
ar
X

iv
:1

00
7.

16
73

v2
 [

cs
.D

S]
 2

 A
ug

 2
01

1

Online Stochastic Matching: Online Actions Based on Offline Statistics

Vahideh H. Manshadi ∗ Shayan Oveis Gharan† Amin Saberi†

August 3, 2011

Abstract

We consider the online stochastic matching problem proposed by Feldman et al. [4] as a
model of display ad allocation. We are given a bipartite graph; one side of the graph corresponds
to a fixed set of bins and the other side represents the set of possible ball types. At each time
step, a ball is sampled independently from the given distribution and it needs to be matched
upon its arrival to an empty bin. The goal is to maximize the number of allocations.

We present an online algorithm for this problem with a competitive ratio of 0.702. Before our
result, algorithms with a competitive ratio better than 1−1/e were known under the assumption
that the expected number of arriving balls of each type is integral. A key idea of the algorithm
is to collect statistics about the decisions of the optimum offline solution using Monte Carlo
sampling and use those statistics to guide the decisions of the online algorithm. We also show
that our algorithm achieves a competitive ratio of 0.705 when the rates are integral.

On the hardness side, we prove that no online algorithm can have a competitive ratio better
than 0.823 under the known distribution model (and henceforth under the permutation model).
This improves upon the 5

6
hardness result proved by Goel and Mehta [7] for the permutation

model.

1 Introduction

We study a natural variation of bipartite matching problem motivated in the context of online
advertising: suppose we are given a bipartite graph G(Y,Z,E) where Y is the set of stochastic
nodes (or ball types) and Z is the set of non-stochastic nodes (or bins). At times t = 1, 2, · · · b, a
ball of type y ∈ Y is chosen independently at random from a given distribution. The algorithm
can assign the ball to at most one of the empty bins that are adjacent to it. Further, each bin can
be matched to at most one ball. The goal is to maximize the expected number of non-empty bins
at time b. We refer to this model as the known distribution model.

When the balls are chosen by an adversary instead of a random process, Karp, Vazirani, and
Vazirani [10] gave a simple and elegant randomized algorithm that achieves a competitive ratio of
1 − 1/e. We present the first algorithm for this problem that improves the 1 − 1/e competitive
ratio for the stochastic version in its general form. Previously, Feldman et al. [4] (and later [1])
used a very interesting combinatorial algorithm to show that this is possible when the arrival rate
of every ball, that is the expected number of times it appears, is integral (this is also known as
the i.i.d. model). This assumption, even though not very restrictive for the display ad allocation,

∗Department of Electrical Engineering, Stanford University, Stanford, CA 94305. Email:vahidehh@stanford.edu .
†Department of Management Science and Engineering, Stanford University, Stanford, CA 94305.

Email:{shayan,saberi}@stanford.edu.

1

http://arxiv.org/abs/1007.1673v2
vahidehh@stanford.edu
{shayan,saberi}@stanford.edu

is somewhat unnatural. For example, when the distribution is uniform, it requires b/|Y | to be an
integer.

One of the key ideas in designing our algorithm is to approximately compute the expected
matching used by the optimum offline algorithm and use it to guide the decisions of the online
algorithm. In particular, using Monte Carlo sampling, one can compute f(y,z), the probability that
the optimum offline algorithm allocates a ball of type y to a bin of type z, for every y and z.
Without loss of generality, we can assume f is a fractional matching.

Our first algorithm writes f as a distribution over integral matchings and samples two matchings
M1 and M2 from it. Then, in the online phase, it will use these two matchings for allocating the
arriving balls to the bins (see Section 3). The analysis of our algorithm is much shorter and
simpler than both [4, 1]. All these algorithms are non-adaptive, in the sense that they decide the
allocation of all the balls regardless of the allocation of the bins before they arrive. We present
a simple example to show that no non-adaptive algorithm can achieve a competitive ratio better
than 1− 1/e when the arrival rates are non-integral (see Proposition 5.1).

The main result of the paper is an adaptive algorithm that obtains a competitive ratio of 0.702 for
arbitrary rates, and 0.705 for the i.i.d. model (see Section 4). Unlike the non-adaptive algorithms,
our adaptive algorithm decides the allocation of each arriving ball based on the current allocation
of the bins. In particular, when a ball arrives the algorithm samples two neighbor bins from a joint
distribution and tries to match it to the first bin; if the bin is already matched the algorithm tries
the second bin. To the best of our knowledge, this is the first algorithm that beats the 1 − 1/e
ratio in the general form. The adaptivity of the algorithm imposes a lot of dependencies in the
distribution of full bins and because of that our analysis is somewhat intricate.

On the hardness side, we present an example that gives an upper bound of 0.823 on the compet-
itive ratio of any deterministic or randomized online algorithm in the known distribution model (see
Proposition 5.3). For analyzing this example, we use the expected size of a maximum matching of
a random bipartite graph recently computed by [3, 6, 5] in the context of random SAT and cuckoo
hashing.

1.1 Related Work

Bipartite matching problems are central in algorithms and combinatorial optimization and arise
naturally in several applications such as resource allocation, scheduling, and online advertising.

The online matching problem was first studied by Karp, Vazirani, and Vazirani [10] in the
adversarial model where the graph is unknown; when a ball arrives it reveals its incident edges.
They proved that a simple randomized on-line algorithm achieves (1 − 1/e) and this factor is the
best possible performance.

More recently, Feldman et al. [4] studied the problem under stochastic assumptions. They
assumed that the graph is known but the sequence of arrivals are i.i.d. samples from a given
distribution. Further, they assumed that sampling rates are integral and developed an online
algorithm that beats (1−1/e). They also showed that there is no 1−o(1)-approximation algorithm
for this setting. Recently, Bahmani and Kapralov [1] improved the upper and lower bounds of
Feldman et al. to 0.902 and 0.699 respectively in the same setting. Also, they showed that for
d-regular graphs, a simple randomized algorithm achieves a competitive ratio of 1−O(1/

√
d) [1].

Goel and Mehta [7] considered a different stochastic model: they assumed the graph is unknown
but the sequence of arrivals is a random permutation. This is known as the random permutation
model, and it is a generalization of the known distribution model. They showed that a greedy

2

algorithm achieves (1 − 1/e) factor. Further, they showed that no online algorithm can achieve
competitive ratio better than 5

6 . Since the known distribution model is a special case of the
random permutation model, our hardness result improves their upper-bound to 0.823. Since the
first appearance of this paper, Karande et al. [9], and Mahdian and Yan [11] independently improve
the (1− 1/e) competitive ratio in the random permutation model to 0.653 and 0.696 respectively.

A close line of work to the online matching is the online b-matching and the AdWords problem
[12, 2]. Mehta et al. [12] developed a (1− 1/e) online algorithm in the adversarial case. Recently,
Devanur and Hayes [2] improved the competitive ratio to (1 − ǫ) in the stochastic case where the
sequence of arrivals is a random permutation or it consists of i.i.d. samples.

2 Problem Definition

Let G(Y,Z,E) be a bipartite graph where Y is the set of stochastic nodes (or ball types) and Z is
the set of non-stochastic nodes (or bins). There is a rate ry associated to every type of ball y ∈ Y .
The online stochastic matching problem is as follows: at times t = 1, 2, · · · b, a ball of type y ∈ Y is
chosen independently and with probability proportional to ry. The algorithm can assign this ball
to at most one of the empty bins that are adjacent to it; each bin can be matched to at most one
ball. The goal of the algorithm is to maximize the expected number of non-empty bins at time b.

Without loss of generality, we assume that
∑

y∈Y ry = b, thus the expected number of balls of
type y in the sequence is ry. Also, we assume that ry ≤ 1; if a node has a rate greater than 1, we
can easily split it into a set of identical nodes with rates at most 1.

We will study two classes of algorithms: non-adaptive and adaptive. A non-adaptive algorithm
is equivalent to an ordering of the neighbors N(y) of every node y ∈ Y . If z1, z2, · · · z|N(y)| is such
an ordering for y, then the k-th time a ball of type y arrives, the algorithm will allocate it to bin
zk if it is empty. If k > |N(y)| or zk is full then the ball will not be allocated. On the other hand,
adaptive algorithms can choose the assignment of every ball when it arrives.

We will compare our algorithms to the optimum offline solution. Given the sequence of arrived
balls ω = (y1, y2, . . . , yb), one can compute the optimum allocation, OPT(ω), in polynomial time
by solving a maximum matching problem. Fix a particular maximum matching algorithm and let
F (ω) : E → {0, 1} be the vector indicating which edges are used in the optimum allocation given
ω. Clearly, OPT(ω) = 1TF (ω) and the competitive ratio of an online algorithm ALG is defined as
E[ALG]
E[OPT] . In our case, both ALG and OPT are concentrated around their expected values, therefore

the above competitive ratio is fairly robust (see Feldman et al. [4] for a more detailed discussion).
Our algorithms will crucially use the optimum offline solution for making decisions. In partic-

ular, define

f =
∑

ω

F (ω)P (ω) , (1)

where P (ω) is the probability of the sequence ω = (y1, y2, . . . , yb). By definition, f is a convex
combination of matchings and therefore it is in the convex hull of the matchings of G. We will refer
to f as the fractional matching defined by OPT. For each edge e = (y, z) ∈ E, fe is the probability
that a ball of type y is allocated to bin z by the optimum offline algorithm. Similarly we define the
fractional degree of a node to be fv =

∑

e∼v fe for v ∈ Y ∪ Z.

Proposition 2.1 The vector f is a fractional matching in G. i.e.

fy ≤ ry ≤ 1, y ∈ Y, and fz ≤ 1, z ∈ Z. (2)

3

Moreover, for e = (y, z), we have fe ≤ 1− e−ry + o(1/b).

Proof: Given ω, let Ny(ω) be the number of balls of type y in ω. Clearly
∑

e∼y Fe(ω) ≤ Ny(ω).
Taking expectations from both sides results in the first inequality in (2). Similarly, the second
inequality in (2) can be proved by noting that in any instance of the problem, z can be matched
to at most one ball. Finally, for e = (y, z), we have

fe ≤ P (Ny(ω) ≥ 1) = 1− (1− ry
b
)b ≤ 1− e−ry + o(1/b).

�

Throughout the paper, we will assume that b is sufficiently large so that o(1/b) is negligible.
We will need to compute fe for every edge e. Obviously, fe’s can be computed by enumeration
in time O(|Y |b). It is also easy to see that E [OPT] and f(e) for all e ∈ E, can be approximated
with great accuracy using Monte Carlo method. OPT is an integral random variable which is in
interval [0, b], hence its variance is upper-bounded by b2. Therefore, E [OPT] can be estimated with
error of o(1/b), by averaging over O(b3) independent samples of the process. A similar argument
shows that with O(|E|2b4) samples of ω in equation (1), with high probability, one can compute
the vector f with accuracy within o(1/b|E|). In the rest of the paper, for simplicity of notation, we
will assume that we have estimated f accurately and ignore o(·) terms.

Since f is a fractional matching, standard algorithmic versions of Caratheodory’s theorem (see
e.g. [8, Theorem 6.5.11]) say that, in polynomial time, we can decompose a feasible solution in the
bipartite matching polytope into a convex combination of polynomially many bipartite matchings.
More specifically, we obtain the following:

Corollary 2.2 It is possible to efficiently and explicitly construct (and sample from) a distribution
µ on the set of matchings in G such that

∑

M, e∈M

µ(M) = fe, ∀e ∈ E

3 A Non-adaptive algorithm

In this section, we will analyze a simple non-adaptive algorithm for the special case where all rates
are one, i.e., ry = 1,∀y ∈ Y . This is the setting studied in Feldman et al. [4]. Our algorithm and
its analysis is simpler and more intuitive than [4]. It also gives a slightly better competitive ratio.

Our non-adaptive algorithm has some similarities with the online algorithm that Feldman et
al. propose [4]. Both algorithms start by computing two matchings M1 and M2 offline; we use the
first matching, only for the first arrived ball of each type and the second one only for the second
arrivals. In particular, when the first ball of type y arrives it will be allocated to the bin matched
to y in M1, and when the second ball arrives, we will allocate it via M2. If the corresponding bins
are already full, the balls will be dropped. Note that the probability that there are more than two
balls of each type y in the sequence of arrivals is very small.

On the other hand, we use a different method from [4] to construct these matchings. Feldman
et al. find M1 and M2 by decomposing the solution of a maximum 2-flow of G into two disjoint
matchings (since all the rates are one, the expected graph is simply G). However, we will sample
our matchings from the distribution µ defined by the optimum solution f .

4

Algorithm 1 The Online Non-adaptive Algorithm

Offline Phase:

1: Compute the fractional matching f , and the distribution µ using Corollary 2.2.
2: Sample two matchings M1 and M2 from µ independently; set M1 (M2) to be the first (second)

priority matching.
Online Phase:

3: When the first ball of type y arrives, allocate it through the first priority matching, M1.
4: Similarly, when a ball of type y arrives for the second time, allocate it through the second

priority matching, M2.

The outline of the algorithm is presented in Algorithm 1. In the rest of this section, we analyze
Algorithm 1, and show that its approximation ratio is 0.684. Let Xz be the random variable
indicating the event that bin z is matched with a ball during the run of the algorithm. We analyze
the competitive ratio of the algorithm by comparing E [Xz] with fz:

E [ALG]

E [OPT]
=

∑

z∈Z E [Xz]
∑

z∈Z fz
≥ min

z∈Z

E [Xz]

fz

Consider any z ∈ Z, and with a slight abuse of notation let M1(z) denote the stochastic node
matched to it in M1. More precisely, if (y, z) ∈ M1, define M1(z) = {y}, and if z is not saturated
in M1, define M1(z) = ∅; similarly define M2(z). Note that z is saturated by M1 (or M2) with
probability fz, but if M1(z) = M2(z), bin z will only be used for the first arrived ball and effectively
it is not saturated by M2. Given M1 and M2, E [Xz|M1,M2] can be computed similar to [4, section
4.2.2] by considering the following cases:

E [Xz|M1,M2] =































0 if M1(z) = M2(z) = ∅
1− 1/e if M1(z) 6= ∅, {M1(z) = M2(z)}
1− 1/e if M1(z) 6= ∅,M2(z) = ∅
1− 2/e if M1(z) = ∅,M2(z) 6= ∅
1− 2/e2 if M1(z) 6= ∅,M2(z) 6= ∅,M1(z) 6= M2(z)

(3)

By substituting (3) into E [Xz] we get:

E [Xz] = (1− 1/e)
∑

e∼z

fe(1− fz + fe) + (1− 2/e)
∑

e∼z

fe(1− fz) + (1 − 2/e2)
∑

e,e′∼z, e 6=e′

fefe′

= fz(2− 3/e) − f2
z (1 + 2/e2 − 3/e) − (1/e − 2/e2)

∑

e∼z

f2
e

The last equality can be derived by algebraic manipulation and noting that
∑

e∼z fe = fz. It
remains to prove a lower bound on the value of the last equation:

Lemma 3.1 In any graph G = (Y,Z,E), if f is the corresponding vector of the optimum solution,
we have

E [Xz]

fz
= (2 − 3/e) − (1 + 2/e2 − 3/e)fz − (1/e − 2/e2)

∑

e∼z f
2
e

fz
≥ 0.684 (4)

5

Proof: The proof of this lemma is mainly algebraic. Let us first fix fz and find the minimum
of the LHS in terms of fz. For any fz, the LHS is minimized when

∑

e∼z f
2
e is maximized. Note

that
∑

e∼z fe = fz, and thus to maximize the
∑

e∼z f
2
e , we need to consider the most “unbalanced”

edge probabilities that are consistent with the properties of fractional matching f . By proposition
2.1, fe ≤ 1 − e−1 for each e ∼ z, thus for fz ≤ 1 − e−1, the term

∑

e∼z f
2
e is maximized when

we have only one edge with nonzero probability. Similarly we can show that the summation of
the probabilities of any 2 edges incident to z is at most 1 − e−2, thus if 1 − e−1 ≤ fz ≤ 1 − e−2,
the term

∑

e∼z f
2
e is maximized when we have two edges with nonzero probability; one edge with

probability 1− e−1 and one with probability fz − (1− e−1). Similarly we can proceed to compute
the maximum of

∑

e∼z f
2
e in terms of fz for all 0 ≤ fz ≤ 1.

The only remaining task is to find the value fz that minimizes the LHS of (4). Intuitively, the
LHS is minimized when fz = 1. In particular, if fz < 1, we may add a dummy node y to Y , and
connect it to z by an edge e = (y, z) with very small probability, i.e. fe = ǫ. It is easy to see that
this can only decrease the LHS. Also, one can numerically confirm that the LHS of (4) attains its
minimum at fz = 1 with value 0.684.

�

Theorem 3.2 Assuming all the rates are 1, the solution of Algorithm 1 is within 0.684 of the
optimum offline solution.

4 The Adaptive Algorithm

In the analysis of the non-adaptive algorithm presented in the previous section, we assumed that
the arrival rates of all stochastic nodes are integral and in particular, they are at least one. This is
a crucial assumption. If the rates ry’s are not bounded from below, the probability of receiving a
second ball of the same type can become arbitrary low and the competitive ratio of the algorithm
can get very close to 1 − 1/e. This is the case for all non-adaptive algorithms: In Proposition 5.1
we show that no non-adaptive (even randomized) algorithm can achieve a competitive ratio better
than 1− 1/e when the sampling rates are not necessarily integral.

In this section, we will analyze a simple adaptive algorithm that will have a better performance
for arbitrary rates. The algorithm is very simple: when a ball of type y arrives, it samples two
neighboring bins z1 and z2 from a joint distribution. If z1 is empty then y is matched to z1.
Otherwise, the algorithm will try z2 and match y to it if it is empty.

The joint distribution from which z1 and z2 are chosen, is determined in advance for every ball
type y and it has the following properties: (i) The probability that z1 is equal to z is equal to f(y,z).
The same is true for z2. Recall that rates are normalized such that

∑

y∈Y r(y) = b and thus f is a
fractional matching. (ii) The joint distribution is such that the probability of z1 = z2 is minimized.
Note that such a joint probability maximizes the possibility that a ball tries a second different bin
in case the first bin that it tries is full. In what follows, we will present one joint distribution with
these properties.

Suppose (y, z1), . . . , (y, zk) are the edges incident to y, and without loss of generality assume
that f(y,z1) ≥ . . . ≥ f(y,zk). Also define a dummy edge (y, zk+1) that is connected to a dummy non-
stochastic node zk+1, with f(y,zk+1) = ry−fy. Note that f(y,zk+1) is the probability that OPT drops
a ball of type y. We will construct two different partitions of the interval Iy = [0, ry]. Specifically,
partitions Iy and Jy are defined as follows:

6

0 0.2 0.4 0.5 1

0 0.5 0.7 0.9 1

ry = 1

fe1 = 0.5 fe2 = 0.2 fe3 = 0.2

z1 z2 z3

Ie1 Ie2 Ie3 Ie4

Je1Je2 Je3 Je4

Figure 1: Illustration of partitions Iy and Jy for node y with edges e1, e2, and e3

• Partition Iy: let I(y,z1) = [0, f(y,z1)]; similarly let I(y,zl) = [
∑l−1

j=1 f(y,zj),
∑l

j=1 f(y,zj)], 2 ≤ l ≤
k + 1.

• Partition Jy: let J(y,z1) = [ry − f(y,z1), ry], J(y,z2) = [0, f(y,z2)], and similarly J(y,zl) =

[
∑l−1

j=2 f(y,zj),
∑l

j=2 f(y,zj)], 3 ≤ l ≤ k + 1.

Note that the second partition is obtained by shifting the subintervals of Iy to the left by f(y,z1).
Figure 1 illustrates the partitions through a simple example. Having Iy and Jy, the distribution
is defined as follows: choose a number x uniformly at random from [0, ry], define z1,y(x) to be z if
x ∈ I(y,z); similarly define z2,y(x) to be z′ if x ∈ J(y,z′). It is easy to see that this joint distribution
has property (i). Also, note that the second partition Jy has the minimum possible overlap with the
first one which implies that the resulting joint probability has property (ii), i.e., for each stochastic
node y, the probability that z1,y(.) = z2,y(.) is minimized. Further, if all f(y,z)’s are less than 1

2ry,
the probability of z1,y(.) = z2,y(.) is equal to zero.

Observation 4.1 For stochastic node y, suppose (y, z∗) is the edge with the maximum probability,
i.e. f(y,z∗) ≥ f(y,z), ∀z ∼ y. If f(y,z∗) <

1
2ry then z1,y(x) 6= z2,y(x), for all x ∈ [0, ry]. Otherwise,

z1,y(x) 6= z2,y(x) only for x ∈ [ry − f(y,z∗), f(y,z∗)].

The outline of the algorithm is presented in Algorithm 2.

Algorithm 2 Online Adaptive Algorithm

Offline Phase:

1: Compute the fractional matching f .
2: For each y ∈ Y and x ∈ [0, ry], construct the functions z1,y(·) and z2,y(·) by defining the

corresponding partitions Iy and Jy.
Online Phase:

3: If a ball of type y ∈ Y arrives, choose a number x uniformly at random from interval [0, ry].
4: Match the ball with z1,y(x);
5: If z1,y(x) is full, match the ball with z2,y(x);

Theorem 4.2 For any graph G and arbitrary set of rates {ry, y ∈ Y }, the competitive ratio of
Algorithm 2 is at least 0.702.

7

Unlike Algorithm 1, the analysis of Algorithm 2 is fairly intricate, mainly because the adaptivity
of the algorithm introduces new dependencies. We will present the proof in a few steps to build an
intuition before getting to the actual calculations.
Proof: Consider a non-stochastic node z ∈ Z. Bin z can be matched as a first priority bin or as
a second priority bin. Note that a bin will be matched once it is tried as a first or second priority.
We define the event Az(t) to be the event that bin z was tried as a first priority bin by time t, i.e.,
at any time 1, 2, . . . , t. Also, define Bz(t) to be the event that bin z was tried as a second priority
bin at time t. Using the notation defined in the previous section:

E [Xz] = P

(

Az(b) ∨ ∪b
t=1Bz(t)

)

= P (Az(b)) + P

(

∪b
t=1Bz(t) ∧ Az(b)

)

= P (Az(b)) + P

(

∪b
t=1Bz(t)

∣

∣

∣
Az(b)

)

P
(

Az(b)
)

(5)

We need to compute P (Az(b)). Instead we compute P (Az(t)) for 1 ≤ t ≤ b; at each time step,
the probability that a ball tries z as a first priority bin is equal to the probability that a ball of
type y arrives, where y is connected to z through edge (y, z), and we choose a point in the interval

I(y,z). This probability is
∑

y∼z f(y,z)∑
y∈Y ry

= fz
b , and we have:

P (Az(t)) = 1− (1− fz
b
)t = 1− e−

tfz
b + o(1/b). (6)

Thus P (Az(b)) = 1−e−fz . The more difficult part of the analysis is to lower-bound P
(

∪b
t=1Bz(t)| Az(b)

)

.
To analyze this probability, we define the parameter qz :=

∑

y∼z

∫

x∈J(y,z)\I(y,z)
1dx. Roughly speak-

ing, we can interpret qz as the fractional degree of z in the second priority. Note that qz ≤ fz and
the equality holds iff for all y ∼ z, I(y,z) ∩ J(y,z) = ∅. In Lemma 4.7 we lower-bound qz in terms of

fz. The following lemma lower-bounds P
(

∪b
t=1Bz(t)| Az(b)

)

in terms of fz, qz, and the fractional
degree of nodes at distance 2 form z.

Lemma 4.3 For any non-stochastic node z we have:

P

(

∪b
t=1Bz(t)

∣

∣

∣
Az(b)

)

≥ 1

b

b
∑

t=1

∑

y∼z

∫

x∈J(y,z)\I(y,z)

(

1− e−
tfz1,y(x)

b

)

dx
[

1− qz
b
(b− t)

]

, (7)

Proof: Using inclusion-exclusion principle, we have:

P

(

∪b
t=1Bz(t)| Az(b)

)

≥
b

∑

t=1

P
(

Bz(t)| Az(b)
)

−
∑

1≤t<u≤b

P
(

Bz(t) ∩ Bz(u)| Az(b)
)

=

b
∑

t=1

P
(

Bz(t)| Az(b)
)



1−
∑

t<u≤b

P
(

Bz(u)| Az(b) ∩ Bz(t)
)





It is sufficient to upper-bound P
(

Bz(u)| Az(b) ∩ Bz(t)
)

, and to lower-bound P
(

Bz(t)| Az(b)
)

. We
start by showing the former, the latter is proved in Lemma 4.4.

The probability that z is tried at time u conditioned on the event Az(b) is at most the probability
that a ball of type y arrives, where y ∼ z, and a number x ∈ J(y,z) \ I(y,z) is chosen. Note that since

8

we are conditioning on the event that z is not tried as a first priority, the sampled point cannot
belong to J(y,z) ∩ I(y,z). By the definition of qz, the total length of the intervals J(y,z) \ I(y,z) for all
y ∼ z is qz.

Conditioning on the event Az(b) implies that during the run of the algorithm, no ball arrives
for the subintervals I(y,z) for y ∼ z. This condition is equivalent to reducing the rate of any such
nodes y by f(y,z). In other words, we choose a point in subintervals with total length of b − fz.

Hence, the probability that z is tried at time u conditioned on event Az(b) is at most qz
b−fz

. Since
t < u, regardless of whether the event Bz(t) happens or not, the probability of Bz(u) cannot exceed
qz

b−fz
(i.e. P

(

Bz(u)| Az(b) ∩ Bz(t)
)

≤ qz
b−fz

). Since fz ≤ 1 we can approximate this by qz
b with an

error term of o(1/b) which we ignore for simplicity.
In lemma 4.4 we lower-bound P

(

Bz(t)| Az(b)
)

(see inequality 8. Putting these together proves
the lemma.

�

Lemma 4.4 For any non-stochastic node z, and any time 1 ≤ t ≤ b we have:

P
(

Bz(t)| Az(b)
)

≥ 1

b

∑

y∼z

∫

x∈J(y,z)\I(y,z)

(

1− e−
tfz1,y(x)

b

)

dx (8)

Proof: The event Bz(t) depends on whether the bins at distance 2 from z are full or not. In order
to incorporate the effect of the allocation of these bins on the matching of z at time t, we study
the evolution of the density of full bins at distance two from z as follows. For any edge e = (y, z)
incident to z, define F(y,z)(t) to be those areas from J(y,z) \ I(y,z) whose corresponding first priority
bin is full at time t. In other words, x ∈ F(y,z)(t) if z1,y(x) is full before time t. Also define πz(t) to
be the sum of the length of those intervals (i.e. πz(t) =

∑

y∼z

∫

x∈F(y,z)(t)
1dx). First we show that

P
(

Bz(t)| Az(b)
)

= E[πz(t)]
b−fz

, then we lower-bound E [πz(t)].
First observe that the bin z will be tried at time t as a second priority iff a ball of type y ∼ z

arrives, and we choose x ∈ F(y,z)(t). Thus the conditional probability that bin z is tried at time

t as the second priority is P
(

Bz(t)| Az(b) ∧ πz(t)
)

= πz(t)
b−fz

. We illustrate this through an example.
In the graph of Figure 1 let e1 be the only edge adjacent to z1. Suppose at time t, z2 is full and
z3 is empty; we want to compute P

(

Bz1(t)| Az1(b) ∧ πz1(t)
)

. We have F(y,z1)(t) = [0.5, 0.7], and
πz1(t) = 0.2. Since z1 will be tried as a second priority only if the arriving ball is of type y and
x ∈ F(y,z1), we get P

(

Bz1(t)| Az1(b) ∧ πz1(t)
)

= 0.2
b−0.5 . By the law of iterative expectations we

obtain:

P
(

Bz(t)| Az(b)
)

≥ E
[

πz(t)|Az(b)
]

b
(9)

It remains to lower-bound E
[

πz(t)|Az(b)
]

. Using definition of πz(t), we write E
[

πz(t)|Az(b)
]

as:

E
[

πz(t)|Az(b)
]

=
∑

y∼z

∫

x∈J(y,z)\I(y,z)

E
[

I
(

x ∈ F(y,z)(t)
)

|Az(b)
]

dx

=
∑

y∼z

∫

x∈J(y,z)\I(y,z)

P
(

x ∈ F(y,z)(t)|Az(b)
)

dx (10)

9

It suffices to lower-bound P
(

x ∈ F(y,z)(t)|Az(b)
)

. As explained above, F(y,z)(t) is a non-decreasing
random process that depends on the allocation of the bins at distance 2 from z at time t. For
x ∈ J(y,z) \ I(y,z), let z′ = z1,y(x). Note that x ∈ F(y,z)(t) iff z′ is full at time t. Thus it suffices to
compute the probability that z′ is full at time t. Observe that if z′ is full at time t, it has been tried
at least once as a first or second priority bin. Therefore, the probability of z′ being full at time t
is at least the probability of event Az′(t). For simplicity, we ignore the possibility of the trial of z′

as a second priority and obtain the following lower bound:

P
(

x ∈ F(y,z)(t)| Az(b)
)

≥ P
(

Az1,y(x)(t)| Az(b)
)

≥ 1− e−
tfz1,y(x)

b .

where the last inequality follows from (6). Substituting the RHS into (10) and using (9) imply the
Lemma. �

Putting equations (5), (6), (7) together and using e−fz ≥ e−1, we can lower bound the compet-
itive ratio of Algorithm 2:

E [ALG]

E [OPT]
≥

∑

z∈Z

{

(

1− e−fz
)

+ e−1

[

1
b

∑b
t=1

∑

y∼z

∫

x∈J(y,z)\I(y,z)

(

1− e−
tfz1,y(x)

b

)

dx
[

1− qz
b (b− t)

]

]}

∑

z∈Z fz
(11)

In the rest of the proof we show that the ratio attains its minimum when the fractional degree
of all non-stochastic nodes are exactly one, i.e., fz = 1, ∀z ∈ Z. As a warm up, we first analyze
this extreme case. We have:

E [ALG]

E [OPT]
≥ (1− e−1) + e−1

[

1

b

b
∑

t=1

∑

y∼z

∫

x∈J(y,z)\I(y,z)

(1− e−
t
b)dx[1− qz

b
(b− t)]

]

= (1− e−1) + e−1

[

qz
b

b
∑

t=1

(1− e−
t
b)[1− qz

b
(b− t)]

]

≥ 1− e−1 + qze
−2 − e−1q2z(

1

2
− e−1) ≥ 0.702, (12)

where the last inequality follows from the observation that for bins with fz = 1 we have qz ≥ ln 2
(see Lemma 4.7 for a proof).

In the remaining parts of the proof we need to show if the fractional degree of some bins
are much smaller than 1, still the competitive ratio of the algorithm remains larger than 0.702.
Unfortunately, the dependencies between the fractional degree of z and bins at distance 2 from
z result in a significant change in the probability of z being matched as a second priority. In
particular, if all of the bins at distance 2 from z have a very small rate (i.e. if fz1 ≃ 1

n), then

P

(

∪b
t=1Bz(t)|Az(b)

)

= O(1n). This implies that we can not lower bound the RHS of (11) by lower

bounding the worst matching probability of a bin. Instead, in the following lemma we write the
probability of z being tried as a second priority bin in terms of a linear function of fz, qz and the
fractional degree of bins at distance 2 from z. This will enable us to lower-bound the RHS of (11)
by a node based ratio:

10

Lemma 4.5 For any non-stochastic node z, we have:

P

(

∪b
t=1Bz(t)| Az(b)

)

≥ qze
−1 − q2z

(

1

2
− e−1

)

− e−1
∑

y∼z

∫

x∈J(y,z)\I(y,z)

[

1− fz1,y(x)
]

dx. (13)

Proof: The proof of this lemma is mainly algebraic. First note that we can write equation (7) as

P

(

∪b
t=1Bz(t)| Az(b)

)

≥
∑

y∼z

∫

x∈J(y,z)\I(y,z)

C(fz1,y(x), qz)dx (14)

where C(fz1,y(x), qz) :=
1
b

∑b
t=1(1 − e−

tfz1,y(x)

b)(1 − qz
b (b − t)), is a concave function of fz1,y(x); this

follows from the fact that C(., qz) is a weighted sum of exponential functions with negative weights.
Therefore, we can lower-bound C(·, qz) by a linear function of fz1,y(x). Since 0 ≤ fz1,y(x) ≤ 1 we
have:

C(fz1,y(x), qz) ≥ C(0, qz) + [C(1, qz)−C(0, qz)]fz1,y(x) = C(1, qz)fz1,y(x),

where the last equality follows by the observation that C(0, qz) = 0. On the other hand, we have
C(1, qz) = e−1 − qz(1/2 − e−1). Therefore:

C(fz1,y(x), qz) ≥ (e−1 − qz(
1

2
− e−1))fz1,y(x) ≥ e−1 − qz(1/2 − e−1)− e−1[1− fz1,y(x)]

The lemma simply follows from substituting the above equation in (14), and using the definition
of qz. �

Substituting (13) in (11), we get:

E [ALG]

E [OPT]
≥

∑

z∈Z

{

(1− e−fz) + qze
−2 − q2ze

−1(12 − e−1)− e−2
∑

e∼z

∫

x∈Je\Ie

[

1− fz1,y(x)
]

dx
}

∑

z∈Z fz

Next we rearrange the last term of the numerator to eliminate all dependencies between the frac-
tional degree of z and the bins at distance 2 from z. This enables us to analyze the competitive
ratio of the algorithm by the worst case ratio among all bins. We can write:

∑

z∈Z

∑

y∼z

∫

x∈J(y,z)\I(y,z)

[1− fz1,y(x)]dx =
∑

z∈Z

∑

y∼z

∫

x∈I(y,z)\J(y,z)

[1− fz1,y(x)]dx,

Here the equality follows from the observation that for all y ∈ Y , both sides are integrating over
all x ∈ [0, ry] where z1,y(x) 6= z2,y(x). Since for any x ∈ I(y,z) \ J(y,z), we have z1,y(x) = z, and

∑

z∈Z

∑

y∼z

∫

x∈I(y,z)\J(y,z)

[1− fz1,y(x)]dx =
∑

z∈Z

∑

y∼z

∫

x∈I(y,z)\J(y,z)

[1− fz]dx ≤
∑

z∈Z

fz[1− fz].

Therefore, the competitive ratio of the algorithm is at least:

E [ALG]

E [OPT]
≥ min

z∈Z

(1− e−fz) + qze
−2 − q2ze

−1(12 − e−1)− e−2fz [1− fz]

fz
. (15)

Since for 0 ≤ qz ≤ 1, the RHS is an increasing function of qz, any lower-bound on qz also gives a
lower-bound on the competitive ratio of the algorithm. In particular, if fz ≤ 1

2 , we can lower-bound

11

qz by zero and we get E[ALG]
E[OPT] ≥

1−e−fz−e−2fz [1−fz]
fz

≥ 0.719. On the other hand, if fz ≥ 1
2 we use

the lower-bound qz ≥ ln 2 + fz − 1 (see Lemma 4.7 for the proof), and we obtain that the worst
lower-bound is attained for bins with fractional degree 1:

E [ALG]

E [OPT]
≥ 1− e−1 + e−2 ln 2− e−1(ln 2)2(

1

2
− e−1) ≥ 0.702.

This completes the proof of Theorem 4.2. �

Remark 4.6 As we discussed earlier (equation (12)) the worst competitive ratio of the algorithm
is attained for bins with fractional degree 1, thus the linear bounds used in the proof of Lemma 4.5
does not change worst case analysis of the algorithm.

Lemma 4.7 For any non-stochastic node z, we have qz ≥ ln 2 + fz − 1

Proof: The proof follows from Observation 4.1 and an optimization over the sampling rate of the
neighboring stochastic nodes.

z

y1

ry1 = .5
y2

ry2 = .5
y3

ry3 = 1

f(y1,z) = .3 f(y2,z) = .3 f(y3,z) = .4

Eo
z = {(y1, z), (y2, z)}

En
z = {(y3, z)}

Figure 2: An example of a non-stochastic node z with |Eo
z | > 1.

Let Ez be the set of edges incident to z in graph G. We partition Ez into two subsets Eo
z and

En
z , such that Eo

z consists of edges (y, z) where f(y,z) >
1
2ry, and En

z = Ez \ Eo
z are the rest of the

edges. In words, Eo
z is the set of edges e for which I(y,z) and J(y,z) overlap. For example, if the rates

of all stochastic nodes are 1, for any edge (y, z) ∈ Eo
z we must have f(y,z) >

1
2 ; but since fz ≤ 1 we

must have |Eo
z | ≤ 1. However, this is not necessarily true if we allow the stochastic nodes to have

arbitrary rates (see Figure 2 for an example). By Observation 4.1, we have:

qz =
∑

y∼z

∫

x∈J(y,z)\I(y,z)

1dx =
∑

y:(y,z)∈En
z

f(y,z) +
∑

y:(y,z)∈Eo
z

ry −
∑

y:(y,z)∈Eo
z

f(y,z). (16)

Let fn
z , r

o
z, and f o

z be the first, second, and the third summations in the RHS, i.e., qz = fn
z +roz−f o

z .
By Proposition 2.1 we can show f o

z ≤ (1− e−roz); it is sufficient to replace all stochastic neighbors
of z with a super node y∗ of rate roz, and use Proposition 2.1 to conclude that

f o
z = f(y∗,z) ≤ (1− e−ry∗) = (1− e−roz). (17)

We can obtain a lower bound on qz simply by using the above equations and noting that fz = fn
z +f o

z :

qz = fn
z + roz − f o

z = fz + roz − 2f o
z ≥ fz + roz − 2(1− e−roz)

≥ fz + ln 2− 2 + 2e− ln 2 = fz + ln 2− 1,

12

where the first equality follows from equation (16), the first inequality follows from equation (17),
and the second inequality follows from the fact that roz = ln 2 is the minimizer of roz + 2e−roz . �

Corollary 4.8 If we restrict the sampling rates of all stochastic nodes to be integral (i.e. ry’s are
integral), then the competitive ratio of Algorithm 2 is at least 0.705.

Proof: The corollary simply follows from a better lower-bound on qz in terms of fz. Since the
rates are integral we can show qz ≥ fz+2e−1−1; in particular, in the proof of Lemma 4.7 assuming
integral rates, we get roz ∈ {0, 1} which implies that qz ≥ fz +1− 2(1− e−1) = fz +2e−1 − 1. Then
the corollary follows from plugging this lower-bound into equation (15). �

5 Upper Bounds for Online Algorithms

We will present three examples. The first example gives a straightforward 1 − 1/e upper bound
for the performance of non-adaptive randomized algorithms. It shows that when the rates are
arbitrarily small, no non-adaptive algorithm can achieve a competitive ratio better than 1 − 1/e.
Note that a randomized non-adaptive algorithm predetermines distribution Dy,i for the i-th arrival
of type y. In other words, when the i-th ball of type y arrives it will be matched to the neighbor
bin z with probability Py,i (z).

Proposition 5.1 There is an instance of the online stochastic matching problem with small rates,
ry = o(1), for which no non-adaptive randomized algorithm can achieve a competitive ratio better
than 1− e−1.

Proof: Suppose G(Y,Z,E) is a complete bipartite graph, where |Y | = n2 and |Z| = n = b; also
suppose the rate of all types is 1/n. Since G is a complete bipartite graph, OPT can easily allocate
all the arriving balls and E [OPT] = n. On the other hand, since ry = o(1), with high probability,
there will be at most one ball of each type. Therefore, any non-adaptive randomized algorithm
only needs to predetermine one distribution Dy,1 for each type y. For each bin z ∈ Z, let pz be the
probability that an incoming ball is matched to z. In other words,

pz =
∑

y∈Y

r(y)Py,1 (z) =
1

n

∑

y∈Y

Py,1 (z)

With probability e−pz no ball will be matched to the bin z in the run of the process. Thus,
E [ALG] =

∑

z∈Z(1− e−pz). Since function 1− e−x is concave we have:

E [ALG]

E [OPT]
=

∑

z∈Z(1− e−pz)

n
≤ (1− e−

1
n

∑
z∈Z pz).

On the other hand, we have:

1

n

∑

z∈Z

pz =
1

n2

∑

z∈Z

∑

y∈Y

Py,1 (z) =
1

n2

∑

y∈Y

∑

z∈Z

Py,1 (z) = 1.

13

ry1 = 1

|Y1| = n, fy1 = 1− 1/e, fe1 = 1− 1/e

ry2 = 1

|Y2| = n/e, fy2 = 1, fe2 = 1/n

|Z| = n, fz = 1

Φ(t)

Ψ(t)

Figure 3: Graph structure for the proof of Proposition 5.2

Therefore, E[ALG]
E[OPT] ≤ 1− e−1 which completes the proof. �

Our next two examples give an upper bound on the performance of any deterministic or ran-
domized online algorithm. In the first example, the rates are integral. Our upper bound of 1− e−2

is slightly better than the result of [1].

Proposition 5.2 There exists an instance of the online stochastic matching problem with integral
rates for which no online algorithm can achieve an expected competitive ratio better than 1− e−2 ≃
0.86.

Proof: Construct a bipartite graph G(Y,Z,E), where Y = Y1∪Y2, |Y1| = |Z| = n, and |Y2| = n/e.
The set E of edges consists of a perfect matching between the vertices of Y1 and Z denoted by E1,
and a complete bipartite graph between Y2 and Z, denoted by E2. See Figure 3.

First, we prove that E [OPT] = n. Given the sequence of arrivals, first we match through the
perfect matching (E1). In other words, we match one ball of each type y1 ∈ Y1. Note that with
probability e−1, there will be no ball of type y1, thus, in expectation, (1− 1/e) fraction of the bins
will remain empty after matching through E1. On the other hand, the expected number of balls of
types Y2 is n/e, which can be matched with the n/e empty bins through the edges of the complete
bipartite graph, E2. Hence, this simple scheme finds the maximum matching and E [OPT] = n.

On the other hand, consider an arbitrary online algorithm ALG; at time t, let Ψ(t) ⊆ Z be the
set of full (matched) bins, and Φ(t) ⊆ Y1 be the set of types that have a neighbor in Ψ(t). If the
(t+ 1)-st ball is of type Φ(t), it is impossible for ALG to match this ball. Thus:

|Ψ(t+ 1)| ≤|Ψ(t)|+ I
(

t+ 1st ball is not of type Φ(t)
)

(18)

Observe that,

P
(

t+ 1st ball is not of type Ψ(t)
)

= 1− |Ψ(t)|
n(1 + 1/e)

. (19)

Note that b = n(1+ 1/e) balls will arrive, thus E [ALG] = E [|Ψ(n(1 + 1/e))|]. Taking expectations
from both sides of (18) and using (19) result in:

E [ALG] ≤ n(1 + 1/e) × (1− 1/e) = (1− 1

e2
)n,

14

which proves the claim of the proposition. �

Our last and probably most interesting example is for general online algorithms, under arbitrary
rates. In this example, we use calculations on the size of perfect matchings in random bipartite
graphs studied earlier in the context of Random SAT and cuckoo hashing [3, 6, 5].

For a set Z of bins, define Yk to be a set of
(|Z|

k

)

vertices, each connected to a distinct subset
of cardinality k of Z. These sets will play an important role in constructing examples with large
competitive ratio. Let us start with a simple example. Consider an instance of online stochastic
matching where Y = Y3, |Z| = n. Also suppose that all the rates are equal and b = 0.9n, i.e. the
rate of each ball ry = n/

(0.9n
3

)

.
From the perspective of the algorithm, we will have a sequence of 0.9n arriving balls each

connected to three bins chosen independently and uniformly at random. Because of that, all the
empty bins are equivalent; thus the online algorithm can assign the arriving ball to any of its
unoccupied neighbors, if there is any. Similar to the proof of Proposition 5.2, let Ψ(t) ⊆ Z be the
set of full bins at time t, and Φ(t) ⊆ Y be the set of types of balls that have no neighbor in Z \Ψ(t)
at time t. Note that if the (t+ 1)-st ball is of type Φ(t), it is impossible for any online algorithm
to match it. Note that:

P
(

t+ 1st ball is not of type Φ(t)
)

= 1− |Φ(t)|
(n
3

) = 1−
(

|Ψ(t)|
3

)

(n
3

) .

Thus we can simply write a recurrence relation to compute the expected performance of the online
algorithm.

The more difficult part is to compute the optimum solution. The optimum offline algorithm
will essentially find the maximum matching between all arrived ball types and the bins. The size
of this maximum matching is studied by Path and Rodler [13]. There, the problem is defined as
follows: there are b keys to be hashed into n buckets, each capable of holding a single key. Each
key has k ≥ 2 (distinct) associated buckets chosen uniformly at random and independently of the
choices of other keys. A hash table can be constructed successfully if each key can be placed into
one of its buckets.

Define c∗k to be the threshold such that if b/n < c∗k and n is large enough, the resulting bipartite
graph has a matching of size b. There has been extensive effort to compute c∗k [6, 5, 3]. In
particular, it has been shown that c∗3 > 0.91. Therefore, we can argue that if b/|Z| = 0.9 < c∗3 then
the optimum can match all of the balls with high probability. Dietzfelbinger et al. [3] considered
an irregular version of the cuckoo hashing, where the number of choices corresponding to a key is
a random variable depending on the key. In particular, they considered the case where a key has
2 choices with probability 1/2 and 3 choices with probability 1/2 (say 2.5 choices in average), and
they defined the number c∗2.5 similarly. Interestingly, they show that c∗2.5 ≃ 0.81034 which is much
larger than c∗2.

In the next proposition we use a combination of the irregular cuckoo hashing idea and the
idea of the proof of Proposition 5.2 (adding the type Yn) to obtain a better upper bound on the
performance of optimal online algorithms.

Proposition 5.3 There is an instance of the online stochastic matching problem for which no
algorithm can achieve a competitive ratio better than 0.823.

15

Proof: Let Y = Y2 ∪ Y3 ∪ Yn, |Z| = n; note that Yn and Z form a complete bipartite graph.
Suppose in expectation we throw m := 1/2c∗2.5n balls of types in Y2, m of types in Y3 and n− 2m
of type in Yn. Therefore, we have b = n, and ry = m/

(n
2

)

for y ∈ Y2, ry = m/
(n
3

)

for y ∈ Y3, and
ry = n − 2m for y ∈ Yn. The optimum offline solution would first match the balls of types in Y2

and Y3, and because the expected number of these balls is at most c∗2.5n, it can match all of them
with high probability. Then, it matches all the balls of type Yn to the unoccupied bins. Therefore
E [OPT] = n. Let ALG be an online algorithm and let Ψ(t) and Φ(t) be defined as above. Similar
to the equation (20) we can compute the probability that an incoming ball can be matched by
ALG. Note that if a ball of types in Yn arrives the online algorithm can always match it through
the complete graph; on the other hand, if a ball of type Y2 or Y3 arrives it can only be matched if
it has at least one neighbor in Z \Ψ(t). Note that:

P
(

the type of t+ 1st ball is not in Φ(t)
)

= 1− m

n

[

(|Ψ(t)|
2

)

(

n
2

) +

(|Ψ(t)|
3

)

(

n
3

)

]

Therefore, we have

E [|Ψ(t+ 1)|] ≤ E [|Ψ(t)|] + 1− m

n
E

[

(

|Ψ(t)|
2

)

(n
2

) +

(

|Ψ(t)|
3

)

(n
3

)

]

≤ E [|Ψ(t)|] + 1− m

n

[

(

E[|Ψ(t)|]
2

)

(n
2

) +

(

E[|Ψ(t)|]
3

)

(n
3

)

]

,

where the last inequality follows from Jensen’s inequality. One can numerically compute E [|Ψ(n)|]
and show that E [|Ψ(n)|] ≤ 0.823n for n > 1000. Thus for n > 1000, we have:

E [ALG] ≤ E [|Ψ(n)|] ≤ 0.823n,

which implies that the approximation ratio of the online algorithm is at most 0.823. �

6 Discussion

We should also point out that competitive analysis is not the only possible or necessarily the most
suitable approach for this problem. Because the distribution from which the input is generated is
known, one can use dynamic programming (or enumeration of future events) to derive the optimal
allocation policy. Unfortunately, the dynamic programming approach takes exponential time. In
fact, one can show that the problem of computing the optimal allocation policy in NP-hard. We
leave it as an open problem whether it is possible to come up with a polynomial-time algorithm
with an approximation guarantee that is better than the best possible competitive ratio for this
problem or the competitive ratio that we obtain here.

References

[1] B. Bahmani and M. Kapralov. Improved bounds for online stochastic matching. In ESA, pages
170–181, 2010.

16

[2] N. R. Devanur and T. P. Hayes. The adwords problem: online keyword matching with budgeted
bidders under random permutations. In EC, pages 71–78, 2009.

[3] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh, and M. Rink. Tight
thresholds for cuckoo hashing via xorsat. SIAM Journal on Computing, 2009.

[4] J. Feldman, A. Mehta, V. S. Mirrokni, and S. Muthukrishnan. Online stochastic matching:
Beating 1-1/e. In FOCS, pages 117–126, 2009.

[5] N. Fountoulakis and K. Panagiotou. Sharp load thresholds for cuckoo hashing. arXiv, cs.DS,
Jan. 2009.

[6] A. Frieze and P. Melsted. Maximum matchings in random bipartite graphs and the space
utilization of cuckoo hashtables. arxiv report 0910.5535v3, 2009.

[7] G. Goel and A. Mehta. Online budgeted matching in random input models with applications
to adwords. In SODA, pages 982–991, 2008.

[8] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization, volume 2 of Algorithms and Combinatorics. Springer, 1988.

[9] C. Karande, A. Mehta, and P. Tripathi. Online bipartite matching with unknown distributions.
In STOC, 2011.

[10] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In STOC, pages 352–358. ACM, 1990.

[11] M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: A strongly factor
revealing lp approach. In STOC, 2011.

[12] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized online matching.
J. ACM, 54(5):22, 2007.

[13] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.

17

	1 Introduction
	1.1 Related Work

	2 Problem Definition
	3 A Non-adaptive algorithm
	4 The Adaptive Algorithm
	5 Upper Bounds for Online Algorithms
	6 Discussion

