- - . Room 14-0551

A
. . 77 Massachusetts Avenue
M"‘leran eS Cambridge, MA 02139
, Ph: 617.253.5668 Fax: 617.253.1690
Document Services Email: docs@mit.edu

http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Due to the poor quality of the original document, there is
some spotting or background shading in this document.




. JUNE 1985 LIDS-P-1479

THE COMPLEXITY OF MARKOYV DECISION PROCESSES
Christos H. Papadimitriou! and John N. Tsitsiklis 2

ABSTRACT

We investigate the complcxity of the classical problem of optimal policy computation in
Markov decision processes. All three variants of the problem (finite horizon, infinite horizon
discounted, and infinite horizon average cost) were known to be solvable in polynomial time
by dynamic programming (finite horizon problems), linear programming, or successive
approximation lechniques (infinite horizon). We show that they are complete for P, and

- thercfore most likely cannot be solved by highly parallel algorithms. We also show that, in
contrast, tiie deterministic cases of all three problems can be solved very fast in parallel.
The version with partially observed states is shown to be PSPACE-complete, and thus
even less likely to be solved in polynomial time than the NP-complete problems; in fact,
we show that, most likely, it is not possible to have an efficient on-line implementation
(involving polynomial time on-line computations and memeory) of an optimnal policy, even
il an arbitrary amount of precomputation is allowed. Finally, the variant of the problem
in which thcre are no obscrvations is shown to be NP-complete.

1. INTRODUCTION

In the past, Complexity Theory has been applied with considerable snccess to separate
optimization problems with respect to their computational difficulty [GJ, PS|. Such results
are valuable in that they succeed in formalizing the intuitive fecling by researchers in the
area about the impossibility of certain approaches in solving some hard problems, and in
some cases give a quite clear scparation between the casy and the hard versions (special
cascs or gencralizations) of important problems. In most of this work, NP>-completeness is
the main notion of complexity used. The important distinction here is between problems
that are in P, that is, can be solved in polynomial time (linear programming, max flow,
minimum spanning tree) and those that are NPP-completle, and therefore evidently cannot
(such as inleger programming and the traveling salesman problem).

Recent research in parallel algorithms [Co| has succeeded in pointing out some im-
portant differences between problems that are in P, that is, can be solved in polynomial
time. Some of these problems can be solved by algorithius that use cooperating processors
so that the time requirements-are reduced tremendously (such problems include, from the
optimization point of view, mininuum spanning tree problem, the shortest path problem,
and others), whereas certain other problems (first of all linear progranuming, but also some
special cases of it, such as maximum llow) do not appear to be susceptible ‘to such mas-
sive parallelization. NC is the class of problems thal have algorithis using a polynomial
number of processors, and time delay which is polynomial in the logarithm of the input

! Departments of Computer Scicnce and Oprerations Research, Stanford University.
Rescarch supported by the National Science Foundation.

2 Department of [Slactrical Engineering and Computer Science, M.LT. Reseach sup-
ported by an IBM flaculty development award.

l




size. The question then arises, is NC=P? In other words, is it true that ail problems that -
an be solved satisfactorily by sequential computers, can also take the maximum possible

advantage of parallel computers? Most researchers believe that the answer is negative, -

... ... 'The notions of reductions and'completeness offer some important evidence here as-
- well: Linear programming, maximum flow, and some other problems have been shown to

be P-complete [DLS, GSS|. This means, intuitively, that such problems are as hard as
any problem in P; thus, they can be massively parallelized only if NC=P, that is, if all
problems in P can, and thus there are no inherently sequential probleins.. Since this event

_is considered extremely unlikely, P-completencss is taken as evidence that a problem is not

in NC, and thus cannot be satisfactorily parallelized.’

The design of optimal strategies for Markov decision processes (say, for the discounted

infinite horizon case) has been a very central and well-solved optimization problem. There
are basically two approaches to its solution. I'irst, the problem can be cxpressed as a linear
program and thus solved (either by generic techniques, or specialized “policy improvement”
routines [Ilo]; this technique appears to be unpromising (rom the parallel algorithm point
of view, since it involves lincar programming, a problem that scems inherently scquential.

~ Sccondly, there are iterative techniques thal are known to converge fast on the optimal

policy; however, such techniques are sequential also by nature. (Let us note in passing that
the problem of deriving a “clezi'x_l” polynomial time algorithm for this problem, without us-
ing general lincar programming or approximate techniques, is an important open question
that has not been emphasized in the literature as much as it descerves.) An interesting
question arises: Is the Markov decision problem in NC, or is it complete for P, and thus,

in souie sense, the use of lincar programming for its solution is inherent?

[n this paper we show that computing the optimal policy of a Markov decision process
is complete for P, and therefore most probably is inherently sequential. This is true also
for the average cost case, as well as the finite horizon (non-stationary) case. However, we
also show that the deterministic special cases of all three problems (that is, in which all
posublc stochastic matrices have zero-one entries) is in NC.

Nt,x(. we address the question of the complexity ol the patt,mlly ohscrvcd generaliza-
tion of this problem; this is an important problem arising in many applications in control
theory and operations rescarch [Be]. We show that the partially observed version of the
finite horizon problem is PSPACE-complete. We do not cousider infinile horizon partially
observed problems because these are not combinatorial problems and do not scem to be
exactly solvable by finite algorithins. Notice that only recently has there been work re-
lating combinatorial optimization problems [Or, Pal] to this notion ol complexity, which
is stronger than NP-completeness (sce Scction 2 for definitions). In fact, we show that,
most likely, it is not possible to have an ellicient ou-line implementation (involving poly-
nowmial time on-line computations and meneory) ol an optimal policy, even if an arbitrary
amount of precomputation is allowed. Iinally, we show that the same problem with no
observations is NP-complete.

[n the next Scction we introduce the necessary concepts from Markov Decision Pro-
cesses, and Complexity Theory. In Scction 3 we present our results concerning the possi-
bility of designing massively parallel algorithms for these problems. Finally, in Section 4
we prove our results on partially observable Markov processes.

to




2 DEFINITIONS -

H_machme random access ma.chme, etc.w {AHU LP} ‘111 thcse ‘models of computatxon are.
““ known to be equivalent within a polynomial. We denote by P the class of all problems that _

can be solved in polynomial time (it is understood, in any such model of computation).

As usual, by “problem” we mean an infinite set of instances, each of which is a “yes-no”

- question. Optimization problems can be transformed into such problems by asking, not for

the optmni feasible solutxon, but simply whether the optmml cost is below a given bound.

NP is the class of problexxm that can be solved by a nondeterministic such machine in

and following both computation paths; this can be repeated in cach of the paths, and so
on, creating a potentially exponential set of computations.. {Equivalently, NP is the class
of “yes-no” problems that have the “succinct certificate property”, sece [PS].)

Besides time complexity, we shall concern ourselves with the space complexity of

- algorithms. The space consumed by a computation is the number of miemory cells necessary

for the computation; notice that this does not count the space necessary for the input, so

the space requirement of an algorithm may be less than linear (for example, logarithimic).

- An important class is PSPACE, the class of all problems that can be solved in polynomial

'space. It is true that, if a computation can be carried out in time (or nondeterministic

time) T(n), then it requires only T(n) space; it follows that P and NP are subsets of

- PSPACE. 1f the spacce requirements are T(n), then the time requircment cannot exceed
e (™) for some constant c.

We say that a problem A is reducible to another B if, for any instance z of A, we can
coastruct using space log(|z]) an instance f{z) of B such that the answer for z, considered
as an instance of A, is the saune as the answer of f(z), considered as an instance of B (here

.z is aslring encoding an instance of problem A, and |z] is ils length). Nolice that we insist
that the function [ be computed in logarithmic space; this is stricter than the polynomnl
time usually required. In practice this is not a major restriction as most known polynomial
reductions can in fact be accomplished in logarithmic space. Also, it can be shown that
log-space reduction is transitive. Let A be a problem, and € be a class of problems (such
as P, NP, PSPACE). We say that A is complete lor C, or C-complete if (a) A is a member
of C, and (b) for every member B ol C, B is reducible to A.

Although there are many NP-complete problems in the literature, the notion of
PSPACH-completeness is somewhal less well-known, A Tundamental PSPACE-complete
problem is thal of quantified satisliability (QSAT) [SM]: We are given a quantified Boolean
formula 3z,Vz,3z;3 ...V, F(z),...,2.), where [ is an ordinary Boolean formula in con-
junctive normal form, with three literals per clause. We are to determine whether this
formula is true, that is, whether there exists a truth value for z; such that, for all truth
values of z,, cte. for all truth values of Z,, I" coucs out true.

As mentioned above, PSPACE contains NP. In fact, NP can be thought of as the class
ol problems reducible to the special case of QSAT, called SAT, in which all quantifiers
are existential (that is, there is no alternation of quantiliers). In fact, there is a number

3

 polynomial time; a nondcterministic machine essentially has the power of branching out




 thought of as all prob

 of intermediate classest based on less restricted alternation; this is called the polynomial -

= hierarchy [SM]-"The next level -above NP in this hierarchy is the class T8, which can be -
‘ ‘ lems that reduce to the problem of telling whether a formula with
“onc string of cxistential quantifiers, followed by a string of universal quantifiers, is true...

“An example of such a formula is 3z,3z2...: 32 VY1 VY2 .. YYm F(Z1, - Um):

In the interest of formalizing parallel computation, we can define a parallel random
access machine (PRAM), that is, a set of RAMs operating in unison, and communicating
through a scquence of common registers, some of which initially hold the input [Co|. The -
measures of complexity here are the delay until the final answer is produced, and the
number of processors that have to be involved. A problem is considered to be solved in a
satisfactory way by such a supercomputer if the delay is polynomial in the logarithm of the

_leagth of the input, and the number of processors involved are polynomial in the lengthof = ™

the input. The class of problems solvable under these terms is called NC. Obviously (by
multiplying delay times number of processors) NC is a subset of P. The. great enigma for
parallel computation, analogous to P=?NP for sequential computation, is whether NC=P.
That is, while P=NP asks whether there are (reasonable) problems that are inherently
expoucutial, NC=P asks whether there arc problems thal are inherently scquential. The
bets are that such problems do exist, but there is no prool. Now, if inherently sequential
problems exist (equivalently, if NC#P) then the problems that are complete for P will
certainly be among them. Thus, P-completeness plays vis-a-vis the NC=P problem the
sanie role enjoyed by NP-completeness in relation to the P=NP problem.

One basic P-complete problem is the circuit value problem (CVP). A circuit is a
finite scquence of triples C = ({as,b;,¢:),t = 1,...,k). For cach 7 < k, a, is one of the
 “operations” false, true, and, and or, and b;, c; arc non-negative integers smaller than
i. Il a; is cither false or true then the triple is called an input, and b; = ¢; = 0. If a;
is cither and or or then the triple is called a gate and b;,¢; > 0. The value ol a triple is
defined recursively as follows: First, the value of an input (true,0,0) is true, and that of
(false,0,0) is false. The value ol a gate (a:,b;,¢:) is the Boolean operation denoted by a;

applicd Lo the values of the bith and cith triples. The value of the circuit C is the valuer == =

of the last gate. Finally, the CVP is the lollowing problem: Given a circuit C, is its value
true?

Markov Decision Processes. In.a Markov decision process we are given a finite set
S of states, of which one, sq is the initial state. At each time ¢ = 0,1,... the current
state is s, € S. For each state s € S we have a finite set D, of decisions. By making
decision © € Dy, at time ¢, we incur a cost ¢(s,1,¢), and a the next state s' has probability
probability distribution given by p(s,s’,7,t). We say the process is stationary il cand p
are independent of ¢ A policy § is a mapping assigning to each lime ¢t € {0,1,2,...} and
state s € S a decision §(s,t). A policy is stationary il §(s,t) is independent of t. We shall
counsider three variants of the problem. TFirst, in the finite horizon problem, we are given
a (non-stationary) Markov decision process and an integer T We wish to find a policy
that minimizes the expectation of the cost Zf.:”c(s,,E(s,,t),t). The other variants that

t  Of course, it should be borne in mind that, for all we know, PSPACE, NI, cven P
might all coincide, in which case so would these “intermediate” classcs.

4




- we deal with have infinite horizon, and thus we shall only consider their stationary special

"~ cases (otherwise we nced the description of an infinite object, namely the parametersc.
-and p for all tlmes) In the discounted (infinite horizon) problem we are given a Markov ===
decision process and a- number 8 € (0,1), and we wish to _minimize the_expectation of.
‘the discounted cost 3 ;o c(se,6(s:,t))Bt. Finally, in the average cost (infinite horizon) =
problem we are given a Markov decision process, and we wish to minimize the expectation -
T elseb(se.t))

T

of the limit imp_ o . It is well-known that in the two latter cases (those
for which the optimal policy is a potentially infinite object), there exist stationary optimal
policies, and therefore optimal policies admit a finite description. For all three cases of the
problem, there are well-known polynomial-time algorithms.

3. P-COMPLETENESS AND PARALLEL ALGORITHMS
We show the following result: _ -

Theorem 1. The Markov Decision Process problem is P-complete in all three cases (finite
horizon, discounted, and average cost).

Proof: We shall reduce the CVP to the finite horizon version first. Given a circuit
C = ((ai, bi,cq),1 = 1,...,k), we construct a stationary Markov process M = (S,¢,p) as
follows: S has one state 7 for each triple (a;,b;,¢;) of C, plus an extra state q. If (as, b;,¢:)
is an input, then the corresponding state 7 has a single decision 0, with p(z,q,0) = 1, and
cost ¢(z,0) = 1 if a; = false, and 0 otherwise. All other costs arc 0. From g we only
have one decision, with 0 cost, which has p(q,q,0) = 1. If a; is an orgale, there are two
“decisions 0, 1 from state 7; with zero cost, and p(z,b;,0) = 1, p(t,¢4, 1) = 1. That’is, we
decide whether the next state is going Lo be b; or c;. If a; is an and gate, then there is one
choice 0 in D;, with p(7,6;,0) = p(7,¢:,0) = 1/2, that is, the next state can be cither b; or

. We let the initial state to be k, the last gate, and T, the time horizon, to be equal to
Ic the size of the circuit.

We claim that the optinuumn expected cost is 0 or less 1ﬂ' the value of C was true.
In proof, suppose that the expectation is indeed zero (it cannot be less). Then it follows
that there are decisions so Lhat the states with positive costs are impossible to reach.
However, these states correspond to the false inputs, and thus these decisions are choices
of a‘true gale among b;, ¢; for each or gate z of the circuit so that its overall value is true.
Converscly, if the value is true, there must be a way to choose an input gate for cach or
gate so that the false inputs are not reachable, or, equivalently, the states with positive
costs arc nol possible.

sssentially the saune construction works for the discounted case; for the average cost
problent, a mwodification is necessary: We must first make sure that all paths from the
inputs to Lhe last gate of C have the same number of gates on them, and then have
transilions from the states corresponding to the inputs not to a state g, but back to the
initial state. OJ '

We note that the above prool shows that even the stationary special case of the finite
horizon problem is P-hard. Tt is not known whether the stationary finite-horizon problem
is in P, because of the lollowing diflicully: We could be given a stationary process with
n states, and a horizon T up to 2™, and the input would still be of size O(n). Still, the

5




dynamic programming algorithm for this problem would take time proportxonnl to Tn
f;and thus exponentxa.i in n.r S _— = -

Deter_mmxstxc Problems o i i SRRE AL HEA

Consider now the specxa.l case of thcse problcms in Whlch the only allowed values for p
are 0 and 1; we call this the deterministic case. We shall show below that the detcrministic
cases of the finite horizon (stationary and non-stationary), discounted, and average cost
problem are in NC. Our approach is to look at these problems as variants of the graph-

theoretic shortest-path problem [Laj. This is done as follows: Given a deterministic Markov .

~ decision process, we construct a directed graph G = (V, A), where the nodes are the states,
and the arcs emanating from a node are the decisions available at this state. The node

~pointed by an arc is the state to which this deccision is certainto lead (recall that there are

only 0 or 1 probabilities). There is a weight ¢(u,v) on each arc (u,v), equal to the cost of
the corresponding decision. We denole by uq the node corresponding to the initial state
sn. The particular variants of the problem are then cquivalent to certain variants of the
shortest path problem. -

The Non-Stationary Finite Horizon Problem. The parallel algorithms that we
describe in this Secction employ a technique used in the past to yield fast parallel (or
space-eflicient) algorithms known as “path doubling” [Sa, SV]. The idea is, once we have
computed all optimal policies between any two states, wherc each policy starts at time ¢
and cnds at time ¢;, and similarly between ¢5 and ¢3, to compute in one step all optimal
policics between t; and t3. We can think of this as multiplying two' |V| x |V| matrices

- A(ty5¢t2) and A(t, L3), where the (u,v)th entry of A(tl,tn) is the cost of the optimal policy

from state u to v between times ¢; and (5. This “matrix multiplication” is the variant in
which multiplication of reals is replaced by addition, and addition of reals by the operation
of taking the minimum. Using n3 processors, we can “multiply” n X n matrices in logn
parallel steps, by independently computing each of the n? inner products by n processors
in logn steps. This latter can be done by computing the n terms of the inner product
independently, and combining them in logn stages.

This approach immediately suggests an NC parallel algorithm for the finite horizon
non-stationary problem: We start from the matrices A(t,t4-1),t =0,...T = 1; the (u,v)th
entry of A(¢,¢-+1) cquals Lo the cost of the decision leading al time ¢ [rom stale u to state v,
if such a decision exists at time ¢, and equal to co otherwise. Then to compute the required
A(0,T) we multiply in log T stages these matrices. The total number of processors is Tn®,
and the total parallel time log T'log n; since the size of the input for the non-stationary
problem is 22T, this is an NC algocithm.

Theorem 2. The finite-horizon, non-stationary deterministic problem is in NC. OJ
Noticc that this technique does not solve the stationary problem, whose input is of

length n? + log T, and which will have to be attacked by a more sophisticated tcduuque, -

cxplained later.

The Infinite Horizon Undiscounted Case. It is casy to sce that the infinite horizon
average cost problem is equivalent to finding the cycle in the graph corresponding Lo the
process that is reachable from ny, and has the smallest average length of arcs. In proof of

6




- the equivalence; the limit of the average cost of an infinite path which starts at ug, reaches -
- this- cycle, and then follows’ thxs cvcle for ever, equals to the optxmum ave 1ge cost ;md
" this cannot be improved. S T

~ To make sure that we ¢ do not conslder solutlons tha.t are not. rea.chable from  ug,. we._ T

ﬁrst compute in logn parallel time [SV] the nodes reachable from ug, and in the sequel:
consider only these. The.cycle with the shortest average cost can be found by computing;
in parallel, for each £k = 1,...,n the shortest cycle of length k, and comparing the results,
each divided by k. To compute the shortest cycle of length k, we essentially have to
compute the kth power of matrix A, whose (u,v)th entry is equal to the cost of the
decision leadi'ng from state u to statc v, if such a decision exists, and co otherwise. This.
is done with n2k processors in log klogn pa.rallcl steps. The total tlme is Iog n + 2 Iog m,
using n* processors.” : -

Theorem 3. The infinite-horizon, average cost deterministic problem_is in NC. [J

S

The Infinite Horizon, Discounted Case. Dcfine a sigimna in a dirccted graph to be a
path of the form (uq,...,uk,vy,...,v¢,vy), where all nodes indicated arc distinct. In other

words, a sigma is a path from ug until the first repetition of a node. The discounted cost -

of a sigma P = (ug,...,Uk,V1,...,0z,vy) i defined to be ¢(P) = Zf:o c(vj,vj+1)ﬁi 4
(‘fk ;,) Z;—x c(ui, Uit 1( (mod ,)))ﬂJ That is, the discounted cost of a sigma coincides
with the discounted cost of an infinite path that follows the sigina and repeats the cycle
for ever. It follows from the fact that the (general) discounted problem has a stationary
optimal policy, that the cost of this optimal policy is the optimumn discounted cost of a
- sigma-in the corresponding directed graph. - e s
We can compute the optimum sigma as follows: First, we compute the shortest dis-
counted path of length 7 =0, 1...,n amonyg any pair of nodes by “multiplying” the matri-
ces A, BA, ..., B A, where A s Lhc malrix deflined in the paragraph before Theorem 3.
This can be done in log® n steps by using n* processors. Let By, ..., B, be the resulting

“products; the (u,v)th entry of B; is the length of the shortest path th.h j arcs from u to
3
~v. Once this is dom, for cach node u and for cach k,{=10,1...,n we u)mpu(,t. A + 1= ;,/1,

where A is the (ug, u)th cutry of By, and g is t.hc u,u ceantry o[' B; We pick the best result.
This requires a total of nt processors, and log, n + 3log n parallel steps.

Theorem 4. The infinite-horizon, discounted deterministic problem is in NC. (J

The Finite Horizon, Stationary Case. Given a stationary deterministic process, the
stationary linite horizon problem with horizou T is equivalent to finding the shortest path
with 7" arcs in the corresponding graph, starting from the node . The algorithm should
run in a number of parallel steps that is polynomial to loglog T'; therefore the “path-
doubling” technique would not give the desired result. In the sequel we assume that
T > n?, otherwise the previous technique applies.

Without loss of generality, assume that the arc lengths are such that no ties in the

lengths of paths are possible (this can be achieved by perturbing the lengths). Consider
the shortest path out of uy with 7" ares. We can consider this path as a simple path out
of gy, plus several simple cycles. We first need to show thal we can assume that only one
simple cycle is repeated more than n times, namely the one that has the shortest average

[
{




length of its arcs. In proof, consider two cycles of length. m; and m,, repeated n; and
- ny-times, respect:veiy If ny,n2 > n, then we can repeat the cyclc with smaller a.vetage;

" another path of smaller length. Therefore, the shortest path of length T has the foﬂowmgv_;,,,,‘

;strucfure ‘Tt consists of a path with length 1< n? plus a simple cycle repented many
“times to fill the required nuinber of arcs. Therefore, for each value of £ < n? and each node
u and each possible number of arcs in the cycle & that divides T — £ we do, in parallel, the
following: We compute the shortest path of length £ from ugy through u, the shortest cycle
of length k through u, and the cost of adding (T — £)/k copies of the cycle to the pa,th Of
the resulting combinations, we pick the cheapest. L oo

Theorem 5 The ﬁmte-horxzon statxonary deterministic problem is in NC. o

4. THE PARTIALLY OBSERVED PROBLEM

We can define an import:mt generalization of Markov decision processes if we assume tha}.
our policy must arrive at decisions with only partial information on the current state. In
other words, we have a partition II = {zy,...,2,} of S, where the z;’s are disjoint subsets,
of S that exhaust S, and at any time we only know the particular set in II to which the
current state belongs (naturally, we also remember the previous such sets)t. Each set z € IT
has a set D. of decisions associated with it, and cach decision 7 € D. has a cost ¢(z,17)
- and a probability distribution p(s, s’,7) of the next state s, given the current state s € z.
The initial state is known as beflore to be 5. A policy is now a mapping from scquences of
observations zy, ..., 2z; to decisions in D_ . This problem is olten treated by converting it to
. an cquivalent perfectly observed problem by redeflining the state to be the vector p whose
i-th component is the conditional probability that the state of the original problem equals
i [Be]. In this formulation the state space is infinite. Nevertheless, it is known [SS] that
the optimal cost-to—-go function is of the form J(p, ¢) = mingex, [Ax + Bip|, where Ag is a
scalar and By is a vector of suitable dimension and €, is a finite index set. This allows the
solution in finite time of the problem even though the state space is infinite. Nevertheless,
" Lhe cardinalily of Lthe index sct €, may be an exponential function of the time horizon and,
therelore, this procedure is of limited practical use. The lollowing result shows that most
likely this is & generic property of the problemi we are dealing with rather than a defect of
the particular reformulation of the problem. Notice also that in the infinite horizon limit
the index sct K, will be infinite, in gencral, which makes fairly doubtful whether there
exists a finite algorithm lor the infinite horizon problem. For this reason, we only consider
the problem in which we are asked to minimize the expected undicounted cost over a finite
Lime horizon T'.

Theorem 6. The partially observed problem is PSPACE-complete, even il the process is
stationary and T is restricted to be smaller than |S|.

t In the traditional formulation of the partially observed problem [Bef, the obscrvation
at time t is a random variable, for which we know its conditional distribution given the
current state and time. lere we essentially deal with the special case in which the obser-
vation is a deterministic function of the current state. Clearly, the general case cannot be
any casier.

c length; say the first, m; times less; and repeat the second m; times more, to obtain -




g - an

Proof: We first sketch a proof that the problem is in PSPACE. The construction is a bit

_tedious, but’ quite’ reminiscent of polynomial-space algorithms for other similar problems
(see for example {PalD We~ can think of the possible outcomes of the process within the
_finite horizon T as a tree of depth 7, which has internal nodes both for decisions and _

transitions. The leaves of this tree can be evaluated to determine the total contnbutxon to
the expected cost of this path. To determine whether the optimal policy has expected cost
less than some number B, we necd to traverse this tree, making nondeterministic decisions
at the decision nodes, iterating over all transitions, and taking care to make the same
decision every time the liistory of obscrvations is identical. This latter can be achieved by
organizing the search in such a way that nodes at the same level of the trce are divided
into intervals from left to right, corresponding to distinct observation sequences. Decisions

now from the fact that PSPACE is robust under nondeterminism.

To show PSPACE-completeness, we shall reduce QSAT to this problem. Starting

from any quantified formula 3z,Vz, .. .V:,,F(Ez:h .++1Zn), with n variables (existential and
universal) and m clauses Cjy, .., C,,, we construct a partially observed stationary Markov
process and a horizon T < |S|, such that its optimum policy has cost 0 or less if and only
if the formula is true.

We first describe S. Besides s, the initial state, S contains six states A5, AU y Tig ,T,'J ,
for each clause C; and variable z,. There arc also 2m states A; 11, A] . ;- We next de-
scribe the partition II. The initial state sy Is in a set by itself. For cach variable 7, the

states A,;,1 = 1,...,m and the states A’,-j,i = 1,...,m form a sect called A;, the states

are cach on a different set.

so on, up to F’ The states A; n and A}, | <

Next we sha.ll describe the decisions, the probabilities, and the costs. All decisions’

except those out of the set Aj, ., have zero cost. At si there is only one decision, leading
to the states A;j,2 = 1,...,m with cqual probability. If z; is an existential variable, there
arc two dccisions out of the set A;, leading certainly from Ay to T35 and [y, respectively;

~ sinilarly there are two decisions out of the sct A , leading with certainty from A to '1"

and Y, respectively. If z; is a universal vari:xbic, there is one decision out of Lhc sct A,,
leading with equal probability from A;; to T and Fij; similarly there is one decision out
of the sct A , leading with equal probability from /l' to lj and F' IFrom the T],l"j,'l"-,
and F! scts Lhcrc is only one decision, which leads w:t.h cerlainly !rom [',J,[;J,'I"j, .uld
F:] to (respectively) A; ;. 1, Aijrt, Al Sl and A%, with two exceplions: I z; appears
positively in Cy, the transition [rom [x] is to A; J__l instead of Al S and if z, apears

negatively, the transition from £ is Lo A; ;4.

Finally, out of A; 4+, and A% | there is one decision, leading to the same state with
certainty, only that the decision mxt of A, ., incurs a cost ol 1 (the only onc with nonzero
cost). This completes the construction of the process; the horizon T' is defined to be 2m+2

~ (just enough time for the process to reach onc of A;,qq or A% ).

We claim that there exists a policy with expected cost zero il the formula is true.
Suppose such a policy exists. Recall that the transition from the initial state can be to
any state A7, of /Y; we think that the process “chooses”™ a clause (7. Once this has
happened, the process remains al stales subscripled by ¢ forever, without ever observing

9

1)1

Tij,u=1,...,m form a set called T}, the states Tj;,7 = 1,...,m form a set called Tiand

~-from nodes in the same interval inust be the same. That-the problem-is in PSPACE follows — -~




__the real value of 2. It follows that the policy has zero expected cost for all sixch initial
_choices. We next claim that the policy must guarantee that the process ends up in- A‘ a1

—If not, that is, if for some choices of decxsxons for the universal variables the process ends -
“upin A; adls then this contnbutes an expected cost of at least 27" /m, whxch is absurd. It

“follows that the policy must, based on the previous observations on the transitions at the
sets corresponding to previous universal variables, pick at the existential variables those
decisions that correspond to a truth assignment which satisfies the clause. Since all clauses
must be satisfied, the formula was true.

Conversely, if the formula were true, there is a policy for setting the existential vari-

~ ables, based on the values of previous universal ones, so that all clauses are satisfed. This,
however, can be translated into a policy for choosing the corresponding decisions at the sets
corresponding to existential variables so that, for all choices of-clauses, the state A; .4 L is~
reached. A policy with zcro cost is thus possible. The proof is complete. (]

Theorem 6 says that, unless P=PSPACE (an event even less likely than P=NP),
there is no polynomial-timne algorithm for telling whether a cost can be achieved in a given
partially observable process. However, there is a more practical problem, the complexity
of which is not settled by this result. [t would still be satisfactory if we could analyze
such a process (perhaps in exponential time or worse), and, based on the analysis, design
a practically realizable controller (polynomial-time algorithm) for driving the process on-
line optimally. This algorithm would presumably consult some polynomially large data
structure, constructed durmg the analysis phase. We point out below that this is very
unlikely:

~ Corollary 1. Unless PSPACE=Z2}, it is impossible to have an algorithm A and a mapping
p (of arbitrarily high complexity) from a partially observed Markov process M to a string
u(M) of length polynomial in the description of the process, such that the algorithm, with
the string and the observations as input, computes the optimum decision for the process
in polynomial time.

Sketch: If such an A and g cexisted, then we could express the question of whether M
has zero expected cost (and thus, by the previous proof, whether an arbitrary quantified
Boolean formula is true) as follows: “There exists a string p(M) such that, for all possible
transitions, the decisions of algorithm A lead to a zero cost.” This last sentence, however,
can be rewritten as a Boolean formula with two alternations of quantifiers. U

IFinally, considering the special casc of the partially observed problem, in which the
partition [T = {S} (i.c., the case of unobserved processes or, cquivalently, an open-loop
coutrol) we note that a simplification of the prool of Theorem 6 establishes that this
problem is NP-complete:

Corollary 2. Decciding whether the optimal policy in an unobserved Markov decision
process has expected cost equal to zero is an NP-complete problem. (I

Bibliopgraphy
[AITU] AV, Aho, J.E. lopcrolt, J.D. Ullman The Design and Analysis of Computer Algo-
rithms, Addison, 1974,
[Be] D.P. Bertsckas, Dynamic Programming and Stochastic Control, Academic Press, 1976.

10




- {Col

S.A. Cook “Towards a Complexity Theory of Synchronous Parallel Computation”

~ Enseign. Math. 2, 27; pp. 99-124, 1981.

[DLR}

_D Dobkin; R.J. Llpton S. Reiss “Linear Programming is Log-Space Hard for P”; Inf.
, Proc Letters 8, 96-97, 1979. ‘
] L.M. Goldschlager R.A. Shaw, J. Staples “The Maximum Flow Problem is Log Space

Complete for P”, Theor. Computer Science 21, pp. 105-111, 1982.

M.R. Garey, D.S. Johnson Compuiers and Intractability: A Guide to the Theory of
NP-completeness, Freemen, 1979.

R.A. Howard Dynamic Programming and Markov Processes, MIT Press 1960.

E.L. :Lawler Combinatorial Optimization: Networks and Matroids, Holt, Rinehart
and Winston, 1977.

-H.R. Lewis, C.H. Papadimitriou Elements of the Theory of Computation, Prentice- ~—~ =~

Hall, 1981.

J. Orlin “The Complexity of Dynamic Languages and Dynamic Optimization Prob-
lems”, Proc. 13th STOC, pp. 218-227, 1981.

C.H. Papadimitriou “Computational Complexity”, in Combinatorial Optimization:
Annotated Bibliographies, M. O’ hEigeartaigh, J.K Lenstra, A.H.G. Rinooy Kan
(eds.), pp. 39-51, 1985.

C.H. Papadimitriou “Games Against Nature”, J. Comp. and Systems Sci., to appear,
1985.

| C.H. Papadimitriou, K. Steiglitz Combinatorial Optimization: Algorithms and Com-

plexity, Prentice-Hall, 1982.
W.J. Savitch “Relationships Between Nondeterministic and Deterministic Tape Com-

~ plexities”, J. Comp. and Sys. Sci. 4, pp. 177-192, 1970.

R.D. Smallwood, E.J. Sondik, “The Optimal Control of Partially Observable Markov
Processes over a Finite llorizon”, Operations Research, 11, pp. 1071-1088, 1973.

L.J. Stockmeyer, A.R. Meyer “Word Problems Requiring Exponential Space”, Proc.
5th STOC, 1973.

Y. Shiloach, U. Vishkin “An O(log n) Parallel Connectivity Algorithm”, J. Algorithms,
3 pp. 57-67, 1982.

{1




