previous part, ¢ < 1and ¢’ < (1 — 1) e Vi. Therefore, a(e—c')—(e—1) > 0 and (1—c*)(a(e—c')—e) >
0.

o If F = sup{c'}, then FF > C: Assume by contradiction that F' = sup{c’} and F < C. By definition of
F, Ve > 0, there exists i, such that ¢’ > F —¢. Let ' =1 — F > 0 and 62 = e — F. Note that since
F < C, we have aé? > e. There are two cases:

1. ad' < 1: Then choose any i such that ¢! > F — %. By assumption ¢! < F. Let F — ¢ = .
Then we obtain that

1(, 82
= 6'ad®* —e) > n(l—adt) (26)
= 0 ad® +an—e) > 7
= 6 (ad® +an—e) +n(ad® +an—e) > n(ad® +an—e+1)

Now note that adé? 4+ an — e + 1 > aé? — e > 0. Therefore,

(0% +n)(ad® + an —e)
ad? +an—e+1

> (27)

(0"t (@b tan—e) _ (—Fim(a(e—Ftn)—e) _ (1—c)(ale—c)—¢) _ i1
Now note that ad?+an—e+1 a(le—F+n)—(e—1) —  a(e—ci)—(e—1) ¢ B

implies that ¢! — ¢ > n or ¢/t! > F, a contradiction.

2. aé' > 1: Then choose any c'. Let n=F— ¢! > 0 by assumption. As 51(a52 —e) >0 and adl > 1,
we obtain that 6(ad? — e) > n(1 — ad') which is the same as . Thus again we obtain that
¢t — ¢ > 1, a contradiction. O

c*. Therefore,

7.1.4 Case 2: f, <1 and 7} <0.

If 0 < f; <1, then this case is covered in Section [7.1.3

Since 73 < 0, the remaining case is f; > 1. The first disjunction (z; < 0) V (z; > 1) in the Disjunction
Sequence does not yield any new inequalities. In this case we alter Disjunction Sequence by first
starting with the disjunction (zo < 0) V (z2 > 1). The initialization stage is updated as follows: Consider
QY = (P(R, )’ N {(z,s) € RZ x R¥|xy <0} and Q"= := (P(R, ))° N {(x,s) € R?2 x R®|zo > 0}. The
x-vertices of Q¥'S are w! and w? and the z-vertex of Q%2 is w3, where w? is the intersection point of the
ray {f + X3r® | A3 > 0} and the line {x € R? |25 = 1}. The inequality ¢(A(w'w?w?)) =: A is valid for
conv(Q%= U Q%Z). The rest of the algorithm is identical to Disjunction Sequence except that odd steps
are now even and the even steps are now odd.

7.1.5 Case 3: 1} = 0.

In this case, it is easily verified that the split rank is exactly two. We start by considering the disjunction
(z1 < 0)V (z; > 1). The inequality B that is valid for conv((Q%= U Q%)) has the induced lattice-free set
conv(v!, v?) + cone(0, 1). Then considering the disjunction (z2 < 0)V (w2 > 1), we obtain the goal inequality.
The proof is very similar to the proofs in Section
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7.1.6 Case 4: r$ > 0.

We now consider the case where r3 > 0. As discussed in the outline of the proof of Proposition the idea of
the procedure is essentially the same as in Case 1. We apply the sequence of disjunctions (z; < 0)V (z1 > 1)
and (z2 < 0)V (22 > 1). At each step, we replace all previous inequalities by one valid inequality obtained
after the disjunction and proceed. We will prove that after a finite number of steps, this procedure converges
to the desired inequality.

The primary difference in this case is that the initialization step is different, where a different rank 2
inequality is added. Moreover the proof of convergence is more involved than the previous cases. We note
here that Disjunction Sequence can be applied to this case. However, we are unable to proof that
Disjunction Sequence converges in finite time in the case where r$ > 0. On the other hand, it appears
that Disjunction Sequence that we present next, does not seem to apply for the case where 73 < 0.

As before, let o be the goal inequality such that L, is triangle of type T2B.

Disjunction Sequence 7.2

1. Initialization step: First consider the two-variable problem P((rl,r3), f). By definition the triangle
C = fw'w?3 does not contain any integer point in its interior. Therefore ¢(C) is a valid inequality for
conv(P((r,r®), f)). By Pmposz'tz'on there also exists € > 0 such that, denoting u?! := f + er?, we
obtain that 1% := p(A(wrwul?)) is a valid inequality for P(R, f). By Proposition and Proposition
we also know that this inequality has a split rank at most two. Let qi?! be the intersection point
of (A(w'w3ul?)) with the line {x € R?|xy = 1}. We then directly proceed to step 2 in the inductive
process.

2. Inductive step: At the beginning of iteration j, we consider the set QU = {(z,s) € R? x R} |z =
f 4R, S, 570 2 1),

(a) Step 2j: We consider Q1% where pP7 .= ¢(A(ww?q!?1)). The z-vertices of Q1= = Q1N
{(z,5) € R2xR? | 2y < 0} are w, (0,1), and p> T where pl21+1 is obtained as an intersection of
A(w'w3qPy with {x € R? |2y = 0}. The z-vertices of Q%12 := QPINn{(z,s) € RZxR? | 1 > 1}
are v3 and either v or two points z', 2% which satisfy 2+ = 23 =1 and 0 < z3 < 22 < 1. Define z
to be the intersection point of the line v3(0,1) with the ray {x € R*|x = f + Arl, A > 0}. We now
distinguish between two cases.

i. p2Itl s above the line zv?: The inequality BT = ¢(A((0,1)v*p2I+1)) is valid for
COHV(QDjLS U Q[QJLZ)
i ptU s below or on the line zv?: The inequality BRIHY = ¢(A(v*v3(0 1)) is valid for

conv(QP1= U QP1:2). Go to the termination step.

(b) Step 2j+1: We consider Q21 where B2 41 .= p(A((0, 1)v3plRi+)). Let ul+1] be the vertex
of A((0,1)v3pl2+1]) that lies on the ray f+ r?, X > 0. The z-vertices of QRIT1.= .= QRI+n{z ¢
R? | 25 < 0} are w' and w?. The z-vertices of QP12 .= QPRI+ N {z € R? | x5 > 1} are

i uPH < @203, (0, 1), @2, ul2 g2+
1. Either u[lsz] > w? or fo <1 (in which case w? does not exist): v3,(0,1), q27+21,

In both cases, q%7+2 is obtained as the intersection point of L§[2j+1] with {x € R?*|z, = 1}.
Remember q is the intersection point of L, with the line {x € R*|zy = 1} (Notation . Now

two cases occur. FEither q£2j+2] > q1, tn which case, the goal inequality o is valid for
conv(QRPI+1.=yQ+1.2) and thus proven to be of split rank at most 2j+2, or q£2]+2] <qi,

in which case the inequality ¢(A(w(0,1)q2+2)) = ¢(A(wrwiq@+2)) = B2+ s valid for
conv(QPIT1.= U QRi+11.2),

(c) j—j+1.
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3. Termination Step: We consider QP71 where BRI+ = ¢(A(v?03(0,1))). Let QPIH1= .= Qi+l
{(z,5) € R? x R? | 25 < 0} and QRI+1:2 .= Q&+ N {(z,5) € R? x R® | 25 > 1}. Then the goal
inequality o is valid for conv(QPI+1< y QRi+1.2), O

See Figure [6] for an illustration of the sequence of inequalities obtained using Disjunction Sequence [7-2]

In Lemmas[7.7] to we prove that the different steps of the Disjunction sequence [7.2] are well-defined i.e.,
the proposed points are xz-vertices and the proposed inequalities are indeed valid. For the sake of clarity we
repeat the definitions of some of the points introduced in Disjunction sequence and earlier.

Notation 7.3
1. Let j be fized.
o pl2+1 £ (0,1) is the intersection point of Lgei = A(w'w3q!*) and the line {x € R? | z; = 0},
o ql%7%2 5 (0,1) is the intersection point of Lgpi+y = A((0,1)v3p2 1) and the line {x € R? |
T = 1},

o ul? U s the intersection point of Lgpirn = A((0,1)v3pRIt) with the ray {z € R* | z =
f + /\2T2,/\2 Z 0}

2. z is the intersection point of the line v3(0,1) with the ray {x € R? |z = f + Art, X > 0}.
3. q is the intersection point of side w?w? of OL, with the line {x € R? |z = 1}.

Lemma 7.7 (z-vertices for step 2j, r3 > 0) The z-vertices of Q1= := QIn{(z,s) € R2xR? | z; < 0}
are w', (0,1), and p+1. The z-vertices of Q1= := QI N {(x,s) € R2 x R® | x; > 1} are v® and either
v? or two points 21, 2% which satisfy 2+ = 23 =1 and 0 < 23 < 22 < 1.

Proof: See for example frames (b), (d), and (f) of Figure[6]

Consider the z-vertices of Q¥I'=. Clearly w' is a z-vertex as it satisfies w} < 0. Note that v' is the
intersection point of {z € R* |z = f + Airl,A; > 0} and the line {x € R?|z; = 0}. However, v! is not
an z-vertex of Q1= as v' € int(A(w'w?q!*])). Finally, the intersection points of Lgij) with the line
{z € R?|z; = 0}, namely (0,1) and pl**1, are z-vertices.

Consider now Q21Z. Observe that w® is not a x-vertex since w} < 1. The point v is a z-vertex.
The other x-vertices can be obtained as the intersection point(s) of Lge; with the line {2 € R? |z = 1}.
Therefore v* is a z-vertex iff v* ¢ int(Lges). If v* € int(Lges), then we obtain two z-vertices z' and 22
which satisfy 21 = 2 = 1. Observe that by hypothesis 0 < v3 < 1 and we must also have 0 < 23 < 25 < 1. O

Lemma 7.8 (Finding g2+ r3 > 0) If
(i) p!27+1 lies above the line zv?, then ¢(A((0,1)v3pl2 1)) is valid for conv(QI27)= U QI211:2),
(ii) p2*t1 is below or on the line zv?, then ¢(A(v*v3(0,1))) is valid for conv(QPh= U QRil2),

Proof: See Figure[6] frames (b), (d) for example of case (i) and frame (f) for example of case (ii).

(i) We have to check that all the z-vertices given by Lemmado not lie in the interior of A(v3(0, 1)pl7+1),
Clearly (0,1), p¥*1, and v? lie on the boundary of A(v?(0,1)pl7+1). Therefore, we have to verify
that w', v? (or 2! and 22) do not lie in the interior of A(v3(0, 1)pl27+1).

e wl: The line w!(0,1) meets the ray {z € R? |z = f + X373, A3 > 0} at w? and the ray {z =
f+Airt| A1 > 0} at w! and passes through (0,1). On the other hand, the line v3(0, 1) meets the
ray {z € R? |z = f+ X373, A3 > 0} at v® and the ray {z = f + A\r' |\ > 0} at 2z and passes
through (0,1). As A(w?) < A(v?®), we conclude that we must have A(z) < A(w?!). As z is a vertex
of A(v3(0,1)pI+1) we conclude that w' ¢ A(v3(0,1)pl2+1).
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(@ (b)

(©) (d)

(€) ()

(9)

Figure 6: In each frame, the dotted triangle is L,. The dashed triangle is the induced lattice-free set of the
inequality obtained in the previous step. The circles are the z-vertices obtained by the application of the
disjunction. The solid triangle is the induced lattice-free set of the inequality that is valid for these z-vertices.
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o 2 (or 2zt and 22): We verify that if 2 such that z; = 1, then = does not lie in the interior of

A(v3(0,1)pl?+1]). Let y be the intersection point zp?*1 with the ray {z = f + Xor?| Xy >
0}. As pl¥*1 is above the line zv?, we conclude that A(y) < A(v?). Therefore y; < 1. Hence

A0, D)p2 )y N {x € R?|z; = 1} = {v?}. Therefore, for all + € R? with ; = 1, we have
r ¢ int(A(v3(O, 1)pl2r+1l),

1

(ii) From the proof of (i), we can also conclude that w! ¢ A(v?v3(0,1)). Since A(v?v3(0,1)) N {z; =
1} € 0A(v*3(0,1)), we conclude that there does not exist z € {f + Xa7?, Ay > 0} with 21 = 1 and
r € intA(v?03(0,1)). Tt remains to prove that pli+1 ¢ int(A(v?v3(0,1)). This follows from the fact
that pl27+1] lies below the line zv2, which is a side of the triangle. O

Lemma 7.9 (2-vertices for step 2j+ 1, r¥ > 0)) The z-vertices of Q1= .= QI+ N {(z,s) € R? x
R3 | x5 < 0} are w' and w?. The z-vertices of QP12 .= QR+ N {(z,5) € RZ x R?|xy > 1} are

(i) if AN(uPTH) < X(@?), then v3,(0,1), @2, ¢! +2], and w1,

(ii) if NuPIHY > XN(@?) or fo < 1 (@0* does not exist), then v>,(0,1), and ¢!*+2.

Proof: See Figure [0 frame (c) for example of case (i) and frame (e) for example of case (ii)

We first consider Q1= Observe that we assume that pl2*! is above the line zv? 0therw1se the
Disjunctive Sequence reaches the termination step. Therefore, the only z-vertices are w' and w?.

We now consider Q1?12 The points v® and (0,1) are z-vertices of Q7+ and satisfy z» > 1. Hence
they are z-vertices of QI +1:= If \(ul¥*1) < \(w?) (case (i)), then in particular we have u[22j+1] > 1 and
therefore, as it is a vertex for Q2+ and satisfies 5 > 1, it also is a a-vertex of Q[?7+11:Z Observe that

2 is the intersection point of the ray # € R? |z = f + Aar?, A > 0} with the line {z € R? |25 = 1} and is
therefore a z-vertex of Q21,2 All other possible z-vertices come from the intersection of A((0,1)v3pli+1)
with the line {z € R? |2y = 1} and yields (0,1) and ¢[27+2],

In case (ii), the proof that v?,(0,1), and ¢[?*2 are z-vertices are the same. If fo < 1, then the ray
reRz = f+ X rP )l > 01N {z e R |2y =1} = 0. Also as ul ™' < 1, u2+! is not an z-vertex of
QPHIZIf f5 > 1 and A(u!®*1) > \(w?), then w? € int(A((0,1)v?*p7+1)) and therefore w? is not a
z-vertex of Q2112 Also as ud’ ™' < 1, u¥*! is not an a-vertex of QI +1:2, O

Remember ¢ is the intersection point of the line w?w? with the line {x € R? |25 = 1}.
Lemma 7.10 (Finding $2+2 r3 > 0)
(i) If qujH] > q1, then the goal inequality o is valid for conv(QRi+1.<y QRi+1.2),
(i) If ¢ 272 1| then the inequality B2+2 = H(A(w' (0,1)qPRPI+21)) is valid for conv(QPIH=yQRI+1:2),

Proof: See Figure [6] frame (e) for an example of case (ii).
We have to check that all the a-vertices given by Lemma 7.9 do not lie in the interior of the corresponding
triangle.

i) We claim that we must be in case (b) of Lemmal7.9} i.c if ¢! > ¢, then A(u2+1) > \(w?). Assume
1
by contradiction that A(u27+1) < \(@?). Then IZJH] < w2 As w? < qi, we obtain a contradiction.

Observe that L, = A(wwdq) = A(wlw?w?). Tt is now easy to verify that v3 q2j+1] ¢ L, and
wt,w?,(0,1) € OL,, thus proving that the goal inequality « is valid for conV(Q[zj+1 U Qi+ >)

(ii) We distinguish between two cases.
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(a) ¢ < w2: (We are in Case (a) of Lemma [7.9). As w?, (0,1), ¢®+1 € a(A(w'(0,1)q2+1)), we
need to verify that v3, w?, w?, w2+ ¢ int(A(w'(0,1)¢!**1)). As the line w'(0,1) meets the ray
{z €R? |z = f+ A3, A3 > 0} at w® and A\(w?) < A(v?), we obtain v3 ¢ int(A(w'(0,1)gl2+1)).
Let ul?+2] be the intersection point of the line wq!?*2 with the ray {x € R? |z = f+Xar?, Xy > 0}.
Observe that by construction of ¢2t2 the line zul?*1] also passes through ¢[?*2. Therefore as
A(z) < Mw') we have that A(u7+2) < X\(ul?+1]). This proves that !>+ ¢ int(A(w' (0, 1) 1)).
As MulPIH) < X\(w?) < M(w?), this completes the proof.

(b) q?HQ] > w? or fa < 1 (then w? does not exist). Similar to the previous case, all vertices given in
Lemma lie outside of int(A (w'(0,1)ql27+2])). O

Lemma 7.11 (Termination step, r§ > 0) Let B2+ = ¢(A(v20?(0,1))). Let QP+1< = (P(R, £))° N
{(z,5) € RExRL| 00, B Ws; > 1,20 <0} and Q212 = (P(R, £))°N{(z,5) € R2xRY | ¥7_, g%, >
1,25 > 1}. Then inequality o is valid for conv(Q 1=y Q2i+1]:2),

Proof: See Figure |§| frame (g) for an example.
The vertices of Q+1= are w' and w?. The vertices of QP+ are v3,(0,1) and (1,1). All these
vertices do not lie in the interior of L., which proves that « valid. O

Next we are concerned with the convergence of the Disjunction Sequence[7.2] Note that for the step 2j+1
in Disjunction Sequence there are two cases, i.e., A(ul2*1) < \(@?) or A(u@*U) > \(w?) equivalently
u[fj“] < w? or u[12]+1] > w?. Based on these two cases, the proof of convergence is divided into ‘two phases’:

1. (Phase 1) In the first phase we prove that if u[12] < w}, then after a finite number of iterations u[12j+1] >

w3 holds. This is proven in Lemma

2. (Phase 2) Since eventually u[fjﬂ] > w? holds, we assume this to be true. With this assumption, it is
shown that there exists a finite j* such that p/2"*1 is below zv2. This completes the proof since this
implies that after iteration j*, ¢(A(v?v3(01))) is valid, allowing the algorithm in Disjunction Sequence

[7-2] to enter the Termination Step. This is proven in Lemma [7.13]

i T

o -
alel  ald wl

Figure 7: Phase 1 convergence proof

Lemma 7.12 (Finite Convergence - Phase 1) If u[12] < w?, then after a finite number of iterations j,

u[12j+1] > w3 holds.
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Proof: (Refer to Figure E) Let al? = (a!, al?)) be the intersection point of the line z¢/? with the line

{z € R?|zy = 0}. Since 73 < 0 and r? > 0, it can be verified that a[lz] < w}. Furthermore w} < z;

as A(w') > A(z). Therefore we obtain a}) < w! < z. Observe that given 2/, the point ¢2+2) can be

generated as follows:

1. Join ¢!*! and w' with a line segment. Let this line segment intersect the line {z € R?|z; = 0} at
(2j+1]
P .

2. Construct a line joining z and p/+1. If the half-line zpPi+1 .= {z € R? |z = 2+ p(p¥ 1 — 2), u > 0}
intersects the line {z € R? | x5 = 1}, then set §1**? as the intersection point. Else set §1%+2 = (4-00,1).

3. If q?j“'} < @?, then ¢l71+2 .= §l27+2 Otherwise u[12j+1] > w? holds.

Suppose now that we construct the set of point ¢l?!, ¢!, ¢l%, ... where we set §27+2! to ¢[27] always (without

{12 < 2). Then proving that

checking if ¢;
hmj_,ooqu] 400

proves the result of this lemma. This proves the result since then eventually (in finite number of steps)

~[24]
q; 7 > w
Using the fact that the line ¢!*lw! and ¢/**22 intersect at pl?*1 and A(w!') > A(2), it can be verified
that q[2j+2] > q[m Vj. Now we verify that \q[2j+2 [ZJ | < |q[23+4] £2]+2}| to complete the proof. We

(25+2] (25+4] [2j+2

verify that |g; [2j | <lgj | for j = 1 The proof is identical for any other j.
Let b be the mterbectlon p01nt of the hne passing through a[? and pl® and the line {z € R?|zy = 1}.

(See Figure B) We claim that q Vb, < q . Since a@b and w'q intersects at ¢[% and a[f] < w}, we must
have q[ I < bi. Let al® be the intersection point of z¢lfl with the line {x € R? |29 = 0}. Since qPal? and

q¥al8 intersect at z and q 2l qgﬁ], we obtain that a[ﬁ] < a[l] Furthermore, as al®¢® and a/#b intersect at
pm we obtain that bl < q[6].

Therefore, |by — ]\ < |q[6] £4]|. Next we show that |q 14 [2]\ < |by — q£4]| to complete the proof. It
can be verified that |b1 — ) = (fal)(ﬁ - glg]) and |¢}" — q?l = (- w%)(ﬁ - ﬁ) Since (—a1) > (—w?),
this completes the proof. O
Lemma 7.13 (Finite Convergence - Phase 2) Let u[12i+1] > w}. There exists a finite j* > i such that

P27+ s below zv2.

Proof: (Refer to Figure . Using Disjunction Sequence the points p[zj], q[2j], u[2j+”, and w212 are
generated as follows:

1. pl?*1] is the intersection point of the line u/*lw’ and the line {z € R?|z; = 0}.
2. ul27+1] is the intersection point of the line p/2Tz and the ray {xeR*|z=f+ M2 \>0}).
3. ¢%2] is the intersection point of the line u2/*1y? and the line {2 € R?|zy = 1}.
4. ul27t2 i the intersection point of the line ¢/272w?3 and the ray {x eR?|z=f+ 2 XA >0}
Let Ay, := A(u[*). We will prove this result by showing that
limy—co A = +00. (28)

This proves the result since it implies that there exists a finite j* such that p/2 1 is below the line zv?.

We prove in the following steps:
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Figure 8: Phase 2 convergence proof

The sequence {\;}72, is non-decreasing: Note that ul®l is generated differently when k is odd and when
k is even. Therefore to prove this result, we show that:

— Agj < Agjr1: Since A(w!) > A(z) and the lines w'u(?/] and w271 intersect at pl2/+1), we conclude
that Ao; = M(ul®]) < A(ul+) = X\g; 5.

— Agjr1 < Agjya: Since A(v?) > A(w?) and the lines w?ul?2 and v3u2+1] intersect at ¢l2+2 we
conclude that Agjy1 = Mul2 ) < X\(ulI2) = Ny 10,
p[22j+1] p[2j+3] Since from above, Agj4+3 > Agj4+1 we obtain that u[22j+3] < Us and u;
Since p[23+3] and pl2t1] are the intersections of the lines zv!2/+3] and 20[23"’1] with the hne z1 =0, we
obtain the result.

(27+1] (2543]  ,[24+1]
Uy .

A2j+1 — Agj < Agj43 — Agjqo. Since the sequence {)\k}zozl is non-decreasing, this will complete the
proof: We present the proof for k = 1, the proof is the same for all other values of k. Refer to Figure

I Construct a ray {x € R? |z = 2z + M?}, i.e., parallel to the ray {x € R? |z = f + /\7“2} Let 22 and
2% be the intersection of this ray with the line segments p[?’]w and plPlw!. Since p[z] > p I and r2 <0,

we obtain that €2 = |22%| < |22%] = €% Let pi¥l = 2 4 2 W be the orthogonal projection of pl®l on

the line passing though z and 22. Similarly, let pl° = z + % be the orthogonal projection of pl®! on

the line passing though z and z2. Then since p[5] < p[23] and r3 < 0, we obtain that n? < n* (Note n?
and 7* can be negative). Now it can be verified (see Appendix 1) that [ul¥lu?| = €2(5 '2 > — 1) and

|ulPlultl) = € (1 Cn — 1) where v and ¢ are positive constants and 1 — ¢n? > 0 and 1 — ¢n* > 0. Since
€2 < ¢t and n? < n* we obtain |ullul?| < |ullul¥|. This proves that Aoji1 — Aaj < Agjirs — Agjro. O
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7.2 T%4

Consider the triangle depicted in Figure [J] in solid lines. The convergence proofs used for Proposition [7.1
would not give the desired triangle in a finite number of steps.

Figure 9: A sketch of the proof that an inequality whose induced lattice-free set is a triangle of type 724 has
finite split rank

In this section, we show that there exists an inequality of finite split rank (corresponding to the one
depicted in dashed lines in Figure E[) that together with the right split disjunction, provides the desired
inequality. The inequality can be constructed as follows.

Construction 7.2 (AY) Let p',p? € Z?, {i, j,k} be a permutation of {1,2,3} such that p' = f+ \ir* + 17,
XiyAj >0 and p* = f + pr' + prr®, s, e > 0. We suppose that A(pap'p?) exists and is lattice-free for
some X\ > 0 where py = f + A, Let X :=sup{\ € Ry U {400} | A(pap'p?) is lattice free }. If X\ = 400, we
define N'(p',p?) as the lattice-free set determined by the two lines parallel to r* and incident to p' and p*. If
A € Ry, we define N'(p', p?) := A(psp'p?) with ps = f + M.

In Figure @ A3((0,1)(1,1)) is represented in dashed lines.

Proposition 7.5 The split rank of an inequality whose induced lattice-free set is a triangle of type T4 is
finite.

Proof: Let Zle a;s; > 1 be a facet-defining inequality such that L, is a triangle of type T?4. By a suitable
integral translation and unimodular transformation (Dey and Wolsey [23]), we can assume that

1. The vertices of L, are

(a) wl:=(—6,0) where 0 <6 <1 and w! = f+ A\rt, A\ >0,
(b) w? :=(g+¢,0) where 0 < e<1,g€Zy, g>1and w? = f+ Aar?, Ay >0,
(c) w?:= (Z,y) where g > 1 and 0 < z < 1, and w® = f + X373, A3 > 0.

2. The side w'w? of L, contains the integer point (0, 1) in its relative interior.

3. The side w?w?® of L, contains the integer point (1, 1) in its relative interior.
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4. 713 <0,rf <0,73 < 0,77 >0 and 73 > 0.

Claim: Let 3 := ¢(A3((0,1)(1,1))). Then Lg is either a split set or a triangle of type T?5. If Lg is not
a split set, then let h' = f + \;r’, \; > 0 be the vertices of Lz. We show that Lg is a triangle of type
T?B. Since w? is not an integral point, 3 € > 0 such that A((0,1)(1,1)(f + (A\(w3) + €)r?®)) is lattice-free.
Therefore A(h3) > A(w?). It follows therefore that A(h!) < A(w!) and A(h?) < A(w?). Hence the side h'h?
lies completely in the interior of L, and does not contain any integer point. Moreover, by the maximality of
A(h3), either side h'h3 or side h?h? (or both) contains at least two integer points. Thus, Lg is a triangle of
type T25.

Let Q := {(z,s) e R? x R3 |z = erRs,Z?:l,é’isi > 1} and let Q< := Q N {(z,s) € RZ x R3 |z, < 0}
and Q= := QN {(z,s) € R? x R®|zo > 1}. Since S is either a split cut or a cut whose induced lattice-free set
is of type T2% it has a finite split rank. Thus proving that « is valid for conv(Q< U QZ) proves the result.

We first enumerate the z-vertices of Q<. Observe that since h' and h? are in the interior of L, the
only z-vertices of Q< are the intersection of the rays {z € R% |z = f + N\, \; > 0}, i € {1,2} with the
line {x € R?|zy = 0}. These z-vertices are (0,0) and (1,0). Now consider the z-vertices of Q=. They are
(0,1),(1,1) (at the intersection of Lz and {x € R? |z = 1}) and k3 (only if Lg is not a subset of a split set).
Since all z-vertices of Q< and QZ do not lie in the interior of L, the result follows. |

A class of inequalities known as the sequential-merge inequalities were introduced in Dey and Richard [21].
The induced lattice-free set of sequential-merge inequality using two Gomory mixed integer cuts applied to
P(R, f) is a triangle of type T4, see Dey and Wolsey [23]. By their construction, the split rank of sequential-
merge inequalities with two Gomory mixed integer cuts is at most 2. The procedure implied by Proposition
can be shown to also imply a split rank of 2 for these inequalities.

7.3 T

So far, we have considered a proof technique based on keeping one inequality after each split disjunction. In
this section, we need to keep two inequalities before a particular split disjunction is considered. The set reads
as

Q:={(z,s) eR*xRL | (z,5)¢€ (P(R,[))°
Bisi+ Bysa + PBysz > 1
Bisi + B3sa + PBas3 > 1}

Observe that for this set all the vertices are of the form (x, M(z)). In particular, any vertex that is tight for
both 8! and 3 must be of the form (v, M(v)) where v is an intersection point of dLg: and dLg>. The extreme
rays of @ are of the form (r7,e), j € {1,2,3} where e/ € R? is the unit vector in the direction of the ;™
coordinate. Since either ﬁjl or ﬁf > 0 for all j (both 3! and 3% are not the same split inequality), any (Z,35) € Q
that is tight for both 8! and 4% must be a convex combination of points of the form (v*, M(v¥)) where v* is
the intersection point of 0Lg and OLg:2. This observation is useful in determining the vertices of sets of the
form Q< := QN{(x,s) € RZxR3 | mz1 +mrs < m} and QZ 1= QN{(z,s) € RZxR? | mxy +mozwg > mo+1}.

Proposition 7.6 The split rank of an inequality whose induced lattice-free set is a triangle of type T° is
finite.

Proof: Let 2?21 a;8; > 1 be a facet-defining inequality such that L, is a triangle of type T3. By a suitable
integral translation and unimodular transformation (Dey and Wolsey [23]), we can assume that

1. The vertices of L, are w® = f + N\, \; > 01 € {1,2,3},

2. The sides w'w?, w?w?, and w3w! of L, contain the integer points (0,0), (1,0), and (0,1) in their
relative interior respectively.
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Figure 10: A sketch of the proof that a cut whose induced lattice-free set is a triangle of type T has finite
split rank

Using Construction we define 3% := AL((0,0)(0,1)) and 3° := A%((0,0)(1,0)). Similarly to the proof
in Proposition it can be verified that Lg. and Lg» are either a subset of a split set or a triangle of type
T?B. Hence by Proposition their split rank is finite.

Let ¢»' = f 4+ A\;7%, A; > 0 be the vertices of Lga and let ¢* = f + u;r?, j1; > 0 be the vertices of Lg. In
the rest of the proof we assume that Lg. and Lg are not subsets of a split set (i.e, q*!, ¢>? are well-defined).
This is for simplicity and the proof can be modified for the cases where Lgs and Lgs are subsets of split sets.

Observe that by construction of 3% and °, we obtain that A(¢g®!') > A(w') > A(¢>!) and A(¢g*?) <
AMw?) < A(g>'). We first present a key result.
Claim: dLge and OLg» intersect at two points: (0,0) and (%;,%2) where 0 < ; < 1: Indeed, one point of
intersection is (0,0) by construction. Let us look for other potential intersection points. Since the side g»lgh?
lies entirely in the interior of Ly, we can verify that ((Lg) N {z € R? |z < 0}) N ((0Lg) N{z € R? |21 <
0}) = (0,0). Thus g1 > 0. Similarly, (O(Lge) N{z € R?|zy < 0}) N ((0Lg) N {z € R? |z < 0}) = (0,0).
Thus g > 0. Using similar arguments we can verify that (g1,92) € Lo. Together with the fact that go > 0,
we obtain y; < 1.

We now consider the set

Q={(z,s) e R2x R? |(z,s) € (P(R, ))"

3
Zﬂfsi >1
i=1

3
> Blsi=1 )
=1

Let Q< :== QN {(z,s) € RZxR3|z; <0} and Q= := QN {(z,s) € R2 x R®|z; > 1}. We show that a is a
valid inequality for conv(Q< U @QZ), thus proving the result.

Claim: The vertices of Q< are (¢®!, M(q®')), ((0,0), M((0,0)), (v3, M(v3)) (if r} < 0, then let v* be
the intersection point of the line {z € R?|z; = 0} with the ray {z € R*|z = f + A\3r3, X3 > 0}) and
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((0,1), M((0,1)). Let (,3) be a vertex of Q<. We consider the following cases:
1. Support of 5 is 1, where (7, 5) is tight for 8% (¢q%1, M(q"1)).

2. Support of 5 is 1, where (Z,5) is tight for °: No such vertex, since A(g®') > A(¢>') (i.e, the point
(¢, M(g"")) is cut off by the inequality S°_ B¢s; > 1).

3. Support of 5 is 1, where (Z, 5) is tight for {x € R? |z; = 0}: Assume that 73 < 0. Then (v3, M(v?)) is
a vertex.

4. Support of 5 is 2, where (Z, 3) is tight for 3% and 3°: Note that if (z,5) is tight for 3% and 3°, then it
must be a convex combination of the point ((0,0), M((0,0)) and the point ((g1,%2), M((%1,%2)). By
the previous claim, ¢; > 0. Therefore the only vertex is ((0,0), M((0,0)).

5. Support of 5 is 2, where (Z, 5) is tight for 8% and {z € R?|z; = 0}: ((0,1), M((0,1)).

6. Support of 5 is 2, where (Z, 5) is tight for 3° and {z € R?|x; = 0}: No such vertex. This is because if
z is the intersection point of dLg» and the line {x € R? |zy = 0}, then Zy < 1. Therefore, this point is

cut off by the inequality Z?:l Bs; > 1.

7. Support of 5 is 3, where (Z,35) is tight for 4, 8°, and {z € R?|z; = 0}: Then (Z,5) must be convex
combination of the points ((0,0), M((0,0))) and ((91, ¥2), M((91,%2))), where (g1, y2) is the intersection
point of OLge and OLg different from (0,0). Since from the previous claim, 7; > 0, we obtain that
Z = (0,0). Therefore, no such vertex.

Claim: The vertices of Q= are (¢*2, M(¢*?)), ((1,0), M((1,0)), (v, M(v3)) ((if 73 > 0 then let v> be the
intersection point of the line {x € R?|x; = 1} with the ray {z € R? |z = f + \37%, A3 > 0}) and (¢, M(C))
where ¢ # (1,0) and it is an intersection point of dLg and the line {x € R? |zy = 1}. Let (Z, 5) be a vertex
of QZ. We consider the following cases:
1. Support of 5 is 1, where (7, 5) is tight for 3% No such vertex, since A(¢%2?) < A(¢>?) (i.e, the point
(g2, M(q™?)) is cut off by the inequality 35, 8s; > 1).

2. Support of 5 is 1, where (z, 3) is tight for 8% (¢>2, M(q"?)).

3. Support of 5 is 1, where (Z, 3) is tight for {x € R? |z = 1}: Assume that 73 > 0. Then (v3, M(v?)) is
a vertex.

4. Support of 5 is 2, where (7, 5) is tight for 3% and 3°: Since ; < 1, no such vertex.

5. Support of 5 is 2, where (Z, 5) is tight for 3¢ and {z € R? |z; = 1}: Then Z must lie in the interior of
Lg» and therefore there is no such vertex.

6. Support of 5 is 2, where (7, 5) is tight for 3° and {x € R? |z, = 1}: ((1,0), M((1,0)) and (¢, M(Q)).

7. Support of 5 is 3, where (Z,35) is tight for 4, 8, and {z € R?|z; = 1}: Then (Z,5) must be convex
combination of the points ((0,0), M((0,0))) and ((¥1, y2), M((91,%2))), where (g1, 2) is the intersection
point of 0Lga and OLg different from (0,0). Since from the previous claim, 7; < 1, we obtain no such

vertex.
Finally, observe that all the vertices of Q< and Q2 are of the form (z, M(Z)). Moreover, Z ¢ int(L,). By
Proposition « is therefore valid for conv(Q< U Q2), thus completing the proof. |

The mixing set introduced by Giinliik and Pochet [27] correspond to P(R, f) with a specific R and f.
The induced lattice-free set of mixing inequalities corresponding to the mixing set with two rows is a triangle
of the type T3; see Dey and Wolsey [23] and Dey [20]. An upper bound to the split rank of this inequalities
is proven to be two in Dash and Ginlik [I§]. It can be verified that the split rank implied by the proof
of Proposition is also 2. This bound is tight as shown in Andersen et. al [3], Dey [20], and Dash and
Giinliik [18].

31



8 Four Variable Problems

In this section, we consider the split rank of inequalities Z?:laisi > 1 for P(]

cone{r!,...,r*} = R2

ri, 72,73, 14, f) where

8.1 Q'
This class of inequalities corresponds to L, being a quadrilateral with one side containing more than one
integer point, two sides containing at least one integer point and the fourth side not containing any integer

point in its relative interior.

4 -
/x=00 x%(@0)

Figure 11: A sketch of the proof that a cut whose induced lattice-free set is a quadrilateral of type Q' has
finite split rank

Proposition 8.1 The split rank of an inequality whose induced lattice-free set is a quadrilateral of type Q*
is finite.

Proof: Let Zle a;s; > 1 be a facet-defining inequality such that L, is a quadrilateral of type Q. As
discussed in Section [2] in this case L, is a subset of a lattice-free triangle of type T or T24. If it is a subset
of a lattice-free triangle of type T4, then using Proposition and Lemma the split rank is finite.

Therefore we consider the case where L, is a proper subset of lattice-free triangle of type T.
By a suitable integral translation and unimodular transformation, we can assume that the vertices of L,

are the following: (0,2) = f+ M7l (14+8,1—06) = f+ Xor?, (7,0) = f + X372, (0,0) = f + \gr* where

0<d<landl<~y<2and ) >0. See Figure[Ll]
We may assume that 73 < 0 and r§ > —r3. (If r3 > 0, then consider a new set with all the same data except

with a negative value of 73 such that the ray f+ \r? passes through a point of the form p(1,1)+ (1 — p)(2,0)
where 0 < p < 1. The induced lattice-free set of an inequality Z?Zl &;s; > 1 where &; = o for i € {1, 3,4}
and &9 such that f + g—z lies on the line {z € R?|z; + x5 = 2} is larger that L,, and thus by Lemma
its split rank is at least as large as the split rank of the original inequality «. By similar argument, we may

assume that 73 > —r3).
Now we consider the following two inequalities.
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1.

Let 2 be the intersection point of the line {x € R? | x5 = 0} with the ray {z € R? |z = f+ \r?, A > 0}.
Let p! be the intersection point of the line 2%(1,1) with the ray {z € R? |z = f + Arl, A > 0}. Note
now that the triangle with vertices p!, 22, (0,0) is lattice-free (call this triangle U). This is because, it
is a subset of the set {(z1,22) |0 < zg <1} U{(z1,22)|0 < 1 < 1}. Consider the inequality ¢(U) for
P([rt, 72,73 r4], f). Observe that since p' ¢ Z2, U is a triangle of type T24. Hence by Proposition
the split rank of ¢(U) is finite. Denote 3! := ¢(U).

. Let 23 be the intersection point of the line {x € R?|z1 + x5 = 2} and the ray {z € R? |z = f + ur3,

p > 0}. (Since 73 > —r3, this intersection exists). Let p* be the intersection point of the line z3(1,0)
with the ray {z € R?|z = f + pwr*, u > 0}. Note now that the triangle with vertices (0,2), x*
p* is lattice-free (call this triangle V). This is because, it is a subset of the set {(x1,22)|0 < z1 <
1} U {(z1,22)[1 < @1 + x5 < 2}. Consider the inequality ¢(V') for P([rl,r2 r3 r%], f). Observe that
since p* ¢ Z2, V is a triangle of type T?4. Hence by Proposition the split rank of ¢(V) is finite.
Denote 32 := ¢(V).

We now consider the following set

Q:={(z,5) eER*xR% |z = f+Rs

4
Zﬁilsi >1
i=1

1
251‘251' >1 }
i=1

Since every vertex of Q has a support of 2 (for the s-variables) and since r2 < 0 and 7§ > —r3, it can be
verified that the vertices of this system are:

1.
2.

L

o

® N>

(@', s1) = ((0,2), M"1((0,2)))
(22, 5%) = (22, M*?(2?))
(2%, 5%) := (2, M?>3(a2?))
(z?,5%) == ((2,0), M*%((2,0)))
(2%, 57) := ((1,1), M"2((1,1)))
(2%, 59) == ((1,0), M>%((1,0)))
(z7,57) == ((0,0), M*%((0,0)))
)

Let Q< :=QN{(z,s) € RZx R*|z; <0} and Q= := QN {(z,s) € RZ x R*|z; > 0}.

It can be verified that the vertices of Q< are (z, s) := ((0,2), M*1((0,2))) and (x, s) := ((0,0), M**((0,0))).
By Proposition these points satisfy the goal inequality .

Now consider Q=. Any vertex of Q= is of the form Zj.:l A (29, 87) + Zi:l pr(rF, e*) (where (r*, e*) is
an extreme ray of ). Also note that any vertex of Q= must have a support of at most 3 on the s-variables.

1.

Vertices of support 3: Such a vertex of Q2 is satisfied at equality by the constraints Z?:l 6}5]- >1,
2?21 B7s; > 1,and x; > 1. In particular such a vertex is of the form X5(z%, s%)+ A4 (2?, s*)+ X6 (2%, %)+
As(2®,s%) (where 0 < A5, Ay, A6, Ag < 1 and A5 + Ay + A\g + Ag = 1) since these are the only vertices of
Q that are tight for both the inequalities 2?21 5]1sj > 1 and Zj’:l ﬂjz»sj > 1. (Also note that pup =0
for all k € {1,...,4}, since otherwise the inequalities Z?Zl Bjs; > 1 and Z?:l B7s; > 1 will not be
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satisfied at equality). If A\g > 0, to satisfy the constraint 7 > 1, we must have that A4 > 0. However,
this makes the support of the resulting point 4, a contradiction. Thus, any vertex of support 3 of Q=
is of the form A5(z®,s5) + Ay(x?, s%) + A6 (2%, 4%). Since the points (25, s%), (24, s*), (2©, s) satisfy the
goal inequality, all vertices of support 3 satisfy the goal inequality.

2. Vertices of support 2: Let it be of the form Z?Zl N (27, s7) + 22:1 pr(r?, e*). If A\g > 0, then either
Ao >0, A4 >0, A3 >0, or us > 0 or uz > 0 to satisfy the constraint x; > 1. However, this makes the
support 3, a contradiction. Thus, the vertex is of the form 2]7‘:1 (2, 87) + Zi:l pr(r?, k). Since
the points (z7,s7), 7 € {1,...,7} satisfy the goal inequality, all vertices of support 2 satisfy the goal
inequality.

3. Vertex of support 1: Proof similar to the above case.

So any vertex of Q= is valid for the goal inequality a, completing the proof. O
8.2 (O
[ ] [ ] [ ] [ ] [ ] [ ] [ ]

Figure 12: A sketch of the proof that a cut whose induced lattice-free set is a quadrilateral of type Q2 has
finite split rank

Let Zle a;s; > 1 be a facet-defining inequality such that L, is a quadrilateral of type Q'. By a
suitable integral translation and unimodular transformation, we can assume that the boundary of L, passes
through the four integer points (0,0),(1,0),(0,1),(1,1) where (0,0) = f + A7t + M7t A, Mg > 0; (1,0) =
[+ psr® 4 part ps, pa > 05 (0,1) = f+wvir! + 0912, vy,vp > 05 and (1,1) = f + nor® + n3r®, n2,m3 > 0.
Furthermore we may assume that 0 < f; < 1 since otherwise 0 < fo < 1 and it is possible to apply a
unimodular transformation such that 0 < f; < 1. See Figure [12] for an illustration.

Before explaining the ideas of the proof, we need the following notations.

Construction 8.1 (o', ¢3) Let p* = f + Ml Let g3 be the intersection point of the line p*(0,1) with the
ray {x € R? |z = \or?, Xo > 0}. Similarly let g be the intersection point of the line p*(0,0) with the ray
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{x € R? |z = M1t Ay > 0}, Let A = sup{\ € R, U{+o0} |conv{p*, ¢3,q3} is lattice-free.}. If A = +oo, set

@2 = limy_ 1 00qy and q4 = limy_oq). Else set qo := q3 and q4 == q3. Let g3 = f + A3 be the point such

that either the line segment qaqs or the line segment qaqs contains an integer point and the triangle gaqzqs is

lattice-free. If A = 400, define o' := conv{qs, q3,q4} + cone(r!). Otherwise define o' := conv{p*, g2, q3,q4}
Construct o3 symmetrically by exchanging the role of v and r3.

Proposition 8.2 The split rank of an inequality whose induced lattice-free set is a quadrilateral of type Q>
is finite.

Proof: We define
e For i€ {1,..4}, let w* = f + oy7%, o; > 0 be the vertices of L.
e For i € {0,1}, let y* be the intersection point of the line segment w!'w? and the line {z € R? | 2; = i},

o let Q* == o!, B* = §(Q") and let Q" := o3, 5 := $(Q"),

a,2 ,a,3 b,2
) b b

e We denote by ¢t ¢%2,¢%3,¢»* the vertices of Q* and by ¢!, ¢"2, ¢"3, ¢®* the vertices of Q°; where
q®" (resp. ¢”?) lies on the ray {x € R?| f + \;r’, \; > 0} (If 7§ = 0, and Q® is a subset of the split set,
{x € R?|0 < x5 < 1} then ¢*! is not defined. Similarly for ¢®3, ¢>!, and ¢*3.)

Observe that by construction, Q® and Q° are quadrilaterals of type Q' or triangles of types 728, T24, or
subsets of a split set. This is because if Q® is not a subset of some split set, then by construction either g%
or g% is a vertex of Q® and both these points lie in the interior of L,. Hence they are not integer and Q¢
cannot be a triangle of type T'. Using a similar argument for Q°, we obtain that the split rank of 3¢ and 3°
is finite by Proposition (8.1

In the rest of the proof we assume that Q% and Q° are not subsets of a split set (i.e, ¢*!, ¢®3, ¢"1,
and ¢*?3 are well-defined). This is for simplicity and the proof can be modified for the cases where Q®
and QP are subsets of split sets. Also for the purpose of our proof, it is convenient to consider a weaker
version of 3% for the coefficient of the ray r3 and a weaker version of 3 for the coefficient of r!. We define
Q% := conv{qg®!, ¢*2, 3%, q**}, v := ¢(Q*) where ¢*? is obtained as the intersection point of the line ¢®13°
with {f + X373, A3 > 0}. Similarly Q° := conv{g"!, ¢"2, ¢"3,¢**}, * := ¢(Q®) and @' is the intersection
point of the line ¢*3y* with {f + A7t Ay > 0}.

Claim: ~“ is weaker than . Since ¢ = 3¢ for ¢ € {1,2,4}, we only need to prove that v§ > ¢ or
equivalently A(g*?) < A(¢®3). Observe that by construction A(g*?) < A(w?) and A\(g»*) < A(w*). This
implies A(g®?) > A(w3). On the other hand A(¢g*!) > A(w!) by construction. Since the lines ¢*1g*3 and
wlw? meet at y°, we conclude that A\(g*?) < A(w?) which proves A(g%3) < A(¢*?).

Symmetrically 7° is weaker than 3°. Therefore the split rank of 4 and +° is finite.

We now consider the following set

a,3

Q:={(z,5) ER*xR% |z = f+Rs

4
IR
=1

4
Z'yﬁ’si >1 }.
i=1

We claim that « is valid for conv(Q< U Q=) where Q< := Q N {(z,s) € R? x R} |z; < 0} and Q= :=
QN{(x,s) e R2x R3 |2y > 1}. To do this, we directly check that every vertex of Q= and Q= is valid for .
The proofs for Q< and Q2 being completely symmetric (we exchange the role of 7! and 7% and Q® and Q°),
we only prove it for the vertices of Q<.

We now discuss all the vertices (Z,5) of Q<.

1. Vertices (z, 5) of Q<, where the support of 5 is 1 and (Z, 5) is tight for v%.
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(q@t, MBL(g®1)) is a vertex of Q=. It is valid for « since A(g®!) > A(w!) (see Proposition [7.3)).
(q¥2%, M%2(g™?)) is not a vertex of Q<. Since A(¢*?) < A(w?), ¢*? is a convex combination of f
with w?. Since fi,w? > 0 we obtain that q?’z > 0. Therefore, (¢*2, M?2(q*?)) does not satisfy
T S 0.

(g3, M33(g™3)) is not a vertex of Q<. Since it is not valid for 7* (since A(¢*1) < A(w?) < A(g*1)).
(q@*, M*1(g**)) is not a vertex of Q<. Since A(¢»?) < A(w?), ¢** is a convex combination of f
with w?. Since fi,w? > 0 we obtain that ¢! > 0. Therefore, (¢**, M**(¢**)) does not satisfy
T S 0.

2. Vertices (7, 5) of Q<, where the support of 5is 1 and (7, 5) is tight for .

(g%, ME1(g>1)) is not a vertex of Q<, since A(g>!) < A(w!) < A(¢*!) and therefore it is not valid
for v*.

(g>2%, M?2(g>2)) is not a vertex of Q<. Since A(¢"?) < M(w?), ¢»? is a convex combination of f
with w?. Since f1,w} > 0 we obtain that qll”2 > 0. Therefore, (¢*2, M?2(¢>2)) does not satisfy
T < 0.

("3, M33(g>?)) is not a vertex of Q=, since f; > 0 and r§ > 0.

(g>*, M*4(g>)) is not a vertex of Q<. Since A(¢"*) < Mw?*), ¢®* is a convex combination of f
with w?. Since fi,w} > 0 we obtain that qlf’4 > 0.

3. Vertices (Z,5) of @<, where the support of 5 is 1 and (z, 3) is tight for #; < 0. Let v*" be the intersection
point of {x € R? |z = f + \;rt, \; > 0} with the line {z € R?|z; = 0}.

The point (v29, MBL(v10)) is not a vertex of L, since wi < 0 and therefore, A(g*1) > A(w!) >
A(h9). (Thus (010, ME1(v19)) is not valid for v®.

The point (v3%, M?32(v29)) is a vertex for Q< (if it exists) since w? > 0 and therefore A\(v??) >
A(w?). Note also that the previous statement shows that (v*°, M?2(v29)) is valid for a.
Similarly we can verify that (v39, M33(v1:0)) is not a vertex. Also if (v49, M*4(v10)) exists, then
it is a vertex for Q< and also valid for «.

4. Vertices (7,5) of Q<, where the support of 5 is 2 and (z, 5) is tight for 4 and {x € R? |z, = 0}.

((0,1), MY2((0,1))) is a vertex of Q< and is valid for a.

(y°, MB3(50)) is a vertex of Q= and is valid for a. We remark here that by construction, y° is
the intersection point of conv(¢®!, ¢*3) with the line {x € R?|z; = 0}. Therefore (y°, M13(y?))
is tight for v¢.

((0,0), M14((0,0))) is a vertex of Q< and is valid for a.

All points of the form (z, M?3(z)), (z, M**(Z)), and (Z, M>*(Z)) that are tight for y* satisfy
21 > 0 and are therefore not valid for Q<. Any such point must be convex combination of two of
the three points: (¢*?, M*?(¢*?)), (¢** M>?(¢*?)), (¢**, M**(¢™*)). Since A(¢*?) < A(w?),
Ag®*) < Mw?), ¢»? and ¢** are convex combination of f with w? and w* respectively. Since
f1,w?, w} > 0 we obtain that qf’Q, q?’4 > 0. Moreover since w$ > 0, we obtain ¢%3 > 0.

5. Vertices (7,5) of Q< where the support of 5 is 2 and (z,3) is tight for 4* and {x € R?|z; = 0}.
First consider a point of the form (z, M'2(Z)). There are two cases. Either Z < 1 and therefore,
T € int(conv{f, ¢*1, ¢*?}) and therefore (z, M12(z)) is not valid for 2. On the other hand if Zo > 1,
then Z ¢ int(conv{f,w',w?}) and (z, M12(z)) is valid for a. A similar argument holds for points of
the form (z, M*3(z)) and (x, M1*()) that are tight for 4* and belong to {x € R?|z; = 0}. Finally,
all points of the form (z, M?3(z)), (z, M?%(z)), and (z, M>*(z)) that are tight for 4° satisfy z; > 0
(proof similar to the previous case) and are therefore not valid for Q<. The proof is the same as that
for the previous case.

36



6. Vertices (Z,5) of Q< where the support of 5 is 2 and (%, 5) is tight for v* and ~°.

o If (z, M'2(z)) is tight for v and 4, then (Z, M'2(Z)) is not a vertex of Q<. Since A(¢®') > A(g>*!)
and (0,1) & conv{f,q"1q"?} (as A(@"') < Aw'),A(¢>?) < A(wh)), and (0,1) is in the relative
interior of the line ¢®', ¢*?2, we conclude that any potential intersection point z of g*'¢*? and

q®1q®? satisfies ; > 0 and is therefore not valid for Q<.

o If (7, M'4(z)) is tight for v* and ~°, then (Z, M*(Z)) is not a vertex of Q<. A similar argument
as above shows that x; > 0 and is therefore not valid for Q<.

o If (7, M!3(%)) is tight for v* and A%, then (Z, M!3(Z)) is not a vertex of Q<. Observe that
{z € R?| (z, M*3(x)) is tight for v2} = conv{g®!,q*3}. Also A(¢*') > A(w!), M(@*3) < AM(w?),
y¥ € conv{q®t,q*3}, and Z?Zl a;(MB3(y%); = 1. We therefore obtain the following inclusion,
{z € R?| (z, M'3) is tight for v* and valid for a} = conv{q®?!,y°} C {x € R? |z; < 0}. Similarly
{z € R?|(z, M13) is tight for v and valid for a} = conv{y!,¢*?} C {z € R?|x; > 1}. From
these observations, we conclude that a point Z such that (z, M'3(z)) is tight for v* and +” cannot
be valid for a since it would otherwise belong to conv(g®*,y%) N conv(y*, ¢*3) = 0. Therefore,
(7, M*3(z)) is not valid for o and satisfies 0 < Z; < 1. However, then (z, M!3(Z)) is not valid
for Q<.

e Furthermore all points of the form (z, M?3(z)), (z, M**(z)), and (Z, M>(Z)) that are tight for
7% and ~°, satisfy #; > 0 (proof similar to the previous case) and are therefore not valid for Q<.

7. Vertices (7, 5) of Q< where the support of 5is 3. Then (z, 5) is tight for v%, v and Z; = 0. Since (7, ) is
tight for v* and +°, it must be a convex combination of points of the form (&, M%¥ (%)), i,j € {1,2,3,4},
where (2, M% (%)) are tight for v* and 7*. However from the previous case, such an 7 satisfies z; > 0.
Therefore, such a vertex does not exist. O
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Appendix 1

, (1 - /
((1 -a,h)/a, h) (0. (1 -anya) f(;] €)

Figure 13: For Proof of Observation

Observation 8.1 To simplify the computation of |ulPlul?!|, we suitably rotate and translate the points in
Figure[8 In particular, we rotate so that the line {x € R*|z = 2 + M%, X € R} is the line {x € R? |z = 0}
and the {x € R* |z = f + M2, X\ € R} is the line {x € R? |29 = h} where h > 0. We now translate so that
the point z becomes (0,0). Under this rotation and translation, the line {x € R|x; = 0} becomes the line
{z € R? |ayx1 + agwy = 1} for some a; > 0 and ay > 0. Refer to Figure .

The point (1, l_aﬂ) (representing pl®!) lies on the line {x € R? | ayx1+agre = 1}, where (1—an) > 0. The

2

line passing through (0,0) and (n, 17;2”7) meets the line {x € R? |y = h} at A := ((1"_“;1”77) ,h) (representing

ul¥). Another line passing through (e,0) (this represents 22, i.e, € = |2> — z|) and (), l_a%) meets the line
{z € R?|zy = h} at B := (L=amelemazh 4y ionresenting ul? ). Then |[ul¥ul| = 6(n,€) = |A; — By| =

(1—ain)
ha (1—ain)e—(e—m)ash __ ash
(1—;17]77) o 1(1—a117) == (1—211177 o 1) : U
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