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Let x be the path and u the control that maximizes the cuamulative return discounted at rate

8. The purpose is to analyze the dependence of x and u on the rate §. Under certain

. conditions, as & tends to 0, the corresponding solution (x, #) tends to the solution for rate 0.
We use results from geometric control theory and the theory of semiflows.

1. Introduction. This paper deals with discounted optimal conirol problems % (8)
of the following form:

o0

(1.1) Maximize V(x, u, 8) ==j; e 8’{go(x(t)).+ .iu,-(t)g,.(x(t))} dr s.t.

12 2(0) =folx(0) + ﬁlu,-(t)f.-(x(t)), aa.t€ R, = [0,0),
(1.3) A ~ x(0)=xeR"

(1.4) u€ U, = {u: R,~ Q, measurable},

(1.5) x(1) €K forallt€R,,

where g: R" > R, f: R"—= R", i=0,1,..., m, are Lipschitz continuous on every
bounded set, € R™ is convex and compact, and K C R”" is closed; & is a positive
constant. :

Optimal control problems of this type frequently occur in economics. Sometimes the
family of problems %(8), 0 <8 < 0, is supplemented by the following problem
referred to as a “problem with zero discount rate”,

Z(0)
. . 1 7 i
Maximize V(x, u,0) := Tllm supr {go(x(t)) + Y u,.(t)g,.(x(t))} dt
= 0 i=1
s.t. (1.2)-(1.5).
The problem . (0) can also be interpreted as maximizing the average yield.

We call (x, u) € R" X %,, optimal for & (8) if it satisfies (1.2)-(1.5) and for all
other pairs (x, v) with these properties V(x, u, §) > V(x, v, 8).

1—'Supported by Stiftung Volkswagenwerk.
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It is the purpose of the present paper to analyse continuity properties of optimal
solutions with respect to 8 and, in particular, the relation between % (8) for low § and
F(0). '

§2 shows that under a controllability assumption optimal solutions (x, u*) of #(8,)
with §, = 0 contain a subsequence converging on finite intervals to an optimal
solution of % (0). Using some results from geometric control theory, it is shown that
this controllability assumption holds in the interior of “invariant control sets”.

§3 goes one step further: It is not only interesting to analyse convergence properties
on finite intervals, but also to see if the omega limit sets of optimal solutions depend
continuously on 8. We cannot study, directly, omega limit sets. Instead we show—
under a dissipativity assumption—weak upper semicontinuity of the set-valued func-
tion 4(8), where A(8) in the set of all bounded optimal R-solutions for % (8). These
sets contain all omega limit sets.

This is motivated by an analogous theory of semiflows given in Hale, Magalhaes and
Oliva [6]. Note, however, that % (8) does not define a semiflow on R", since optimal
solutions need not be unique. Nonuniqueness cannot, in general, be eliminated by a
slight change in the system parameters, as shown in [5, §6].

2. Convergence on finite intervals. This section gives convergence results on finite
intervals for optimal solutions of % (§,) as §, — 0.
~ Throughout this paper we assume that for every initial value x € K and every
control function u € %,,, the corresponding solution ¢(¢, x, u) of (1.2), (1.3) exists an
R,; it is unique by the assumed local Lipschitz continuity of f. Furthermore we
assume the control system & given by (1.2)-(1.5) satisfies for all x € K the following
condition

(2.1) ’ {¢(t,x,u):t€R,,u€ ¥,} isbounded.

REMARK 2.1. We have, in particular, bioeconomic problems [2, 3] in mind, where
usually a priori bounds on the trajectories ¢(t, x, u) can be given due to limited
resources.

The following lemma is a slight modification of [5, Lemma 2.4, Corollary 2.5]. For
the sake of completeness, the proof is sketched.

LEMMA 2.2. Consider the control system F, let 8, = 8, € (0, 0) and assume that
(xk uk) e KX U, -k =0,1,2,... satisfy x* > x° and u* — u® weakly in L* on
bounded intervals, and @(t, x*, u*) is uniformly bounded. Then ¢(-,x*, u*)—
@(+, x°, u®) uniformly on bounded intervals and V(x*, u*, 8,) — V(x° u° §&,).

PrOOF. With x*(¢) = (1, x*, u¥), te R,, k =0,1,2,... one obtains

40 = <] <= 21+ [{140) = AGHO)
+ 2O A(40) = A=) |} o

+

[ [0 = (O] (x°(0))

t
0 ;=1

The third summand converges to zero by weak convergence of (u*) to «°% by uniform
boundedness of (¢, x*, u*) and local Lipschitz continuity the second one is bounded
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by Lf{|x*(¢) — x°(¢)|dt where L > 0. Hence Gronwall’s inequality implies the as-
serted convergence. Convergence of V(x*, u*, §%) to V(x° u°, 8°) follows using the
assertion just proved. 7 [

We will show that for.§, — 0 optimal solutions of %#(8,) tend to optimal solutions
of % (0) provided that a certain finite time controllability condition is satisfied. Define
the “first hitting time map” by

h: R"X R"—> R,U{},
h(x, y) =inf{t > 0: thereis u € %, with (¢, x,u) = y}.

Observe that the inf in this definition actually is a minimum. Next we formulate the
required controllability condition. Let x € R”, and (¢¥) € %,, be fixed.

Forall v € %, there are T, & > 0 such that
(22) foralk € NandallT > T;

h(o(T, x,v), o(T, x, u*)) < h.

Thus we require that every point (7, x, v) on a trajectory starting in x can be steered
—in uniformly bounded time—to (T, x, u*) provided that T is large enough.
The following theorem gives the fundamental relation between % (8) and & (0).

THEOREM 2.3. Assume that the control system (F) satisfies (2.1), let 8, — 0 and let
(x, u*) be optimal for F(8,).

Then there are u € %,, and a subsequence (k;) such that for all T > 0

uXi|[0, T] converges weakly to u|[0, T] in L*(0, T; R™),

o(t, x, ukt) converges uniformly to @(t, x, u) fort € [0, T]
If (2.2) holds then (x, u) is optimal for F (0).

ProoOF. We abbreviate

s(x )= mla) & X uig).

i=1

Existence of the subsequence (k;) and of u € %,, with the asserted convergence
properties follow from Lemma 2.2. It remains to prove optimality of (x, u) for % (0),
ie. forallpye 7,

(2.3) limsup leTg((p(t, x,u),u(t)) dt > limsup %frg(tp(t, x,v),v(t)) dt.
T—oo 0 T 0

In order to prove (2.3) it suffices to show that for every € > 0 there is T(¢) > 0 such
that for all 7 > T(e) thereis N = N(¢, T) s.t. forall k > N

@4) 7 [{slo(x0),0() ~ (ot x, 1), u5(1))) dr < <o

where c, is a positive constant. If (2.4) holds, one obtains that for all € > 0 there is
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T(€) > 0 such that for all T > T(¢)

k— o0

%forg‘((p(t, x,u),u(t))dt = lim lTj(;Tg(tp(t, u®), uk(t)) dt

[

> Tforg((p(t, x,v),v(t)) dt — ec,.

Hence (2.3) follows by taking the limsup for T — co. In the following proof of (2.4),
¢, denotes a generic constant. Fix v € %,,, ¢ > 0, T > 0. Then for all ke N

(2.5) for{g(qo(t,x,v),v(t)) - g(@(t, x, u*), u*(r)) at
= fOTe“B*'{g(qv(t, x,0),v(1)) — go(t, x, u*), u*(1))} dt

+fOT[1 — e %) g(o(t, x,0),0(1)) — g(o(z, x, u*), u*(1))} dt.

For k > N(e, T) the integrand of the second summand is bounded by
[1-e ¥ ]cy < [1—e%T]cy < €cy.

Hence the second summand is bounded by €Tc,. It remains to estimate the first

summand. Observe that it only involves the restriction of v to [0, T'].

By assumption (2.2), there are 7; > 0, h > O such that forall k € Nand all T > T,
h(e(T, x,v), 9(T, x, u")) < h.

Thus for T > T; there are w* € #,, and 0 < t, < h (both depending on T') with

o(te, 9(T, x, v), wk) = @(T, x, u¥).

Extend v]|[0, T'] to an element v* € %,, by

wk(¢ = T), te[T,T+1],
uk(t—1), t>T+1,.

v*(t) = {

Thus
(2.6) v (1) = o(1), (1, x,0*) =o(t,x,v) forte]0, T] and
(2.7) o (e + 1) = u*(1), o(t+1,,x,05) =o(t,x,u*) fore>T.

For the first summand in (2.5) we obtain

[le{slo(t, x,0), 0()) = glo(t, %, ub), ub() } ar

0 OO_
</0 e“’k’{---}dt+fre Bl ...} dt
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The first summand is nonpositive by optimality of (x, u*) for #(8,), the second one
can be estimated above by

[T e g (o(e, x,0),0(0)) at

-+

fm g (@1, x,0), 0(1) dr

—f e g (p(t, x, u¥), u*(1)) dt

< tico + (e = )| [ (e, 1), (1))

using the transformation ¢ := ¢ — ¢, and (2.7)
< hey + (e7 %% — 1) /8,c,.
For T > T(e) this is
| < Tecy + (€78 — 1) /8,¢,.
For k > N(e, T) this is
< 2Tecy

since §, — 0.
This proves (2.4) and hence Theorem 2.3 is proved. : O
Next we analyze the controllability assumption (2.2). We will use some notions and
results from geometric control theory (cf. Sussmann (8], Isidori [7]). The positive orbit
(or attainable set) of x € R” at time ¢ is '

0*(x,t) = {y € R": thereis u € %,, with¢(z,x,u) =y} and

0tr(x)= U 0%(x,1), 0%(x) = 0% (x).

01T

Similarly for the negative orbit 07 (x, t).

DEFINITION 2.4. A nonempty set D C R" is called a control set if D € cl 07 (x) for
all x € D and D is maximal with this property; a set containing a single point x is
called a control set only if there is w € @ with 0 = f(x, w). An invariant control set C
is a control set satisfying cl C = cl 0+(x) for all x € C.

Existence of invariant control sets is guaranteed by the following result from Arnold
and Kliemann [1].

PROPOSITION 2.5. Assume that the following condition is satisfied:
The Lie algebra L generated by the vector fields
(28) Jo(s Fi(- oo £,(-) is full at every point x
(i.e.dim L(x) = n).
Then there exists an invariant control set C and C is compact with nonempty interior.

The following result is proved in Colonius and Kliemann {4, Proposition 2.3]; here
we only give a sketch of the proof.
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PROPOSITION 2.6. Let @ be a control set and assume that (2.8) holds. Then for all
compact sets K, C 9, K, C int D there exists h = h(K,, K,) such that the first hitting
time map h satisfies h(x, y) < h for all x € K,, y € K,.

SKETCH OF PROOF. By a result of Sussmann [8], condition (2.8) implies local
accessibility and hence 0% (x) and O_r(x) have nonempty interior for all 7> 0.
Using this and the approxlmate controllability required in the definition of control
sets, one shows that 4(x, y) is bounded in neighborhoods of x, € K|, y, € K,. Then
a compactness argument completes the proof. a

Using this result, we obtain the following corollary to Theorem 2.3

COROLLARY 2.7. In Theorem (2.3) replace (2.2) by (2.8) and the followmg assump-
tion:

There exist a compact invariant control set C and a
(2.9) compact set K, C C such that -

o(t,x,u*Y €K, forallt>0,k€N.

Then the limit (x, u) is optimal for % (0).

PrOOF. By Proposition 2.6, the assumptions (2.8) and (2.9) imply (2.2).

REMARK 2.8. [4, §5] presents an example of a three-dimensional harvested preda-
tor-prey system satisfying the assumptions of the corollary above. This system pos-
sesses a (unique) invariant control set C, and hence for initial values x in the interior
of C the above approximation result is valid.

3. Dissipativity and optimal R-solutions. In this section optimal R-solutions are
defined and their behaviour in dependence of § is studied. An additional boundedness
condition—dissipativity—is assumed.

Let %,,(R) = {u: R - §, measurable}. :

DEFINITION 3.1. A pair (x, #) € R" X %,,(R) is called an optimal R-solution of
F(8), 0 < & < oo, if the corresponding trajectory ¢(¢, x, u) exists on R and for all
t € R one has ¢(¢, x, u) € K and

(3.1) V(e(t,x,u),u(t+ +),8) = inf{V(e(t, x,u),v,8): v € %,,}.

ReMARK 3.2. If (x,.u) is an optimal pair for #(8), then (3.1) follows for all # > 0
by Bellman’s principle.

Define the set 4(8), 0 < § < oo, by

(3.2) A(8):= {y € K:thereexist v € %,,(R)s.t.(y,v)isan
optimal R-solution with {@(t, y,v), t € R} bouniied}.

Next we show that all limit points of optimal solutions are in A(8). More precisely, let
for (x,u) € R" X %,, the omega limit set be defined by

w(x,u) = {y € R": there are t, —> oo with (7, x,u) = y}.

PROPOSITION 3.3. Assume that the control system ¥ satisfies (2.1). Then for all
0 < & < o0 and all (x,u) € R" X U,, which are optimal for % (8)

@ + w(x,u) c A(8).
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ProoF. Consider first 0 < 8 < oo and let y € w(x, u) for a pair (x, ) which is
optimal for % (8). Let t, > oo with x* :== @(,, x, u) = y. Define u* == u(t, + - ) €
#,,. By Lemma 2.2 we may assume that u* converges weakly on bounded intervals to
an element uy, € %,,;, ¢(t, x*, u*) converges uniformly on bounded intervals to
(¢, y, uy) and (y, ugy) is optimal.

Taking again if necessary a subsequence, u*, :== u*(—1 + - ) converges weakly on
bounded intervals to 5_;: R,— @ and (-1 + -, x¥ u*,) converges uniformly on
bounded intervals to a function ¢ _,(-, y, §_,). Define

v () =0_, +1), te[-1,00),
q)—l(t; y’ v-—l) = 6)(1 + ta }’, 5—1)’ te ['_1’ 00)'

Then vy(2) = v_,(¢) and @(1, y, vy) = @_1(t, y,v_;) for t € [0, 00). Taking succes-
sively subsequences, one obtains

v_;[-Loo)>Q and ¢_,(-,p,v_):[-],0) >R

with v_,(¢) = v_,,,(t) for 1 € [—-]+ 1, 00) and

%‘P—/(t, yov_)=flo_,(t, y,v_1),0_,(t)) ae.on[-] ),

V(‘l_’—l(—l, y,v_g), o (=1 + )) = inf{ V(‘P-l("‘l’ Y>0_1)s W)‘ weE %ad}‘

Defining v(#) == v_,(t) for t € [-],0), | € N one obtains on optimal R-solution
(y, v), since w(x, u) € K implies @_,(+, y,v) C K for y € w(x, u).

The proof for § = 0 proceeds similarly.

The proposition above shows that 4(8) is a global attractor. Assuming the following
additional boundedness condition, we will be able to show that A4(8) is compact and
depends upper semicontinuously on 8.

DEFINITION 3.4. The family of optimal control systems % (8) given by (1.1)—(1.5)
is dissipative if there exists a bounded set B such that for every compact set C C K
there is 1, = 1,(C) such that for all (x, u) € C X %,, which are optimal for F(4),
0 <& < oo and all ¢ > 7, one has ¢(t, x, u) € B.

REMARK 3.5. The definition given above is an adaptation of “compact dissipativity”
employed in the theory of semiflows (cf. Hale, Magalhaes and Oliva [6, pp. 4, 46]).

PROPOSITION 3.6. Assume that the optimal control system % (8) given by (1.1)-(1.5)
is dissipative. Then for all 0 < 8 < oo the set A(8) is compact.

ProoF. First we show that 4(8) € B and hence bounded. For y € A(8), there is
v € %,,(R) such that (y,v) is an optimal R-solution with {¢(¢, y,v), t € R}
bounded. Hence C = cl{@(t, y,v), t € R} is compact. Using dissipativity (for fixed
8) one finds ¢4 = 1,(C) such that for all optimal (x,u) € C X ,, and all ¢ > ¢, one
has ¢(t, x, u) € B.

Hence for every s € R, @(s + 1, y, v) € B and hence 4(8) € B. In order to prove
closedness, let x* € A(8), x* > x. There are u* € %,,(R) such that (x*, u*) are
optimal R-solutions, with ¢(t, x¥, u*), t € R, bounded. Proceeding as in the proof of
Proposition 3.3 one obtains the assertion. _ =

Recall that a set-valued map 4 on R is upper semicontinuous at § € R if for every
€ > 0 then exists 5 > 0 such that A(8) € A(8) + S* provided |8 — §| < u; here S¢ is
the closed ball with radius € around the origin, S¢:= {z € R": |z| < €}.
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THEOREM 3.7. Assume that the optimal control system F is dissipative. Then the map
A(8), 0 < & < oo is upper semicontinuous.

ProOF. By Proposition 3.6, the value sets A(8) are compact. Hence by Warga
[9, Theorem 1.7.2] it suffices to show that for 8, — 8, x* € 4(§,) with x* — x it
follows that x € A(8). There are u* € %,,(R) s.t. (x*, u*) is an optimal R-solution
for #(8%). We may assume that (uX) tends weakly in L? on bounded intervals to
u€ ¥, (R)and thatforall ke N, t€RandvE %,

(3.3) V{p(t, x*, uk), uk(t + -), 8%) = V(o(t, x*, u¥), v, §%).

Let k tend to infinity. Then by Lemma 2.2 (¢(¢, x¥, u*) is uniformly bounded by
dissipativity) ‘

V(p(t, x5, uk), u*(t + -),8,) > V((p(t, x, u), u(t + -),A8) and

V(q)(t, x*, u*), v, Sk) - V(8(1, x, u),v,8).
Hence '
V(p(t,x,u), u(t + -),8) > V(e(t, x, u),v,8)

and (x, «) is an optimal R-solution for % (8), i.e. x € A(5). ' O

REMARK 3.8. Hale, Magalhaes and Oliva [6, Theorem 5.5] give a result which shows
that for semiflows defined by a functional differential equation x = f(x,), x,(s) =
x(t+s), s€[~r,0], r>0, the set A(f) of all bounded solution defined on R
depends in an upper-semicontinuous way on f. This result served as a motivation for
the theorem above, which also studies the set of all bounded (optimal) R-solutions
under perturbations of the data defining the system.
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