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PROJECTING LATTICE POLYTOPES WITHOUT INTERIOR LATTICE

POINTS

BENJAMIN NILL AND GÜNTER M. ZIEGLER

Abstract. We show that up to unimodular equivalence there are only finitely many d-dimen-
sional lattice polytopes without interior lattice points that do not admit a lattice projection onto
a (d− 1)-dimensional lattice polytope without interior lattice points. This was conjectured by
Treutlein. As an immediate corollary, we get a short proof of a recent result of Averkov, Wagner
&Weismantel, namely the finiteness of the number of maximal lattice polytopes without interior
lattice points. Moreover, we show that in dimension four and higher some of these finitely many
polytopes are not maximal as convex bodies without interior lattice points.

1. Introduction and main results

1.1. Notation. A lattice polytope P ⊂ Rd is the convex hull of finitely many lattice points
(in Zd). We identify two lattice polytopes if they are unimodularly equivalent, i.e., there is
a lattice-preserving affine isomorphism mapping them onto each other. All lattice polytopes
considered here will be d-polytopes, i.e., full-dimensional, dim(P ) = d. The volume of a lattice
polytope is always taken with respect to the given lattice (here, Zd), i.e., the volume of a
fundamental parallepiped [0, 1]d is equal to 1.

In the geometry of numbers, convex bodies (compact convex sets) without lattice points are
often called lattice-free. Sometimes, this terminology is extended to convex bodies without
interior lattice points [2]. However, in the literature the term “lattice-free polytopes” had
already been used to denote empty lattice polytopes [3] [7] [12], i.e., where the only lattice
points are the vertices. In order to avoid these ambiguities we use in this note the following
definition.

Definition 1.1. A convex body P ⊂ Rd is hollow if it does not contain any lattice points in its
interior.

A 0-dimensional lattice polytope (a lattice point) is considered to be hollow. Important
examples of hollow lattice polytopes are Cayley polytopes (lattice polytopes of lattice width
one), i.e., lattice polytopes whose vertices lie on two adjacent lattice hyperplanes, i.e. on two
hyperplanes spanned by lattice points with no lattice points strictly between. Let P ⊂ Rd be a
lattice polytope. We denote by a lattice projection a surjective affine-linear map φ from Rd to a
vector space V of dimension m such that the kernel of φ is affinely generated by lattice points,
or equivalently, such that φ(Rd) is a lattice of rank m. By choosing an isomorphism φ(Rd) ∼= Zm

we can identify V ∼= Rm, so φ(P ) ⊂ Rm is a lattice polytope. For instance, Cayley polytopes
are precisely those lattice polytopes admitting a lattice projection onto [0, 1].

1.2. The main theorem. Lattice polytopes without interior points are of interest in geometry
of numbers, optimization and Ehrhart theory, e.g., [18] [19] [5] [6] [2]. The only hollow 1-polytope
is [0, 1]. Hollow polygons are either isomorphic to conv{(0, 0), (2, 0), (0, 2)} or Cayley polytopes,
see e.g. [17]. In dimension three, so far no complete classification exists, however recently some
significant progress was made [20] [21] [1] [2]. A famous theorem by Howe [18] states that empty
lattice 3-polytopes are Cayley polytopes. In [20] Treutlein used this result to prove that hollow
3-polytopes are either Cayley polytopes, admit a lattice projection onto conv{(0, 0), (2, 0), (0, 2)}
or belong to a finite set of (not yet completely determined) exceptions. He conjectured that such
a result should hold in any dimension. The confirmation of this conjecture is the main result of
this paper.
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Theorem 1.2. Any hollow lattice d-polytope P admits a lattice projection onto a hollow lattice
(d− 1)-polytope, except if P belongs to one of finitely many exceptions.

The proof can be found in Section 2. It follows from combining the main results in two
fundamental papers in the geometry of numbers: [11] by Kannan and Lovász, and [16] by
Pikhurko. Roughly speaking, Kannan and Lovász showed that if the volume of a hollow convex
body is large enough, then it can be projected onto a lower-dimensional convex body where any
lattice point lies arbitrarily close to the boundary. On the other hand, Pikhurko proved that
such a lattice polytope has to be hollow.

1.3. Maximal hollow lattice polytopes. We say that a hollow lattice polytope is maximal
hollow if it is not properly contained in a larger hollow lattice polytope. As a corollary of Theo-
rem 1.2 we get a finiteness result, which was recently proven by Averkov, Wagner & Weismantel
[2, Theorem 2.1]:

Corollary 1.3. There are only finitely many maximal hollow lattice d-polytopes. Moreover, if a
hollow lattice polytope is one of the exceptions in Theorem 1.2, then it is contained in a maximal
hollow lattice polytope.

Proof. Any lattice d-polytope P that admits a lattice projection onto a hollow lattice polytope
is necessarily also hollow. In particular, any such lattice polytope P is strictly contained in a
bigger hollow lattice polytope, so it cannot be maximal. On the other hand, if a hollow lattice
polytope is not contained in a maximal one, then it is contained in an infinite inclusion-chain
of hollow lattice polytopes. Hence by Theorem 1.2 one of these bigger hollow lattice polytopes
admits a lattice projection onto a lower-dimensional hollow lattice polytope. �

Let us denote the finite list of maximal hollow lattice d-polytopes by Ed. The previous result
shows that it is theoretically possible to completely ‘classify’ all hollow lattice d-polytopes by
determining Ed′ for d

′ ≤ d. We have E1 = ∅ and E2 = {conv{(0, 0), (2, 0), (0, 2)}}.

For E3 an important partial result was achieved in [2] using a relaxed notion of maximality.
For this, let us compare being maximal as a hollow lattice polytope with being maximal as a
hollow convex body. As was observed in [14], a convex body is maximal as a hollow convex body
if and only if it is a hollow polytope such that each facet contains a lattice point in its relative
interior. Let us denote by Md the set of lattice d-polytopes which are maximal as hollow convex
bodies. Of course, Md ⊆ Ed. We observe that equality holds for d ≤ 2. However, for d ≥ 4 the
inclusion Md ( Ed is strict:

Theorem 1.4. For d ≥ 4, there are lattice d-polytopes that are maximal hollow lattice polytopes
but not maximal hollow convex bodies.

The proof is given in Section 3. This leaves the case d = 3, where it is believed but still open
that there is no difference in these two notions of maximality.

Question 1.5. Is M3 = E3 ?

In [20] [21] it was shown that |M3| ≥ 10. Recently, in [2] it was proven that |M3| = 12.
Therefore, confirming Question 1.5 would finish the classification of E3.

The method of proof of Theorem 1.2 yields an upper bound on the volume of a lattice polytope
in Ed. However, already for d = 3 this yields a number with 117 digits. Using the results of
Pikhurko [16] we give a slightly more reasonable bound, to be proved at the end of Section 2:

Proposition 1.6. The volume of a lattice polytope in E3 is at most 4106.

We remark that the maximal volume of a lattice polytope in M3 is 6. It is likely that the
methods of Treutlein [20] [21] could eventually lead to a sharpening of this bound or even a
resolution of Question 1.5.



LATTICE POLYTOPES WITHOUT INTERIOR LATTICE POINTS 3

1.4. Lattice width. One of the main motivation to study hollow lattice polytopes comes from
the general interest in geometry of numbers and optimization in flatness and lattice width of
convex bodies, see e.g. [5]. The lattice width of a lattice polytope is defined as the infimum of
max(u(P )) −min(u(P )) over all non-zero integer lattice directions u.

Corollary 1.7. The maximal lattice width of d-dimensional hollow lattice polytopes equals the
maximal lattice width of lattice polytopes in Ed′ for d′ ≤ d. Moreover, there are only finitely
many d-dimensional hollow lattice polytopes whose lattice width is larger than that of any (d−1)-
dimensional hollow lattice polytope.

Proof. Let P be a d-dimensional hollow lattice polytope with a lattice projection onto a (d−1)-
dimensional hollow lattice polytope P ′. Then the lattice width of P is at most the lattice width
of P ′. �

The reader may compare this result with the conjecture on empty lattice d-simplices in [9,
Conj. 7], which was recently proven for d ≤ 4 [4].

2. Proofs of Theorem 1.2 and Proposition 1.6

We will prove a slightly more general version of Theorem 1.2. Throughout, let P be a lattice
d-polytope. We denote the interior of P by int(P ). For a positive integer s, let us define as in
[16]

Is(P ) := int(P ) ∩ sZd.

We say that a lattice polytope P is s-hollow, if Is(P ) = ∅.

Theorem 2.1. Let d, s ≥ 1 be fixed. Then any s-hollow lattice d-polytope P admits a lattice
projection onto an s-hollow (d − 1)-dimensional lattice polytope, except if P belongs to one of
finitely many exceptions. The volume of any such exceptional s-hollow lattice polytope is bounded
by

sd
(

8(d− 1)(8s + 7)2
2d−1

+ 1
)d

.

In particular, as in the proof of Corollary 1.3, we get the following finiteness result, which
was recently proven in [2]:

Corollary 2.2. Let d, s ≥ 1 be fixed. Then there are only finitely many maximal s-hollow lattice
d-polytopes.

In order to prove Theorem 2.1 we need the following notion, which was introduced in [11].

Definition 2.3. A point w ∈ int(P ) is δ-central for some δ > 0 if for every y ∈ P there is some
z ∈ P such that z − w = δ(z − y), i.e., z − w = − δ

1−δ
(y −w).

Here is one of the main results in [11], Corollary (3.8), in a version for lattice polytopes.

Theorem 2.4 (Kannan & Lovász 1988 [11]). Let P ⊂ Rd be an s-hollow lattice d-polytope. Let
∆1, . . . ,∆d be real numbers with 0 = ∆0 < ∆1 < · · · < ∆d ≤ 1. Then there is an i ∈ {0, . . . , d−1}
and an i-dimensional subspace U ⊂ Rd affinely spanned by elements in sZd such that the lattice
projection π : Rd → Rd/U satisfies the following two properties:

(1) π(P ) does not contain points in Is(π(P )) that are δ-central with δ > ∆i,
(2) the volume of π(P ) (w.r.t. π(Zd)) is at most sd−i/(∆i+1 −∆i)

d−i.

Proof. We want to apply [11, Corollary (3.8)] to the s-hollow lattice polytope P . Since this
result is only formulated for convex bodies that contain no points in the lattice sZd, we choose
a fixed point x ∈ int(P ) and approximate P by Pt := t(P − x) + x for 0 < t < 1. Let b1, . . . , bd
be the reduced basis (see [11, Definition (3.3)]) for the lattice sZd with respect to the centrally
symmetric convex body Pt−Pt = t(P −P ). By definition, this basis is independent of the choice
of t. For Pt it is shown in [11, proof of Cor. (3.8)] that there is an i ∈ {0, . . . , d − 1} such that
the projection along the subspace spanned by b1, . . . , bi (for i > 0; respectively, along {0} for
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i = 0) satisfies the two desired conditions. Since we may assume that i is the same for infinitely
many t arbitrarily close to 1, the statement follows. �

Next, let us recall [16, Theorem 4]. For this, we need the following definition:

Definition 2.5. The coefficient of asymmetry of an interior point w of P is defined as

ca(w,P ) := max
|y|=1

max{λ | w + λy ∈ P}

max{λ | w − λy ∈ P}

This notion is just a variant of the above definition of centrality: An interior point w of P
with coefficient of asymmetry c is 1

c+1
-central.

Theorem 2.6 (Pikhurko 2001 [16]). Let P ′ ⊂ Rk be a k-dimensional lattice polytope with
interior points in sZk. Then there is a point w ∈ Is(P

′) with

ca(w,P ′) ≤ 8k(8s + 7)2
2k+1

− 1.

In particular, w is δ-central for

δ =
1

8k(8s + 7)22k+1 .

After these preparations, the proof of Theorem 2.1 is quite straightforward.

Proof of Theorem 2.1. We apply Theorem 2.4 to the numbers

∆j :=
1

8(d − j)(8s + 7)2
2(d−j)+1

+ 1

with j = 1, . . . , d. Note that 0 < ∆1 < · · · < ∆d = 1.
In the case i = 0, we observe from (2) that the volume of π(P ) = P is bounded by sd/∆d

1, a
function in d. Hence, a result of Lagarias and the second author [13, Thm. 2] implies that there
are only finitely many lattice polytopes of at most this volume.

So, let i ∈ {1, . . . , d − 1}. We may assume that the (d − i)-dimensional lattice polytope
π(P ) is not s-hollow. We apply Theorem 2.6 for P ′ := π(P ) and k := d − i. Hence the point
w ∈ Is(π(P )) is δ-central with δ > ∆i, a contradiction to condition (1). �

Finally, the following sharpening of Theorem 2.6 yields the proof of Proposition 1.6.

Lemma 2.7. Let P ′ be a lattice polygon with interior lattice points. Then there is a point
w ∈ I1(P

′) with

ca(w,P ′) ≤
2

0.124904
− 1

Proof. Let P ′ be a lattice polygon with interior lattice points. Let us choose a triangle S ⊂ P ′

of maximal area. We may assume that the vertices v0, v1, v2 of S are also vertices of P ′ and that
P ′ ⊆ (−2)S + (v0 + v1 + v2), see [16]. We consider three cases.

(1) If S has no lattice points except its vertices, then it is unimodular equivalent to the
unimodular triangle conv{(0, 0), (1, 0), (0, 1)}. Therefore, P ′ is contained in (−2)S +
(1, 1), which is hollow, a contradiction.

(2) If S is hollow but has a lattice point in the interior of an edge, then by the classification
of hollow lattice polygons we may assume that S is of one of the following:
(a) S = conv{(0, 0), (2, 0), (0, 2)}. In this case, by going through the possible lattice

subpolygons of (−2)S + (2, 2) one checks that there always is an interior lattice
point w of P ′ with ca(w,P ′) ≤ 3.

(b) S = conv{(0, 0), (k, 0), (0, 1)} for some k ≥ 2. The facts that P ′ is not hollow and
that S has maximal area imply that P ′ = conv{(0, 0), (k, 0), (0, 1), (k,−1)}. In this
case, (0, ⌊k/2⌋) is an interior lattice point w of P ′ with ca(w,P ′) ≤ 2.
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(3) If S has interior lattice points, then we can read off from [16, Table 1] (‘guaranteed’ lower
bound for β(2, 1)) that there is an interior lattice point w with ca(w,S) ≤ 1

0.124904
− 1.

Therefore, [16, Lemma 3] yields that ca(w,P ′) ≤ 2 ca(w,S)+2−1 = 2
0.124904

−1 ≈ 15.012.

�

Proof of Proposition 1.6. Here d = 3 and s = 1. We define ∆1 := 0.124903/2, and choose
∆1 < ∆2 < 1/3 < ∆3 = 1. Then Lemma 2.7 and the above proof of Theorem 2.1 yields
1/(∆1)

3 ≈ 4105.55 as the improved bound on the volume of a hollow lattice 3-polytope P in the
case i = 0. �

3. Proof of Theorem 1.4

In the following we describe for each d ≥ 4 a d-dimensional lattice polytope ∆(d)I that is hollow
(no interior lattice point), is maximal as a hollow lattice polytope (it is not properly contained in
a hollow lattice polytope), but is not maximal as a hollow convex body (it is properly contained
in the hollow simplex ∆(d)).

Definition 3.1. For d ≥ 3 let ∆(d) be the hollow simplex given by

∆(d) :=
{

x ∈ Rd : xi ≥ 0 for 1 ≤ i ≤ d,

x1
2

+
x2
4

+ · · · +
xd−3

2d−3
+

xd−2

2d−2
+

xd−1

2d−1 − 1
+

xd
2d−1 + 1 + α

≤ 1
}

= conv{0, 2e1, 4e2, . . . , 2
d−2ed−2, (2

d−1 − 1)ed−1, (2
d−1 + 1 + α)ed},

where α := 1

2d−2−1
> 0. Note that this is not a lattice simplex for d > 3, i.e. when α < 1.

Theorem 3.2. For d ≥ 4 the integer hull ∆(d)I := conv(∆(d) ∩ Zd) is given by

∆(d)I =
{

x ∈ Rd : xi ≥ 0 for 1 ≤ i ≤ d,

x1
2

+
x2
4

+ · · ·+
xd−3

2d−3
+

xd−2

2d−2
+

xd−1

2d−1 − 1
+

xd
2d−1 + 1 + α

≤ 1,

x1
2

+
x2
4

+ · · ·+
xd−3

2d−3
+

2xd−2 + xd−1 + xd
2d−1 + 1

≤ 1
}

= conv{0, 2e1, 4e2, . . . , 2
d−2ed−2, (2

d−1 − 1)ed−1,

(2d−1 + 1)ed, ed−1 + 2d−1ed, ed−2 + (2d−1 − 1)ed}.

This polytope is a (d− 3)-fold pyramid over a triangular prism.
This lattice polytope is hollow. It is not contained properly in any larger d-dimensional lattice

polytope, but it is properly contained in ∆(d).

Proof. One first checks that the vertex description and the inequality description given in the
definition of ∆(d)I above are equivalent.

If one takes the inequality system given for ∆(d)I as the definition, then it is clear that ∆(d)I
arises from ∆(d) by a hyperplane cut that cuts off the last, non-integral vertex (2d−1+1+α)ed.
The hyperplane cut goes through the d− 3 vertices 2e1, 4e2, . . . , 2

d−3ed−3, while it cuts trough
the tetrahedron spanned by the other 4 vertices. This shows that ∆(d)I is a (d−3)-fold pyramid
over a tetrahedron with a vertex cut off, that is, a triangular prism.

Using this combinatorial description one easily checks that the vertices of this polytope ∆(d)I
are indeed as listed in Theorem 3.2; thus, in particular, ∆(d)I is a lattice polytope.

Next we check that ∆(d)I is indeed the full integer hull of ∆(d), that is, that there are no
integer points that would satisfy

xi ≥ 0 for 1 ≤ i ≤ d, (1)

x1
2

+
x2
4

+ · · ·+
xd−3

2d−3
+

xd−2

2d−2
+

xd−1

2d−1 − 1
+

xd
2d−1 + 1 + α

≤ 1, (2)

x1
2

+
x2
4

+ · · ·+
xd−3

2d−3
+

2xd−2 + xd−1 + xd
2d−1 + 1

> 1. (3)
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For the proof we rewrite the last two inequalities. We multiply (2) by −(2d−1 + 1 + α) as

−
d−3
∑

i=1

(2d−1+1+α)
xi
2i

−(2d−1+1+α)
xd−2

2d−2
−(2d−1+1+α)

xd−1

2d−1 − 1
−xd ≥ −(2d−1+1+α) (4)

and we multiply the strict inequality (3) by 2d−1 + 1,

d−3
∑

i=1

(2d−1 + 1)
xi
2i

+ 2xd−2 + xd−1 + xd > 2d−1 + 1,

and then convert it into the equivalent (with respect to integer solvability) nonstrict inequality

d−3
∑

i=1

(2d−1 + 1)
xi
2i

+ 2xd−2 + xd−1 + xd ≥ 2d−1 + 1 +
1

2d−3
. (5)

Adding the two inequalities (4) and (5) we obtain

d−3
∑

i=1

(−α)
xi
2i

+
−1− α

2d−2
xd−2 +

−2− α

2d−1 − 1
xd−1 ≥

1

2d−3
− α.

Clearly, for d ≥ 4, that is when 1

2d−3 − α = 1

2d−3 − 1

2d−2−1
> 0, this cannot be satisfied while

x1, . . . , xd−1 are nonnegative, by (1). (The inequality “xd ≥ 0” is not needed for this.)

Finally, we show that ∆(d)I is maximal as a hollow lattice polytope. For this, we check that
out of the d + 2 facets the first d + 1 contain relatively interior points, which are 1 − e1,1 −
e2, . . . ,1 − ed for the first d of them and 1 (denoting the all-ones vector) for the next to last
one. If an additional vertex were added to ∆(d)I that is beyond any of these (in the sense
of Grünbaum [8] [22]), then this automatically results in an interior lattice point. Thus any
additional vertex must be beyond the last facet, but beneath all the other facets (or on their
hyperplanes). However, there is no such integral point, because the first d+1 inequalities define
∆(d), and all integral points of this simplex lie in ∆(d)I . �
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