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Abstract

This paper considers a one-stage stochastic mathematical program with a complementarity
constraint (SMPCC) where uncertainties appear in both the objective function and the comple-
mentarity constraint, and an optimal decision on both upper and lower level decision variables must
be made before the realization of the uncertainties. A partially exactly penalized sample average
approximation (SAA) scheme is proposed to solve the problem. Asymptotic convergence of optimal
solutions and stationary points of the penalized SAA problem is carried out. It is shown under
some moderate conditions that the statistical estimators obtained from solving the penalized SAA
problems converge almost surely to its true counterpart as the sample size increases. Exponential
rate of convergence of estimators is also established under some additional conditions.

Keywords: MPEC-metric regularity, NNAMCQ, error bound, partial exact penalization, M-
stationary point.
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1 Introduction

In this paper we study the following stochastic mathematical program with complementarity con-
straints (SMPCC):

min
x,y

E[f(x, y, ξ(ω))]

s.t. (x, y) ∈ D,

0 ≤ E[F (x, y, ξ(ω))] ⊥ y ≥ 0,

(1)

where D is a nonempty closed subset of IRn+m, f : IRn × IRm × IRd → IR, F : IRn × IRm ×
IRd → IRm are continuously differentiable, ξ : Ω → Ξ ⊂ IRd is a vector of random variables
defined on the probability space (F ,Ω, P ), E[·] denotes the expected value with respect to the
distribution of ξ and a ⊥ b means that vector a is perpendicular to vector b. SMPCC is also
known as stochastic mathematical program with equilibrium constraints (SMPEC) in that the
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complementarity constraint often represents an equilibrium in practical applications. As far as we
are concerned, there are essentially two classes of SMPECs being investigated up to date: one-stage
SMPECs where both upper and lower level decision variables must be chosen before realization of
uncertainties and two-stage SMPECs where lower level decision variables must be chosen after
upper level decision is made and the uncertainties are realized [28]. Obviously our model is a one-
stage SMPEC. Like deterministic MPECs, SMPEC models have many applications in economics,
engineering, networks and management sciences, see for instances [4, 39–41] and the references
therein.

In this paper, we are concerned with numerical methods for solving SMPCC (1). Observe that
if we know the distribution of ξ and can obtain a closed form of E[f(x, y, ξ)] and E[F (x, y, ξ)], then
SMPCC (1) reduces to a deterministic MPCC and subsequently we can solve it by an existing
numerical method for deterministic MPECs. In practice, the distribution of ξ is often unknown or
it is numerically too expensive to calculate the expected values. Instead it might be possible to
obtain a sample of the random vector ξ from past data. This motivates one to find an approximate
optimal solution to (1) on the basis of the sampling information.

A well-known approximation method in stochastic programming based on sampling is sample
average approximation (SAA). That is, if we have an independent identically distributed (iid) sam-
ple ξ1, · · · , ξN of random vector ξ, then we may use the sample average 1

N

∑N
k=1 f(x, y, ξk) and

1
N

∑N
k=1 F (x, y, ξk) to approximate E[f(x, y, ξ)] and E[F (x, y, ξ)]. This kind of statistical approx-

imation is guaranteed by the classical law of large numbers in statistics. Consequently we may
consider the following approximate SMPCC problem:

min
x,y

1
N

∑N
k=1 f(x, y, ξk)

s.t. (x, y) ∈ D,

0 ≤ 1
N

∑N
k=1 F (x, y, ξk) ⊥ y ≥ 0.

(2)

We call SMPCC (1) the true problem and (2) the sample average approximation (SAA) problem.
SAA method is a popular method in stochastic programming and it has been applied to solve SM-
PECs over the past few years although most of the applications are focused on two-stage SMPECs,
see for instance [37,38,43] and the references therein.

The SMPCC model (1) and its sample average approximation (2) are not new either. Indeed,
Birbil et al [2] studied the model and applied the sample path optimization (SPO) method [31]
to obtain some approximation results. SPO is essentially SAA although the former is slightly
more general. More recently, Meng and Xu [21] discussed the SAA problem (2) and obtained
exponential convergence of weak stationary points of SAA problem (2), that is, for any ε > 0, there
exist constants c(ε) > 0 and k(ε) > 0 and positive integer N(ε) ≥ 0 such that

Prob(‖xN − x∗‖ ≥ ε) ≤ c(ε)e−k(ε)N

for N ≥ N(ε), where x∗ and xN denote the weak stationary points to the true problem (1) and the
SAA problem (2) respectively.

The results obtained in [2,21] are mainly for weak stationary points and they are obtained under
very strong assumptions such as upper-level strict complementarity condition (ULSC), lower-level
strict complementarity condition (LLSC) or strong regularity condition. It is well-known in the
MPEC literature that the weak stationary condition is usually too weak and most of numeri-
cal algorithms aim at finding at least Clarke stationary points (see Definition 2.14 for definition
and relationships of various stationary points of MPEC). Moreover most algorithms for solving
MPECs require a very strong constraint qualification called MPEC LICQ; see [15] for discussion
on this issue. For stochastic MPECs, it is difficult to prove the convergence by SAA to a MPEC
stationary point that are stronger than the weak stationary point since the degenerate index set
{i : 1

N

∑N
k=1 F (x, y, ξk) = 0, yi = 0} changes as the sample size N changes and all MPEC station-

ary points except the weak stationary point depend on this index set. In this paper, we resolve
these issues by using partial exact penality method a technique recently proposed by Liu, Ye and
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Zhu [15] for deterministic MPCCs under MPEC metric reqularity (see Definition 2.11) which is a
much weaker constraint qualification than MPEC LICQ.

Specifically, we introduce a new decision vector z and reformulate the true problem (1) as

min
x,y,z

E[f(x, y, ξ(ω))]

s.t. (x, y, z) ∈ D × IRm,

E[F (x, y, ξ)]− z = 0,

0 ≤ z ⊥ y ≥ 0

(3)

and the SAA problem (2) as:

min
x,y,z

1
N

∑N
k=1 f(x, y, ξk)

s.t. (x, y, z) ∈ D × IRm,
1
N

∑N
k=1 F (x, y, ξk)− z = 0,

0 ≤ z ⊥ y ≥ 0.

(4)

We then consider a partial exact penalization of the reformulated true problem (3):

min
x,y,z

ψ(x, y, z, ρ) := E[f(x, y, ξ(ω))] + ρ‖E[F (x, y, ξ)− z]‖1
s.t. (x, y, z) ∈ D × IRm,

0 ≤ z ⊥ y ≥ 0,

(5)

where ρ is a positive constant, and a partial exact penalization of the reformulated SAA problem
(4):

min
x,y,z

ψN (x, y, z, ρN ) := 1
N

∑N
k=1 f(x, y, ξk) + ρN‖ 1

N

∑N
k=1 F (x, y, ξk)− z‖1,

s.t. (x, y, z) ∈ D × IRm,

0 ≤ z ⊥ y ≥ 0,

(6)

where ρN is a positive number. Here and later on ‖ · ‖1 denotes the 1-norm of a vector. There are
three main benefits to consider the partial penalization:

• Since the original problem (1) does not satisfy usual MFCQ, we cannot establish a full exact
penalization of all constraints 1 under MFCQ. Partial exact penalization is, however, feasible
under MPEC-GMFCQ [?, 46] or even weaker constraint qualification such as MPEC-metric
regularity or equivalently MPEC-NNAMCQ to be defined in Section 2 as we keep the com-
plementarity constraint in (5).

• For the convergence result although we only require MPEC metric regularity for the original
problem (1) and hence MPEC-LICQ may fail for the original problem (1), the MPEC-LICQ
is satisfied at every feasible point of the penalized problem regardless of structure of the
original problem. From a numerical perspective, this is very important as the stability of
many existing numerical methods such as the NLP-regularization method [35] depend on
MPEC-LICQ. Indeed, this is a key motivation for Liu et al to consider the partial exact
penalization in [15].

• The constraints of both problems (5) and (6) are independent of sampling and this will
significantly simplify our convergence analysis.

In this paper, we analyze the convergence analysis of optimal solutions and stationary points of
(6) as sample size increases, assuming (6) can be solved by a deterministic MPCC solver which
can effectively deal with the nonsmoothness in the objective. We do so by showing the existence

1Here full penalization means the whole complementarity constraint in (1) is penalized in form of |E[F (x, y, ξ(ω))]T y|+
‖y+‖1 + ‖E[F (x, y, ξ(ω))]+‖1 or the complementarity constraint 0 ≤ z ⊥ y ≥ 0 in (5) is also penalized to the objective

in form of |yT z|+ ‖y+‖1 + ‖z+‖1, where a+ = max(0, a) for a real number a and the maximum is taken componentwise

when a is a vector.
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of bounded penalty parameters in both (5) and (6) and this is indeed another departure from the
existing research in the literature of SMPECs [13,14]. Moreover, we consider a smoothing method
proposed by Liu et al [15] to tackle the nonsmoothness. That is, we consider a smooth partial
penalty problem of (4):

min
x,y,z

ψ̂N (x, y, z, ρN , δN )

s.t. (x, y, z) ∈ D × IRm,

0 ≤ z ⊥ y ≥ 0,

(7)

where

ψ̂N (x, y, z, ρN , δN ) :=
1
N

N∑

k=1

f(x, y, ξk) + ρN

m∑

i=1

√√√√(
1
N

N∑

k=1

Fi(x, y, ξk)− zi)2 + δN

and δN ↓ 0 is a smoothing parameter. Since the problem is smooth and the MPEC-LICQ holds,
existing MPEC solvers can be used to solve the problem or at least to find some stationary points.

The rest of the paper is organized as follows. In section 2, we review some definitions and
preliminary results in variational analysis and MPECs. In section 3, we discuss the relationship
between the problems (1) and (5) and boundedness of penalty parameters of (6). In section 4, we
investigate the uniform convergence of the objective function and its subdifferential of the penalty
problem (6). In section 5, we use the uniform convergence results established in section 4 to analyze
the convergence of optimal solutions and stationary points obtained from solving the SAA penalty
problem (6). Finally, in section 6 we provide some numerical tests on the smoothed SAA penalty
problem (7) along with some convergence analysis.

2 Preliminaries

Throughout this paper, we use the following notation. ‖·‖ denotes the Euclidean norm of a vector, a
matrix and a compact set of vectors/matricies in a finite dimensional space. When M is a compact
set,

‖M‖ := max
M∈M

‖M‖.
‖ · ‖1 denotes the 1-norm of a vector. We use d(x,D) := infx′∈D ‖x − x′‖ to denote the distance
from a point x to a set D. For two compact sets C and D,

D(C,D) := sup
x∈C

d(x,D)

denotes the deviation of C from D. Equivalently

D(C,D) = inf{t ≥ 0 : C ⊆ D + tB},
where B denotes the closed unit ball in the corresponding finite dimensional space here and
throughout the paper. We use C + D to denote the Minkowski addition of the two sets, that
is, {C + D : C ∈ C, D ∈ D}; B(x, γ) the closed ball with center x and radius γ; aT b the scalar
product of vectors a and b, where aT denotes the transpose of vector a. If A is a matrix, AT b

denotes matrix vector multiplication. When f is real valued function, ∇f(x) denotes the gradient
of f at x (which is a column vector) and when f is a vector valued function, ∇f(x) represents the
classical Jacobian of f at x where the transpose of the gradient of the j-th component of f forms
the j-th row of the Jacobian.

2.1 Variational analysis

Let X be a finite dimensional space and Γ : X ⇒ IRn be a set-valued mapping. We say that Γ is
upper semi-continuous at a point x ∈ X if for any ε > 0, there exists a number δ > 0 (which may
depends on x) such that

Γ(x′) ⊆ Γ(x) + εB, ∀x′ ∈ x + δB.



5

Definition 2.1 (Uniform Upper Semi-continuity) Let X be a finite dimensional space and
Γ : X ⇒ IRn be a set-valued mapping. We say Γ is uniformly upper semi-continuous over a set
X ⊆ X if for any given ε > 0, there exists a number δ > 0 such that

sup
x∈X

D(Γ(x′),Γ(x)) ≤ ε, ∀x′ ∈ x + δB.

Note that many subdifferential mappings are upper semicontinuous but not uniformly upper
semicontinuous. However, when X consists of a finite number of points, then the uniform upper
semi-continuity is equivalent to pointwise upper semi-continuity. We need the concept in Lemma
4.1.

Definition 2.2 (Normal Cone [25]) Let D be a nonempty closed subset of IRn. Given z ∈ D,
the convex cone

N π
D(z) :=

{
ζ ∈ IRn : ∃σ > 0, such that ζT (z′ − z) ≤ σ‖z′ − z‖2 ∀z′ ∈ D}

is called the proximal normal cone to set D at point z. By convention, for z 6∈ D, N π
D(z) = ∅. The

closed cone
ND(z) := lim sup

z′→z
N π
D(z′)

is called the limiting normal cone (also known as Mordukhovich normal cone or basic normal cone)
to D at point z.

Note that the limiting normal cone is in general smaller than the Clarke normal cone which is
defined as the polar cone of the Clarke tangent cone T c

D(z), that is,

N c
D(z) =

{
ζ ∈ IRn : ζT η ≤ 0, ∀η ∈ T c

D(z)
}

,

where T c
D(z) = lim inf

t→0, D3z′→z

1
t (D − z′). In the case when D is convex, the proximal normal cone,

the limiting normal cone and the Clarke normal cone coincide, see [25,32].
The following expressions for the limiting normal cone can be easily derived, see e.g. [45, Propo-

sition 3.7].

Proposition 2.3 Let W = {(y, z) ∈ IRm × IRm : 0 ≤ z ⊥ y ≥ 0}. The limiting normal cone of W
at (y, z) ∈ W is

NW(y, z) =





ui = 0, if yi > 0,

(u, v) ∈ IRm × IRm : vi = 0, if zi > 0,

either uivi = 0, or ui < 0, vi < 0, if yi = zi = 0,



 .

Definition 2.4 (Subdifferentials) Let f : IRn → IR be a lower semicontinuous function and
finite at x ∈ IRn. We define the proximal subdifferential of f at x to be the set

∂πf(x) := {ζ ∈ IRn :

∃σ > 0, δ > 0 such that f(y) ≥ f(x) + ζT (y − x)− σ‖y − x‖2 ∀y ∈ B(x, δ)}

and the limiting (Mordukhovich or basic [25]) subdifferential of f at x to be the set

∂f(x) = lim sup
x′

f→ x

∂πf(x′),

where x′
f→ x signifies that x′ and f(x′) converge to x and f(x) respectively. When f is Lipschitz

continuous near x, the convex hull of ∂f(x) coincides with the Clarke subdifferential [5], denoted
by ∂cf(x), that is, conv∂f(x) = ∂cf(x).

For set-valued mappings, the definition for limiting normal cone leads to the definition of
coderivative of a set-valued mapping.
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Definition 2.5 Let X,Y be finite dimensional spaces and Γ : X ⇒ Y be a set-valued mapping with
a closed graph. Let (x̄, ȳ) ∈ gph Γ := {(x, y)|y ∈ Γ(x)}. The set-valued mapping D∗Γ(x̄|ȳ) from, Y

to X defined by
D∗Γ(x̄|ȳ)(η) = {ξ ∈ X : (ξ,−η) ∈ NgphΓ

((x̄, ȳ))},
is called the coderivative of Γ at point (x̄, ȳ). The symbol D∗Γ(x̄) is used when Γ is single-valued
at x̄ and ȳ = Γ(x̄).

In the special case when a set-valued mapping is single-valued, the coderivative is related to the
limiting subdifferential in the following way.

Proposition 2.6 ( [24, Proposition 2.11]) Let X, Y be finite dimensional spaces and Γ : X → Y

be a single-valued and Lipschitz continuous near x̄. Then D∗Γ(x̄)(η) = ∂〈η, Γ〉(x̄) ∀η ∈ Y .

The following sum rule will be useful.

Proposition 2.7 (see [24, Corollary 4.4]) Let X,Y be finite dimensional spaces and φ : X → Y

is strictly differentiable near x̄ and Ω is closed. Let Γ(x) = −φ(x) + Ω and 0 ∈ Γ(x̄). Then

D∗Γ(x̄|0)(η) = −∇φ(x̄)T η − η ∈ NΩ(φ(x̄)).

Definition 2.8 (Metric Regularity) Let X, Y be finite dimensional spaces and Γ : X ⇒ Y be
a set-valued mapping. Let (x̄, ȳ) ∈ gph Γ. We say Γ is metrically regular at x̄ for ȳ if there exist
constants κ > 0, δ > 0 such that

d(x, Γ−1(y)) ≤ κd(y, Γ(x)) ∀(x, y) ∈ (x̄, ȳ) + δB. (8)

The regularity modulus of Γ at x̄ for ȳ is the value

reg Γ(x̄|ȳ) := inf{κ ∈ (0,∞)| (8) holds } ∈ [0,∞]. (9)

Proposition 2.9 (Estimate for Lipschitz perturbations) [7, Theorem 3.3] Consider any set-
valued mapping Γ : X ⇒ Y and any (x̄, ȳ) ∈ gphΓ at which gph Γ is locally closed. Consider also
a mapping G : X → Y . If reg Γ(x̄|ȳ) < κ < ∞ and lip G(x̄) < λ < κ−1, then

reg(Γ + G)(x̄|ȳ + G(x̄)) <
κ

1− λκ
, (10)

where lip G(x̄) denotes the Lipschitz modulus of a single-valued mapping G at x̄, i.e.,

lip G(x̄) := lim sup
x,x′→x̄,x,x′ 6=x̄

‖G(x′)−G(x)‖
‖x′ − x‖ . (11)

Proposition 2.10 (Mordukhovich’s Criteria for Metric Regularity) [23, Corollary 5.4] For
an arbitrary (closed graph) multifunction Γ and (x̄, ȳ) ∈ gphΓ, Γ is metrically regular at x̄ for ȳ if
and only if

D∗Γ(x̄|ȳ)(η) = {0} =⇒ η = 0.

2.2 MPEC constraint qualification and stationarity

Consider now the following deterministic MPCC:

min f(x)
s.t. x ∈ X,

0 ≤ G(x)⊥H(x) ≥ 0,

(12)

where X is a closed subset of IRn, f : IRn → IR, G : IRn → IRm and H : IRn → IRm are continuously
differentiable. When X is a system of smooth equalities and inequalities, it is well-known that the
classical MFCQ fails at any feasible solution (see [47, Proposition 1.1]). Since the classical MFCQ
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when X is a system of smooth equalities and inequalitiesis is equivalent to the metrical regularity
of the set-valued mapping

Γ(x) :=




G(x)
H(x)

G(x)T H(x)
−x


 +




IRm
−

IRm
−

{0}
X


 ,

the above set-valued mapping is never metrically regular at any feasible point of MPCC. However
the following weaker metric regularity may hold.

Definition 2.11 (MPEC-Metric Regularity) Let x be a feasible point of problem (12). We
say that MPEC-Metric Regularity holds at x if the set-valued mapping defined by

Γ(x) := − (G(x),H(x), x) +W ×X

is metrically regular at x for 0, where W := {(y, z) : 0 ≤ z ⊥ y ≥ 0}.
The metric regularity is, however, not easy to verify by definition. By using Mordukhovich’s criteria
for metric regularitiy (Proposition 2.10), the sum rule for coderivatives (Proposition 2.7) and the
expression for the normal cone of W (Proposition 2.3), one can show that MPEC-Metric Regularity
is indeed equivalent to a much easier to verify condition called MPEC-NNAMCQ in the case where
the functions involved are smooth (and is weaker when the functions involved are nonsmooth but
Lipschitz continuous).

Definition 2.12 (MPEC-NNAMCQ) Let x be a feasible point of problem (12). We say that
MPEC-NNAMCQ holds at x if there exist no nonzero vectors (λ, β) ∈ IRm × IRm such that

0 ∈ ∇G(x)T λ +∇H(x)T β +NX(x),

λi = 0, if Gi(x) > 0; βi = 0, if Hi(x) > 0,

λi < 0, βi < 0 or λiβi = 0, if Gi(x) = Hi(x) = 0,

where subscript i denotes the i-th component of a vector.

Note that MPEC-NNAMCQ is weaker than the generalized MPEC MFCQ (MPEC-GMFCQ) in
the literature of deterministic MPECs. In the case when x falls into the interior of set X, the two
conditions are equivalent, see [45, 46] for the definition of MPEC-GMFCQ and the proof of the
equivalence.

To accommodate a nonfeasible point obtained from a numerical algorithm we also need the
the following extended MPEC-NNAMCQ which was introduced in [15]. The extended MPEC-
NNAMCQ coincides with MPEC-NNAMCQ at a feasible point.

Definition 2.13 (Extended MPEC-NNAMCQ) Consider the reformulation of the problem
(12):

min f(x)
s.t. x ∈ X,

z = G(x),
y = H(x),
0 ≤ z⊥y ≥ 0.

(13)

A point (x, y, z) is said to be a weak feasible point of problem (13) if x ∈ X and 0 ≤ z ⊥ y ≥ 0. We
say problem (12) satisfies the extended MPEC-NNAMCQ at (x, y, z) if (x, y, z) is a weak feasible
point to (13) and there exist no nonzero vectors (λ, β) ∈ IRm × IRm such that

0 ∈ ∇G(x)T λ +∇H(x)T β +NX(x),

λi = 0, if yi > 0; βi = 0, if zi > 0,

λi < 0, βi < 0 or λiβi = 0, if yi = zi = 0.
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For easy reference we review MPEC stationarities in the following definition.

Definition 2.14 (MPEC W-,C-,M-,S- stationary conditions) Let x be a feasible point of
problem (12). We say that x is a weak (W-) stationary point of (12) if there exist no nonzero
vectors (λ, β) ∈ IRm × IRm such that

0 ∈ ∇f(x) +∇G(x)T λ +∇H(x)T β +NX(x), (14)

λi = 0, if Gi(x) > 0;βi = 0, if Hi(x) > 0. (15)

We say that x is a Clarke (C-), Mordukhovich (M-), Strong (S-) stationary point of (12) if there
exist no nonzero vectors (λ, β) ∈ IRm × IRm such that (14)-(15) hold and

λiβi ≥ 0 if Gi(x) = Hi(x) = 0,

λi < 0, βi < 0 or λiβi = 0, if Gi(x) = Hi(x) = 0,

λi ≤ 0, βi ≤ 0 if Gi(x) = Hi(x) = 0,

respectively.

The following relationship between MPEC stationary points is well known:

S-stationary =⇒ M-stationary =⇒ C-stationary =⇒ W-stationary.

3 Exact penalization of the true problem

In this section, we investigate the exact penalty parameter ρ for problem (5) and the relationships
between (5) and (1) in terms of optimal solutions and stationary points. This is to pave the way for
our discussion on the existence of exact penalty parameter ρN of SAA problem (6) and convergence
of optimal solutions and stationary points of the problem.

3.1 Exact penalty parameters

We start by discussing sufficient conditions for the existence of a bounded penalty parameter for
problem (5). To this end, we derive error bound for a system of equalities and inequality and its
perturbation.

Let gN : IRn → IRl and hN : IRn → IRm, N = 1, 2, 3, · · · , be two sequences of continuously
differentiable mappings and C be a closed subset of IRn. Assume that gN (x), hN (x), ∇gN (x) and
∇hN (x) converge respectively to g(x), h(x), ∇g(x) and ∇h(x) uniformly over set C as N → ∞.
Denote by

S := {x : g(x) ≤ 0, h(x) = 0, x ∈ C},
SN := {x : gN (x) ≤ 0, hN (x) = 0, x ∈ C}.

Let

Γ(x) :=




−g(x)
−h(x)
−x


 +




IRm
−

{0}
C


 ,

and

ΓN (x) :=




−gN (x)
−hN (x)
−x


 +




IRm
−

{0}
C


 .

The system {g(x) ≤ 0, h(x) = 0, x ∈ C} is said to be metrically regular at a feasible point x̄ ∈ S if
the set-valued mapping Γ(x) is metrically regular at x̄ for ȳ = 0.
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Proposition 3.1 Suppose that the system {g(x) ≤ 0, h(x) = 0, x ∈ C} satisfies metric regularity
at a feasible point x̄ ∈ S with regularity modulus equal to κ. Then there exists a neighborhood of x̄,
denoted by Ux̄, such that

(i) the system {g(x) ≤ 0, h(x) = 0, x ∈ C} satisfies metric regularity at every point x ∈ Ux̄ ∩ S;

(ii) there exists N0 such that for N ≥ N0, the system {gN (x) ≤ 0, hN (x) = 0, x ∈ C} satisfies
metric regularity at x̄, i.e., there exist positive constants κ and δ such that

d(x, (ΓN )−1(y)) ≤ 2κd(y, ΓN (x)), ∀(x, y) ∈ Ux̄ × δB; (16)

(iii) the statements in parts (i) and (ii) hold when the metric regularity is replaced by NNAMCQ,
that is, there exists no nonzero vectors λ ∈ IRl

+ and β ∈ IRm such that

{
0 ∈ ∇g(x̄)T λ +∇h(x̄)T β +NC(x̄),
0 ≤ λ ⊥ −g(x̄) ≥ 0,

Proof. Part (i): By the definition of metrical regularity, there is an open neighborhood of x̄ and
δ > 0 such that

d(x, Γ−1(y)) ≤ κd(y, Γ(x)), ∀(x, y) ∈ Ux̄ × δB.

Now let x̃ ∈ Ux̄ ∩ S. Then there is a small enough neighborhood of x̃, denoted by Ux̃ such that

Ux̃ × δB ⊂ Ux̄ × δB.

Therefore
d(x, Γ−1(y)) ≤ κd(y, Γ(x)), ∀(x, y) ∈ Ux̃ × δB

which means that Γ(x) is metrically regular at x̃ for 0. Hence (i) holds.
We now prove part (ii). For each fixed N , let

GN (x) :=




g(x)− gN (x)
h(x)− hN (x)

0


 .

Then the Lipschitz modulus of GN at x is equal to

lip GN (x) =
√
‖∇g(x)−∇gN (x)‖+ ‖∇h(x)−∇hN (x)‖.

By the assumption, ∇gN (x) and ∇hN (x) converge respectively to ∇g(x) and ∇h(x) uniformly over
set C as N →∞. This implies lip GN (x) → 0 as N →∞. By Proposition 2.9,

reg(Γ + GN )(x̄|GN (x̄)) ≤ 2κ

and hence (16) holds for N sufficiently large.
Part (iii) follows from Mordukhovich’s criteria for metric regularitiy (Proposition 2.10) and the

sum rule for coderivatives (Proposition 2.7). It is also covered by a recent result by Ioffe and
Outrata [10, Proposition 3.5].

Using Proposition 3.1, we are able to establish local error bounds for the feasible set of the
systems defined in the proposition.

Proposition 3.2 Let S and SN be defined as in Proposition 3.1, xN ∈ SN and xN → x̄. Then
x̄ ∈ S. Moreover if the system {g(x) ≤ 0, h(x) = 0, x ∈ C} satisfies metric regularity at point x̄

with regularity modulus κ, then

(i) there exist positive constants κ and δ such that

d(x, S) ≤ κ(‖g(x)+‖1 + ‖h(x)‖1), ∀x ∈ C ∩B(x̄, δ);
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(ii) there exists a constant δ > 0 such that for N sufficiently large

d(x, SN ) ≤ 2κ(‖gN (x)+‖1 + ‖hN (x)‖1), ∀x ∈ C ∩B(x̄, δ); (17)

(iii) statements (i) and (ii) hold when the metric regularity is replaced by NNAMCQ.

Proof. The statement that x̄ ∈ S follows from the uniform convergence of {gN (x)}, {hN (x)} on
set C. The metric regularity of the set-valued mapping Γ at x̄ for 0 means that there exist positive
constants κ and δ such that

d(x, Γ−1(y)) ≤ κd(y, Γ(x)) ∀(y, x) ∈ (0, x̄) + δB.

Taking y = 0 in the above, we have

d(x, Γ−1(0)) ≤ κd(0,Γ(x)) = κd







g(x)
h(x)

x


 ,




IRm
−

{0}
C





 ≤ κ(‖g(x)+‖1 + ‖h(x)‖1)

for all x ∈ (x̄ + δB) ∩ C. This show Part (i).
Part (ii). In the same manner, we can derive from (16) that

d(x, (ΓN )−1(0)) ≤ 2κd(0, ΓN (x)) = 2κd







gN (x)
hN (x)

x


 ,




IRm
−

{0}
C





 ≤ 2κ(‖gN (x)+‖1 +‖hN (x)‖1),

for all x ∈ (x̄ + δB) ∩ C.
Part (iii) follows from the equivalence of the metric regularity and NNAMCQ as shown in the

proof of Proposition 3.1(iii). The proof is complete.
The technical result in part (i) of Proposition 3.2 is needed for establishing a relationship between

optimal solutions to the true problem (1) and its penalization (5) to be detailed in Theorem 3.4.
Part (ii) of the proposition will be needed to address issues of the SAA problems (2) and (6) to be
detailed in Theorem 3.5.

Usually it is easier to show that a solution to an original optimization problem is an solution of
an exact penalized problem than the reverse. However the reverse statement is equally if not more
important since one is hoping to solve the original problem by solving the penalized problem which
is easier to solve. In the following theorem, extending the results of [29] we obtain the equivalence
of the solutions under the assumption that D is compact and MPEC-metric regularity holds.

Assumption 3.3 Let f(x, y, ξ) and F (x, y, ξ) be defined as in (1) and satisfy the following prop-
erties:

(a) f and F are locally Lipschitz continuous w.r.t. (x, y), and their Lipschitz modulus are bounded
by an integrable function κ1(ξ) > 0.

(b) ∇(x,y)f(x, y, ξ) and ∇(x,y)F (x, y, ξ) are locally Lipschitz continuous w.r.t. (x, y), and their
Lipschitz modulus are bounded by an integrable function κ2(ξ) > 0.

Theorem 3.4 Let (x̄, ȳ) be a local optimal solution to problem (1) and MPEC-NNAMCQ (or
equivalently MPEC-metric regularity) holds at (x̄, ȳ). Under Assumption 3.3,

(i) there exists a constant ρ∗ > 0 such that (x̄, ȳ, z̄), where z̄ = E[F (x̄, ȳ, ξ)], is a local optimal
solution of (5) if ρ ≥ ρ∗;

(ii) if, in addition, D is a compact set and MPEC-NNAMCQ (or equivalently MPEC-metric
regularity) holds at every optimal solution of problem (1), then there exists ρ̄ such that for
any ρ > ρ̄, the sets of optimal solutions of problems (3) and (5), denoted by Sopt and Sρ

opt

respectively, coincide.
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Proof. Part (i). We use Proposition 3.2 (i) to prove the first claim. Let

C := {(x, y, z) ∈ D × IRm : 0 ≤ z ⊥ y ≥ 0},

h(x, y, z) = E[F (x, y, ξ)] − z and S := {(x, y, z) : h(x, y, z) = 0, (x, y, z) ∈ C}. By the expression
of the limiting normal cone in Proposition 2.3, it is easy to check that the MPEC-NNAMCQ for
problem (1) at (x̄, ȳ) is equivalent to the NNAMCQ of the system {h(x, y, z) = 0, (x, y, z) ∈ C} at
(x̄, ȳ, z̄) with z̄ = E[F (x̄, ȳ, ξ)]. By Proposition 3.2 (i) and (iii), there exist a constant ρ̃ > 0 and a
neighborhood of (x̄, ȳ, z̄), denoted by U(x̄,ȳ,z̄), such that

d((x, y, z), S) ≤ ρ̃‖h(x, y, z)‖1, ∀(x, y, z) ∈ C ∩ U(x̄,ȳ,z̄).

In terms of the terminology of [15], ‖h(x, y, z)‖1 is a partial error function on set C around (x̄, ȳ, z̄)
with modulus ρ̃. Since (x̄, ȳ, z̄) is a local minimizer of (3), by the principle of partial exact pe-
nalization [15, Theorem 3.3], (x̄, ȳ, z̄) is also a local minimizer of (5) for ρ ≥ ρ̃κ where κ is the
Lipschitz modulus of function E[f(x, y, ξ)]. Note that under Assumption 3.3, such an κ existed.
This shows the existence of a positive constant ρ∗ = ρ̃κ such that for any ρ ≥ ρ∗, (x̄, ȳ, z̄) with
z̄ = E[F (x̄, ȳ, ξ)], is a local optimal solution of (5).

Part (ii). Since D is a compact set and E[f(x, y, ξ)] is continuous, Sopt and Sρ
opt, the sets of

optimal solutions of problems (3) and (5), are nonempty. We first show there exists a constant
ρ̄ > 0 such that for any ρ ≥ ρ̄, Sρ

opt ⊆ Sopt. Assume for a contradiction that this is not true. Then
for any ρk > 0, there exists (x(ρk), y(ρk), z(ρk)) ∈ Sρk

opt such that (x(ρk), y(ρk), z(ρk)) 6∈ Sopt. Let
ρk → ∞. The compactness of D implies that the sequence {(x(ρk), y(ρk), z(ρk))} is bounded and
therefore we can draw a subsequence if necessary such that ((x(ρk), y(ρk), z(ρk)) → (x∗, y∗, z∗).
Let (x̄, ȳ, z̄) ∈ Sopt. Since (x(ρk), y(ρk), z(ρk)) ∈ Sρk

opt, we have

ψ(x(ρk), y(ρk), z(ρk), ρk) ≤ ψ(x̄, ȳ, z̄, ρk) = E[f(x̄, ȳ, ξ)]

which implies that

ρk‖E[F (x(ρk), y(ρk), ξ)]− z(ρk)‖1 ≤ E[f(x̄, ȳ, ξ)]− E[f(x(ρk), y(ρk), ξ)].

Taking a limit on both sides of the formula above, we obtain

0 ≤ E[f(x̄, ȳ, ξ)]− E[f(x∗, y∗, ξ)]

and ‖E[F (x∗, y∗, ξ)]− z∗‖1 = 0, which means (x∗, y∗, z∗) is an optimal solution of (3) and (x∗, y∗)
is an optimal solution of (1). Under the assumption that problem (1) satisfies MPEC-NNAMCQ
at an optimal solution point (x∗, y∗), it follows from the proof of Part (i), there exists a posi-
tive constant ρ̂ such that (x∗, y∗, z∗) is a local minimizer of ψ(x, y, z, ρ) for all ρ ≥ ρ̂κ, where κ

is the Lipschitz modulus of function E[f(x, y, ξ)]. Since ((x(ρk), y(ρk), z(ρk)) → (x∗, y∗, z∗) and
(x(ρk), y(ρk), z(ρk)) ∈ Sρk

opt, we may find a neighborhood of (x∗, y∗, z∗), denoted by U , such that
both ((x(ρk), y(ρk), z(ρk)) and (x∗, y∗, z∗) are minima of ψ(x, y, z, ρk) over the set U ∩ Fρ, where
Fρ denotes the feasible region of the penalized problem (5), for all ρk ≥ ρ̂κ. Consequently

ψ((x(ρk), y(ρk), z(ρk), ρk) = ψ(x∗, y∗, z∗, ρk) = E[f(x∗, y∗, ξ)]

= ψ(x∗, y∗, z∗, (ρk + ρ̂κ)/2)

≤ E[f(x(ρk), y(ρk), ξ)] +
ρk + ρ̂κ

2
‖E[F (x(ρk), y(ρk), ξ)]− z(ρk)‖1,

which implies that

ρk‖E[F (x(ρk), y(ρk), ξ)]− z(ρk)‖1 ≤ ρk + ρ̂κ

2
‖E[F (x(ρk), y(ρk), ξ)]− z(ρk)‖1.

When ρk > ρ̂κ, the above inequality implies that E[F (x(ρk), y(ρk), ξ)] = z(ρk) and hence

(x(ρk), y(ρk), z(ρk)) ∈ Sopt
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which contradicts to the fact that (x(ρk), y(ρk), z(ρk)) 6∈ Sopt. This shows Sρ
opt ⊂ Sopt for all

ρ > ρ̄ := ρ̂κ.
We are now ready to show that for any ρ ≥ ρ̄, Sopt = Sρ

opt. Let (x̃, ỹ, z̃) ∈ Sopt and
(x(ρ), y(ρ), z(ρ)) ∈ Sρ

opt. Then for any ρ > ρ̄, since Sρ
opt ⊆ Sopt, we have (x(ρ), y(ρ), z(ρ)) ∈ Sopt.

Therefore ψ(x(ρ), y(ρ), z(ρ), ρ) = ψ(x̃, ỹ, z̃, ρ), which means (x̃, ỹ, z̃) is also an optimal solution of
problem (5). The proof is complete.

We make a few comments on Theorem 3.4.
First, we implicitly assume that the true problem (1) has an optimal solution. It might be inter-

esting to ask conditions under which an optimal solution exists. To look at the issue, observe that
both E[f(x, y, ξ)] and E[F (x, y, ξ)] are deterministic functions and (1) is essentially a deterministic
MPEC. Outrata et al [26] presented a detailed discussion of when a deterministic MPEC has an
optimal solution; see section 1.3 and section 4.2 in [26] for details. In our context, if there exists a
point (x0, y0) ∈ D such that

(E[F (x0, y, ξ)]− E[F (x0, y0, ξ)])T (y − y0)/‖y − y0‖ → ∞, for (x0, y) ∈ D, ‖y‖ → ∞, (18)

then (1) has a feasible solution. Moreove if there exists a feasible solution and the lower level
set of E[f(x, y, ξ)] at this feasible solution is bounded, then the optimal solution of (1) exists.
Sufficient conditions for (18): D is compact or there exists a nonnegative integrable function σ(ξ)
with E[σ(ξ)] > 0 such that

(F (x0, y, ξ)− F (x0, y0, ξ))T (y − y0)/‖y − y0‖ ≥ σ(ξ)‖y − y0‖2.

From this (taking expectation on both sides of the inequality) we immediately obtain

(E[F (x0, y, ξ)]− E[F (x0, y0, ξ)])T (y − y0)/‖y − y0‖ ≥ E[σ(ξ)]‖y − y0‖2

Which implies the strong monotonicity of E[F (x0, ·, ξ)]. It is also possible to derive some weaker
conditions using [26, Proposition 1.1] but this is beyond the focus of this paper.

Let us now make a few comments on the second part of Theorem 3.4. The compactness of D

and the continuity of E[F (x, y, ξ)] implies that the feasible set of (3), denoted by F , is bounded.
Moreover, for any fixed ρ > 0, it is easy to see that ψ(x, y, z, ρ) → ∞ as ‖z‖ → ∞, which means
that there exists a compact K ⊆ IRn× IRm× IRm such that Sρ

opt ⊂ K. We can choose K sufficiently
large such that Sρ

opt ⊂ intK, where “int” denotes the interior of a set. Theorem 3.4 (ii) states that
Sρ

opt = Sopt for large enough ρ. Following the terminology of Pillo and Grippo [29, Definition 1],
problem (5) is a weak exact penalty problem of (3) for large enough ρ.

It might be interesting to ask whether there exists a penalty parameter ρ̌ such that for any ρ ≥ ρ̌

every local minimizer of problem (5) is a local optimal solution of problem (3) (in the terminology
of [29], problem (5) is an exact penalty problem of (3)). Unfortunately we are unable to show
the existence of such a parameter due to the complication resulting from partial penalization and
nonexistence of the interior of the set of feasible solutions to problem (3), nor can we find a counter
example. We leave this to interested readers.

Let us now use the part (ii) of Proposition 3.2 and [15, Theorem 3.3] to establish a relationship
between the set of local minimizers of the SAA problem (4) and its penalization (6). The following
result states that under some moderate conditions there exists a bounded sequence of penalty
parameters such that a local minimizer of (4) is also a local minimizer of the penalty problem (6).

Theorem 3.5 Let (xN , yN , zN ) be a local optimal solution to problem (4) and (x∗, y∗, z∗) be a
limit point of sequence {(xN , yN , zN )}. Let Assumption 3.3 hold. Then (x∗, y∗) is a feasible point
of problem (1). If MPEC-NNAMCQ (or equivalently MPEC-metric regularity) holds at (x∗, y∗),
then there exists a bounded sequence of penalty parameters {ρN} such that (xN , yN , zN ) is a local
optimal solution of (6).

Proof. We sketch the proof although it is similar to that of Theorem 3.4 (i). The feasibility
of (x∗, y∗) comes from Assumption 3.3 which ensures the uniform convergence of the underlying
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functions. The MPEC-NNAMCQ at (x∗, y∗) is equivalent to the NNAMCQ at (x∗, y∗, z∗) with z∗ =
E[F (x∗, y∗, ξ)]. Let h(x, y, z) := E[F (x, y, ξ)] − z and C be defined as in the proof of Theorem 3.4
(i). Let hN (x, y, z) := 1

N

∑N
k=1 F (x, y, ξk)− z and SN := {(x, y, z) : hN (x, y, z) = 0, (x, y, z) ∈ C}.

By Proposition 3.2 (ii) (without gN (x) here), there exist a bounded sequence of positive numbers
{ρN} and a neighborhood of (xN , yN , zN ), denoted by U(xN ,yN ,zN ), such that

d((x, y, z), SN ) ≤ ρN‖hN (x, y, z)‖1, ∀(x, y, z) ∈ C ∩ U(xN ,yN ,zN ).

Applying the principle of partial exact penalization [15, Theorem 3.3], the inequality above implies
(xN , yN , zN ) is also a local minimizer of (6) for ρ ≥ ρNκN , where κN converges to the Lipschitz
modulus of function E[f(x, y, ξ)] under Assumption 3.3.

From numerical perspective, Theorem 3.5 is more useful than part (i) of Theorem 3.4 in that
for a given problem, since the distribution ξ is usually unknown in practice, it is often difficult
to estimate ρ∗. Through the proof of Proposition 3.2, Theorem 3.5 provides a practical way to
set/estimate the penalty parameter ρN . Note also that we are short of claiming in Theorem 3.5
that a local optimal solution (xN , yN , zN ) to the penalized SAA problem (6) is a local optimal
solution to problem (4) but this is obvious if the former has a unique local optimal solution or the
local optimal solution to the former falls into the feasible set of the latter.

3.2 Stationary points

It is well-known that MPEC problems are notoriously nonconvex due to their combinatorial nature
of constraints, which means that we may often obtain a local optimal solution or even a stationary
point rather than a global optimal solution in numerical computation. This motivates us to study
stationary points of problems (5) and (1) and their relationships. Here we focus on M-stationary
points although our discussion can be extended to Clarke stationary points.

The proposition below states the relationship between M-stationary points of (3) and (1).

Proposition 3.6 If (x, y, z) is an M-stationary point of problem (3), then (x, y) is an M-stationary
of problem (1). Conversely, if (x, y) is an M-stationary point of problem (1), then (x, y, z) is an
M-stationary point of problem (3) with z = E[F (x, y, ξ)].

Proof. Let (x, y) be an M-stationary point of problem (1). Then there exist multipliers (λ, β) ∈
IRm × IRm such that

{
0 ∈ ∇E[f(x, y, ξ)] +∇E[F (x, y, ξ)]T λ +ND(x, y) + {(0, β)},
(β, λ) ∈ NW(y,E[F (x, y, ξ)]).

where W = {(y, z) : 0 ≤ z ⊥ y ≥ 0} and the limiting normal cone NW(y, z) is defined as in
Proposition 2.3. Let (x, y, z) be an M-stationary point of the reformulated problem (3). Then
there exist multipliers (λ, βy, βz) ∈ IRm × IRm × IRm such that





0 ∈ ∇E[f(x, y, ξ)] +∇E[F (x, y, ξ)]T λ +ND(x, y) + {(0, βy)},
0 = −λ + βz,

(βy, βz) ∈ NW(y, z).
(19)

The equivalence of the two set of stationary points is straightforward.
The proposition in the next describes the relationship between the M-stationary points of (3)

and its penalization problem (5).

Proposition 3.7 If (x, y, z; βy, βz) is a M-stationary pair of problem (5) and ρ > ‖βz‖1, then
(x, y, z) is an M-stationary point of (3). Conversely, let (x, y, z; λ, βy, βz) be a M-stationary pair of
problem (3). If ρ ≥ ‖λ‖1, then (x, y, z) is an M-stationary point of problem (5).

Proof. Problem (5) ⇒ Problem (3). By definition, (x, y, z; βy, βz) satisfies

0 ∈ ∂(x,y,z)ψ(x, y, z, ρ) +ND(x, y)× {0}+ {(0, βy, βz)}. (20)
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Observe first that norm ‖·‖1 is a convex function, E[f(x, y, ξ)] and E[F (x, y, ξ)]−z are continuously
differentiable functions. By the sum rule ( [25, Proposition 1.107]) and the chain rule ( [32, Theorem
10.6] or [5, Theorem 2.3.10]), we have

∂(x,y,z)ψ(x, y, z, ρ) = ∇(x,y,z)E[f(x, y, ξ)] + ρ∇(x,y,z)(E[F (x, y, ξ)]− z)TG(x, y, z),

where G(x, y, z) is the set of vectors b = (b1, · · · , bi, · · · , bm)T with

bi =





1, if E[Fi(x, y, ξ)]− zi > 0,

[−1, 1] , if E[Fi(x, y, ξ)]− zi = 0,

−1, if E[Fi(x, y, ξ)]− zi < 0.

(21)

Consequently (20) can be equivalently written as




0 ∈ ∇E[f(x, y, ξ)] + ρ∇E[F (x, y, ξ)]TG(x, y, z) +ND(x, y) + {(0, βy)},
0 ∈ −ρG(x, y, z) + βz,

(βy, βz) ∈ NW(y, z).
(22)

In what follows, we show that an M-stationary point (x, y, z) satisfying (22) is an M-stationary
point of (3) defined by (19). Let b∗ ∈ G(x, y, z) be such that





0 ∈ ∇E[f(x, y, ξ)] + ρ∇E[F (x, y, ξ)]T b∗ +ND(x, y) + {(0, βy)},
0 = −ρb∗ + βz,

(βy, βz) ∈ NW(y, z).
(23)

Then (x, y, z; ρb∗, βy, βz) satisfies (19). To show that it is a M-stationary pair of problem (3),
it suffices to prove that (x, y, z) is a feasible point of problem (3) for ρ > ‖βz‖1. Assume for a
contradiction that there exists an index 1 ≤ i0 ≤ m such that E[Fi0(x, y, ξ)] − zi0 6= 0. Then
we must have |b∗i0 | = 1. By (23), 0 = −ρb∗i0 + [βz]i0 . Then ρ = |ρb∗i0 | = |[βz]i0 | ≤ ‖βz‖1, which
contradicts the fact that ρ > ‖βz‖1.

Problem (3) ⇒ Problem (5). Let (x, y, z; λ, βy, βz) be a M-stationary pair of problem (3). Then

0 ∈ ∂(x,y,z)ψ(x, y, z, ρ) +ND(x, y)× {0}+ {0} × NW(y, z).

Let ρ ≥ ‖λ‖1 and b∗ = λ/ρ. Then b∗i ∈ [−1, 1] for each i = 1, · · · , m and hence b∗ ∈ G(x, y, z) since
E[F (x, y, ξ)]− z = 0. Subsequently, (x, y, z;βy, βz) satisfies (22). The proof is complete.

4 Uniform convergence

To facilitate the convergence analysis of statistical estimators of optimal solutions and stationary
points obtained from solving (6) in the following section, we investigate in this section the uniform
convergence of the function ψN (x, y, z, ρN ) and its limiting subdifferential to their true counterpart.
To this end, we need some technical results related to sample average approximation of the limiting
subdifferential of the composition of a locally Lipschitz continuous function and the expected value
of a random vector valued function.

Let Q(w) : IRm → IR be a locally Lipschitz continuous function and H(v, ξ) : IRn × IRd → IRm

be a continuous function which is continuously differentiable with respect to v for almost every
ξ ∈ Ξ. Let ξ be a random vector with support set Ξ ⊂ IRd. We consider the following composite
function of Q and the expected value of H:

G(v) := Q(E[H(v, ξ)]).

Let ξ1, · · · , ξN be an iid sampling of ξ. Denote by

HN (v) :=
1
N

N∑

k=1

H(v, ξk) and GN (v) := Q(HN (v)).
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Under some moderate conditions, it is well known that the classical law of large numbers of random
function guarantees that HN (v) converges to E[H(v, ξ)] uniformly over any compact subset of IRn.
This implies the same convergence for GN (v) to G(v), see for instance [42, Section 3]. What is less
known is the uniform convergence of their (approximate) subdifferentials as a set-valued mapping.
The lemma below addresses this.

Lemma 4.1 Let W ⊆ IRm and V ⊆ IRn be compact sets. Let Q : IRm → IR be a locally Lipschitz
continuous function and AQ an abstract subdifferential operator of Q that is compact set-valued
and uniformly upper semicontinuous on W . Let AGN (v) := ∇HN (v)TAQ(HN (v)) and AG(v) :=
E[∇vH(v, ξ)]TAQ(E[H(v, ξ)]) and

V := {v ∈ V : E[H(v, ξ)] ∈ W} .

Suppose: (a) HN (v) and ∇HN (v) converge to E[H(v, ξ)] and E[∇vH(v, ξ)] uniformly over V re-
spectively, (b) H(v, ξ) and ∇H(v, ξ) are integrably bounded. Then

lim
N→∞

sup
v∈V

D
(AGN (v),AG(v)

)
= 0.

The proof is rather standard, we move it to the appendix.

Remark 4.2 It might be helpful to make some comments on the uniform upper semicontinuity
of the abstract subdifferential operator in Lemma 4.1. There are two cases. One is that AQ is
the limiting or Clarke subdifferential whereas W is a discrete set which consists of a finite number
of points. In this case, the uniform upper semicontinuity comes from the usual pointwise upper
semicontinuity of the subdifferential operators. The other case is when Q is convex and AQ is the
ε-convex subdifferential defined as follows:

∂εQ(w) = {ζ ∈ IRm : Q(w′) ≥ Q(w) + ζT (w − w′)− ε},

where ε is a fixed positive number, see [9]. It is well-known that ∂εQ(·) is convex, compact set-
valued and Hausdorff continuous, see [9, Theorem 4.1.3]. In this paper, we consider the case that
Q = ‖ · ‖1 which is a convex function.

Let F denote the feasible set of (3), that is,

F := {(x, y, z) : E[F (x, y, ξ)]− z = 0; 0 ≤ z ⊥ y ≥ 0, (x, y, z) ∈ D × IRm}.

The proposition below presents the uniform convergence of ∂(x,y,z)ψN (x, y, z, ρN ) to
∂(x,y,z)ψ(x, y, z, ρ) over F under Assumption 3.3 as simple size N increases.

Proposition 4.3 (Uniform almost sure convergence) Under Assumption 3.3,

(i) w.p.1 1
N

∑N
k=1 f(x, y, ξk) and 1

N

∑N
k=1 F (x, y, ξk) converge to E[f(x, y, ξ)] and E[F (x, y, ξ)]

uniformly over any compact set in IRn × IRm as N → ∞ respectively; w.p.1
1
N

∑N
k=1∇(x,y)f(x, y, ξk) and 1

N

∑N
k=1∇(x,y)F (x, y, ξk) converge to E[∇(x,y)f(x, y, ξ)] and

E[∇(x,y)F (x, y, ξ)] uniformly over any compact set in IRn × IRm as N →∞ respectively;

(ii) if ρN → ρ as N →∞, then w.p.1 ψN (x, y, z, ρN ) converges to ψ(x, y, z, ρ) uniformly over any
compact subset of IRn × IRm × IRm;

(iii) if D is a compact set and ρN → ρ as N →∞, then

lim
N→∞

sup
(x,y,z)∈F

D
(
∂(x,y,z)ψN (x, y, z, ρN ), ∂(x,y,z)ψ(x, y, z, ρ)

)
= 0 w.p.1.

Proof. Part (i) can be easily proved by virtue of [34, Section 6, Proposition 7]. Part (ii) follows
from part (i), the Lipschitz continuity of ‖ · ‖1 and the fact that ρN → ρ. Our focus is on part
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(iii) and we use Lemma 4.1 to prove it. To this end, we verify the conditions of the lemma. Let
v := (x, y, z) and Q(·) := ‖ · ‖1. Define

H(v, ξ) := F (x, y, ξ)− z, HN (v) :=
1
N

N∑

k=1

H(v, ξk), (24)

G(v) := Q(E[H(v, ξ)]), GN (v) := Q(HN (v)).

Since Q is a convex function, it is Clarke regular. By the chain rule [32, Theorem 10.6] or [5,
Theorem 2.3.10], G and GN are Clarke regular and

∂G(v) = E[∇vH(v, ξ)]T ∂Q(E[H(v, ξ)])

and
∂GN (v) = ∇HN (v)T ∂Q(HN (v)).

Note that in this case the limiting subdifferential coincides with Clarke subdifferential. Let W :=
{0}, AQ := ∂Q and V := F . Since W is a singleton, the uniform upper semicontinuity of AQ over
W reduces trivially to (pointwise) upper semi-continuity of the set-valued mapping at point 0. On
the other hand, since the feasible set F is a compact set under the compactness of D, the uniform
convergence of HN (v) and ∇HN (v) to E[H(v, ξ)] and E[∇vH(v, ξ)] over V follows from Part (i).
This verifies all of the conditions in Lemma 4.1 and consequently yields

lim
N→∞

sup
v∈V

D
(
∂GN (v), ∂G(v)

)
= 0.

The rest follows straightforwardly from the fact that

D(∂(x,y,z)ψN (x, y, z, ρN ), ∂(x,y,z)ψ(x, y, z, ρ))

≤
∥∥∥∥∥

1
N

N∑

k=1

∇(x,y,z)f(x, y, ξk)− E[∇(x,y,z)f(x, y, ξ)]

∥∥∥∥∥ + D(ρN∂GN (v), ρ∂G(v))

and the uniform convergence of 1
N

∑N
k=1∇(x,y,z)f(x, y, ξk) to E[∇(x,y,z)f(x, y, ξ)] over F .

It is important to note that in part (iii) of Proposition 4.3, the uniform convergence is es-
tablished only on a compact feasible set F : we need compactness for the uniform convergence of
1
N

∑N
k=1∇(x,y,z)f(x, y, ξk) and 1

N

∑N
k=1 F (x, y, ξk), and the feasibility to secure the uniform conver-

gence of ∂(x,y,z)

(∥∥∥ 1
N

∑N
k=1 F (x, y, ξk)− z

∥∥∥
1

)
because 1

N

∑N
k=1 F (x, y, ξk)− z uniformly converges

to 0 under the feasibility condition. In general, ∂‖ · ‖1 is not uniformly upper semicontinuous on a
set containing a point where the 1-norm is not differentiable.

We move on to investigate the uniform exponential convergence rate of ψN (x, y, z, ρN ) to
ψ(x, y, z, ρ) as well as its subdifferentials.

Assumption 4.4 Let W be a compact set of IRn × IRm and ϑ : W × Ξ → IR denote an element
(component in the case of a vector valued function or a matrix valued function) in the set of
functions {f(x, y, ξ), F (x, y, ξ), ∇(x,y)f(x, y, ξ),∇(x,y)F (x, y, ξ)}. ϑ(w, ξ) possesses the following
properties:

(a) for every w ∈ W, the moment generating function

M(t) := E
[
et(ϑ(w,ξ)−E[ϑ(w,ξ)])

]

of random variable ϑ(w, ξ)− E[ϑ(w, ξ)] is finite valued for all t in a neighborhood of zero;

(b) there exist a (measurable) function κ : IRn → IR+ and constant γ > 0 such that

|ϑ(w′, ξ)− ϑ(w, ξ)| ≤ κ(ξ)‖w′ − w‖γ

for all ξ ∈ Ξ and all w′, w ∈ W;
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(c) the moment generating function Mκ(t) of κ(ξ) is finite valued for all t in a neighborhood of
zero.

Assumption 4.4 (a) means that the random variable ϑ(w, ξ) does not have a heavy tail distri-
bution. In particular, it holds if this random variable has a distribution supported on a bounded
subset. Assumption 4.4 (b) requires ϑ(w, ξ) to be globally Hölder continuous with respect to w.
Note that this assumption is weaker than Assumption 3.3. Assumption 4.4 (c) is satisfied if E[κ(ξ)]
is finite.

Theorem 4.5 (Uniform exponential convergence) Let K be a compact subset of IRn× IRm×
IRm and Assumption 4.4 hold on the orthogonal projection of K on (x, y) plane. Suppose ρN → ρ

as N →∞. Then

(i) for any α > 0, there exist positive constants c2(α) and k2(α), independent of N , such that

Prob

{
sup

(x,y,z)∈K
|ψN (x, y, z, ρN )− ψ(x, y, z, ρ)| ≥ α

}
≤ c2(α)e−Nk2(α)

for N sufficiently large;

(ii) let ε be a positive number and ∂ε‖ · ‖1 denote the ε-convex subdifferential of ‖ · ‖1, let

Aε(x, y, z, ρ) = E[∇(x,y,z)f(x, y, ξ)] + Aε(x, y, z, ρ), (25)

and

AN
ε (x, y, z, ρN ) =

1
N

N∑

k=1

∇(x,y,z)f(x, y, ξk) + A N
ε (x, y, z, ρN ), (26)

where
Aε(x, y, z, ρ) = ρE[∇(x,y,z)H(x, y, z, ξ)]T ∂ε ‖E[H(x, y, z, ξ)]‖1

and
A N

ε (x, y, z, ρN ) = ρN∇(x,y,z)HN (x, y, z)∂ε ‖HN (x, y, z)‖1 ,

H and HN are defined by (24). Then for any α > 0, there exist positive constants c3(α) and
k3(α) independent of N , such that

Prob

{
sup

(x,y,z)∈K
D

(AN
ε (x, y, z, ρN ),Aε(x, y, z, ρ)

) ≥ α

}
≤ c3(α)e−Nk3(α)

for N sufficiently large.

Proof. Part (i). The claim follows straightforwardly from [38, Theorem 5.1] under Assumption
4.4 and ρN → ρ. We omit the details.

Part (ii). Observe first that for any compact sets A,B, C, D ⊆ IRm,

D(A + C, B + D) ≤ D(A,B) + D(C,D), (27)

Using the inequality, we have

Prob

{
sup

(x,y,z)∈K
D

(AN
ε (x, y, z, ρN ),Aε(x, y, z, ρ)

) ≥ α

}

≤ Prob

{
sup

(x,y,z)∈K
D

(
1
N

N∑

k=1

∇(x,y,z)f(x, y, ξk),E[∇(x,y,z)f(x, y, ξ)]

)
≥ α

2

}

+Prob
{

sup
(x,y,z)∈K

D
(
A N

ε (x, y, z, ρN ), Aε(x, y, z, ρ)
) ≥ α

2

}
.
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By [38, Theorem 5.1], the first term at the right hand side of the formula above converges to zero
at an exponential rate. It suffices to show the second term at the right hand side of the formula
above converges to zero at an exponential rate. By (42),

Prob

{
sup

(x,y,z)∈K
D

(
A N

ε (x, y, z, ρN ), Aε(x, y, z, ρ)
) ≥ α

2

}

≤ Prob





sup
(x,y,z)∈K

‖ρN∇HN (x, y, z)− ρ∇E[H(x, y, z, ξ)]‖ ≥ α

sup
(x,y,z)∈K

4‖∂ε ‖HN (x, y, z)‖1 ‖





+Prob





sup
(x,y,z)∈K

D (∂ε ‖HN (x, y, z)‖1 , ∂ε ‖E[H(x, y, z, ξ)]‖1) ≥
α

sup
(x,y,z)∈K

4ρ‖∇E[H(x, y, z, ξ)]‖





where ‖M‖ = supM∈M ‖M‖ for a compact set M. Note first that ‖∂ε ‖HN (x, y, z)‖1 ‖ is bounded
by integer m (problem dimension) for any (x, y, z) ∈ K. The exponential rate of convergence of the
first term at the right side of the formula above follows from the fact that ∇HN (x, y, y) converges
to ∇E[H(x, y, z, ξ)] over K at an exponential rate and ρN → ρ. We omit the details. Let us look
at the second term on the right side of the formula. Under Assumption 4.4, ‖∇E[H(x, y, z, ξ)]‖
is bounded on compact set K. On the other hand, ∂ε‖ · ‖1 is Hausdorff continuous on IRn and
HN converges to E[H] uniformly over K at exponential rate, which implies that ∂ε‖HN (x, y, z)‖1
converges to ∂ε‖E[H(x, y, z, ξ)]‖1 uniformly over K at exponential rate. The rest is straightforward.

Note that the exponential rate of convergence stated in Theorem 4.5 relies on the Hausdorff
continuity of the ε-convex subdifferential ∂ε‖ · ‖. This is indeed one of the main reasons that we
consider approximate first order optimality condition in section 5.2. See also the comments at the
end of section 5.

5 Asymptotic convergence analysis

In the preceding section, we have investigated the uniform convergence of sample average random
functions. We are now ready to use them to study the convergence of the statistical estimators
obtained from solving (6).

5.1 Optimal solutions

Observe that the penalized SAA problem (6) and the penalized true problem (5) have the same
feasible set and in Proposition 4.3, we have proved that the objective function of (6), ψN (x, y, z, ρN ),
converges uniformly to the objective function of (5), ψ(x, y, z, ρ), on any compact subset of IRn ×
IRm × IRm. This paves the way for investigating the convergence of optimal solutions through the
standard perturbation analysis. Note that a point (x, y) is an optimal solution of problem (1) if
and only if (x, y, z) is an optimal solution of problem (3) with z = E[F (x, y, ξ)].

Theorem 5.1 Let {(xN , yN , zN )} be a sequence of optimal solutions of problem (6) and Assump-
tion 3.3 hold. Let ρN → ρ. Then

(i) w.p.1 any accumulation point of the sequence {(xN , yN , zN )}, denoted by (x∗, y∗, z∗), is an
optimal solution of the true penalty problem (5) with penalty parameter equal to ρ;

(ii) if, in addition, (a) D is a compact set, (b) MPEC-NNAMCQ holds at every optimal solution
of problem (1), (c) Assumption 4.4 holds, (d) ρ > ρ̄ where ρ̄ is given in Theorem 3.4, then
for any α > 0 there exist positive constants c(α) and k(α) independent of N such that

Prob
{
d

(
(xN , yN , zN ), Sopt

) ≥ α
} ≤ c(α)e−Nk(α)

for N sufficiently large, where Sopt denotes the set of optimal solutions to (3).
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Proof. Part (i). The conclusion follows by an application of the uniform convergence of ψN (x, y, z, ρN )
to ψ(x, y, z, ρ) as stated in Proposition 4.3 (ii) and [42, Lemma 4.1].

Part (ii). The exponential rate of convergence of (xN , yN , zN ) to Sρ
opt follows from Theorem 4.5

(i) and [42, Lemma 4.1]. Moreover, by Theorem 3.4 (ii), Sopt = Sρ
opt for ρ > ρ̄. The conclusion

follows.
Note that in general it is unrealistic to aim at finding conditions such that

lim
N→∞

(arg min ψN ) = arg minψ

except in cases where arg min ψ consists of a single point, see comments in [32, page 263].

5.2 Stationary points

We now move on to analyze the convergence of statistical estimators of the stationary points,
denoted by (xN , yN , zN ), obtained from solving the penalized SAA problem (6). Recall that a
feasible point (xN , yN , zN ) is said to be an M-stationary point of problem (6) if it satisfies the
following first order optimality condition:

0 ∈ ∂(x,y,z)ψN (x, y, z, ρN ) +ND(x, y)× {0}+ {0} × NW(y, z). (28)

From a numerical perspective, it might be difficult to obtain an exact stationary point. This
motivates us to consider the following approximate first order optimality condition:

0 ∈ AN
ε (x, y, z, ρN ) +ND(x, y)× {0}+ {0} × NW(y, z). (29)

where AN
ε (x, y, z, ρN ) is defined by (26) and ε is a small positive number. Observe that

∂(x,y,z)ψN (x, y, z, ρN ) =
1
N

N∑

k=1

∇x,y,zf(x, y, ξk) + ρ∇x,y,zHN (x, y, z)T ∂ ‖HN (x, y, z)‖1

⊆ AN
ε (x, y, z, ρN )

and
lim
ε↓0

AN
ε (x, y, z, ρN ) = ∂(x,y,z)ψN (x, y, z, ρN ).

Using a perturbation result of generalized equations [42, Lemma 4.2], this means a stationary point
defined by (29) converges to an M-stationary point of SAA problem (6) when ε is driven to zero
and this gives theoretical justification of the “approximation”. Likewise, since

∂(x,y,z)ψ(x, y, z, ρ) ⊂ E[∇(x,y,z)f(x, y, ξ)]+ρE[∇(x,y,z)H(x, y, z, ξ)]T ∂ ‖E[H(x, y, z, ξ)]‖1 ⊂ Aε(x, y, z, ρ),

where Aε(x, y, z, ρ) is defined by (25), we may consider approximate first order optimality condition
for the penalized true problem (5):

0 ∈ Aε(x, y, z, ρ) +ND(x, y)× {0}+ {0} × NW(y, z). (30)

The theorem below states the convergence of an approximate stationary point satisfying (29) as N

increases.

Theorem 5.2 Let {(xN
ε , yN

ε , zN
ε )} be a sequence of ε-stationary points defined by (29) and (x∗ε , y

∗
ε , z∗ε )

is a cluster point w.p.1, let Assumptions 3.3 and 4.4 hold and ρN → ρ. Then w.p.1 (x∗ε , y
∗
ε , z∗ε )

satisfies (30). Moreover the convergence rate is exponential.

Proof. By taking a subsequence if necessarily we assume for the simplicity of notation that
{(xN

ε , yN
ε , zN

ε )} → (x∗ε , y
∗
ε , z∗ε ) w.p.1. The first part of the claim follows from Theorem 4.5 (ii)

in that the uniform exponential convergence implies the uniform a.s. convergence which further
implies that

lim sup
N→∞

AN
ε (xN

ε , yN
ε , zN

ε , ρN ) ⊆ Aεψ(x∗ε , y
∗
ε , z∗ε , ρ).
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The second part of the claim follows from Theorem 4.5 (ii) and the perturbation theorem of gen-
eralized equations [42, Lemma 4.2]. We omit the details.

Note that we are short of claiming a stationary point satisfying (30) is an ε-M-stationary point
in that the ε-convex subdifferential is different from the ε-limiting subdifferential, see a discussion
by Mordukhovich in [25, page 96]. However, when ε is driven to zero, we have

Aε(x, y, z, ρ) → ∂ψ(x, y, z, ρ)

which means the ε-stationary point approximates the M-stationary point of (20) and through
Propositions 3.6 and 3.7 approximates the M-stationary point of true problem (1).

Note also that we are unable to establish the exponential rate of convergence for the M-stationary
points of the penalized SAA problem (6) and this is indeed another underlying reason that we
consider approximate stationary points in Theorem 5.2.

6 Preliminary numerical test results

In this paper, we proposed essentially two numerical schemes: a partially penalized SAA scheme
(6) and a smoothed SAA scheme (7). For a given sample, the former is a deterministic MPEC
with a nonsmooth objective function whereas the latter is a specific smoothing of the former. We
have carried out some numerical experiments on (7) and present a report of the test results in this
section.

6.1 Convergence analysis of the smoothing scheme

The convergence analysis carried out in the preceding section is based on the assumption that an
optimal solution or a stationary point is obtained from solving the partially penalized SAA problem
(6). In doing so, we allow the SAA problem (6) to be solved by any deterministic MPEC solver
which can effectively deal with the nonsmoothness in the objective function. The convergence
results, however, do not cover (7) as the smoothing parameter δN is positive. To fill out the gap,
we start this section with a brief convergence analysis of (7).

Proposition 6.1 Let {(xN , yN , zN )} be a sequence of optimal solutions of problem (7) and As-
sumption 3.3 hold. Let ρN → ρ. Then

(i) w.p.1 any accumulation point of the sequence {(xN , yN , zN )}, denoted by (x∗, y∗, z∗), is an
optimal solution of the true penalty problem (5) with the penalty parameter equal to ρ;

(ii) if, in addition, conditions (a)-(d) in Theorem 5.1 hold, then for any α > 0, there exist positive
constants c(α) and k(α), independent of N , such that

Prob
{
d

(
(xN , yN , zN ), Sopt

) ≥ α
} ≤ c(α)e−Nk(α)

for N sufficiently large, where Sopt denotes the set of optimal solutions to (3).

The proof is essentially similar to Theorem 5.1 in that

m∑

i=1

√√√√(
1
N

N∑

k=1

Fi(x, y, ξk)− zi)2 + δN −→ ‖E[F (x, y, ξ)]− z‖1

uniformly on any compact set of IRn × IRm × IRm w.p.1 at an exponential rate as the smoothing
parameter δN → 0 as N → ∞. Likewise, we can establish the convergence of stationary points
generated by the scheme.

Proposition 6.2 Let {(xN , yN , zN ; βN
y , βN

z )} be a sequence of KKT pair of problem (7) and (x∗, y∗, z∗;β∗y , β∗z )
be an accumulation point. Suppose Assumption 3.3 holds. If ρN → ρ, δN → 0 and ρ > ‖β∗z‖1, then
w.p.1 (x∗, y∗) is an M-stationary point of the true problem (1).
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Proof. Taking a subsequence if necessary, we may assume that

lim
N→∞

(xN , yN , zN ; βN
y , βN

z ) = (x∗, y∗, z∗; β∗y , β∗z ).

By definition, the M-stationary pair (xN , yN , zN ; βN
y , βN

z ) satisfies (βN
y , βN

z ) ∈ NW(yN , zN ) and

0 ∈ ∇(x,y,z)ψ̂N (xN , yN , zN , ρN , δN ) +ND(xN , yN )× {0}+ {(0, βN
y , βN

z )}, (31)

where

∇(x,y,z)ψ̂N (x, y, z, ρN , δN ) =
1
N

N∑

k=1

∇(x,y,z)f(x, y, ξk) + ρN

m∑

i=1

$N
i (x, y, z)%N

i (x, y, z)

and

$N
i (x, y, z) =

1
N

∑N
k=1 Fi(x, y, ξk)− zi√

( 1
N

∑N
k=1 Fi(x, y, ξk)− zi)2 + δN

, (32)

%N
i (x, y, z) = ∇(x,y,z)(

1
N

N∑

k=1

Fi(x, y, ξk)− zi).

By Proposition 4.3 (i), 1
N

∑N
k=1 Fi(x, y, ξk)−zi,

√
( 1

N

∑N
k=1 Fi(x, y, ξk)− zi)2 + δN and %N

i (x, y, z)
converge to E[Fi(x, y, ξ)]− zi, |E[Fi(x, y, ξ)]− zi| and ∇(x,y,z)(E[Fi(x, y, ξ)]− zi) uniformly on any
compact set in IRn × IRm × IRm respectively for i = 1, · · · ,m. Let

AN (x, y, z) := [$N
1 (x, y, z), · · · , $N

m(x, y, z)].

Since |$N
i (x, y, z)| ≤ 1 for any (x, y, z) ∈ IRn × IRm × IRm and w.p.1

lim
N→∞

$N
i (xN , yN , zN ) ∈




{1}, E[Fi(x∗, y∗, ξ)]− z∗i > 0,

[−1, 1] , E[Fi(x∗, y∗, ξ)]− z∗i = 0,

{−1}, E[Fi(x∗, y∗, ξ)]− z∗i < 0,

then the limit of the sequence {AN (xN , yN , zN )} is contained in the set G(x∗, y∗, z∗) w.p.1, where
G(x, y, z) is defined by (21). Consequently, we have

lim
N→∞

d
(
∇(x,y,z)ψ̂N (xN , yN , zN , ρN , δN ), ∂(x,y,z)ψ(x∗, y∗, z∗, ρ)

)
= 0. (33)

By (31) and the property of D,

d
(
0, ∂(x,y,z)ψ(x∗, y∗, z∗, ρ) +ND(x∗, y∗)× {0}+ {(0, β∗y , β∗z )})

≤ D(∇(x,y,z)ψ̂N (xN , yN , zN , ρN , δN ) +ND(xN , yN )× {0}+ {(0, βN
y , βN

z )},
∂(x,y,z)ψ(x∗, y∗, z∗, ρ) +ND(x∗, y∗)× {0}+ {(0, β∗y , β∗z )})

≤ d
(∇(x,y,z)ψN (xN , yN , zN , ρN , δN ), ∂(x,y,z)ψ(x∗, y∗, z∗, ρ)

)

+D
(ND(xN , yN )× {0}+ {(0, βN

y , βN
z )},ND(x∗, y∗)× {0}+ {(0, β∗y , β∗z )}) ,

where the first inequality follows from the definition of D and the second inequality follows from
(27). The first term at the right hand of the second inequality of the formula above tends to zero
by (33); the second term tends to zero by the upper semi-continuity of the limiting normal cone
mapping ND(·) and (βN

y , βN
z ) → (β∗y , β∗z ). This shows w.p.1 (x∗, y∗, z∗) is an M-stationary point of

the true penalty problem (5). The rest follows straightforwardly from Propositions 3.6 and 3.7.
From practical point of view, it might be interesting to estimate the penalty parameter ρN

in problem (7). The proposition below provides some insights about how this could be possibly
achieved through the Lagrange multipliers of the problem.
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Proposition 6.3 Let {(xN , yN , zN ;βN
y , βN

z )} be a sequence of KKT pair of problem (7) and the
penalty parameter ρN satisfies ρN ≥ ‖βN

z ‖1+1. Let (x∗, y∗, z∗) be a limiting point of {(xN , yN , zN )}.
Suppose Assumption 3.3 holds. If the extended MPEC-NNAMCQ holds at (x∗, y∗, z∗), then w.p.1
(βN

y , βN
z ) is bounded and (x∗, y∗) is an M-stationary point of the true problem (1).

Proof. We first show the boundedness of (βN
y , βN

z ). Assume for a contradiction that this is not
the case. Let tN = ‖(βN

y , βN
z )‖. Then tN →∞. Dividing (31) by tN , we have

0 ∈ ∇(x,y,z)ψ̂N (xN , yN , zN , ρN , δN )/tN +ND(xN , yN )× {0}+ {(0, βN
y /tN , βN

z /tN )}.

Under Assumption 3.3, E[∇(x,y,z)f(xN , yN , ξ)] is bounded. Taking a limit on both sides of the
formula above, we have

0 ∈
m∑

i=1

θi∇(x,y,z)(E[Fi(x∗, y∗, ξ)]− z∗i ) +ND(x∗, y∗)× {0}+ {(0, βy, βz)},

where
θi = lim

N→∞
ρN$N

i (xN , yN , zN )/tN , βy = lim
N→∞

βN
y /tN , βz = lim

N→∞
βN

z /tN

and $N
i (·, ·, ·) is defined by (32). Note that ‖(βy, βz)‖ = 1, which contradicts the extended MPEC-

NNAMCQ holds at point (x∗, y∗, z∗). Then shows the boundedness of (βN
y , βN

z ) as desired.
The boundedness of (βN

y , βN
z ) implies the boundedness of ‖βN

z ‖1 which means that we can
choose a bounded sequence {ρN} such that ρN ≥ ‖βN

z ‖1 + 1. Let

(x∗, y∗, z∗; β∗y , β∗z ; ρ∗) = lim
N→∞

(xN , yN , zN ;βN
y , βN

z ; ρN )

and note that ρ∗ ≥ ‖β∗z‖1 + 1. By Propositions 3.6 and 3.7, (x∗, y∗) is an M-stationary point of
problem (1). The proof is complete.

6.2 Numerical implementation

We carried out a number of numerical experiments on (7) in Matlab R2009a installed in a PC with
Windows XP operating system. In the tests, we employed the random number generator rand in
Matlab R2009a to generate the samples and solver fmincon to solve problem (7). To deal with the
complementary constraint 0 ≤ y ⊥ z ≥ 0, we use the well-known regularization method [35] in the
literature of MPEC to approximate it with a parameterized system of inequalities

y ≥ 0, z ≥ 0, y ◦ z ≤ te,

where t ↓ 0 is a small positive parameter, e ∈ IRm is a vector with components 1 and “◦” denotes
the Hadamard product. The approximation is theoretically guaranteed as the complementarity
constraints satisfy the MPEC-LICQ at any feasible point.

We have constructed five academic problems for the tests. The first problem is a one stage
SMPCC with two decision variables and one random parameter:

min E[(x2 + y2)− ξ]
s.t. x ≥ 1,

0 ≤ y ⊥ E[−x + y + 2 + ξ2] ≥ 0,

(34)

where ξ satisfies the uniform distribution on [3, 4]. The example is varied from a deterministic
MPEC example in [20, page 12]. Through some elementary calculations, we can easily obtain a
closed form, that is, the expected values of the underlying functions, and hence the SMPCC can
be transformed into a deterministic MPCC. The problem has a unique optimal solution (

√
3.5, 0)

with optimal value 0. We consider this example purely for testing the performance of our proposed
numerical scheme.
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The second test problem is also a one stage SMPCC with two decision variables and one random
parameter:

min E[cos(yξ)] + x2 + y2

s.t. x ≥ 0,

0 ≤ y ⊥ E[3 sin(xξ) + y − 1] ≥ 0,

(35)

where the random variable ξ satisfies uniform distribution on (0, 1]. Different from (34), it is difficult
to obtain a closed form of the expected values of the underlying random functions and true optimal
solution to the problem.

The third test problem is a combination of (34) and (35):

min E[cos(y1ξ)] + x1 + x2 + y2

s.t. x1 ≥ 4, x2 ≥ 0,

0 ≤ y1 ⊥ E[y1ξ + x1 − y2] ≥ 0,

0 ≤ y2 ⊥ E[cos(x2ξ) + y1 + y2 + ξ2

4 − π] ≥ 0,

(36)

where the random variable ξ satisfies uniform distribution over (0, 1]. Different from (35), we know
the true optimal solution (x∗, y∗) = ((4, 0), (0, π − 13/12)) with optimal value π + 47/12.

The fourth test problem is:

min E[(2(x− 1)2 + y2
1 + (y2 − 1)2 + (y3 − 1)2 + y4x)ξ]

s.t. x ≥ 1,
E[0 ≤ y1ξ + y2

2 + y2
3 + x2] ⊥ y1 ≥ 0,

0 ≤ E[−y2 − ξ + 2xξ + y4] ⊥ y2 ≥ 0,

0 ≤ E[xξ + y4 − 2y2y3ξ] ⊥ y3 ≥ 0,

0 ≤ E[x ∗ y1 + 2y4 − 4ξ + y1] ⊥ y4 ≥ 0,

(37)

where the random variable ξ satisfies uniform distribution over (0, 1]. In what follows, we analyze
the feasible solution of the problem. For any fixed x ≥ 1, in order to ensure the first and fourth
complementarity constraints hold, we must have y1 = 0 and y4 = 1. Substituting y1 = 0 and y4 = 1
into the second and third complementarity constraints, we obtain the following: (a) y2 = 0, y3 = 0;
(b) y2 = E[2xξ] + y4−E[ξ], y3 = 1; (c) y2 = E[2xξ] + y4−E[ξ], y3 = 0. Through a simple analysis,
we find the optimal solution is (1, 0, 1.5, 1, 1) with the corresponding optimal value 1.25. Moreover,
(1, 0, 0, 0, 1) and (1, 0, 1.5, 0, 1) are only a local minimizer.

The fifth example is varied from a deterministic MPEC problem in [20, page 357]:

min E[2(−8x1 − 4x2 + 4y1 − 40y2 − 4y3)ξ]
s.t. xi ≥ 0, i = 1, 2,

x1 + 2x2 − y3 ≤ 1.3,

0 ≤ E[(4− 2y4 − 4y5 + 8y6)ξ] ⊥ y1 ≥ 0,

0 ≤ E[1 + 2y4ξ + 4y5 − 2y6] ⊥ y2 ≥ 0,

0 ≤ 2 + y4 − y5 − y6 ⊥ y3 ≥ 0,

0 ≤ E[(2 + 2y1 − 2y2 − 2y3)ξ] ⊥ y4 ≥ 0,

0 ≤ E[(4− 8x1 + 4y1 − 8y2 + 2y3)ξ] ⊥ y5 ≥ 0,
0 ≤ E[2− 8x2ξ − 8y1ξ + 2y2 + y3] ⊥ y6 ≥ 0,

(38)

where the random variable ξ satisfies uniform distribution over (0, 1]. The MPEC problem is
obtained from a primal-dual formulation for a bilevel optimization problem with (y4, y5, y6) being
the dual variables. As discussed in [20], the optimal solution x = (0.5, 0.8), y = (0, 0.2, 0.8) and the
optimal value is −18.4. In our test, we use the same initial point as in [20], that is,

x0 = (0.5, 1), y0 = (0.5, 0.5, 1, 1, 1, 1), z0 = (1, 0.1, 0.1, 0.1, 0.1, 0.1).

The numerical results are displayed in Tables 1-5. A few words about the notation. iter

denotes the number of iterations returned by fmincon at the end of each test, Appr.Sol denotes the
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approximate optimal solution and Appr.V al denotes the optimal value 1
N

∑N
k=1 f(xN , yN , ξk). To

check the feasibility of the approximate optimal solution, we also recorded the residual value of the
constraints denoted by Res which is defined as ‖ 1

N

∑N
k=1 F (xN , yN , ξk)− zN‖1. The regularization

parameter t = δN and the exact penalty is fixed with ρ = 1000. For fixed sample size N and
parameter δN , we run the algorithm three times. The results depend on sampling in each run and
we record the best result. Note that fmincon requires an initial point. We set the initial point to
be a zero vector for problems (34)-(36), (1, 1, 1, 1, 1, 1, 1, 1, 1) for problem (37) and (x0, y0, z0) for
problem (38).

Table 1: Numerical results for problem (34)

N δN iter
Appr.Sol

Res Appr.V al
xN yN

50 10−3 36 1.858700 0.000000 3.1× 10−7 6.6×10−8

100 10−4 31 1.868530 0.000000 8.4× 10−8 1.1×10−6

200 10−5 36 1.865917 0.000000 4.1× 10−8 1.2×10−8

400 10−6 40 1.866691 0.000000 3.1× 10−6 3.8×10−7

Table 2: Numerical results for problem (35)

N δN iter
Appr.Sol

Res Appr.V al
xN yN

50 10−3 23 0.428301 0.356502 0.000020 1.288359
100 10−4 32 0.417516 0.326517 0.000006 1.261283
200 10−5 61 0.426770 0.349296 0.000002 1.282946
400 10−6 42 0.436715 0.341144 0.000001 1.279425

Table 3: Numerical results for problem (36)

N δN iter
Appr.Sol

Res Appr.V al
xN yN

50 10−3 27 (4.000000, 0.000000) (1.3× 10−5, 2.049814) 0.001143 7.049814
100 10−4 36 (4.000000, 0.000000) (5.2× 10−5, 2.058361) 0.000564 7.058361
200 10−5 41 (4.000000, 0.000000) (5.1× 10−6, 2.055591) 0.000347 7.055591
400 10−6 30 (4.000000, 0.000000) (2.5× 10−7, 2.058639) 0.000022 7.058639

Table 4: Numerical results for problem (37)

N δN iter
Appr.Sol

Res Appr.V al
xN yN

100 10−3 40 1.000000 (0.000160, 0.000656, 0.000656, 1.015981) 0.000134 3.078464
400 10−4 52 1.000000 (0.000030, 1.502982, 0.000067, 1.002028) 2.10×10−10 2.259537
800 10−5 84 1.046554 (0.000001, 1.533056, 0.000007, 0.991277) 2.11×10−8 2.303452
1600 10−6 83 1.004118 (0.000000, 1.504954, 0.998079, 1.000559) 1.27×10−9 1.260364
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Table 5: Numerical results for problem (38)

N δN iter
Appr.Sol

Res Appr.V al
xN yN

100 10−3 87 (0.684957, 0.772538) (0.000000, 0.052389, 0.949784,
0.799280, 0.633791, 2.162078)

0.003198 -14.203291

400 10−4 61 (0.593800, 0.790798) (0.000012, 0.124951, 0.875395,
0.657016, 0.610835, 2.046179)

0.038421 -15.852703

800 10−5 85 (0.541006, 0.795950) (0.000001, 0.167201, 0.832907,
0.000000, 0.500003, 1.499985)

0.045778 -16.952109

1600 10−6 86 (0.507108, 0.799307) (0.000000, 0.194311, 0.805721,
0.005924, 0.500988, 1.504936)

0.132091 -19.093353

The results show that the numerical scheme performed reasonably well but more tests might be
needed to confirm the claim. Note that the results rely heavily on the Matlab built-in NLP solver
fmincon. It would be possible to display stronger results if one uses a more robust NLP solver.
Moreover, it might be interesting to carry out numerical tests on (6). This may require to develop
a numerical method which incorporates the existing MPEC solvers with well known techniques in
nonsmooth optimization such as the bundle method and aggregate subgradient method [11, 12].
We leave this for our future work.

6.3 Concluding remarks

The results established in this paper are presented in terms of M-stationary points in that from
theoretical point of view M-stationarity is stronger than C-stationarity. However from numerical
perspective, it is often easier to obtain a C-stationary point than an M-stationary point as the
latter usually requires more conditions, see comments in [35]. It is therefore interesting to know
whether our results in this paper can be extended to C-stationary point. The answer is yes. Let
us sketch how this works: if we reformulate the complementarity constraint 0 ≤ y ⊥ z ≥ 0 as a
nonsmooth system of equations Φ(y, z) := min(y, z) = 0 then all of the optimality conditions and
convergence results will be in the sense of Clarke’s. We omit the details.

Note also that it is possible to include ordinary stochastic equality and inequality constraints
into SMPCC model (1). Under some appropriate metric regularity conditions as we discussed in
Section 3, we can move these constraints to the objective through exact partial penalization. In
other words, the partial penalization scheme and the subsequent sample average approximation in
this paper apply to classical stochastic programs with stochastic equality and inequality constraints
(by dropping the complementarity constraints). This complements the existing asymptotic and/or
stability analysis by Shapiro [36] and Römisch and Rachev [33] for this type of problems.
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Appendix

Proof of Lemma 4.1. Observe first that the uniform convergence of HN (v) to E[H(v, ξ)] is
equivalent to

HN (v) ∈ E[H(v, ξ)] + δB w.p.1, (39)

for N sufficiently large. Let us estimate supv∈V D
(AGN (v),AG(v)

)
. To this end, we need to review

some elementary properties of D. Let D1 and D2 be two compact subsets in IRm and M1 and M2

be two matrices in IRn×m. It is easy to verify that

D(M1D1,M1D2) ≤ ‖M1‖D(D1, D2), (40)

and

D(M1D1,M2D1) ≤ ‖M1 −M2‖‖D1‖. (41)

Using (40)-(41) and the triangle inequality of D, we have

D
(∇HN (v)TAQ(HN (v)),∇E[H(v, ξ)]TAQ(E[H(v, ξ)])

)

≤ D(∇HN (v)TAQ(HN (v)),∇E[H(v, ξ)]TAQ(HN (v))
)

+D
(∇E[H(v, ξ)]TAQ(HN (v)),∇E[H(v, ξ)]TAQ(E[H(v, ξ)])

)

≤ ‖AQ(HN (v))‖‖∇HN (v)−∇E[H(v, ξ)]‖
+‖∇E[H(v, ξ)]‖D (AQ(HN (v)),AQ(E[H(v, ξ)])) . (42)

We estimate the last two terms in the above equation. By (39),

‖AQ(HN (v))‖ ≤ ‖AQ(E[H(v, ξ)]) + δB‖.

The right hand side in the inequality is bounded for all v ∈ V since AQ is compact set-valued
and uniformly upper semicontinuous on W . On the other hand, ∇HN (v) converges to ∇E[H(v, ξ)]
uniformly on V, this shows ‖AQ(HN (v))‖‖∇HN (v)−∇E[H(v, ξ)]‖ → 0 uniformly on V. Note that
under integrable boundedness of ∇H(v, ξ), ∇E[H(v, ξ)] = E[∇vH(v, ξ)]. To complete the proof,
we estimate the second term. By assumption, AQ(w) is uniformly upper semi-continuous on W ,
which means that for any ε, there exists a δ1 such that

AQ(w′) ⊆ AQ(w) + εB, ∀w′ ∈ w + δ1B and w ∈ W.

Let v ∈ V and w = E[H(v, ξ)]. Then w ∈ W . By (39), we have from the inclusion above by setting
δ ≤ δ1

AQ(HN (v)) ⊆ AQ(E[H(v, ξ)]) + εB, ∀v ∈ V,

which is equivalent to
sup
v∈V

D
(AQ(HN (v)),AQ(E[H(v, ξ)])

) ≤ ε.

The conclusion follows as ε can be arbitrarily small and ‖∇E[H(v, ξ)]‖ is bounded. The proof is
complete.


