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Abstract 

In their fundamental treatise on discrete-time gambling 
theory, L.E. Dubins and L.J.·Savage introduced a natural class of 
discrete-time stochastic control problems which they called 
"casinos". A similar class of problems in continuous-time is 
studied here. Many of the results of Dubins and Savage, including 
their characterization of "fair casinos", are formulated and 
proved. A formula is given for the value function of a 
"continuous-time casino" and the cQllection of optimal strategies 
is determined. 
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1. Introduction. 

Consider the problem of controlling a stochastic process 

X = {Xt, "QO} with state space a closed interval [a,b] so as to 

maximize P[X reaches b] where [X reaches b] is the event 

[Xt=b for some QO]. Assume the process satisfies a stochastic 

differential equation 

(1.1) dXt = µ(t)dt + a(t)dWt 

where {Wt} is a standard Brownian motion process on (g,~,P) 

adapted to {~t},- and where each ~t is independent of 

{Wt+s-wt, s~O} and contains all P-null sets. The control 

processes µ(t) = µ(t,Q) and a(t) = a(t,Q) are assumed to be 

real-valued, progressively measurable, and to satisfy the 

conditions 

(1.2) 

(1.3) 

for every t > o. 

control set C(y), 

t J lµ(s) Ids < m 
0 

t J a 2 (s)ds < m 
0 

a.s. 

a.s. 

In addition, there is, 

a non-empty subset of 

for every ye (a,b), 

RxR+ from which the 

a 

player is required to choose the value of (µ,a) when the current 

position is y. More precisely, it is assumed that 

(µ(t),a(t)) e C(Xt) 



for Xt e (a,b) and for all t. It is also assumed that µ(t) = 

a(t) = o whenever Xt = a or Xt = b. The process X is 

absorbed at the endpoints a and b. 

Let E(x) be the collection of all such processes X = {Xt} 

starting at state x
0 

= x in (a,b), and assume E(x) is non

empty·for every x. Call such a control problem a goal problem 

on [a,b] · and define its value function V by 

(1.4) V(x) = sup P[X reaches b] 
XEE (X) 

2 

for a<x<b. Set V(a) = O and V(b) = lo Goal problems are 

continuous-time gambling problems in the sense of Pestien and 

Sudderth [9] and a class of goal problems was studied in [9] with 

(1.3) replaced there by the more restrictive condition that 
t 

EJ a 2 (s)ds < m. However, the results of [9] are not sufficiently 
0 

general to include the casinos and proportional houses defined 

below even if the condition on a were unchanged. (Assumption A 

of [9] need not hold.) 

A goal problem on the unit interval [O,l] is called a 

continuous-time casino if the-qontrol sets C(x) satisfy 

(1.5) 
C(X) C C(y) 

pc (X) C C (px) 

for 

for 

O<x<y<l 

O<X<l, O<p<l. 

(Here pC(x) = {(pµ,pa): (µ,a) e C(x)}.) The term "casino" was 

used by Dubins and Savage [l] to describe a class of discrete-time 
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stochastic control problems for which conditions corresponding to 

those of (1.5) are imposed upon the increments of the controlled 

processes. If the state x is regarded as the player's fortune, 

then the conditions may be interpreted here as in (1): "A rich 

gambler can do whatever a poor one can do" and "A poor gambler 

can, on a small scale, imitate a rich one". These conditions seem 

equally natural for investment and portfolio management problems, 

which are increasingly modeled by stochastic differential 

equations, as for gambling casinos. 

Dubins and savage devoted a large part of their book [l] on 

gambling theory to the study of discrete-time casino problems. 

Many of their results have counterparts in the continuous-time 

theory. For example, section 3 presents a classification of· 

continuous-time casinos into four types: trivial, subfair, fair, 

and superfair. The main result, Theorem 3.2, is quite analogous· 

to results in [l], but the proof ·is much easier in continuous

time. Section 4 gives an exact formula for the value function of 

many goal problems including a general subfair continuous-time 

casino. No such result is likely to be found for the more 

difficult discrete-time problems. 

Another natural class of goal problems on [O,l], to which the 

theory. of section 4 is applied in sections, are the proportional 

houses for which 

A 

(1.6) C(X) = XC for O<x<l 

where c is a fixed subset of RxlR+. As is the case in many 



gambling and investment problems, a player's oppo~tunities are 

proportional to his fortune. 

A process Xe E(x) is optimal at x if P[X reaches b] = 

V(x). Techniques adapted from Dubins and Savage [l] are used in 

section 6 to characterize optimal strategies for many·goal 

problems. 

Three preliminary lemmas are presented in the next section. 

4 
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2. Basic lemmas. 

The major results of the paper rely on two familiar 

techniques. The first is to use a verification result, Lemma 2.2, 

to obtain an upper bound on v. The second uses a standard 

formula, Lemma 2.3, from the theory of diffusion processes to 

evaluate the probability that a particular process Xe E(x) 

reaches b and thereby obtain a lower bound for V(x). We begin 

with a preliminary result on local martingales. 

Lemma 2.1. Let {Mt,~t} be a local martingale and let z be an 

integrable random variable such that Mt~ z for all t ~ o. 
Then EM~~ EM0 for every~a.s. finite stopping time ~. 

Proof: Choose stopping times Tj such that T.--tm 
J 

a.s. and 

is a uniformly integrable martingale for every· j. 

J M~ 
B'f 

J 

Then 

= = 

= J B M.rj 
j 
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Let j--kD to get EM,: s EMO. • 

The proof of Lemma 2.1 is due to Steven Orey. 

The next lemma is analogous to earlier verification lemmas in 

[4] and [9]. Let Q be a real-valued function defined on an open 

set G containing [a,b]. 

Lemma 2.2. Assume 

(a) Q'' exists and is continuous on G, 

(b)' µQ 1 (X) + ½a2Q1 1 (X) S 0 for a<x<b, (µ,a) e C(x) I 

(c) Q(x) ~ o for asx<b and Q(b) ~ 1. 

Then Q(x) ~ V(x) for asxsb. 

Proof: The desired inequality clearly holds for x = a orb. Let 

a<x<b and let X c E(x) satisfy 

= 
t 

x + J µ(s)ds + 
0 

t J a(s)dWs 
0 

where µ and a are as in the previous section. By Ito's Lemma, 



Let 

t 
Q(x) + J a(s)Q'(Xs)dW6 

0 

= 

7 

Then {Mt,3t} is a local martingale and is bounded below because 

Q is bounded on [a,bJ. So by Lemma 2.1 and condition (c), 

P[Xt = b] s EQ(Xt) s Q(x) + EMO = Q(x) • 

Hence, 

P[Xt = b for some tJ = lim P[Xt = b] 
t-.m 

Q(x) 

Take the supremum over Xe E(x) to get V(x) s Q(x). • 

For the next lemma, consider a diffusion process X defined 

by the stochastic differential equation 

where a<x0<b, and µ and a are Borel measurable, real-valued 

functions on (a,b) which are bounded on closed subsets of 

(a,b). Assume also that a has a positive infimum on each closed 



subset. For a<x<b, let 

~ (x) = µ (X) 
a 2 (x) 

~ (x) = expc-2Jx ~(y)dy) 
XO 

Let S be the scale measure on (a,b); i.e. 

S(B) = J ~(x)dx 
B 

for Borel sets B c (a,b). Also, let 

Lemma 2.3. If s (a,x0) 

= Sy,b) .. Jb ( 
X ~(y)a2(y) 

0 

<CD· and 'It < CD then 

dy 

P[X reaches b] 
S(a,x0) 

= 
S(a,b) 

if 'It = CD, then 

P[X reaches b] = 0 . , 
if S(a,x0) = CD and 'It < CD, then 

P[X reaches b] = 1 . 

. 

. , 

Proof: Suppose S(a,~0) < CD and ,i, < CD, and let £ and o 

satisfy 0<£<x0-a and O<o<b-x0_. It is well-known that if µ 

. 8 



and a are continuous on [a+e,b-6], then 

(2.1) P[X reaches b-6 before a+e] = 
S(a+e,x0) 

S(a+&,b-6) 

Further, if T! = inf{t: Xt~b-~ or Xt~a+&}, then ET!< m, and 

there is an explicit formula for ET6 in terms of the continuous 
& 

functions µ and a (cf. Gihman and Skorohod [3], Corollary 

9 

3.15.2). Under our hypotheses, µ and a are Borel but not 

necessarily continuous. However, (2.1) still holds, as can be 

seen by applying the argument in ([3], Theorem 3.15.4) together 

with Krylov•s generalization of Ito's Lemma ([7], Theorem 2.10.1). 

Following similar reasoning, it is seen that the formula for ET6 
& 

in ([3], Corollary 3.15.2) also still holds. Let 6 approach o 

in the formula for ET! and use the hypothesis that ~ < m to 

deduce that .P[X reaches a+e orb]= l. This equality, together 

with the fact that X has continuous paths, implies that 

P[X reaches b] = lim lim P[X reaches b-6 before a+e] 
elo 6lo 

The proof of the first assertion of the lemma can now be completed 

by letting & and 6 approach o in (2.1). The remaining two 

assertions· are immediate consequences of standard arguments in the 

theory of diffusion processes (cf. Karlin and Taylor [6], Section 

15.6). • 

It is the exact formula of Lemma 2.3 which makes the theory 

of continuous-time casinos simpler than the discrete-time theory. 
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3. The four types of casino. 

A continuous-time casino is called trivial, fair, superfair, 

or subfair according as V(x) = o, V(x) = x, V(x) = 1, or 

o < V(x) < x for all x e (0,l). These terms were introduced by· 

Dubins and Savage [l] who showed that every v corresponding to a 

discrete-time casino is one of these four types. Their proof was 

based·on a study of the casino inequality: 

(3 .1) V(px+(l-p)y) ~ V(p)V(x) + (1-V(p))V(y) 

for os~1, osxsys1 • 

They showed that the value function V of every discrete-time 

casino satisfies (3.1) and conversely, every V satisfying (3.1) 

together with V(0) = o, V(1) = 1, o s V(x) s 1 for 0<x<l, is 

the value function of some discrete-time casino. 

Theorem 3.1. The casino inequality holds for the value function 

V of any continuous-time casino. 

Proof: Essentially the same proof as in [l] will work here also. 

The only new difficulty is that certain properties of conditional 

distributions of Ito processes ~ust be checked. (We omit the 

details because they are straightforward and we will not rely on 

Theorem 3.1 below.) • 
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In contrast to the situation in discrete-time, not every 

solution of (3.1) is the value function of a continuous-time 

casino. As will be seen in section 4, every such value function 

is twice continuously differentiable on (O,l) whereas the value 

function of a discrete-time casino can be much more irregular (cf. 

chapter 5 of [l]). 

It follows from Theorem 3.1 and the arguments of Dubins and 

Savage that every continuous-time casino falls in one of the four 

classes mentioned above. The characterization of the four classes 

and, in particular, the characterization of fair casinos is a 

difficult problem in discrete-time ([l], Theorem 11.3.1). The 

characterization given here is analogous but relatively easy. 

Define 

C(l) = U C(X) 
O<X<l 

(3.2) 

p (1) = sup{ 02 : (µ,a) E C(ll}. 

In the definition of p(l), the convention is made that ~=-co 

if µ ~ o, and ~ = +m if µ > o. 

Theorem 3.2. A continuous-time casino is trivial, subfair, fair, 

or superfair according as p(l) = -co, -co< p(l) < o, p(l) = o, 

or p(l) > o. In the subfair case, 

(3.3) V(x) 8
-2p(l)x _ 1 

e-2p(l) - 1 



for O<x<l. 

A useful notion for the proof is that of a proportional 

strategy. Let O<x<l and (µ,a) e C(l). It follows from (1.5) 

that x(µ,a) e C(x). Thus a player can choose the process 

Xe E(x) defined by 

Apply Lemma 2.3 to see that 

x-2µ/a2 + l if l:L < l 
0

2 2 
(3. 4) P[X reaches l] = 

l if l:L ~ l 
a2 2 

Proof of Theorem 3.2. If p(l) = -m, the µ ~ O and a= o 

for every (µ,a) e C(l) and clearly V is. trivial. 

. 
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If -m < p(l) < o, use Lemma 2.2 to establish the second 

inequality in (3.3) and with it the fact that V(x) < x. Then in 

(3.4) take the supremum over (µ,a) e C(l) to obtain the first 

inequality of (3.3). 

If p(l) = o, use Lemma 2.2 to show V(x) ~ x and take the 

supremum in (3.4) to prove the opposite inequality. 

Finally, suppose p(l) > o. It follows that p(l) = m. To 

see this, choose (µ,a) e C(l) with µ > o and a> o. By (1.5), 
l defined as 2 (µ,a), is also an element of 
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2 2 C(l) and µ 1/a1 = 2µ/a. Thus C(l) contains elements (µ,a) for 

which µ/a 2 is arbitrarily large. It follows now from (3.4) that 

V(x) = 1 for O<x<l. •· 

The last paragraph of the argument above shows that p(l) = m 

for superfair casinos. 

Equality can occur in each of the inequalities of (3.3). 

Here are two examples which demonstrate this. The names are 

borrowed from Du.bins and Savage ([l], section 4.7) who considered 

similar examples of discrete-time casinos. 

Example 3.1. The rich man's casino. The idea here is that a rich 

man should be able to imitate a poorer one on a large scale. We 

have already assumed that, in any casino, a poor man can imitate a 

rich one on a small scale. This suggests the formal definition of 

a rich man's casino as one for which 

C(x) = XC(l) , O<x<l. 

If, in addition, -m < p(l) < o, then (3.3) and Lemma 2.2 can be 

used to see that V(x) = x-2p(l)+l. 

Example 3.2. The poor man's casino. In this casino a poor man is 

allowed to do whatever a rich man can. So the control sets C(x) 
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are identically equal to C(l). Thus a player can use a constant 

control (µ,a) e C(l) for which the associated process satisfies 

and, by Lemma 2.3,· 

P[X reaches lJ = 
e -2µx/a2 - 1 

2 
e -2µ/a - 1 

If -m < p(l) < o, take the supremum over (µ,a) e C(l) to get 

equality in the second inequality of (3.3). 
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4. A formula for v. 

The value function V of a continuous-time casino is 

explicitly determined by Theorem 3.2 except for the subfair case. 

A formula for V in the subfair case will be given in this 

section. 

Consider a goal problem on [a,b] specified by control sets 

C(x), a<x<b. Define 

(4.1) p(x) ~ sup { 7: (µ,a) E C(x)} 

making again the convention that 

x0 e (a,b) and for a<x<b, let 

if 

S(A) = J ~(y)dy 
A 

µ ~ o. 

I 

I 

Fix 

for Borel sets Ac (a,b), assuming these integrals are well 

defined. 

Theorem 4.1. The value function V of a subfair, continuous-time 

casino satisfies 

V(x) = S(O,x) 
S(O,l) 



A similar formula was proved in [9], but assumptions were 

made there which do not hold for subfair casinos. The proof of 

Theorem 4.1 will be given in three lemmas and will apply to a 

class of goal problems more general than subfair casinos. 

Assumption I. p is continuous on (a,b). 

Define Q(a) = o, Q(b) = 1, and, for a<x<b, 

(4.2) Q(x) = S(aix> if S(a,b) < CD I S(a,b) 

(4o3) Q(x) = 0 if S(x,b) = m, 

and 

(4. 4) Q(x) = 1 if S(a,x) = CD and S(x,b) < CD 

16 

• 

Notice that if (4.2) holds, then Q is strictly increasing 

on [a,b] and QI I is continuous on (a,b). 

Lemma 4.1 Under Assumption I, Q ~ v. 

Proof: This is obvious if Q = 1 on (a,b]. Next, assume Q 

satisfies either (4.2) or (4.3). Let e>0 and 6>0, with 

0<&+6<b-a and consider the goal problem on [a+e,b-6] with 

control sets C(x). Define 

S(a+&iX) 
S(a+e,b-6) ' a+e<x<b-6. 
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Because p is continuous on [a+&,b-6], it is clear that Q! has 

a smooth extension to a neighborhood of [a+&,b-6]. Apply Lemma 

2.2 to see that 

(4. 5) 

where V: is the value function for the problem on [a+&,b-6]. If 

(4.2) holds, then 

(4. 6) 

for every x e (a,b). 

still valid, because 

Q(x) = lim r lim Q: (x>] 
&J.O ~J.o 

If (4.3) holds, then the equality (4.6) is 

Q
6--+0 as 6J.O for each &. Also, if ,; 

Xe E(x) then, because X has continuous paths, 

and 

P[X reaches b-6 before a+&] ~ P[X reaches b before a+&] 

P[X reaches b before a] = lim P[X reaches b before a+e] • 
&J.O 

Hence V: ~ V~ and V~--+V as eJ.o, where V~ denotes the value 

function for the goal problem on [a+e,b]. Using (4.5) and (4.6), 

the conclusion Q ~ V is obtained. • 

A comparison of the first paragraph of this section with 

Lemma 2.3 suggests the inequality Q s V should also hold and 
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that a process Xe E(x) will reach 1 with probability nearly 

Q(x) if its controls (µ,a) are selected so that the supremum in 

(4.1) is nearly achieved. In a general goal problem, however, the 

control sets C(x) may be too wild to allow good, measurable 

selectors. 

Definition. Let µ and a be Borel-measurable, real-valued 

functions which have domain (a,b) and which are bounded on 

closed subsets of (a,b). If (µ(x),a(x)) e C(x) for every 

x e (a,b), then (µ,a) is a Borel c-selector. 

Assumption II. For every e e (O,b-a), there is a Borel c

selector (µe,a&) such that 

(a) 
µ& (X) 

ae(x)2 
~ p(x) - e for a+&:s;:x<b 

(b) inf {ae (x): a+&:s;:x<b} > o. 

Lemma 4.2 Under assumption II, Q :s;: v. 

, 

Proof: Let x e (a,b). If S(x,b) = m, then Q = o by 

definition, and so Q :s;: v. Next, suppose S(x,b) < m. For 

O<&<x-a, let (µe,ae) be as given in assumption II and xCe) be 

a process solving 

xC&) = x, 
0 

= 



and let 

e,& (w) = [ J
w µ& (y) ] 

exp -2 2 dy 
X a&(y) 

It follows from (a) and (b) and the assumption S(x,b) < m that 

for each &, 

(4.7) 

J
b 

1 
2 [J\i; (w) dw] dy < m 

e,& (y) a & (y) 
X y 

• 

With the iterated integral in (4.7) playing the role of ~, use 

Lemma 2.3 and the fact that µ /a2
-+ p as &lo to see that 

£ £ 

V(x) ~ P[X(~) reaches b before a+&]---+ Q(x) 

as &lo. • 
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We now give two examples where assumption II(b) does not 

hold. In the first, Q is strictly larger than v, contrary to 

the conclusion of lemma 4.2, while in the second, .Q and v are 

equal. 

Example 4.1 Let a=O, b=l, and for O<x<l, let C(x) = 

{(0,1-x)}. If x0 e (O,l), any process X in E(x0) must 

satisfy 

(4.8) 
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Then p(x) = o and ~(x) =l for 0<x<l, and Q satisfies 

(4.2), with Q(x) = x. However, in the language of Karlin and 

Taylor ([6], Section 15.6), the goal 1 is "unattainable" because 

1 

J S(y,l) dy = 
X ~(y)a2(y) 

0 

+a, , 

for 0<x0<l. Hence V(x) = o for each x e (0,l), and the 

conclusion of Lemma 4.2 fails. Notice that assumption II(b) is 

not satisfied because a(x) = 1-x-. o as x-.1. • 

Example 4.2 Let a=0, b=l, -and for 0<x<l, let C(x) ·= 

{(-1,2(1-x)"}. Now if 0<x0<1, any Ye E(x0 ) satisfies 

(4.9) 

Then, using formula (4.2), it can be seen that 

Q(x) " = l - (1-x) , 

Also, the goal l is "attainable" because 

l 

J 
S(y,1) dy 

X ~(y)a2(y) 
0 

< a, 0 



Therefore V = Q, in spite of the fact that a(x)--+ o and 

µ(x)/a 2 (x)--+ -m as x--+l. • 

The assumption made in Lemma 4.1 that p is continuous is 

21 

not necessary and could be replaced by the assumption that p is 

Borel measurab~e and bounded on clo~ed subsets of (O,l). The 

proof could be carried out using techniques from [9] and the 

verification lemma of [4]. However, as will now be shown, the 

results already proved are sufficiently general to apply to subfair 

casino problems. 

Lemma 4.3. A subfair casino satisfies assumptions I and II with 

a=O and b=l. 

Proof: Let O<x<y<l. Then p(x) ~ p(y) because C(x) c C(y) by 

(1.5). It follows that p(x) converges to p(l) as x--+l, 

where p(l) is defined in (3.2). Also p(x) ~ xy-1p(y) because 

xy-1c(y) c C(x) by (1.5). Hence, 

o ~ p(y) - p(x) ~ p(y)(l - xy-1) ~ p(l)(l - xy-1) • 

Let y l X 
. . 

and x t y to get right and left continuity of p, 

respectively. That p is finite follows from the finiteness of 

p(l) and the inequalities xp(l) ~ p(x) ~ p(l). 



22 

To construct the c-selector, first use the uniform continuity 

of p on [&,l] to choose « > o such that lx-yl < «, 

x,y E [&,l] implies lp(x)-p(y) I < &/2. Consider the set 

E = {&,&+cx, ••• ,&+noc} U {l} 

where &+n« ~ 1 < &+(n+l)«. For x EE, choose 

(µ(x),a(x)) E C(x) so that µ(x)/a 2 (x) > p(x)-&/2. For y 

between two points of E, take (µ(y),a(y)) to have the same 

value as at the left-hand point. Define (µ,a) to equal a~y 

Borel c-selector on (O,&), say 

(µ(x),a(x)) = ~ (µ(&),a(&)) 

Finally, take µ& = µ, a = a. 
& • 

0 

Theorem 4.1 is immediate from the three lemmas. 
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5. Proportional houses. 

For a proportional house as defined in section 1, the 

function p satisfies 

(5.1) P (x) = ~ 
X ' 

0 < X < 1 1 

where the control sets are given by (1.6) and 

~ = sup { ~ : (µ ,a) e C } • 

If ~ is finite, then p is finite and continuous on 
A 

(0,1). Also, for (µ,a) e c, if µ(x) = xµ and a(x) = xa, 

then (µ(x),a(x)) e C(x). Furthermore, if µ/a 2 ~ ~-&2 , then 

µ(x)/a2 (x) ~ p(x)~& on [&,l] for 0<&<1. Therefore, Lemmas 4.1 

and 4.2 apply to show V = Q where Q, as defined by (4.2) with 

a=O and b=l, is easily calculated with the aid of (5.1). The 

next theorem records the result of that calculation. 

Theorem 5.1. A proportional house has 

V(x) C: on (O, l) 

and 

V(x) = 1 on (0, 1) 

if 

1 if ~ ~ 2 

Notice that if -m < ~ < o, the rich man's casino (Example 



3.1) is a casino which is also a proportional house and has the 

value function given by Theorem 5.1. However, no casino has the 

value function above when O < ~ < ½• 
For proportional houses for which ~ ~ ½ and for superfair 

casinos, we have now seen that a player can reach 1 with 

probability one and the question.of how to reach 1 in minimal 

expected time arises. This question is completely resolved for 

proportional houses in [4J, but remains open for general, 

superfair casinos. 

24 
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6. Optimal strategies. 

The standard approach to the study of optimality in 

stochastic control, as presented in [2] and [6] for example, uses 

the Bellman equation, which can be written for a goal problem as 

(6.1) sup 'D(µ,a)V(x) = 0 

where D(µ,a)V(x) = µV'(x) + ½a2v••(x) and the supremum is over 

all (µ,a) e C(x) for a<x<b. Now the value function V of a 

casino does satisfy (6.1) as can be easily checked using the exact 

formulas for the four types of casino. 

One then seeks, for each x, controls (µ(x),a(x)) which 

achieve the supremum in (6.1), that is, such that 

(6.2) D(µ(x),a(x))V(x) = 0 • 

Assuming the pair (µ,a) is a Borel c-selector, one hopes that 

the process X defined by 

will be optimal at x. It follows from Theorem 6.1 below that X 

is optimal for a subfair or fair casino if µ and a are bounded 

on closed subsets of (0,l) and inf a> o on such sets. (Use 

Lemma 2.3.). However, .(6.2) always has the solution µ(x) _ o, 
a(x) = o, available. 
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Furthermore, if the casino is superfair or trivial, then V 

is constant on (0,1), and every pair (µ,a) satisfies (6.2). 

Now in the trivial case, every available X reaches 1 with 

probability zero and is optimal. In the superfair case, X is 

optimal at x if and only if P[X reaches l] = 1, and a 

sufficient condition for optimality can be found in Lemma 2.3. 

The theorem of this section characterizes optimal strategies 

for fair and subfair casinos, and for proportional houses for 

which ~ < 1/2. 

Let A be Lebesgue measure on [O,m). It was assumed in 

section 1 that if X is given by (1.1) then µ(t) = a(t) = o 

when Xt = a orb. Here, we further set D(O,O)V(a) = o and 

D(O,O)V(b) = O. 

Theorem 6.1. Suppose a goal problem on [a,b] satisfies 

assumptions I and II of section 4 and has value function V which 

is strictly less than 1 and not identically o on (a,b). Let 

a< x < b and let Xe E(x) satisfy (1.1). Then X is optimal 

at x if and only if 

(i) D(µ(t),a(t))V(Xt) = 0 AXP - a.e. 

(ii) P[X reaches b or lim Xt = a] = 1. 
t-tm 

Condition (i) is equivalent to 

( i') [ µ(t) = p(Xt) or (µ(t),a(t)) = (O,O)] AXP - a.e. 
a 2 (t) 
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This equivalence is an easy consequence of (4.2). 

The techniques used to prove Theorem 6.1 are adapted from 

Chapter 3 of Dubins and Savage [l]. They are widely used in the 

discrete-time theory ([10],[ll]), but seem not to be well-known in 

continuous:.time. 

Lemma 6.1. For each x such that a<x<b and each (µ,a) in 

C(x), 

D(µ,a)V(x) ~ O. 

Proof. Immediate from (4.1) - (4.4) and Lemmas 4.1 and 4.2. • 

Fix x e (a,b) and Xe E(x). Let u be the indicator 

function of {b} and define 

u(X) = E[lim u(Xt)l 
t-M:D 

= P[X reaches b] 

The limt-M:Du(Xt) exists almost surely and equals the indicator of 

[X reaches b] because X is absorbed at b. Also define 

·V(X) = E[lim V(Xt)l • 
t-M:D . 

For each positive integer n, define the stopping time ~n by 
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Lemma 6.2. u(X) s V(X) s V(x) 

Proof. The first inequality is trivial because us v. For the 

second inequality, with the hypotheses of Theorem 6.1 in force, 

Lemmas 4.1 and 4.2 imply that for each n, the function v is 

twice-continuously-differentiable on a neighborhood of the closed 

interval [a+(l/n),b-(1/n)]. 

can be applied to (1.1) to get 

Therefore Ito's Lemma and Lemma 6.1 

(6.3) 

tA~ 

V(XtA~) = V(x) + J nD(µ(s),a(s))V(X8)ds 
n o 

Let ~ be an almost-surely-finite stopping time and apply Lemma 

2.1 to the local martingale 

(6.4) 

to obtain 

• 



(6.5) 

for each n. 

EV(X~A~) s V(x) 
n 

Notice that X -.x almost-surely as n---KD ~A'C ~ n 
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because X has continuous paths. Hence (6.5), the continuity of 

V, and the Lebesgue dominated convergence theorem give 

. 
(6.6) EV(X~) S V(x) • 

The second inequality of the lemma now follows from the Fatou 

equation of [5] and [8]: 

(6.7) V(X) = lim EV(X~) • 
~-MD 

• 

Lemma 6.3. V(X) = V(x) if and only if condition (i) of Theorem 

6.1 holds. 

Proof: Assume condition (i) and let ~ be an almost-surely

finite stopping time. It follows from (6.3) that 

for all n with probability l, where M(n) is the local 

martingale from (6.4). Because IM~n) Is 2 sup{IV(Y)I: asysb}, 

Lemma 2.1 now implies that 

EV(X~A~) = V(x) 
n 
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for each n. Then EV(X~) = V(x) by dominated convergence, and 

the Fatou equation (6.7) gives the desired equality. 

Assume now that V(X) = V(x). Suppose (i) does not hold. 

By Lemma 6.1, there exist-positive numbers e, 6, and t such 

that 

s st and D(µ(s),a(s))V(Xs) < -e 

on a set of AXP-measure at least 26. Thus there is a positive 

integer N such that if n ~ N, then 

It follows, using (6.3) and Lemma 2.1, that for each a.s. finite 

stopping time ~ satisfying ~ ~ t, 

EV(~) = lim EV(X_A ) 
n-tcD ~~n 

V(x) - e6. 

The Fatou equation then implies that V(X) s V(x) - e6, a 

contradiction. • 

Lemma 6.4. u(X) = V(X) if and only if condition (ii) of 

Theorem 6.1 holds. 

Proof: Recall that u(Xt) converge~ a.s. and let B ·= 

[X reaches b]. Then 
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V(X) - u(X) = E[lim V(Xt)] E[lim u(Xt)] 

= E[lim (V-u) (Xt)] 

= J 0 
B 

So V(X) = u(X) if and only if V(Xt)-.o a.s. on Be. Because 

of Lemmas 4.1 and 4.2 and the hypothesis that V is strictly less 

than l and not identically o on (a,b), V must satisfy 

formula (4.2). Then V is strictly increasing and continuous on 

(a,b) and hence V(Xt)-.o if and only if xt-.a. • 

Putting together Lemmas 6.2, 6.3, and 6.4, the·proof of 

Theorem 6.1 is finished. 

By analogy with the terminology of Dubins and Savage [1], we 

say that Xe E(x) is thrifty if V(X) = V(x) and equalizing if 

V(X) = u(X). We have seen that, under the hypotheses of Theorem 

6.1, X is optimal if and only if X is thrifty and equalizing. 

Lemma 6.3 characterizes thrifty processes as being those governed 

by controls which almost always achieve the supremum in the 

Bellman equation (6.1)~ These are the same processes X for 

which {V(Xt)'~t} is a martingale, or, in other words, the 

processes X with the property that the player's expected 

potential winnings never decrease. Lemma 6.4 characterizes 

equalizing processes as being those for which the player's 

potential winnings at time t, namely V(Xt)' and his actual 

utility at time t, u(Xt)' merge as t approaches infinity. 
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These ideas are no doubt applicable to quite general problems and 

not only to the goal problems studied in this paper. 

In standard approaches to the study of optimal strategies, 

some ad hoc condition is ,often imposed which guarantees that all 

processes X will be equalizing. For example, we could require 

that inf a be positive on (a,b). Then every X would leave 

(a,b) with probability one and be equalizing. 

We conclude with a simple example of a control problem on 

[0,l] for which every control set contains two elements. There is 

a thrifty strategy and an equalizing strategy, but no process X 

is both thrifty and equalizing. 

Example 6.1 For 0<x<l, let 

C(x) = ¼ {(0,l-x),(-1,2(1-x) } • 

Here C(x) is the union of the control sets in Examples 4.1 and 

4.2, and p(x) = o for all x e (0,l). Thus the control pair 

(µ(x),a(x)) = (0,l-x) satisfies (6.2) and a process X 

satisfying (4.8) is thrifty by Lemma 6.3. However, X is not 

equalizing and, in fact, u(X) = o by the discussion of Example 

4.1. On the other hand, a process Y, which uses the control 

pair (-1,2(1-x)~) and is defined by (4.9), is equalizing but not 

thrifty. To get a nearly optimal process at x0 e (0,l), let 

0<&<l and take x<&) to be a solution to 
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dX(&) 
t = µ (X(&))dt + a (X(&))dW & t & t t I 

x<&) = XO 0 

where 

{ (0,1-x) if O<x<l-& 
(µe (x) ,a e (x) ) = 

(-1, 2 (1-xr''j if 1-&<X<l • 

Then u(X(&)) f V(x0) as el o. Loosely speaking, a good 

strategy uses µ/a2 = o until the goal l is almost reached and 

then switches to µ/a2 which is large negatively. • 
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