in' E £ Tnstitute for Operafions Research
and the Mandpemeni Sciences

Relaxation Methods for Linear Programs

Author(s): Paul Tseng and Dimitri P. Bertsekas

Source: Mathematics of Operations Research, Vol. 12, No. 4 (Nov., 1987), pp. 569-596
Published by: INFORMS

Stable URL: http://www.jstor.org/stable/3689919

Accessed: 07/08/2009 14:46

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of thiswork. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=informs.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

kNFORI\(I}S is collaborating with JSTOR to digitize, preserve and extend access to Mathematics of Operations
esearch.

http://www.jstor.org

http://www.jstor.org/stable/3689919?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=informs

MATHEMATICS OF OPERATIONS RESEARCH
Vol. 12, No. 4, November 1987
Printed in U.S.A.

RELAXATION METHODS FOR LINEAR PROGRAMS*?

PAUL TSENG* anD DIMITRI P. BERTSEKAS?

In this paper we propose a new method for solving linear programs. This method may be
viewed as a generalized coordinate descent method whereby the descent directions are chosen
from a finite set. The generation of the descent directions are based on results from
monotropic programming theory. The method may be alternatively viewed as an extension of
the relaxation method for network flow problems [1], [2]. Node labeling, cuts, and flow
augmentation paths in the network case correspond to, respectively, tableau pivoting, rows of
tableaus, and columns of tableaus possessing special sign patterns in the linear programming
case.

1. Introduction. Consider the general linear programming problem with m vari-
ables and » homogeneous equality constraints. We denote the constraint matrix for the
equality constraints by E (E is an n X m real matrix), the jth variable by x, and the
per unit cost of the jth variable by a;. The problem then has the form:

m
Minimize Y a;x; (LP)
j=1
m
subjectto Y e, x; =0 Vi=12,...,n, (1)
j=1
L<xj<e¢ Vji=1,2,...,m, (2)

where the scalars /; and c; denote respectively the lower and the upper bound for the
Jth variable and e;; denotes the (i, j)th entry of E. We make the standing assumption
that (LP) is feasible.

We consider an unconstrained dual problem to (LP): Let p, denote the Lagrange
multiplier associated with the ith constraint of (1). Denoting by x and p the vectors
with entries x;, j =1,2,...,m, and p,, i =1,2,..., n respectively we can write the
corresponding Lagrangian function

L(x, p) = f‘, (aj - Zn: eijpi)xf’

j=1 i=1
The unconstrained dual problem is then

Minimize g¢(p) subject to no constraints on p, (3)

*Received 28 April 1986.

AMS 1980 subject classification. Primary: 65K05. Secondary: 90C05.

TAOR 1973 subject classification. Main: Programming: Linear.

OR/MS Index 1978 subject classification. Primary: 643. Programming /Linear/Algorithms.

Key words. Elementary vectors, Tucker representations, Painted Index algorithm, epsilon-complementary
slackness.

tWork supported by the National Science Foundation under grant NSF-ECS-3217668.

#University of British Columbia.

$Massachusetts Institute of Technology.

569

0364-765X /87/1204 /$01.25
Copyright © 1987, The Institute of Management Sciences/Operations Research Society of America

570 PAUL TSENG & DIMITRI R. BERTSEKAS

where the dual functional ¢ is given by

q(p)= - min L(x,p)

I
2
=

m n
_ (Z eijpi_aj)xj' (4)
J 1

We will call x the primal vector and p the price vector. The vector t with
coordinates

1= 'geijpi Vi=12,...,m (5)

is called the tension vector corresponding to p. In what follows we will implicitly
assume that the relation (5) holds where there is no ambiguity.

For any price vector p we say that the column index j is:

Inactive if ¢ ;<a;

Balanced if ¢ L =a

Active if 1, > a,.
For any primal vector x the scalar

d,= Zeijxj Vi=1,2,...,n, (6)
j=1

will be referred to as the deficit of row index i.
The optimality conditions in connection with (LP) and its dual given by (3), (4) state
that (x, p) is a primal and dual optimal solution pair if and only if

x; =1, for each inactive column index j, (7
l;< x; < ¢; for each balanced column index j, (8)
x;= ¢, for each active column index j, 9)
d, =0 for each row index i. (10)

Conditions (7)-(9) are the complementary slackness conditions. Let d be the vector with
coordinates d; (in vector form d = Ex). We define the total deficit for x to be X}_,|d,].
The total deficit is a measure of how close x is to satisfying the linear homogeneous
constraints (1).

The dual problem (3) can be easily seen to be an unconstrained convex programming
problem, and as such its solution motivates the use of nonlinear programming
methods. One such method is the classical coordinate descent method whereby at each
iteration a descent is made along one of the coordinate directions. This method does
not work in its pure form when the cost function is nondifferentiable. We bypass this
difficulty by occasionally using directions other than the coordinate directions. The
idea is illustrated in the example of Figure 1 where a multi-coordinate direction is used
only when coordinate descent is not possible.

To develop the mechanism for generating the multi-coordinate descent directions we
will view the problem of this paper in the context of monotropic programming theory
[7], [8]. We can write (LP) as

m n
Minimize). f,(x;) +) 8(d;) subjectto (—d,x) € C, (P)
Jj=1 i=1

RELAXATION METHODS FOR LINEAR PROGRAMS 571

level curve of
the objective

p" denotes the price vector generated
at the rthiteration.

FIGURE 1. Example of Convergence Using Multi-Coordinate Descents.

where fj R — (— o0, 0] is the convex function

a.x. ifljsxjsc

f;(xj)={ J7J J?

+ o0 1ij<ljorxj>cj,

8:R — (— o0, 0] is the convex function

0 if¢&=0
8(¢) = ’
) {oo else,
and C is the extended circulation space
m
C={(—d,x) Zeijxj=di,Vi=l,2,...,n}. (11)
j=1
From (4) we see that the dual functional g(p) can be written explicitly as
q(p) = g(E"p) where (12)
g(t)=% gj(tj)’ (13)
j=1

and the convex, piecewise linear functions g; are given by

g(y) = . (14)
AN (tj—aj)cj ift,>a;

(see Figure 2). Actually g; is the conjugate convex function of f; (in the usual sense of
convex analysis [6])

g;(1;) = sup {t;x; = f(x;)}

J

as the reader can easily verify (see also [8]).
We now write the dual problem (3) in a form which is symmetric to (P)

m
Minimize) g;(#;) subjectto (p,t) € C* (D)
j=1

572 PAUL TSENG & DIMITRI R. BERTSEKAS

Iy
gj(t])

a .
i t;

FIGURE 2. Graphof g;.

where C* is the subspace
ct= {(p’t)ltj= Zeijpi}‘ (15)
i=1

Problems (P) and (D) are symmetric in that they both involve minimization of a
separable function over a subspace, C and C * can be easily verified to be orthogonal
subspaces, f; and g; are conjugates of each other, while the conjugate convex function
of & is the zero function. In fact (P) and (D) constitute a pair of dual monotropic
programming problems as introduced in Rockafellar [7]. It was shown there in a more
general setting that these programs have the same optimal value and their solutions are
related via conditions (7)-(10). An important special property of these programs is that
at each nonoptimal point it is possible to find descent directions among a finite set of
directions—the elementary vectors of the subspace C [in the case of (P)] or the
subspace C* [in the case of (D)]. The notion of an elementary vector of a subspace is
dealt with extensively in [8] (see also [7]) where it is defined as a vector in the subspace
having minimal signed support (i.e. a minimal number of nonzero coordinates). We are
interested in the elementary vectors because they can be very efficiently generated by a
tableau pivoting technique and because they provide us with the necessary generaliza-
tion of coordinate vectors in the price space. In the special case of network flow
problems for which the tableau pivoting may be implemented by means of labeling, the
generalized coordinate descent approach yields an algorithm that is superior to the
primal simplex method, which for many years has been considered as the most efficient
method for linear network flow problems [1], [2].

In the next section we give an overview of the relationship between the elementary
vectors and certain tableaus, called the Tucker tableaus, and describe a pivoting
algorithm, called the Painted Index algorithm, for generating Tucker tableaus with
special sign patterns [8]. In §3 we characterize the descent directions in terms of the
Tucker tableaus and show how to use the Painted Index algorithm to generate dual
descent directions. In §4 we introduce a class of generalized coordinate descent
algorithms for solving (D) where descent directions are generated by the Painted Index
algorithm. A numerical example is given at the end of §4. In §5 we address the issue of
finite convergence of these algorithms. In §6 we report on computational experience.

2. Tucker tableau and the Painted Index algorithm. In order to use elementary
vectors in our algorithm we need a suitable characterization of the elementary vectors
of the extended dual subspace C* and a method for generating them. In the special
case of network constraints, the elementary vectors of C* are characterized by the
cutsets of the network. In the general case of arbitrary linear constraints, the elemen-
tary vectors of C and C* are characterized by the Tucker representations of C and C*
and to generate them we will use a generalization of node labeling for network
problems called the Painted Index algorithm (see [8, Chapter 10]).

RELAXATION METHODS FOR LINEAR PROGRAMS 573

x, = column variables

—_—

X, =row B
variables { BN

FIGURE 3. Tucker Tableau Corresponding to a Partition of Tx = 0 into Bxz + Nxp = 0.

We will first give a brief overview of Tucker tableaus and then discuss the algorithm
for generating them. Consider a linear homogeneous system Tx = 0 where T is a
matrix of full row rank. Each column of 7 has an index and we denote the set of
indexes for the columns of T by J. Since T has full row rank, we can partition the
columns of T into [B N], where B is an invertible matrix. Then Tx = 0 can be
expressed as

-1 Xp
Xxp= —B7'Nx, wherex = Xy

This way of expressing Tx = 0 is a Tucker representation of S, where the subspace S is
given by § = {x|Tx = 0}. Similarly,

t
ty=(B"'N)"t;, wheret= [13]
N

is a Tucker representation of S+, where S+ is the orthogonal complement of S, given
by S* = {t|t = T"p for some p)}. The matrix —B~!N is a Tucker tableau. The
columns of —B~N are indexed by the indexes of the columns of N. The rows of
— B~ !N are indexed by the indexes of the columns of B (see Figure 3). With respect to
a given tableau, an index is basic if its corresponding variable is a row variable and
nonbasic otherwise. Clearly the number of distinct tableaus is finite. Furthermore,
starting from any tableau, it is possible to generate all Tucker representations of S and
S+ by a sequence of simplex method-like pivots (see Appendix A for the pivoting
rule).

A fundamental relationship exists between the Tucker representations and the
elementary vectors of S and S+ : Each column of a Tucker tableau yields in a certain
way an elementary vector of S, and conversely, every elementary vector of S is
obtainable from some column of some Tucker tableau. In a similar way, rows of
Tucker tableaus correspond to elementary vectors of the dual subspace S+ :

ProposITION 1 ([8, Chapter 10]). For a given Tucker tableau and for each basic
index i and nonbasic index j let a;; denote the entry of the tableau in the row indexed by i
and the column index by j. The elementary vector of S corresponding to column j* of the
given tableau has the normalized form)

1 ifj =Jj*,
z2=(...2;...) ., wherez;={(a,. ifjisbasic, (16)
0 else.

The elementary vector of S* corresponding to row i* of the given tableau has the

574 PAUL TSENG & DIMITRI R. BERTSEKAS

g w b r
r 0 0 0 arb = arbitrary
b 0 <0 >0 in
w 0 >0 <0 ¢ inc = incompatible
g arb arb arb
FIGURE 4. Column Compatibility for Tucker Tableau.
g w b r
r 0 0 0 arb arb = arbitrary
b 0 20 <0 arb
w 0 <0 >0 arb inc = incompatible
g inc
FIGURE 5. Row Compatibility for Tucker Tableau.
normalized form
1 ifj = i*,
v="_(...0;...) o, where v;={ —a.; ifjisnonbasic, (17)
0 else.

By a painting of the index set J we mean a partitioning of J into four subsets (some
possibly empty) whose elements will be called “green”, “white”, “black”, and “red”,
respectively.

For a given tableau, a column, indexed by say s, of the tableau is said to be column
compatible if the colour of s and the pattern of signs occurring in that column satisfies
the requirements shown in Figure 4. Note that a column whose index is red is never
compatible. The requirements for a compatible row are analogously shown in Figure 5.

The Painted Index algorithm takes any painting of the index set J and any initial
Tucker tableau and performs a sequence of pivoting steps to arrive at a final tableau
that contains either a compatible column or a compatible row. More explicitly, for any
given index s that is black or white, the algorithm produces a final tableau having
either a compatible column “using” s or a compatible row “using” s (we say that a
column (row) uses s if s is either the index of the column (row) or the index of some
row (column) whose entry in that column (row) is nonzero). We describe the algorithm
below:

Painted Index algorithm ([8, Chapter 10]). Start with any Tucker tableau. Let s be
a white or black index that corresponds to either a row or a column (s will be called
the lever index).

If 5 corresponds to a row, check whether this row is compatible. If yes, we terminate
the algorithm. Otherwise there is an entry in the s row that fails the compatibility test.
Let j be the index of any column containing such an entry, and check whether this
column is compatible. If yes, we terminate the algorithm. Otherwise, there is an entry
in column j that fails the compatibility test. Let k be the index of any row containing
such an entry. Pivot on (k, j) (i.e. make j basic and k nonbasic) and return to the
beginning of the procedure.

If s corresponds to a column, we act analogously to the above, with the word
“column” and “row” interchanged.

The Tucker tableau can be recursively updated after each pivot in a manner similar
to that in the simplex method. This updating procedure is described in Appendix A.

RELAXATION METHODS FOR LINEAR PROGRAMS 575

When the algorithm terminates, either a compatible row using s is found or a
compatible column using s is found. The number of distinct Tucker tableaus is finite,
thus implying that the number of distinct compatible columns or rows is also finite.
Finite termination of the algorithm is guaranteed when Bland’s priority rule is used
[8]: Give to the elements of J distinct numbers (priorities), and whenever there is more
than one index that can be selected as j or k, select the one whose priority is highest.

3. Dual descent directions and the modified Painted Index algorithm. For a given
price vector p and a direction u, the directional derivative of ¢ at p in the direction of
u is given by [cf. (12)] ¢'(p; u) = g'(t; v) where v = ETy and by definition

ooy _ o gl +Av) — (1)
’ g(t’v)—ll?g) A .

ooy 1o q(p +Au) —q(p)
q(p,u)—;l?g) X

Since g is separable we obtain [cf. (13)]

gno)= X g(y)y+ X g(1)y

Jj2y<0 Jj3y>0

where g and g; respectively denote the right and the left derivative of g ;- Therefore
the work in evaluating directly ¢’(p; u) is roughly proportional to the size of the
support of v. Thus we see that by using the elementary vectors of C* as descent
directions we are in part minimizing the effort required to evaluate ¢’(p; u). Since each
g, has the form (14), then g; and g/ have the form

/. if j inactive,

" _)
&j (tj) {cj if j active or if j balanced,

[, if j inactive or if j balanced,

gf_(tf) - {cj if j active, (18)

from which it follows that q’(p; u) = C(v, t) where t = E"p, v = E"u, and

Clo,t) = X Lo+ Y co+ X Lo+ Y cu,. (19)
Uj<0 Uj<0 vj>0 U,>0
a;>1 a;<it, a;>1; a;s;

It follows that ¢’(p; u) < 0 if and only if C(v, t) < 0. Furthermore since g(p) is a
piecewise linear convex function we have the following result:

PROPOSITION 2. For a given vector (p,t) in C* and a direction (u,v) in C* there
holds g(p + Au) = q(p) + AC(v,t) VA €10,) where a is given by

a.— 1. a.— 1. a.—1.
a= min {’ ’}=inf{ min —+— min . ’} (20)
J

vj(u/—l/)>0 v; vj<0jacu’ve vj ’ vj>0jinaclive j
(a is the stepsize at which some column index becomes balanced).

PrROOF. For a fixed v, the quantity C(v, t) depends only on the following four
index sets

{jlaj>t,,vj=#0}, {j|a1.<tj,vj#=0}, {anj=tj,vj>0}, {jlaj=tj,vj<0}

as can be seen from (19). By our choice of a it can be easily verified that these four
index sets do not change for all tension vectors on the line segment between ¢ and

576 PAUL TSENG & DIMITRI R. BERTSEKAS

t + av, excluding the end point ¢ + av. It follows that C(v, t + 7v) = C(v, t) V7 €
[0, @). This combined with the fact

a(p+ M) =g(p) + ['¢(p + ruu) dr

—q(p) + j:C(v,t+ w)dr VA e [0,a)

give the desired result. Q.E.D.

An alternative formula for C(v,t) that turns out to be particularly useful for
network problems [2] is obtained as follows. Let x be a primal vector satisfying CS
with p. Then by first expanding the terms in C(v, t) and then using the definition of
(CS) we obtain

C(v,t) = E Ijvj+ E cu; + Z Ijvj+ Z €Y

uj<0 vj<0 vj>0 zy>0
a;>t a;<t; a;>1; a;<y;
= Z x;v; + E L + E c;v;
a;#1; vj<0 1{,->0
a;=t; a;=t;

m
=Y xu+ 2 (L=-x)v+ ¥ (¢—x,)v,.
Jj=1 v;<0 v;>0
aj=tj aj=tj

Let d be the deficit vector corresponding to x (i.e. d = Ex). Then using the identity
u’d = v"x we obtain

Clo,ty=d™u+ Y (L-x)vu+ X (¢—x)v. (21)
v;<0 v;>0
j :balanced J : balanced

In a practical implementation it is possible to use a data structure which maintains the
set of balanced indices j. Since the number of balanced indices is typically around » or
less, it follows that C(v, t) can be typically evaluated using (21) in O(n) arithmetic
operations. This represents a substantial improvement over the O(m) arithmetic
operations required to evaluate C(v, t) using (19), particularly if m > n. In the case
where E is sparse, the use of (21) may allow further economies as for example in
network flow problems (see [2]).

We now describe a particular way to apply the Painted Index algorithm to determine
if a price vector p is dual optimal, and if p is not dual optimal to either (a) generate an
elementary vector (u, v) of C* such that u is a dual descent direction of g at p, or (b)
change the primal vector x so as to reduce the total deficit.

Modified Painted Index algorithm. Let x € R™ satisfy (CS) with p and let d = Ex.
If d = 0, then (x, p) satisfies the optimality conditions and p is then dual optimal. If
d + 0, then we select some index s with d; # 0. In the description that follows we
assume that d; < 0. The case where d, > 0 may be treated in an analogous manner.

We apply the Painted Index algorithm, with s as the lever index and using Bland’s
anticycling rule, to the extended linear homogeneous system

1,2,..., n n+1,..., n+m

[-1 E Y] =o. (22)

RELAXATION METHODS FOR LINEAR PROGRAMS 577
where index i (corresponding to w;), i = 1,2,..., n, is painted

white if d,>0,
black if d,<0,
red if 4,=0,

and index j + n (corresponding to z;), j = 1,2,..., m, is painted

green if J balanced and /; < x; < ¢;
black if jbalancedand /;=x; <¢;
white if J balanced and /; < x; = ¢;
red if J not balanced

orif jbalancedand/; = x; =c;.

Furthermore, we (i) use as the initial tableau one for which s is basic (one such choice
is E for which the indexes n + 1 to n + m are basic); (ii) assign the lowest priority to
index s (this ensures that s is always basic, see Appendix B for proof of this fact). The
key feature of the algorithm is that at each intermediate tableau we check to see if a
dual descent direction can be obtained from the tableau row corresponding to s. This
is done as follows:

We denote

a,; = entry in s row of tableau corresponding to column variable z;.

a,; = entry in s row of tableau corresponding to column variable w;,.
Applying (17) to the extended linear homogeneous system (22) we obtain that the
elementary vector (u, v) of C* using s that corresponds to this tableau is given by

1 ifi=s,

u,={ —a, if w, is a column variable, (23)
0 otherwise,

o= { a,; ifz is .a column variable, (24)

0 otherwise.
For this choice of (u, v) we obtain (using (21)) that
C(v,t)=d,— Ya,d + Y, (cj—xj)asj+ Y (lj—xj)asj.
i) a,;>0) a,;<0 (25)
J + ngreen Jj + n green

or black or white

If C(v,t) <0 then the direction u is a dual descent direction and the algorithm
terminates. Note from (25) that if the tableau is such that the sth row is compatible,
then u is a dual descent direction since our choice of index painting and the definition
of a compatible row implies that

d, <0 and ad; > 0 for all i such that w, is a column variable and

x; = ¢, for all j such that z; is a column variable, j + n green or black, and a,; > 0
and

x; =1, for all j such that z; is a column variable, j + n green or white, and a,; < 0
which in view of (25) implies that C(v, t) < 0.

We know that the Painted Index algorithm terminates with either a compatible row
using s or a compatible column using s. Thus we must either terminate by finding a
dual descent direction corresponding to a tableau for which C(v, t) < 0 [cf. (25)] or

578

PAUL TSENG & DIMITRI R. BERTSEKAS

else terminate with a compatible column using s. In the latter case, an incremental
change towards primal feasibility is performed as follows:
Let r* denote the index of the compatible column.

Let a;

. denote the entry in the compatible column corresponding to row variable w,

and let a,. denote the entry in the compatible column corresponding to row variable

z

i
Casel. If r* =iforsomei€ {1,...

,n} and r* is black then set

1 if i =r*,
w* « (a;,. if iisbasic,
0 else,

¥ {aj"
J
0

Case 2.

w¥ « {ai"

if n + j is basic,

else.

If r* =n+j for some j € {1,..., m} and r* is black then set

if i is basic,

0 else,
1, if n+j=r*
Z¥ e { G if n + j is basic,
0, else.
Case 3. 1f r* =i for some i € {1,..., n} and r* is white then set
-1 if i = r*,
w* « { —a,. ifiisbasic,

0 else,

zl?" - { e
0

Case 4.

w* « { i

if n + j is basic,
else.

If r* =n+j for some j € {1,..., m} and r* is white then set

if i is basic,

0 else,
-1 ifn+j=r*
Zj* —{ —a;. if n + j is basic,
0 else.

That w* and z* so defined satisfy w* = Ez* follows from applying (16) to the

extended linear homogeneous system (22). Furthermore, our choice of index painting,
together with column compatibility of the column indexed by r*, guarantees that, for
p. > 0 sufficiently small, x + pz* satisfies (CS) with p and that x + pz* has strictly
smaller total deficit than x.

Given the above discussion, we see that the modified Painted Index algorithm will
either produce a dual descent direction u given by (23) that can be used to improve the

RELAXATION METHODS FOR LINEAR PROGRAMS 579

dual cost, or produce a primal direction z* as defined above that can be used to reduce
the total deficit.

The special case where the initial tableau is E and its sth row yields a dual descent
direction is of particular interest and leads to the coordinate descent interpretation of
our method. In this case the dual descent direction is [cf. (23)]

u,={1 ifi=s,
! 0 otherwise,

so the algorithm will improve the dual cost by simply increasing the sth price
coordinate while leaving all other coordinates unchanged. If the dual cost were
differentiable then one could use exclusively such single coordinate descent directions.
This is not true in our case as illustrated in Figure 1. Nonetheless the method to be
described in the next section generates single coordinate descent directions very
frequently for many classes of problems. This appears to contribute substantially to
algorithmic efficiency since the computational overhead for generating single coordi-
nate descent directions is very small. Indeed computational experimentation (some of
which reported in [1], [2]) indicates that the use of single coordinate descent direction is
the factor most responsible for the efficiency of the relaxation method for minimum
cost network flow problems.

4. The relaxation algorithm for linear programs. Based on the discussions in §§2
and 3, we can now formally describe our algorithm. The basic relaxation iteration
begins with a primal dual pair (x, p) satisfying (CS) and returns another pair (x’, p’)
satisfying (CS) such that either (i) ¢(p’) < q(p) or (ii) g(p’) = q(p) and (total deficit
of x") < (total deficit of x).

Relaxation iteration.

Step 0. Given (—d, x) € C and (p, t) € C* such that (x, p) satisfy (CS).

Step 1. If d=0 then x is primal feasible and we terminate the algorithm.
Otherwise choose a row index s such that d is nonzero. For convenience we assume
that d_ < 0. The case where d, > 0 may be analogously treated.

Step 2. We apply the modified Painted Index algorithm with s as the lever index to
the extended system

(-1 El[¥] -0

as described in §3. If the algorithm terminates with a dual descent direction u we go to
Step 4. Otherwise the algorithm terminates with a compatible column using s, in which
case we go to Step 3.

Step 3 (Primal Rectification Step). Compute:

. .G X; . Ij - Xx; . —d,
M= min{ mn ———, min * », mn *
* Z; * Z; * w
z; >0 j 2] <0 J w*+0

where z*, w* are described in §3. Set x « x + pz*, d « d + pw* and go to the next
iteration. (The choice of p above is the largest for which (CS) is maintained and total
deficit is strictly decreased.)

Step 4 (Dual Descent Step). Determine a stepsize A* such that

q(p + A*u) = lggg{q(p +Au)}.

580 PAUL TSENG & DIMITRI R. BERTSEKAS

Set (p,t) « (p,t) + A*(u, v), update x to maintain (CS) with p, and go to the next
iteration.

Validity and finite termination of the relaxation iteration. We will show that all steps
in the relaxation iteration are executable, that the iteration terminates in a finite
number of operations, and that (CS) is maintained. Since the modified Painted Index
algorithm (with the priority pivoting rule) is finitely terminating, the relaxation
iteration then must terminate finitely with either a primal rectification step (Step 3) or
a dual descent step (Step 4). Step 3 is clearly executable and finitely terminating. Step 4
is executable since a dual descent direction has been found. If Step 4 is not finitely
terminating then there does not exist a stepsize A* achieving the line minimization in
the direction of u. It follows from the convexity of ¢ that ¢’(p + Au; u) < 0 for all
A > 0 which implies that

Y v+ X ocp <0

v;<0 v;>0

in which case the assumption that (LP) is feasible is violated. (CS) is trivially
maintained in Step 4. In Step 3, the only change in the primal or dual vectors comes
from the change in the value of some primal variables whose indexes are balanced.
Since the stepsize p is chosen such that these primal variables satisfy the capacity
constraints (2) we see that (CS) must be maintained.

Implementation of the line search in Step 4. It appears that usually the most efficient
scheme for implementing the line search of Step 4 is to move along the breakpoints of
¢, in the descent direction u, until the directional derivative becomes nonnegative. This
scheme also allows us to efficiently update the value of C(v,t). Algorithmically it
proceeds as follows:

Step 4a. Start with p and u such that C(v,t) < 0.

Step 4b. If C(v,t) > 0 then exit (line search is complete). Else compute a using
(20) (a is the stepsize to the next breakpoint of ¢ from p in the direction u). Then
move p in the direction u using stepsize a and update ¢ and x as follows:

Increase p; by au; Vi.

Set x; < /; V balanced j such that v; < 0.

Set x; « c; V balanced j such that v, > 0.

Increase ¢; by av; Vj.

Update C(v, t) by

Clo,t) «C(v,t) = X (x;= L)y, — X (x;—¢)v
a;=y a;=1
y;< u;>0

(=

Return to Step 4b.
It is straightforward to check that the updating equation for C(v, t) is correct and
that (CS) and the condition ¢ = E”p are maintained.

Numerical example. We now give a numerical example for the relaxation algorithm
just described. To simplify the presentation we will make no explicit use of Bland’s
Priority pivoting rule. Consider the following linear program:

Min x1+x2—X3+2x4—x5

1 0f _{0O
subject to [_1 0 l]x [0],

0<x; <1, <2, 1<x3<2 1<x,<2, -1<x;<50.

RELAXATION METHODS FOR LINEAR PROGRAMS 581

The cost vector for this example is a = (1,1, —1,2, —1). Let the initial price vector
be the zero vector. We obtain the following sequence of relaxation iterations:
Iteration 1.

p=1(0,0), t=E"=(0,0,0,0,0), a-t=(1,1,-1,2, -1),
x=1(0,1,2,1,0), d=(0,-1).

Initial Tucker tableau.

5 Z 23 24 25 r=red
r r r r r w = white
w, r 2 -1 0 1 0 b = black
leverrow - w, b 0 1 -1 0 1 g = green

Row 2 is compatible, so a dual descent step is possible with descent direction given by:
u=(0,1), v =(0,1, —1,0,1), and stepsize given by:

a < min{(a, = 1,)/vy,(a3 = ;) /v3} = 1.
x is unchanged. The new price vector and tension vector are: p « p + au = (0,1),

t—t+av=(01-101).
Iteration 2.

p=(0,1), t=ETp=(0,1,-1,0,1), a—t=(1,0,0,2,—2),

x=(0,1,2,1,0), d=(0,-1).

Initial Tucker tableau.

z; z, z4 z, Zg
r b w r r
w r 2 -1 0 1 0
lever row — w, b 0 1 -1 0 1

Row 2’s compatibility is violated in columns 2 and 3. We pivot on row 1, column 2:
Next Tucker tableau.

5 w1 23 24 Zs
r r r r
z,y b 2 -1 0 1 0
lever row — w, b 2 -1 -1 1 1

Row 2’s compatibility is violated in column 3 and column 3 is compatible. The primal
rectification direction is then given by: z* = (0,0, —1,0,0), w* =(0,1) and the
capacity of rectification is given by:

p < min{(l; - x3)/z3, —dy/w*} =1

p and ¢ are unchanged. The new primal vector and deficit vector are:

ded+pw*=(0,0), x<x+pz*=(0,1,1,1,0).

582 PAUL TSENG & DIMITRI R. BERTSEKAS

The algorithm then terminates. The optimal price vector is (0, 1). The optimal primal
vector is (0,1,1,1,0).

5. Finite convergence of the relaxation algorithm. The relaxation algorithm that
consists of successive iterations of the type described in the previous section is not
guaranteed to converge to an optimal dual solution when applied to general linear
programs due to the following difficulties:

(a) Only a finite number of dual descent steps may take place because all iterations
after a finite number end up with a primal rectification step.

(b) An infinite number of dual descent steps takes place, but the generated sequence
of dual costs does not converge to the optimal cost.

Difficulty (a) may be bypassed by choosing an appropriate priority assignment in the
relaxation algorithm and showing that the number of primal rectification steps between
successive dual descent steps is finite under the chosen assignment.

PROPOSITION 3. If in the relaxation algorithm the green indexes are assigned the
highest priorities and the black and white indexes belonging to {1,2,...,n}, except for
the lever index, are assigned the second highest priorities, then the number of primal
rectification steps between successive dual descent steps is finite.

PROOF. See Appendix C.

Proposition 3 is similar to Rockafellar’s convergence result for his primal rectifica-
tion algorithm ([8, Chapter 10]). However his algorithm is an out-of-kilter implementa-
tion and requires, translated into our setting, that each row index once chosen as the
lever index must remain as the lever index at successive iterations until the correspond-
ing deficit reaches zero value. We do not require this in our algorithm.

Difficulty (b) above can occur as shown in an example given in [9]. To bypass
difficulty (b) we employ the e-complementary slackness idea which we introduced in 2]
for network flow problems. For any fixed positive number ¢ and any tension vector ¢
define each column index j € {1,2,..., m} to be

e-inactive if t; < a; — €,

e-balanced if a,—e<t;<a;te

eactive if ;> a; + e
Then for a given primal dual pair (x, p) and ¢ = E”p we say that x and p satisfy
e-complementary slackness if

x; = ! y Ve-inactive arcs j,
;< x;<¢; Vebalanced arcs j, (e-CS)
x; = c; Ve-active arcs j.

When ¢ = 0 we recover the definition of (CS). Define

€ —
C(v,t)= ¥ Lo+ X Lo+ X cu+ X .
J : einactive u;<0 J : e-active y>0
J : e-balanced J : e-balanced

For computational purposes we may alternately express C*(v, ¢) in a form analogous
to (21): For a given p let x satisfy ¢-CS with p and let d = Ex. Then using an
argument similar to that used to derive (21) we obtain

C(v,t)=dTu+ Y (-x;)u+ Y (¢—x)v. (26)
y <0 4>0
j: e-balanced J : ebalanced

RELAXATION METHODS FOR LINEAR PROGRAMS 583

We note that, for a fixed v and ¢, C(v, t) is monotonically increasing in € and that
C(v,t) = C%uv, 1).

PROPOSITION 4. If in the relaxation iteration of §4 we replace (CS) by (e-CS) and
C(v, t) by C*(v, t) then the number of dual descent steps in the relaxation algorithm is
finite.

ProOOF. First we will show that each iteration of the modified relaxation algorithm
is executable. Let (x, p) denote the primal dual pair that satisfies e-CS at the beginning
of the iteration and let t = E”p. It is straightforward to verify, using (26), that with
(CS) replaced by (e-CS) in the painting of the indexes every compatible row yields a
(u, v) [cf. (23), (24)] that satisfies C*(v, t) < 0. Therefore the iteration must terminate
with either a compatible column or a (u, v) such that C*(v, ¢) < 0. In the former case
we can perform a primal rectification step identical to that described in §4. In the latter
case, since C(v, t) = C%uv, t) < C%(v, t), it follows that u is a dual descent direction
at p so that the dual descent step (Step 4) can be executed.

Next we will show that the line minimization stepsize in the dual descent step is
bounded from below. Using the definition of C*(v, t) we have that a dual descent is
made when

C(v,t)= X Ly+ Y L+ Y oo+ X ¢p<0. (27)

a;—t;>e€ y;<0 a;—1,<—¢ u;>0
la,—t]<e la;—tjl<e
Let
€
’
¢ = (28)
max ;|v)|

and let p" =p + €u, t' =t + €’'v. Let x’ be a primal vector satisfying (CS) with p’.
Then (28) implies that

aj—t;>e=a;~1/>0 and a,—t;< —e=a;-1/<0
so that
a,—t;>e=>x/=1 and a,-1,< —e=x]=c,. (29)
Using (29) and (19) we obtain that

Clo,t)= ¥ Ly+ Y xp+ X o+ X xb. (30)

a;—t;>¢ y;<0 a;—1;<—¢ v;>0

laj—1tj|<e la;—tjl<e
Subtracting (27) from (30) we obtain that

Clv,t)=C(v,t)= ¥ (x-1L)y+ X (x; = ¢;)v;. (31)
Uj<0 Uj>0
la;—tjl<e laj—tj]<e

Since the right-hand side of (31) is nonpositive it follows that C(v, t’) < C(v,t) <0
so that u is a dual descent direction at p + €'u, implying that the line minimization
stepsize is bounded from below by ¢’

Consequently the line minimization stepsize at each dual descent step is bounded
from below by e L where L is a positive lower bound for 1/max{|v,||j € {1,2,..., m}}

584 PAUL TSENG & DIMITRI R. BERTSEKAS

as v ranges over the finite number of elementary vectors (u, v) of C* that can arise in
the algorithm. Since the rate of dual cost improvement over these elementary vectors is
bounded in magnitude from below by a positive number we see that the cost
improvement associated with a dual descent (Step 4) is bounded from below by a
positive scalar (which depends only on € and the problem data). It follows that the
algorithm cannot generate an infinite number of dual descent steps. Q.E.D.

Using Proposition 4 we obtain the following convergence result:

PROPOSITION 5. If the conditions of Propositions 3 and 4 are satisfied, then the
relaxation algorithm terminates finitely with a primal dual pair (x, p) satisfying e-com-
plementary slackness and Ex = 0.

PrROOF. That the relaxation algorithm terminates finitely follows from Propositions
3 and 4 (note that the introduction of e-CS does not destroy the validity of Proposition
3). That the final primal dual pair satisfies e-complementary slackness follows from the
observation that e-complementary slackness is maintained at all iterations of the
relaxation algorithm. That the final primal vector satisfies the flow conservation
constraints (1) follows from the observation that the relaxation algorithm terminates
only if the deficit of each row index is zero. Q.E.D.

The next proposition provides a bound on the degree of suboptimality of a solution
obtained based on eCS.

PROPOSITION 6. If (x, p) satisfies e-complementary slackness and Ex = 0 then

0<f(x)+4q(p)<e gl(Cj ~1).

PrOOF. Let t = ETp. Since Ex = 0 we have that
a™ = (a—1)"x. (32)
Using (32) and the definition of e-complementary slackness we obtain

ax = E (aj_tj)lj+ 2 (aj_tj)cj+ E (aj—tj)xl" (33)

aj—tj>£ aj—tj< —€ —t%aj—tj<(
On the other hand we have [cf. (12), (13), and (14)]

a(p)=- X O(aj‘ tj)lj+ > (aj— tj)cj' (34)

a;—t;> aj-tj<0
Combining (33) with (34) we obtain

ax+q(p)= ¥ (a—1;)(x;— L)+ L (g-1)(x-¢)

0<a;—1;<¢ —e<a;—1;<0

from which it follows that

a™x +q(p)<e) (¢;— 1)
j=1

and the right-hand inequality is established. To prove the left-hand inequality we note

RELAXATION METHODS FOR LINEAR PROGRAMS 585
that by definition
—g(p) = Minimize (a—1t)"¢ subjectto I<fs<c

from which it follows that —g(p) < (a — t)"™x = a”™x where the inequality holds since
! £ x < ¢ and the equality holds since Ex = 0. Q.E.D.

A primal dual pair satisfying the conditions of Proposition 6 may be viewed as an
optimal solution to a perturbed problem where each cost coefficient a; is perturbed by
an amount not exceeding €. Since we are dealing with linear programs, it is easily seen
that if € is sufficiently small then every optimal solution of the perturbed primal
problem is also an optimal solution of the original primal problem. Therefore, for
sufficiently small €, the modified relaxation algorithm based on ¢-CS terminates in a
finite number of iterations with an optimal primal solution. It is not difficult to see that
the required size of € for this to occur may be estimated by

min{ a”x — a”x*|x a basic feasible solution of (LP), a’x — a”x* # 0}

divided by sum of ¢; — I;’s, where x* is any optimal primal solution. However such an
estimate is in general not computable a priori.

6. Computational experience. To assess the computational efficiency of the relaxa-
tion algorithm we have written three relaxation codes in FORTRAN and compared
their performances to those of efficient FORTRAN primal simplex codes. The three
relaxation codes are: RELAX for ordinary network flow problems, RELAXG for
positive gain network flow problems, and LPRELAX for general linear programming
problems. All three codes accept as input problems in the following form

m
Minimize '21 a;x;
-

m
subject to Ze,.jx'=b,., i=12,...,n,
j=1
0<x;<¢, j=12,...,m.
For RELAXG, the matrix E is required to have in each column exactly one entry of
+1, one negative entry, while the rest of the entries are all zeroes. For RELAX, the
negative entries are further required to be —1. Three primal simplex codes—RNET
[11] for ordinary network flow problems, NET2 [10] for positive gain network flow
problems, and MINOSLP (Murtagh and Saunders) for general linear programming
problems—were used to provide the basis for computational comparison. The
test problems were generated using three random problem generators—NETGEN [13]
for ordinary network problems, NETGENG [12] (an extended version of NETGEN)
for positive gain network problems, and LPGEN for general linear programming
problems. NETGEN and NETGENG are standard public domain generators, while
LPGEN is a generator that we wrote specifically for the purpose of testing LPRELAX
and MINOSLP. All codes were written in standard FORTRAN and, with the
exception of RNET, were compiled on a VAX11/750 (operating system VMS 4.1).
They were all ran under identical system load conditions (light load, sufficient incore
memory to prevent large page faults). For RNET we only obtained an object code that
was compiled under an earlier version of VMS. The timing routine was the VAX11 /750

586 PAUL TSENG & DIMITRI R. BERTSEKAS

system time routine LIBSINIT_TIMER and LIB§SHOW _TIMER. The solution times
did not include the time to set up the problem data structure. In both RELAX,
RELAXG, and LPRELAX, the initial price vector was set to the zero vector.

RELAX is an ordinary network flow code that uses a linked list to store the network
topology. It implements the modified Painted Index algorithm by means of a labeling
technique similar to Ford-Fulkerson labeling. Detailed description of RELAX is given
in [2]. RNET is a primal simplex code developed at Rutgers University over a span of
many years. In RNET the FRQ parameter was set at 7.0 as suggested by its authors.
Preliminary testing with RELAX and RNET showed that RELAX performs about as
well as RNET on uncapacitated transhipment problems but outperforms RNET on
assignment problems, transportation problems, and capacitated transhipment prob-
lems (up to 3 to 4 times faster). Here we give the times for the first 27 NETGEN
benchmark problems in Table 1 (computational experience with other NETGEN
problems is reported in [2] and [9]). The superiority of RELAX over RNET is less
pronounced on very sparse problems where the ratio m/n is less than 5. This may be
explained by the fact that sparsity implies a small number of basic feasible solutions.
Although the results presented are only for those problems generated by NETGEN we
remark that similar results were obtained using a problem generator that we wrote
called RANET. Since RANET uses a problem generating scheme quite different from
that used by NETGEN, our computational results seem to be robust with respect to
the type of problem generator used. Typically, the number of single coordinate descent
steps in RELAX is from 2 to 5 times that of the number of multi-coordinate descent
steps while the contribution made by the single coordinate descent steps in improving
the dual cost is anywhere from 9 (for tightly capacitated transhipment problems) to 20
(for uncapacitated transportation problems) times that made by the multi-coordinate
descent steps (see [9, Tables 2.2 and 2.3]). Yet the single coordinate descent step is
computationally very cheap. In the range of problems tested, the average number of
coordinates involved in a multi-coordinate descent is found to be typically between 4
and 8 implying that even in the multi-coordinate descent steps the computational effort
is small. Furthermore this number seems to grow very slowly with the problems size.

RELAXG is a positive gain network code developed from RELAX. It implements
the modified Painted Index algorithm by means of a labeling technique similar to that
used by Jewell [S]. The total storage requirement for RELAXG is: five m-length
INTEGER*4 arrays, five n-length INTEGER*4 arrays, five m-length REAL*4 arrays,
four n-length REAL*4 arrays, and two LOGICAL*1 arrays. Line minimization in the
dual descent step is implemented by moving along successive breakpoints in the dual
functional. Labeling information is discarded after each iteration. When the number of
nodes (corresponding to row indexes) of nonzero deficit falls below a prespecified
threshold TP, RELAXG switches to searching for elementary descent direction of
“maximum” rate of descent and using as stepsize that given by (20), but with “active”,
“inactive” replaced by “e-active”, “e-inactive” respectively.

To measure the efficiency of the gain network algorithm we compared RELAXG
with the code NET2 of Currin [10]. NET2 is a FORTRAN primal simplex code
developed on a CDC Cyber 170/175 computer operating under NOS 1.4 level
531,/528. In the computational study conducted by its author [10]—experimenting
with different data structures, initial basis schemes, potential updating and pivoting
rules—NET2 was found to be on average the fastest (NET2 uses forward star
representation). In addition to NETGENG we also tested RELAXG and NET2 on
problems generated by our own random problem generator RANETG—an extension
of RANET for generalized networks. The times with RANETG are roughly the same
as with NETGENG-—which shows that our computational results are robust with
respect to the type of problem generator used. Table 2 contains the specification of the

RELAXATION METHODS FOR LINEAR PROGRAMS 587

TABLE 1

Times for Benchmark NETGEN Problems With Arc Cost € [1,100]. Time In CPU Seconds.
RELAX Compiled Under VMS4.1. RNET Compiled Under An Earlier Version of VMS.
Both Methods Ran Under Identical Conditions.

No. No.
nodes arcs RELAX RNET
Transportation 200 1300 1.79 3.24
Problems 200 1500 1.87 3.76
200 2000 1.67 4.43
200 2200 222 5.05
200 2900 248 7.25
200 3150 3.73 9.34
200 4500 4.53 12.59
200 5155 4.63 15.10
200 6075 5.45 18.65
200 6300 3.73 16.76
Assignment 400 1500 111 4.82
Problems 400 2250 127 6.57
400 3000 1.69 8.80
400 3750 229 9.82
400 4500 2.50 9.94
Uncapacitated 400 1306 244 2.82
é"a ;‘;iﬂgtye . 400 2443 248 342
Problems 400 1306 215 262
400 2443 2.38 3.61
400 1416 3.00 3.06
400 2836 3.03 4.50
400 1416 2.82 2.86
400 2836 4.57 4.56
400 1382 1.17 2.69
400 2676 1.83 5.95
400 1382 1.98 253
400 2676 1.93 3.58

NETGENG benchmark problems described in [10] and [12] and the corresponding
solution times from RELAXG and NET2. The fourth benchmark problem turned out
to be infeasible in our case (as verified by both NET2 and RELAXG)—perhaps
because we used a slightly different version of NETGENG or because the random
number generator in NETGENG is machine dependent, as was the case with NETGEN.
Table 3 contains the specification and the solution time for additional NETGENG
problems. The solution times quoted for both NET2 and RELAXG do not include the
time to read the input data and the time to initialize the data structures (these times
were in general less than 8% of the total solution time).

Initial testing shows that out of the 18 benchmark problems RELAXG (with TP set
to (#sources + #sinks)/2) is faster than NET2 on 11 of them. However out of the 7
problems where RELAXG performed worse, it sometimes performed very badly (see

PAUL TSENG & DIMITRI R. BERTSEKAS

588

WLl 90'¥S9 | LTYTO9TT - 0 00000C | TI-L 000L | 0OF 01 00v 0¢ 0001 81
66'T1L 900t 0ETTLOST - 0 00000C | S1-¢ 00s9 | 0S (1[4 0s (174 0001 LT
0516 €T6TT | 8TYPETVLI| 0009—000% 001 00000C | VIV 0009 | 0T S 001 (174 0001 91
89v1 6'LSE | 8T6TTI89 | 0009-000V 001 00000C | 09-T 000v | O 0 $66 S 0001 ST
65001 1L'8€ 8TYT6CE | 000T—-000T 001 000001 | S'T1-§ 000L | O 0 0s 0¢ (L4 14
LTOL 0E'TY EYCILTY | 000T—000T 001 000001 | S'TI-¢ 0009 | OC 01 0L 114 00y €1
4244 §9°€T 8TTT01E - 0 000001 | L'T1-€ 0005 | 0OS S 001 (1[4 (1,0,4 (4!
6861 13 44Y 8SYILYY - 0 000001 | V1T 000Y | O 0 L6E € 00y 11
87°9¢ LY'TT 14334 - 0 00T S1-§ 000C| O 0 00¢ 002 0oy 01
w08 9TTL 81v0L6T - 0 000001 | STI-S 000L | OC 1 0s [4 00¢ 6
6L°ST 8v'LT L8TILEIT — 0 000001 | S'T1-¢ 0009 | ST S oy 01 00¢ 8
wey 9¢°1E P6ELOTT - 0 000001 | S'T1-¢ 000V | OtT SE1 S91 SET 00¢ L
€6°LT 79'¢T 06LLT9T - 0 000001 | S'T1-S 000C| O 0 S6T S 00€ 9
LEET 8881 SLLLOYT - 0 000001 | S'T1-¢ 00ST | O 0 0ST 0S1 00¢ S
d[qisesyur | dqqrsesyur - 000T-0001 001 000001 S6-ST | 0009 | 0T 01 0s ST 00T 14
608 EL'L 66LS6TT | 000T—-0001 001 000001 | S'I-¢ 000V | O 0 S61 S 00T €
0581 ST81 €9CTL8T | 000T—000T 001 000001 | S'T-¢ 000C | O 0 001 001 00T C
8¢°ST Tl TLTL88T - 0 00000T | S'I-¢ 00ST| O 0 001 001 00C 1
TLAN | «OXVTIdd | onfea Buey paey Kjddng JBuey SOXY | SYUIS | S30INOG | SYUIS | SI0INOS | SIPON | Wd[q
reundo | punog MMMN rior | sendnmp wowdrysuer | oid

T/(SAUISH + 520408 #) = d L« SW2IqOL] Yavuipusg ONTDLAN 4O TLAN PUY DX VTTY 404 (Spuosss up) soui g
(0 = 150D Y81 1a242g ‘09YTOSET = PIas LOQUINN WOpuUDY) Swid|qoid FDuydusg DNFOLIN 404 suonvofads wajqosq

cd1dvVL

RELAXATION METHODS FOR LINEAR PROGRAMS 589

TABLE 3

Times (In Seconds) For RELAXG and NET?2. Problems Are Created Using NETGENG with
SEED = 13502460, Arc Gains € [.5,1.5], Supply = 500 X (No. Nodes),
and Arc Cost € [1,1000]. *TP = (No. Nodes)/2.

No. No. Optimal

nodes arcs Value RELAXG* NET2

Symmetric No. 400 2000 | 72244687 20.93 63.90

Capacitated nodes 400 6000 | 40627756 42.82 132.60
Transhipment fixed

cap € [500,1000] 400 8000 35215416 75.85 180.95

400 | 10000 | 28376690 | 10314 166.21

Symmetric No. 400 7000 36574188 54.88 155.77

Capacitated arcs 600 7000 | 72651152 7712 24474
Transhipment fixed

cap € [500, 1000] 800 7000 | 109997296 128.55 369.09

1200 7000 | 205287424 | 22934 656.09

Symmetric No. 400 2000 47332000 25.08 36.19

Uncapacitated nodes 400 | 6000 | 22869084 4576 56.04
Transportation fixed

400 8000 | 17202804 53.907 70.99

400 | 10000 | 16052708 130.27% 72.96

Symmetric No. 400 7000 | 18789882 4974 60.21

g“capa"‘;‘t‘ied ?“‘S : 600 7000 | 43720964 75.35 110.67

ransportation xe 800 | 7000 | 64200112 97.98 164.52

1200 7000 | 128071952 21857 336.72

T Number of page faults exceeds 2500.
#Number of page faults exceeds 10000.

problem 9 of Table 2). Overall it appears that RELAXG tends to perform worse than
NET? on lightly capacitated asymmetric (the number of sources is either much greater
or much smaller than the number of sinks) problems while RELAXG outperforms
NET2 considerably on symmetric transportation and capacitated transhipment prob-
lems (see Tables 2 and 3). However it should be noted that NET2 was written on a
different machine and under a different operating system. Computational experience
with RELAXG and NET2 on other NETGENG problems is reported in [9].
LPRELAX is the relaxation code for general linear programming problems.
LPRELAX does not use any sparsity information and is therefore more suited to dense
problems with a small number of rows. At each iteration, LPRELAX first checks if the
lever index corresponds to a single coordinate descent direction and performs a dual
descent step with line search accordingly. It then applies the Painted Index algorithm
to find either a compatible row or a compatible column using the lever index. In the
former case a dual descent step, with stepsize given by (20) where “active” is replaced
by “e-active” and “inactive” is replaced by “e-inactive”, is performed. In the latter case
a primal rectification step is performed. Experimentation showed that using the tableau
left from the previous iteration as the initial tableau for the current iteration (an
additional pivot may sometimes be required to make the lever index basic) is computa-
tionally beneficial and this was implemented in LPRELAX. To avoid unnecessary
computation LPRELAX works with the reduced linear homogeneous system

-1 £1]2] -0

590 PAUL TSENG & DIMITRI R. BERTSEKAS

where E’ consists of the columns of E whose indexes are e-balanced and z’ consists of
the entries of z whose indexes are e-balanced. The only time that the columns that are
not e-balanced are used is during a dual descent step to compute v; (v; given by (24))
for all j not e-balanced. However this computation can be done at the beginning of
the dual descent step using the fact that

v=) e u;,
i=1
1 ifi=s,
u, = —a, if i # s and i is nonbasic,

0 otherwise,

where a; denotes the entry in the s row of the Tucker tableau (representing the above
reduced system) corresponding to row variable w;; and s is the lever index.

The most critical part of the code, both in terms of numerical stability and efficiency,
is the procedure for Tucker tableau updating. The current version attempts to identify
numerical instability by checking, after every pivot, for unusually large entries appear-
ing in the tableau and then backtracking if such an entry is identified. The backtrack-
ing scheme requires storing the set of indexes that were basic in the previous tableau.
The threshold value for determining whether a tableau entry is zero was set at 0.0005
(it was found that if the threshold value was set too low then the pivots can cycle). For
sparse problems some technique for preserving and exploiting the sparsity structure
during pivoting would be needed to make the code efficient. LPRELAX has a total
storage requirement of one n X m REAL*4 array (to store the constraint matrix), one
n X 2n REAL*4 array (to store the reduced Tucker tableau), 5 m-length REAL*4
arrays, 4 n-length REAL*4 arrays, and 2 n-length INTEGER*4 arrays.

MINOSLP is a primal simplex code for linear programs developed by B. A. Murtagh
and M. A. Saunders at the Systems Optimization Laboratory of Stanford University as
a part of the FORTRAN package called MINOS for solving linear programming and
nonlinear programming problems (the 1985 version of MINOS has MINOSLP in a
module by itself). To generate the test problems we wrote a problem generator called
LPGEN. Given a number of rows and columns, LPGEN generates the entries of the
constraint matrix, the cost coefficients, the right-hand side, and the upper bound on the
variables randomly over a prespecified range. Since MINOSLP has a sparsity mecha-
nism that LPRELAX does not have, in the tests we generated only dense problems so
that the times will more accurately reflect the relative efficiency of the algorithms
themselves. Note that since the relaxation algorithm uses tableau pivoting it can readily
adopt any sparsity technique used by the primal simplex method. In both LPRELAX
and MINOSLP we count the time from when the first iteration begins to when the last
iteration ends (the time to read in the problem data is not counted).

Initial testing shows that LPRELAX is roughly 10% faster than MINOSLP on
problems where the ratio m/n is greater than 10 but two to three times slower if m/n
is less than 5 (see Table 4 for problem specifications and solution times). On the larger
problems MINOSLP experienced severe problems with page faults—the reason of
which is not yet understood. We also considered other measures of performance—in
columns nine and twelve of Table 4 we give the total number of pivots executed by
LPRELAX and MINOSLP respectively. However since LPRELAX does not work
with the full n X m tableau we considered another measure, denoted by PB. For
LPRELAX, PB is simply the number of columns in the reduced tableau summed over
all pivots (so that PB X n is the total number of times that LPRELAX updates a

591

RELAXATION METHODS FOR LINEAR PROGRAMS

‘[‘s —] 98uer oy ur pajersusd Ajwopuer oIe XUjeuw JUTEI)SUOd JO SILNUF ‘000001 SPI3ox3 sinej 38ed jo 1oquinN 4
38ed jo raquinN,

‘0005 SPa99xa s)[ney

orbiE | 98L +YTLSS | 916SS | $90€E 86°6EY SSOL6YE — 005-001 | 002-00Z— | 00T-001— |[00S |Ov | 9T
009LT | 069 BYT0E | 98669 | 00V 80'8LT L8TOLST — 00S—00T | 002-00T— | 001-00T— |OOF [OF | ST
0z661 | 86 €6'LTC | 88€99 | 0T6¢€ 89°€6€ 6LLO89T — 005-00T | 002-00T— | 001-001— |[00€ |0V | ¥1
OTLET | €¥E €6°STT | 8T20r | 89TC SH'86T 9988101 — 005—00T | 00T-00T— | 00T—00T— |00T |OF | €I
orse 811 £v'TS 7966 L8Y 98°9p 6vT1 a8rer | 00T-00C— | 0001-1 00s |0E| T
0LSE 611 8Ty 7919 9Ly 60°6v v€00T a8rer | 00T-00T— |0001-1 00r | o€ 11
0sPe 11 06°v¢ 6SLE 9¢T 95°9¢ L18YT 38rel | 00T-00T— |0001-1 00€ |0c | o1
09¢¢ Tl LS'9T LTEIT | SL6 01'8S 6955 a8rer | 002-00T— | 00011 00T |0E| 6
00S 0s1 LS'Y9 £T5L 0sL 60'99 LOTTT 00$-001 | 002-00T— | 0001-1T 00s |0 | 8
0LSE 611 [4:X37 7919 9Ly S0'8y PE00T 00$-001 | 00T-00T— | 000T-1 o0or |0 | L
0sve 11 10°6€ 65LE 9¢T 6T'LE L18YT 00$-001 | 002-00T— | 000T-1 oog foe| 9
09¢€ [8T'9C SSTIT| U6 1€'8S $695S 005001 | 00Z—00Z— | 0001-1 00z |os| S
0010C | 0.9 vI96T | SPS6T | SEST 06992 1S970vTE€— | 005001 | 00T-00T— | 000T-000T— |00S [0E| ¥
00bLI | 08 TCEIT | TLI9T | T8ET 18881 0L8950ST— | 00S-00T | 00T—-00T— | 00OT-000T— | 00Y | OF €
OTVET | Lbb 9¢'8¢1 | 8T0LY | ILTY 86°TET 18810661 — | 005—00T | 00T-00T— | 000T-000T— |00¢ |0E | ¢
ors6 81¢ 89'9L 60£8T | 18ST €EIST Y8P6ELTT— | 00S—00T | 00T-00T— | 000T—-000T— | 00T | OF 1
4d |soaig # [swnINdD | 4d | S10Ald # |dunl NdD | A ewmdQ | sSuey | afuey SHY | Fueyiso) | w | u | wd[qoid
JTSONIN XV TI¥dT punog

dISONIW Pup X VTTYdT 404 (Spuodas uy) sauii]

yHI4VL

592 PAUL TSENG & DIMITRI R. BERTSEKAS

tableau entry). For MINOSLP, PB is the number of iterations times » (so that PB X n
is roughly the total number of times that the revised primal simplex method updates a
tableau entry). In essence PB provides us with a measure of the relative efficiency of
relaxation and revised primal simplex, assuming that tableau updating is the most time
consuming task in either method. The cost of the primal solutions generated by
LPRELAX and MINOSLP always agreed on the first six digits and on capacitated
problems the cost of the dual solution generated by LPRELAX (with € = 0.1) agreed
with the primal cost on the first four or five digits (i.e. duality gap is less than 0.1%).
However on uncapacitated problems, even with € taken very small (around 0.01) this
dual cost is typically very far off from the primal cost which is somewhat surprising
given that the corresponding primal cost comes very near to the optimal cost.
Decreasing € sometimes increases the solution time and sometimes decreases the
solution time. The total dual cost improvement contributed by the single coordinate
descent steps is between 50 to 75 percent of the total on the set of problems tested (n
between 20 and 50, m between 80 and 500)—a significant reduction from the 93 to 96
percent observed for the ordinary network code RELAX.

In terms of alternate implementations for LPRELAX, we may consider working
with only a subset of the rows in the Tucker tableau (for example, the rows of green
indexes may be ignored in the modified Painted Index algorithm and be subsequently
reconstructed only when a primal rectification step is made), or checking the lever row
in the Tucker tableau every few pivots for a dual descent direction, or using line search
in a multi-coordinate descent step if the number of coordinates involved in the descent
is below a certain threshold. There is also freedom in selecting the lever index at each
iteration of the relaxation algorithm—for example, we may choose to use the previous
lever index if the previous iteration terminated with a dual descent step.

Our computational experience can be summarized as follows: on ordinary network
problems the relaxation method is superior to the primal simplex method; on gain
network problems the relaxation method is at least as efficient as the primal simplex
method except for asymmetric lightly capacitated problems; on dense linear program-
ming problems the relaxation method is at least as efficient as the primal sim-
plex method for problems where m > Sn. However given that both RELAXG and
LPRELAX are codes still in the initial stage of development we have hopes that their
solution times will be reduced further with improved coding and data structure.

Appendix A. In this appendix, we explain and describe the rule for Tucker tableau
pivoting, as given in [8, Chapter 10]. Tucker tableau pivoting is similar to simplex
tableau pivoting—we partition the linear homogeneous system of full row rank Tx = 0
into Bx + Nx, = 0 where B is invertible. The Tucker tableau given by this particular
partitioning is — B~ !N where x is called the row variable and x is called the column
variable. Let a,; denote the (i, j)th entry of the above tableau. If the pivoting column
is / and the pivoting row is k (a,, is necessarily nonzero) then the new tableau after
the pivoting operation has x, as a column variable and x, as a row variable.

Let a,; denote the (i, j)th entry of the old tableau —B~N and let b, ; denote the
(i, j)th entry of the new tableau. Then the entries in the new tableau are obtained from
those in the old tableau by the following pivoting rule:

1/a,, ifi=k, j=1,
a,/ay, ifi+k, j=1I,
b= —ay;/ay ifi=k, j+l,

a;—a,ag/ay fi+k, j+1

RELAXATION METHODS FOR LINEAR PROGRAMS 593

In other words, the new tableau is obtained by performing row operations to — B~ !N
to make the (k, /)th entry of the tableau a 1 and all other entries in the /th column of
the tableau 0’s, and then replacing the /th column of the resulting tableau by the kth
column of the identity matrix to which the same row operations have been performed.

Appendix B. In this appendix, we show that if (i) the lever index s is painted black
or white and (ii) s is in the row of the initial Tucker tableau and (iii) s is assigned the
lowest priority (in the context of Bland’s priority pivoting rule), then the (modified)
Painted Index algorithm with Bland’s pivoting rule either (a) keeps s in the row of the
Tucker tableau throughout the algorithm or (b) produces a compatible column using s
immediately after pivoting s into the column of the Tucker tableau.

PrOOF. If s remains in the row of the Tucker tableau throughout the algorithm
then we have case (a). Else we examine the Tucker tableau just before s is pivoted into
the column for the first time. Let j denote the index of the pivoting column. By the
pivoting rule, j must be green (if j is black or white, then j can be chosen as a
pivoting column index only if the sign of a; violates the row compatibility of row s, in
which case s cannot be chosen as the pivoting row index since the sign of a; then does
not violate the column compatibility of column ;). Then by our assignment of lowest
priority to s, the row entries of column j whose indices are red, white, or black (except
for the entry indexed by s) must all have zero value. Therefore the tableau must have
the following form (a,; denotes the entry in column j and row s of the tableau)

Green
s Black or White column j
ow s — a;;#0
Red 0
White 0
Black 0
Green arb

The next tableau, after pivoting on a,;, is then of the form

Black or White
j Green column s
row j — 1/ay;
Red 0
White 0
Black 0
Green arb

where the shaded areas indicate those entries whose value have been changed during
the pivot. In this tableau, column s is clearly compatible and therefore we have case
(b). QED.

Appendix C. In this appendix we prove Proposition 3: that the number of primal
rectification steps between successive dual descent steps is finite in the relaxation
algorithm if the green indexes are assigned the highest priorities and the black and
white indexes belonging to {1,2,..., n} are assigned the second highest priorities.

594 PAUL TSENG & DIMITRI R. BERTSEKAS

Before beginning the main body of the proof it would be helpful to briefly review
how each primal rectification step comes about. At the beginning of the relaxation
iteration we have on hand a primal vector x satisfying complementary slackness with
p- We pick a row s such that d, # 0 as the lever index and apply the modified Painted
Index algorithm, using Bland’s priority pivoting rule, to the following linear homoge-
neous system (we index the columns of [~ E]from 1 to n + m)

¥] =o. (c1)

The initial Tucker tableau is chosen such that s is initially basic and the index
colouring rule is:
Forl<i<gn, i redif d; =0,
i whiteif d,> 0,
i blackif d;,<0.
Forl1<j<m, j+n redif Jj 1s not balanced,
J+n whiteif ;is balanced and x; = ¢,
J+n blackif jisbalanced and x; =/,
Jj+n greenif jisbalanced and /; < x; <c;,
and the priority assignment is: the green indexes are given the highest priorities, the
white or black indexes belonging to {1,2,..., n} except for s are given the next highest
priorities, s is given the lowest priority. A primal rectification step is taken when the
modified Painted Index algorithm terminates with a Tucker tableau that contains a
compatible column using the lever index, in which case a primal rectification direction,
say z*, is computed from the compatible column [cf. discussion at the end of §3] and
z* satisfies

w*<0=d,>0, z*x<0=x,>1,
* j* W* #* 07

w*>0=d,<0, zj>0=’xj<cj, s

where w* = Ez*. The primal rectification step is then effected by setting x < x + pz*,

d < d + pw*, where the capacity p is given by

L g X —d
@ = min{ min ~—5—, min —5—, min —
2¥<0 Zj z*>0 zj w*+0 w;

The deficit vector d (d = Ex) is monotonically decreased in magnitude during the
primal rectification step.

We now proceed to prove that the number of primal rectification steps between
successive dual descent steps is finite: We will argue by contradiction. Suppose that
there exists an infinite succession of relaxation iterations each of which terminates with
a primal rectification step. In what follows we will be considering only these iterations.
We first note that the set of red indexes is fixed (since index i is red either because
i < n and d, = 0, in which case / will remain red during primal variable changes; or
because i = j + n and j is not balanced, in which case i/ will remain red since j does
not become balanced during the primal rectification steps). Also we note that if i < n
and i is white (black) then after a while i always remains white (black). This is true
because if i changes colour, / must become red first (corresponding to d; = 0), in
which case i will remain red from then on.

Now, each primal rectification direction z* has either (i) j + n green for all j such
that z* + 0, or (ii) j + » black or white for some j such that z* # 0.

RELAXATION METHODS FOR LINEAR PROGRAMS 595

ProprosITION C.1. Case (ii) can occur in only a finite number of primal rectification
steps.

PrROOF. Suppose that the modified Painted Index algorithm generates a primal
rectification direction z* such that, for some j, index j + n is black or white and
z* # 0. Since the initial tableau (namely E) has j + n nonbasic, this implies that
Jj + n must be the pivoting column in some intermediate Tucker tableau T. Then, given
that the black and white indexes in {1,2,...,n} and the green indexes all have
priorities higher than that of j + n, T must have the following sign pattern (without
loss of generality we will assume that the lever index, say s, is white):

black or white green index white index black index
index of the form of the form of the form of the form
jtn, je(l,2,....m} j+n je(l,2,...,m} i,i€e{l,2,...,n} i,i€{1,2,...,n} redindex
(lever | : 1 /'/\
row) - any sign 1 000 ...0 : <0<0...<0 l >020...>0 |any51gn

swhite
Tucker tableau T

Denote the entry in T corresponding to row s and column index k by a_,. Then

d,=)y agux; + Z di T Z wdi+ X A X;

k=j+n = k=j+n
k black or white k whlte k black k red

or equivalently

d, + E —ayd, + Z —agd, = Y aux;+ Y, a,x,. (C2)
k=j+n k=j+n
k whlte k black k black or white k red

Since x = if j + n is coloured white, x = I ; if j + n is coloured black, and x =
or /; if j + n is coloured red, then the right-hand side of (C.2) can assume only a finite
number of distinct values. The left-hand side of (C.2) however is strictly decreased
after each primal rectification step with s as the lever index (also note that since s is
white, every term on the left hand side of (C.2) is nonnegative and is nonincreasing).
Therefore the number of primal rectification steps in which case (ii) occurs must be
finite. Q.E.D.

Proposition C.1 says that if the number of primal rectification steps is infinite, then
after a while only primal rectification directions of the form (i) can appear. In other
words, the relaxation method must produce an infinite sequence of successive primal
rectification directions {z'},_,,; . such that, for t =0,1,..., z'# 0 and j+n is
green for all ;j such that z; # 0. However this is not possible since in this sequence,
after each primal rectification step, some green index of the form j+n (j €
{1,2,..., m}) must become white or black (since after a while no index of the form i,
i€ {1,2,..., n}, changes colour). This index then cannot be involved in any subse-
quent primal rectification steps. So in at most m primal rectification steps, every index
of the form j + n, j € {1,2,..., m}, must be coloured black or white, implying that
the following primal rectification direction z (z # 0) cannot have j + n green for all j
such that z; # 0, a contradiction. Q.E.D.

References

[1] Bertsekas, D. P. (1982). A Unified Framework for Minimum Cost Network Flow Problems. LIDS
Report P-1245-A, Mass. Institute of Technology, October; also Math. Programming 32, 125-145,
1985.

596

(2]

13]
[4]

(5]
(6]
g
(8]
(91
(10
(11}
[12]

(13

PAUL TSENG & DIMITRI R. BERTSEKAS

and Tseng, P. (1985). Relaxation Methods for Minimum Cost Ordinary and Generalized
Network Flow Problems. LIDS Report P-1462, Massachusetts Institute of Technology, May.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton University Press, Princeton, N.J.

Ford, L. R,, Jr. and Fulkerson, D. R. (1962). Flows in Networks. Princeton University Press, Princeton,
N.J.

Jewell, W. S. (1962). Optimal Flow Through Networks with Gains. Oper. Res. 10, 476-499.

Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press, Princeton, N.J.

. (1981). Monotropic Programming: Descent Algorithms and Duality. In Nonlinear Program-

ming 4. O. L. Mangasarian, R. Meyer, and S. Robinson (Eds.), Academic Press, New York, 327-366.

. (1983). Network Flows and Monotropic Programming. Wiley-Interscience, New York.

Tseng, Paul (1986). Relaxation Methods for Monotropic Programs. Ph.D. Thesis, M.I.T.

Currin, D. C. (1983). A Comparative Evaluation of Algorithms for Generalized Network Problems.
NRIMS Technical Report TWISK 289, Pretoria, South Africa.

Grigoriadis, M. D. and Hsu, T. (1980). The Rutgers Minimum Cost Network Flow Subroutines.
RNET documentation, Dept. of Computer Science, Rutgers University, November.

Hultz, J. (1976). Algorithms and Applications for Generalized Networks. Unpublished Dissertation,
University of Texas, Austin.

Klingman, D., Napier, A. and Stutz, J. (1974). NETGEN—A Program for Generating Large Scale
(Un)capacitated Assignment, Transportation and Minimum Cost Network Problems. Management
Sci. 20 814-822.

TSENG: FACULTY OF COMMERCE AND BUSINESS ADMINISTRATION, UNIVERSITY OF
BRITISH COLUMBIA, VANCOUVER, BRITISH COLUMBIA, CANADA V6T 1Y8

BERTSEKAS: LABORATORY FOR INFORMATION AND DECISION SYSTEMS, MASSACHU-
SETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

	Article Contents
	p. 569
	p. 570
	p. 571
	p. 572
	p. 573
	p. 574
	p. 575
	p. 576
	p. 577
	p. 578
	p. 579
	p. 580
	p. 581
	p. 582
	p. 583
	p. 584
	p. 585
	p. 586
	p. 587
	p. 588
	p. 589
	p. 590
	p. 591
	p. 592
	p. 593
	p. 594
	p. 595
	p. 596

	Issue Table of Contents
	Mathematics of Operations Research, Vol. 12, No. 4 (Nov., 1987), pp. 569-757
	Volume Information [pp. 756 - 757]
	Front Matter
	Relaxation Methods for Linear Programs [pp. 569 - 596]
	Coherent Continuous Systems and the Generalized Functional Equation of Associativity [pp. 597 - 625]
	α-Stable Extensive Game Forms [pp. 626 - 633]
	Send-and-Split Method for Minimum-Concave-Cost Network Flows [pp. 634 - 664]
	Infinite Channel Queueing System with Controlled Input [pp. 665 - 677]
	Generalized Descent Methods for Asymmetric Systems of Equations [pp. 678 - 699]
	Exponential Convergence in Undiscounted Continuous-Time Markov Decision Chains [pp. 700 - 717]
	The d-Step Conjecture and Its Relatives [pp. 718 - 755]
	Back Matter

