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THE COMPLEXITY OF iMVARKOV DECISION PROCESSES

Christos H. Papadimitrioul and John N. Tsitsiklis 2

ABSTRACT

We investigate the comlplexity of the classical problem of optimal policy computation in
Markov decision processes. All three variants of the problem (finite horizon, in finite horizon
discounted, and infinite horizon average cost) were known to be solvable in polynomial time
by dynamlic programmiling (finite horizon problems), linear programnming, or successive
approximation techniques (infinite horizon). We show that they are complete for P, and
therefore minost likely- cannot be solved by highly parallel algorithms. We also show that, in
conitrast, the deterministic cases of all three problems can be solved very fast in parallel.
The version with partially observed states is shown to be PSPACE-collnplete, and thus
even less likely to be solved in polynomial tine than the NP-completc problemns; in fact,
we show that, most likely, it is not possible to have an eflicient on-line implementation
(involving polynomial time on-line computations and nlcmcory) of an optimal policy, even
if an arbitrary amotint of prcconmpltation is allowed. Finally, the variant of the problem
in which there are o10 obscrvations is shown to be NP-complete.

1. INTRODUCTION

In the prast, Complexity Theory has been applied with considerable success to separate
optimization problemls with respect t.o tiheir computational difflcuilty tGJ, PSI. Such results
are valuablc in that they succeed in formalizing the intuitive feeling by researchers in the
area about the imlpossibility of ccrtain approaches in solving somle hard pro)llents, and in
somic c;ses give a quite clear separation between the easy and the hard versions (special
czases or gcieralizationts) of important problenis. In Iiiost of this work, NP-conpleteness is
the Imain not.ion of coimplexity used. The important distinction here is between problelms
.lhat are in I), that is, can be solved in )olynollii;ll t.ine (linear programiiiiing, maLx flow,

nlinnimlUI spanning tree) and those tha;t are NP'-conlpletc, anld therefore evidently cannot
(sulch as int.cger programtling and the traveling salesllan probllem).

RIecent research in parallel algorithmls [Col has succeeded in pointing out Some im-
portant dilf:rences between problems that are in P, that is, can be solved in p)olynomial
.inme. Sonei of these problems can be solved by algorithllns that use cooperl.ting processors

so Lhat the liliie requircllients-are re(lilcc trentenlloilsly (stlch problenis inclt(le, from the
optlnization point of view, Iiniiilillni spainnling tree I)rol)lint, tile slhortest plath prolleim,

asld others), whereas (:crt.;ain otiller pl)rl~!ei1is (first of all linea;r )progralliiiig, btlt also solme
special c;scs of it, slch ;a IllaxiUllllllll low) (10o not appCar t.o be sllSCeptil)e 'to such mllas-
sive parallelization. NC is the class of problems tllat have ;aIgorithlins using a polynomial
number of processors, and time dolay which is polynolial in the logarithm of the inpult
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size. The question then arises, is NC=P? In other words, is it true that all problems that
:can be solved satisfactorily by sequential computers, can also take the maximum possible

- advantage of-parallel icomp-ters? Most researchers believe that the answer is negative.- :
-:-:. TheIhnotions of reductions and completeness offer some inportant evidence here as
well: Linear progranuing, maximum flow, and sonle other problcels have been shown to
be P-complete [DLS, GSSI. This means, intuitively, that such problenis are as hard as
any problem in P; thus, they can be massively parallelized only if NC=P, that is, if all
problems in P can, and thus there are no inherently sequential problcins.. Since this event
is considered extremiely unlikely, P-completencss is taken as evidence that a problem is not
in NC, and thus cannot be satisfactorily parallelized.

The design of optilnal strategies for Markov decision processes (say, for the discounted
infinite horizon case) has been a very central and well-solved optimization problem. There
are basically two approaches to its solution. First, the problem can be expressed as a linear
programn and thus solved (either by generic techniques, or specialized "policy improvement"
routines [IIo]; this technique a;ppCears to be ulnpromising froml the parallel algorithil point
of view, since it involves lilnear programming, a problemn that seemns inherently sequential.
Secondly, there are iterative techniques that are known to converge fast on the optimal
policy; however, such techniques are sequential also by nature. (Let us note in passing that
the problem of dleriving a "clean" polynomial time algorithm for this problem, without us-
ing general linear programming or approximate techniques, is an iiuportant open question
that has not been emlphasized in the literature as much a.s it (leserves.) An interesting
question arises: Is the Markov decision problem in NC, or is it complete for P, and thus,
-in soiCe sense, the use of linear programming for its solution is inherent? 

in this paper we show that computing the optimal policy of a Markov decision process
is complete for P, and therefore most piobably is inherently sequential. This is true also
for the average cost case, -as well as the finite horizon (non-stationary) case. However, we
also show that the detcerministic special cases of all three problems (that is, in which all
possible Stochastic imatrices have zero-one entries) is in NC.

Next, we a(l(lress tlhe qucstion of the cociplexity of the partially observed generaliza-
tion of this problem; this is an important p)roblelt arising in many applications in control
theory and operations research [13e]. We show tlhat the partially observed version of the
finite horizon problem is PSPACE-complete. We do not consider infinite horizon partially
observed problems because these are not collblinatorial problems ant (lo not senel to be
exactly solvable by finite algoritlhlns. NTotice tllat only recently has l.llere been work re-
lating coimbinatorial opti;m~ization problc:ins [Or, Pall t.o this notion of complexity, which
is strounger thnll NIl-conI1tple)l(::.ess (see Sct:t.ion 2 ror ldelitiii.ionls). In r;act, we show lthat,
Imtost likely, it is not possible to hl;ve an eflicient ott- line iJlulll)cnlealittion (inwvolving poly-

noluiial tiime on-line computations and ncinieory) of an optilmal policy, even if an arbitrary

aulount of precomuputation is allowed. Finally, we show that the same problem with no
observations is NP-complete.

In the next Section we introdluce the necessary concclts from iMarkov Decision Pro-
cesses, and Coitiplexity Theory. In Section 3 we present our results conccrniing the possi-
bilit.y of designing Illassively ;;parallcl algorithllls for these pro blceiis. I'ilnally, in Section 4
we prove outr results on parti;ally ,observablc Markov processes.



K----: 0......F..-or a.-enel UCtioctinal Complexity-see e bibiog-.
- raphy-_in, jPa2Jt :Our modL of sequential) computtion can be _any_ on_ of- the Tu ring 
:::machine,random access machine, etc. fAHU, LI;. ; all thcse- models of computation are

--: ... -- known to li cquivalent within-a polynomial. We denote by P the class of all problems that
can be solved in polynomial tinme (it is understood, in any such model of computation).
As usual, by "problem" we mean an infinite set of instances, each of which is a "yes-no"
question. Optimization problems can be transformed into such problems by asking, not for
the optimlal feasible solution, but simply whether the optimal cost is below a given bound.

NP is the class of problels that can be solved by a nondetcrrlinistic such machine in
polynomllial tiine; a nondleterninistic machine essernlially h-. tile power of- b rnaicting out 
and following both compult tation paths; this can be repeated in cach of the paths, and so
on, creating a potentially cxponcntial set of computations.. (Equivalently, NP is the class
of '"yes-no" problems that have the "succinct certificate property", see [PS].)

Bcsides time complexity; we shall concern ourselves with the space complexity of
aligorithims. The space consunled by a computation is the number of imelmory cells necessary
for the computation; notice that this does not count the space necessary for the input, so
the space requirement of an algorithm may be less than linear (for example, logarithmic).
An inmportant class is PSPACE, the class of all problemns that can be solved in polynomial
space. It is true that, if a comiputation can be carried out in time (or noncleterniinistic
tinle) T(n7), then it requires only T(n) space; it follows thlat P ,eand NP are subsets of

- __..---......PSPAC1E. If tlhe space requirements are T(n), then-the tiile requirelment cannot excced
c7(T'), for sonic constant c.

We say that a problleml A is rcducible to another B if, for any instance x of A, we can
construct utsitg Splace Iog(ltl) an instance fI(z) of B such that tihc answer for z, considered
as an instanlce of A, is the same ,as the answer Or jf(x), considered ;as an instantce of B (here

;- .- ___x. z is a string ctcoding an instancc of p)robl)t A, and ullt is its length). Notice that we insist
tha.L thie runtction f be coIptitLed in logarithliic space; thlis is stricter t l ihn l.llc polynomiial
tiunc usually requclired. In practice this is not a il;mjor restriction as nmost knowxi polynomllial
redluctions can in fact ble accomplishcd in logarilthminic space. Also, it can be shown that
log-sl)ace redu(ction is transitive. Let A l)e a problem, and C )be a class of pl)ro)lelCs (lsuch
as P, NP, I'SPACE). We say that A is coimiplete for C, or C-complete if (a) A is a iamember
of C, and (b) for every Icnlber 13 of C, B is reducible to A.

Although thellre are t;mry NIP-coinl)lte plroIlems in tlhe literaturc, the Iiotion of
lSI'ACI'-:otlphtllccne;ss is isoiewliat. Iess well-knowni. A fl'lida;suesl. al I'SI'\C"-co"pIilete
p)roblem is ltat of (Iqut;ltilicd s.aisliahiity (QCS') ·[I: We are givenl a (lua;rt.ified Bf3oolean
formula 3Z VxZ23x ... V, l;'(Z .... , wx,,), where F is an ordinary Boolcanrl rorlitla in con-
junctive normal formn, will thirce literals per clausc. We are to determine whetlher this
formula is true, that is, whether there exists a truth value for zi such that, for all truth
values of x2 , etc. for all truth valiues of xz,, F conites out trute.

As lncmntioned above, PSPACLg cotntains NP. In fact, NP can be thoughlt of as the class
of proble(Is redtcit)le to thc special case of QSA\'1, called SAT, i,, which all qani tiflers
;are existen;tial (that. is, tlcere is ino ;alternai;ion of lla;utiliers). Int fact, there is a nuiber
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of intermediate classest based on less restricted alternation; this is called the polynomial

:- :hierarchy .SM-. The next level above in this hierrchNP in this the class ,-which can be

i: -th:ought of allproblems tliht reduce to the problem of telling w hether a forllula with r

onc string of cxistential quantifiers, followed by a string of universal quantifiers, is true,

A ex.m...ple of. such- a formula is 1 2 . y l.. ... VynF(,y ... .. Ym).

In the interest of formalizing parallel computation, we can define a parallel random

access machine (PRAM), that is, a set of RAMs operating in unison, and communicating

through a sequence of common registers, some of which initially hold the input [Co]. The
measures of complexity here are the delay until the final answer is produced, and the

number of processors that have to be involved. A problem is considered to be solved in a

satisfactory way by such a supercomputer if the delay is polynomial in the logarithm of the

.-.-- length of the -input, and the number of-processors involved -are polynomial in the length of-

the input. The class of problems solvable under these terms is called NC. Obviously (by

nmultiplying delay times number of processors) NC is a subset of P. Thce great enignla for

parallel coillptltation, analogous to P=?NP fori sequential computation, is whether NC=P.

That is, while P=NP asks whether there are (reasonable) problems that ,are inherently

exponential, NC=P asks whether there are problems that are inherently sequential. The

bets are that such problems do exist, but there is no proof. Now, if inherently sequential

problems exist (equivalently, if NC#P) then the problems that are complete for P will

certainly be amiong theml. Thus, P-comiplcteness plays vis-a-vis the NC=P problem the

sa.nic role cnjoycd bty NP-contpleteness in relation to the P=NP problem.

One basic P-complete problem is the circuit valuc problem (CVP). A circuit is a

finite sequence of triples C = ((ai,bi,ci),i = 1,...,k). For each i < k, a, is one of the

"operationis" false, true, and, .nd or, and bhi, ci are non-negative integers smaller than

i. If ai is either false or true then tlhe triple is called an inplut, and bi = ci = 0. If ai.

is either and or or then the triple is called a gate and bi,ci > 0. 'The valhie of a triple is

dlfinedl recursively as follows: First, the value of ant inrlt (true, 0, 0) is true, and that of

(false, 0, 0) is false. The value of a gate (ai, b6,ci) is the [Boolean opcration dlenoted by ai

applied to the values of the bith and tcith triples. The value of tie circuit C is tile vlue: ;

of thle last gate. Finially, the CVI' is thle followinlg prolblell: Given a circuit C, is its value

true?

lMarkov Decision Processes. In. a Markov decision process we are given a finite set

S of states, of which one, so is the initial state. At each timlc t = 0, 1,... the cutrrent

state is st E S. For each state s E S we have a finitl. set D, or (lecisions. By manking

decision i E D,, at time t, we incur a; cost c(s, i, t), anld a tle next state s' has probability

lprol,alilil.y disl.ribution givenI by p(.s, s',i, ). We say t.l:ic )procss is stl tioilary if c and p

are inlependentL of 1. A policy h is a llla)ppilg assigStilng to e;c il ilc t - {V0, t, 2,...} and

state s E S a decision 6(s, t). A policy is sltationary if ,5(s, t) is independent of t. We shall

consider three variants of the problem. First, in the linite lhorizon probleml, we arc given

a (non-statiornary) Markov decision process aund n integer T. We wish to find a policy

tlhlat minimizes the expectation of the cost E T=c(se, 6(.se, ), t). The other variantls that

t Of course, it sliolld be lornrc in iiridl th.lat, for all we know, I'SPlACE, Nl', even P

lliglht all coilici(le, ill wiliclt case so would t.lese "int.ernie(liate" classes.



we deal with have infinite horizon, and thus we shall only consider their stationary special
I-cases (otherwisedwencdithe'description of an infinite object, namely: the parameters- c:

an-di 'p: for all times).:: In the -discounted (infinite horizon)problemi we are given a Markov
Ydecision process and a- number/ , e (0,1), and we wish to minimize the expectation of:

the discounted cost Et=o C(St 6 (St, t))Pt. Finally, in the average cost (infinite horizon)
problem we are given a Markov decision process, and we wish to minimize the expectation

of the limit limrnT. 00 ° T c6( T)..... It is well-known that in the two latter cases (those
for which the optimal policy is a potentially infinite object), there exist stationary optimal
policies, and therefore optimal policies admit a finite description. For all three cases of the
problem, there are well-known polynonlial-tinme algorithms.

3. P-COMPLETENESS AND PARALLEL ALGORITHMS

We show the following result:

Theorem 1. The Markov Decision Process problemll is P-comlplete in all three cases (finite
horizon, discounted, and average cost).

Proof: We shall reduce the CVP to the finite horizon version first. Given a circuit
C = ((ai,bi,ci),i = 1,...,k), we construct a stationary lMarkov process M = (S,c,p) as
follows: S has one state i for each triple (ai, bi,c) of C, plus an extra state q. If (aj,b;, ci)
is an input, thent the corrcspon(ling state i has a single decision 0, with p(i, q, 0) = 1, and
cost c(i, 0) = 1 if ai = false, alnd 0 otheiwise. All other costs are 0. Fromu q we only
have one decision, with 0 cost, which has p(q,q, 0) = 1. If ai is an orgate, there are two

--dccisions 0-, I froiu-st-ate i,-with zero-cost, and p(i, b,0)= 1, p(i, ci,) =--1-. That is, we
(lecide whether the next state is ,going to be bi or ci. If ai is an and gate, then there is one
choice 0 ill l), with p(i, b;, O) = p(i, ci, 0) = l/2, tlhat is, the next state can be either bi or
ci. We let tihe initial state to be k, the last gate, and T, the tilme horizon, to be equal to
k, the size of the circiuit.

We caill that the optinlltllln expected cost is 0 or less iff the v;alue of C was true.
In proor, suppose that the expectation is ilndei zero (it canulot be less). Tllhen it follows
tihat there are decisions so that the states with positive costs are ilmpossible to reach.
Ifowever, tlhcs states correspond to the false inputs, an(l thus these ldecisions are choices
of a-true gate aniong bi, ci for each or gate i of t. he circuit so that its overall v;luc is true.
Conversely, if the value is true, tlire mIust be a way to choose an input gate for cacll or
gate so that the false inputs are not reachable, or, equivalnctlly, the states with positive
costs are not possible.

l'.s sentially t.hc s;llle conlstrl(:tio works for t.he liscotiitl.e(l case; for 1.11e average cost
probtlemic, a Ilodification is necessary: WVe ilmust first iizake siire that all Ipailhs front the
inlputs to tie last gate of C have the samie ninllber of gates onl themt, andtl then lhave
transitions from the states correspontding to the inpults not to a state q, btIt back to the
initial state. E

We note that the above proof shows that even the stationary special case of the finite
horizon p)rol)leni is P-hard. It is riot known whether the stationary finite-hibrizon problemn
is in i', ccnllse or tlte Followinig (tillicItl.y: We cotiltd )e given a stationary jprocess with
n staLes, ;utl horizon '1' tip to 2'2, .and tlhe iltiput woull(l st,ill be of size 0(n). Still, the



dynamic programming algorithnm for this problem would take time proportional to Tn,
::and thus exponential inn.

cases of the finite horizon (stationary and non-stationary), discounted, and average cost
prob nsidem are in NC. Our approach is to ook at these problems as varianchts of the graph-
teoretic shortcizon (st-path problean non-stationary)al This is done as olows: Given a oeterinistic Markov
decision process, we construct a directed graph G = (V, A), where the nodes are the states,
and the arcs emanating from a node are the decisions available at this state. The node
-pointed -by an arc- is the state to which--this decision is certain-to lead (recall-thaat there are
only 0 or 1 probl)abilities). There is a weight c(u,v) on each -arc (u, v), equal to the cost of
the corresponding decision. We denote by uf the node corresponding to the initial state
sn. The paticular variants of the problem are then equivalent to certain variants of the
shortest path problem.

The Non-Stationary Finite Horizon Problem. The parallel algorithms that we
describe in this Section employ a tcchniquc used in the past to yield fast parallel (or
space-efficient) algorithms known as "path (loubling" [Sa, SV]. The idea is, once we have
computed all optimal policies between any two states, where each policy starts at tilme tl

and ends at tilme t 2 , and similarly between t 2 and t-, to compute in one step all optimal
policies between tl and ta. We can think of this as multiplying two IVI x IVI, matrices
A(t-, to) and A(t 2 , ta), where the (u, v)thl entry of A(t1 , to) is the cost of the olptilllal policy
fromt state u to v between tilnes t reand t2 . This "lmatrix multiplication" is tihe variant in
which miultiplication of reals is replaced( by addit.ion, andt addition of reals by the operation
of taking the mninimlnm. Using 7 3 processors, we can "multiply" n x n mlatrices in logn
par;llel steps, by indlependently contmputing each of the n 2 inner prolducts by n processors
in logn steps. This latter can he (lone by coillptiting then tcrns of the inner protluct
indlepende(lntly, and con)ibinlig them in log n stages.

This apl)roach immediately suggests an NC parallel algorithml for the finite horizon
noll-stationary probleml: We start front the matrices A(t, t 1+ ), t = 0, ... T- 1; tihe (u, v)th
entry of A(t, t + I) equals to the cost of the dlecision leading at tiime t front state u to state v,
if such a decision exists at tilme t, and equal to oo otherwisc. Then to :ollIpute the req(lired
/1(0, T) we Ilulltilply in log 7' stages t.hese miat;rices. Tli total numbl)er of processors is Tn 3 ,
and the total parallel tinle log7'log n; since the size of l.lhe input fo)r tile non-stationary
pl)robllcll is tL2 T, this is an NC ;algorithln.

Theorem 2. The finite-horizon, non-stationary dleteriiiinistic problneml is in NC. E]
Notice that this technlique dtoes not solve the stationary problemn, whose input is of

length n2 + log T, and which will have to be attackced by a more sophisticated technique,
exllained later.

The Infinite Horizon Undiscounted Casc. It is easy to see tlhat tlhe infinite horizon
avcragc cost problelni is eqiliva;leut to fildtling t.the cycle il Ithe graph)l corr'esipondlilg Lo the
process tI.hat is re;achl;ble riolnit u, a;d has tlhe sillallest. ;aver;age length of 'arcs. Ilt proof of



the equivalence,- the limit of the average cost of an infinite path which starts at uo, reaches 
----- this cycle,-and then followsthis scycle for ever, equals to the optimum average cost, aid --: -

-this cannot beim -prove&- -
.-. .- -To make sure that_we do not consider solutions that are not reachable from Uo, we:

first compute in log n parallel time [SV] the nodes reachable from u0 , and in the sequel.
consider only these. The.cycle with the shortest average cost can be found by computing,
in parallel, for each k = 1, ... , n the shortest cycle of length k, and comparing the results,
each divided by k. To compute the shortest cycle of length k, we essentially have to
compute the kth power of matrix A, whose (u,v)th entry is equal to the cost of the
decision leading from state u to state v, if such a decision exists, and oo otherwise. This.
is done with n 2 k processors in log k log n parallel steps. The total time is log2 n + 2 logn,
using n4 processors.

Theorem 3. The infinite-horizon, average cost deterministic problem is in NC. N ,.

The Infinite Horizon, Discounted Case. Define a sigima in a directed graph to be a,
path of the forni (uo, -... uk, vl,..., v., vl), where all nodes indicated ,are distinct. In other
words, a sigmna is a path from u( tuntil the first repetition of a node. The discounted cost-
of a siglna P = (uo,...,Uk,VI, .. . ,V, VI) is defined to be c(P) = Zki=c(vi,v +il)'i +

(1 -[I ) -j=t c(ui,ui+l( (1..ml ,)))pj-. That is, the discounted cost of a sigmna coincides
with the discounted cost of an infinite path that follows the sigina and repeats the cycle
for ever. It follows from the fact that the (general) discounted problem uhas a stationary
optimal policy, that the cost of this optimnal policy is the optinium discounted cost of a
sigmia in the corrcsponding directed graph. -

We catn compute the optiimuml sigllla as follows: First, we compute the shortest dis-
countcd pal.th of length j = 0, 1..., n amlong any pair of nodes by "multiplying" the inatri-
ces ,�APr... ,P'j-A, where A is the mallrix d(cfine(l in the paragraph before Thcorcem 3.
This can be done in log 2 n steps by rusing n 4 processors. Let BI, ... , B,, be the resulting
products; tlhe (u,v)th entry of 13j is the length of the shortest ;athl with j arcs front u to

v. OIIce .lthis is done, for eachi node u and for each k, e = 0, I ... , n we com)ute A + olm t 7. ,

where A is tile (Io,u)th cntry of Bk, a.dil p is the u,u entry of BH. We pick the best result.
This requires a total of r ' processors, uldl log2 n + 3 log n parallel steps.

Theorem 4. The infinite-horizon, d(iscounted deterministic problem is in NC. CE

The Finite Horizon, Stationary Case. Given a stationary (leternlinistic process, the
st.atiolary fin ite hloriz.o Iprol)leni withl horizon T is equlivalctit to fin(lilig the shortest path
with '' ;arcs ill the co)rresp)oit(lfini g r;a,)hi, sta;rtl ing frotll the Ic o(de it. 'I'h ;l)gorithll shollll

runii in a Ituillmber of larall:l st.cps that is polyllotlial to log logtT; therefore the "pai).h-
d(oub)ling" t.echnique woutld not give the (lcsired result. In the sequel we asstiume that
7' > n 2 , otherwise the previous technique applies.

Witlhout loss of generality, assume that the arc lengths are such that no ties in the
lengths of pat.hs are p)ossible (this can be achieved by perturbing the lengths). Consider
the shortest path o0ut of tL wil.th 7' arcs. We can consider this path as a si!liple path out
of tt(), I)lusi several siltple cycles. We first niced to show that we can assume that only one

siimplc cycle is repleateLl ,iore than t.inites, Il;alm:ly the one that has the slhortest average

11--rm-"--~"1"" ~l~~"l""-~- -----------------7-



length of its arcs. In proof, consider two cycles of length ml and m2, repeated nl and
-- n- times, respectively.- If ni,n 2- > n, then_ we- can repeat the cycle with smaller average --

arc-length, say the first, m 2 times lessand repeat the second m' times mor, toobtain
anoth er path of smaller length. Therefore, the shortest path of length T has the following
structure: t conslsts of a pat] with length e < nr, plus a simple cycle repeated many
tinles to fill the required number of arcs. Therefore, for each value of f < n2 and each node
u and each possible number of arcs in the cycle k that divides T- e we do, in parallel, the
following: We compute the shortest path of length e from uU through u, the shortest cycle
of length k through u, and the cost of adding (T - t)/k copies of the cycle to the path. Of
the resulting combinations, we pick the cheapest.

Theorem 5. The finite-horizon, stationary deterministic problem is in NC. 0

4. THE PARTIALLY OBSERVED PROBLEM

We can define an imlportant generalization of Markov decision processes if we assume that
oulr policy nlust arrive at decisions with only partial information on the current state. In
other words, we have a partition II = {(z, ... ,z,} of S, where the zi's are disjoint subsets:
of S that exlaust S, and at any tile we only know the particular set in II to which the
current state belongs (naturally, we also remcmber the previous such sets)t. Each set z E II
has a set D. of (lecisions associated with it, and each decision i E D: has a cost c(z,i)
and a probability distribution p(s, s',i) of the next state s', given the current state s E z.
The initial state is known as before to be so. A policy is now a mapping froIm scqtences of
observations zl, ... ,Zt to decisions in D:,. This problem is often treated by converting it to
..an equivalent perfectly observed- problem by redefining the state to be the vector p whose-
i-th comiponent is the conditional probal)ility that the state of the original problem equals
i [Bc]. In this formllulation the state space is infinite. Nevertheless, it is known [SS] that
the optimal cost-to-go fullnction is of the Form J(p, t) = IllinK, Akl. L Bkpl] , wihere Ak is a
scalhar anud Bk is a vector of suitable dimension anid Kt is a finite index set. This allows the
solution in finite tinte of tile l)rollcllem even tlough the state space is irfinite. Nevertheless,
It he crlrdinalil; y of tile index set KlC may be an exponential function, of Iic timie horizon and,
there(fore, this procedure is of limiited practical use. The following result shows that imiost
likely this is a generic property of the probleml we are dealing with rather than a d(efect of
tlhe particular reformiltlalion of thle problecll. Notice also that in t.lhe infinite horizon limuit
tile index set Kt will be infinite, in gecreral, which n;akes fairly dlolbtful whether there
exists a finite algorit.hiul or the infinite horizon prol)leil. IFor this reason, we only consider
l.llc problcii in which we are asked to Illillimize the expected u1ndiconltred cost over a finite
timlc horizo 71.

Theorem 6. Tlhe partially observed plrobIlen is l'SlIACE-coinpltcc, even if tile process is
st.ationary and T is restricted to be snimallcr than AS|.

t In the traditional formultlation of the partially observed problem [Be], tlhe observation
at tinie t is a randloml variable, for which we know its conditional distributtion given the
current state and tinme. Ilere we essentially deal with tllhe special ca;se int which the obser-
vatiori is a (leternministic funiction of the cmirent state. Clearly, tlc general case cannllot be

;mvy easier.
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Proof: We.first sketch a proof that the problem is in PSPACE. The construction is a bit
.. tedious, -butquite reminiscent of polynomial-space algorithms for other-similar'problems
:--: (se: for example [t Pal).:-We ian think of- the possible outcomes' of the process 'within the'
-finite horizon T as a tree of depth T, which has internal nodes both for decisions and
transitions. The leaves of this tree can be evaluated to determine the total contribution to
the excpected cost of this path. To determine whether the optimal policy has expected cost
less than some number B, we need to traverse this tree, making nondeterministic decisions
at the decision nodes, iterating over all transitions, and taking care to make the same
decision every time the history of observations is identical. This latter can be achieved by
organizing the search in such a way that nodes at the same level of the tree are divided
into intervals from left to right, corresponding to distinct observation sequences. Decisions

-from nodes in the same-interval mnust be- the same. That-the problem--is in PSPACE follows -

now froin the fact that PSPACE is robust under nondeterminism.
To show PSPACE-completeness, we shall reduce QSAT to this problem. Starting.

from mny quantified formula 3z2 Vz .. .Vz,,F(x: ,..., Xz,), with n variables (existential ,and
universal) and m clauses C, .-.. , Crn, we construct a partially observed stationary Markov
process and a horizon T < ISI, such that its optimunl policy has cost 0 or less if and only
if the formula is true.

We first describe S. Besides so, the initial state, S contains six states Aii, A', Tij, T', Fi, F'
for each clause Ci and variable z:. There are also 2m states Ain,+l, A'.,+ 1. We next de-
scribe the partition I. The initial state so is in a set by itself. For cach variable j, the
states Aij,i = 1,...,m and the states A'j,i = 1,...,m form a set called Ai, the states
Ti,i= 1,... ,m forim a set called Tj, the states TV'"i 1,...,m forlll a set called T;.and
so on, up to F,. The states Ai,n+, and Ai,,+l1 are each on a differcnt set.

Next we shall describe the decisions, tilhe probabilitics, and the costs. All decisions'
except those out of the set A,+ l have zero cost. At s(l there is only one decision, leanting
to the states Ai,,i = 1,... ,m with equal probability. If xj is an existential variable, there
are two dlccisions out of the set A j, leading certainly rroll Aii to Ti; ;and fij, rCespectively;
simlilarly there are two deIcisiors illt or the set A' , Icadilg with certainly frol A' to _j
and F/[, respectively. If zi is a universal variable, there is one dlecision outl of the set Aj,
leading with equal probability froini Aij to 7T i and/'l Ij; sintilarly there is one decision out
of. the set A, leadcing with equal l)ro.l)ability froil to T', and Fr.. Ironi. the T , "j,
aind Fj sets there is only one lecision, whicl le;lads with ccrt.;ainly 'rolll ij,'j ,2 T', iandI oi
FI to (respectively) A;j.+., A- j.i i, IAl. . with t.wo exccpt.ionis: Ifr z - appears
positively in Ci, tilhe transition rrot T''j is to Ai.j l inst..cald of A' j.,; a l if A:s apears
Inegatively, lhe tranlsiition frolt F' is .o A i.j + .

Fjit;ally, out of Ai, ,,,+ I and 1'.l,+1 lthere is one dlecision, Ie(hliig t.o the sam:te st;tel wilh
certainty, only tlhat the decision oult of /i.,,+t inlcurs a cost. of I (the oily onec with nonrzero
cost). This completes tile construction of thle process; the horizon T' is d(lciledL to be 2rm+2
(just enllougllh tillme for thle process to reach one of Ai.,,+L or At'.,,+~).

We claiin that there exists a policy with exi)cctcel cost zecro ilf thle formlula is true.
Suppose such a policy exists. R.ecall liat. t.lic t;ransitio froi tihe initialSstate can lbe to
any state 'ilt Of Il't; we tIltik Lt.,l;:a tlie pl)ro(:css "c1ooses" a ct:llse (: . ()nIce this h;s
hlappelled, tile process r'll;linis ;at sal.;lcs stLbsCril)Ltv(l b)y i rorever, wil,lolmit (ever ol,scrvimng



the real value of i. It follows that the policy has zero expected cost for all such initial
choices. We next claim:that the policy must guarantee that the process ends up in Ai.,+l.
If not-, that is, i for some-choices of decisions for the universal variables the process ends
up in AXn.+. then this contributes an expected cost of at least 2-"/m, which is absurd. It
folWi&s that- the policy must, baei on the previous observations on the transitions at the
sets corresponding to previous universal variables, pick at the existential variables those
decisions that correspond to a truth assignment which satisfies the clause..Since all clauses
must be satisfied, the formula was true.

Conversely, if the formula were true, there is a policy for setting the existential vari-
ables, based on the values of previous universal ones, so that all clauses are satisfied. This,
however, can be translated into a policy for choosing the corresponding decisions at the sets
corresponding-to existential variables so that, for all-choices of--clauses, the state Ai;,,,+- is
reached. A policy with zero cost is thus possible. The proof is complete. O

Theorem 6 says that, unless P=PSPACE (an event even less likely than P=NP),
there is no polynonmial-tilne algorithm for telling whether a cost can be achieved in a given
partially observable process. However, there is a more practical problem, the complexity
of which is not settled by this result. It would still be satisfactory if we could analyze
such a process (perhaps in exponential time or worse), and, based on the analysis, design
a practically realizable controller (polynonlial-tilne algorithm) for driving the process on-
line optinmally. This algorithm would presumably consult sonie polynonlially large data
structure, constructed during the analysis phase. We point out below that this is very
unlikely:

Corollary 1. Unless PSPACE=2', it is impossible to have an algorithm A and a mapping
ut (of arbitrarily high complexity) from a partially observed Markov process M to a string
M(M) of length polynomial in the description of the process, such that the algorithm, with
the string and1 the observations as input, computes the optihnumn decision for the process
in polynomial timle.

Sketch: If suIch l n A and p existed, then we colldl express the question of whether M
ihas zero expectcd cost (and tihuls, by the previous proof, whlether an arbitrary quantified
Boolean fonrlitla is true) as follows: "There exists a string y(M) such that, for all possible
transitions, thle decisions of algorithml A lead to a zero cost." This last sentence, however,
can be rewritten as a Boolean fornmula with two ;alternations of qlantifiers. O

Finally, considering the special case of the partially observed problem, iti which the
I)artition I[ = {S} (i.e., tile case of irmrobscrvcd processes or, eqtiiivalently, an open-loop
cotl.rol) we note that a simnplification of the plroof of Thellorel G establishes that this
)rol):,lCt is Nl'-cotzplete:

Corollary 2. Deciding whether the optimal policy in an unobserved Markov decision
process ha;s expected cost cqual to zero is an NP-conmplete problem. 0
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