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Abstract 

A player starts at x in (0,1) and seeks to reach 1 by time t 0 . The process 

{X(t), 0 ~ t ~ t 0) of the player's positions is a diffusion process (or an Ito 

process) whose infinitesimal parameters µ,u are chosen by the player at each 

instant of time from a set depending on the current position. The probability 

of reaching 1 by time t 0 is maximized if the player can and does choose the 

parameters so that u and µ/u2 are maximized, at least when these maxima are 

sufficiently regular. This resul~ implies that bold play is optimal for 

subfair, continuous-time red-and-black and roulette when there is a limit on 

playing time. 
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1. Introduction 

The problem considered here is that of controlling a stochastic process X = 

{X(t), t ~ 0} with state space an interval [a,b] (-~~a< b <~)so as to 

maximize P[X(t0) - b] where t 0 is fixed. Assume X satisfies a stochastic 

differential equation 

(1.1) X(O) - x, dX(t) - µ(t)dt + u(t)dW(t) 

where (W(t)} is a standard Brownian motion process on ( O, F, P) adapted to a 

filtration (Et} and where each Et is independent of (W(t+s) - W(t), s ~ 0} and 

contains all P-null sets. The control processes µ(t) - µ(t,~) and u(t) - u(t,w) 

are assumed to be real-valued, progressively measurable and to satisfy 

t 
folµ(s)lds < ~ a.s. 

(1.2) 

Jt 2 

0 
u (s) ds < ~ a.s. 

for every t > 0. Associated to every y E (a,b) is a control~ A(y) which is a 

+ non-empty subset of RxR. The player is required to choose the value of (µ,u) 

from A(y) when the current position is y. More precisely, it is assumed that 

(µ(t),u(t)) E A(X(t)) 

whenever a< X(t) < b. It is also assumed that µ(t) - u(t) - 0 when X(t)-a or 

X(t)-b so that Xis absorbed at a and b. 
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Let t(x) be the collection of all such processes X - (X(t)) starting at x e 

(a,b) and assume ~(x) is non-empty for every x. Call such a control problem a 

goal problem with time limit t 0 and define its value function to be 

ut (x) - sup P[X(t0) = b]. 

O XE~(x) 

Goal problems without a time limit were studied by Pestien and Sudderth (6,7], 

who showed, under mild regularity conditions, that in order to maximize P[X(t) 

2 b for some t ~ OJ, the player should choose (µ,u) so that µ/u attains the 

supremum 

(1.3) 2 p(x) - sup (µ/u (µ,u) E A(x)), a< x < b. 

(Here, 0/0 is taken to be - ~). Such a choice of (µ,u) will not in general be 

optimal for a goal problem with a time limit. It is easy to give examples for 

which the optimal controls depend on time as well as position. However, there 

is an interesting condition which results in optimal controls which are 

stationary in time. To state the condition, define for a< x < b, 

(1.4) a0 (x) - sup {u (µ,u) E A(x)). 

Condition C. The function p of (1.3) can be written in the form 

(1.5) 
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where p,µ
0 

and u
0 

are bounded continous functions on (a,b) and u0 is everywhere 

positive. 

Let Y = {Y(t), t ~ 0} be a diffusion process which starts at x E (a,b), is 

absorbed at the endpoints a and band satisfies 

(1.6) dY(t) - µ0(Y(t))dt + u0 (Y(t))dW(t) 

prior to absorption. Define 

(1.7) Qt(x) - P[Y(t) - b]. 

Here is our main result. 

Theorem 1.1 If condition C holds, then Qt(x) ~ Ut(x) for all t ~ 0. 

The proof will be given in sections 2 and 3. Section 2 presents a 

verification lemma which is then applied in section 3 to prove the theorem. 

Here is a simple corollary which identifies Y as the optimal process. 

Corollary. If condition C holds and if (µ0(y), u0 (y)) E A(y) for a< y < b, 

then YE ~(x) and Qt(x) - Ut(x) for all t ~ 0. 

The rest of this section is devoted to some applications of the theorem to 

gambling theory. In section 4 a final application will be made to prove two 

comparison theorems related to one of Hajek [3]. 

Our first application is to a continuous time version of roulette which 
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includes continuous-time red-and-black and which was introduced in [6]. In 

roulette a gambler chooses at each stage an amounts to stake and a particular 

bet. For a given stake, all bets have the same expected return but they may 

have different variances. Here is a continuous-time formulation. Let a - 0 and 

b - 1. Suppose A is a fixed real number and that s1 and a1 are bounded, 

continuous functions from (0,1) to the positive real numbers. For O < x < 1, 

define the control set A(x) by 

(1.8) 

If the problem is subfair in the sense that A~ 0, then, by (1.3) 

Furthermore, condition C holds with µ0 (x) - ~s1 (x), a 0(x) - s1(x)a1(x). So 

Theorem 1.1 applies to show that bold~ is optimal even when there is a limit 

on playing time; the gambler should select the maximum stake s 1(x) and the 

maximum variance a1(x) whenever X(t) - x E (0,1). The fact that bold play is 

optimal for subfair continuous-time roulette without a time limit is an 

immediate corollary. (However, the corresponding result in [6] is proved 

without the assumption made here that s
1 

and a
1 

are continuous.) The theorem 

does not apply if the problem is superfair in the sense that A> 0 and we do not 

know the optimal strategy in this case. 

Red-and-black corresponds to the special case where the gambler is allowed 

to choose a stakes but the variance for a given stake and position is fixed. 

Thus 
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(1.9) 

where s
1 

and u1 satisfy the same assumptions as before. If A~ 0, it follows 

from the theorem or from the result for roulette that the gambler should play 

boldly and make the maximum stake s1(x) whenever X(t) - x. It was shown by A. 

Dvoretzky that bold play is optimal for discrete-time red-and-black with a time 

limit (cf. Dubins and Savage [1, section 5.5]). Perhaps the same is true for 

discrete-time roulette. 

2. A verification lemma. The lemma which we will use to prove the theorem of 

section 1 is a refinement of a result of Orey, Pestien, and Sudderth ([5], 

Proposition 1.1). The formulation of the lemma uses the framework of continuous 

-time gambling theory which will be explained briefly. For a more general and 

more detailed exposition consult references [4], [5], and [6]. 

d Let F be a Borel subset of the Euclidean space R and assume that the 

interior FO of Fis not empty. For each x E F, let C(x) be a non-empty 

collection of pairs (a,b) where a i Rd and bis a dxm matrix of real numbers. 

Assume C(x) - ((0,0)) for x E F - Fo. 

Consider next an Ito process X - {X(t), t ~ 0) in F defined by a stochastic 

differential equation 

(2.1) X(O) - x, dX(t) - a(t)dt + P(t)dW(t) 

where W - {W(t), t ~ 0) is a standard m-dimensional Brownian motion adopted to 

increasing, right-continous u-fields {lt)' and each It is independent of {Wt+s -
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Wt' s ~ 0). The function a - a(t,w) is to be Rd -valued, progressively 

measurable, adapted to (Et), and such that 

(2.2) for all t. 

The function p = P(t,w) has as values real dxm matrices, is progressively 

measurable, adapted to (Et) and satisfies 

(2.3) Jt 2 

0
1P(s)I ds < m a.s. for all t. 

Assume Xis absorbed at the time T of its first exit from Fo. 

For each x E F, the collection ~(x) of processes X available at x consists 

of those X satisfying (2.1), (2.2) and (2.3) together with 

(a(t,w), P(t,w)) E C(X(t,w)), 

(a(t,w), P(t,w)) (0,0) fort~ T(w). 

Let u, the utility function, be a Borel function from F to the real line. 

The utility of a process XE ~(x) is defined to be 

u(X) - E [lim sup u(Xt)]. 
t~~ 

The expected value occuring on the right is assumed to be well-defined for all 

available X. 
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The triple (F, ~. u) is a continuous-time gambling problem in the sense of 

Pestien and Sudderth [6]. Its value function Vis defined by 

V(x) - sup {u(X): XE ~(x)). 

d Let Q: R -+Rand define, for a a dxl vector and b a dxm matrix, 

l d d 
D(a,b)Q(y) - ~(y)a + 2 l l ~ (y)(bb')i. 

i-1 j-1 ixj J 

where 

Here is our verification lemma, which extends Proposition 1.1 of [5]. 

Lemma. Let Q: F-+ R. Assume Q is continuous on F and has continuous second 

order derivatives on Fo. Assume also that for x e FO and XE ~(x), 

(i) E[lim sup Q(X(t))] ~ E[lim sup u(X(t))] 
t -+ co 

(ii) P[D(a(t),P(t))Q(X(t)) ~ 0 for all t < T] .... 1, 
where a and P·are related to X as in (2.1), 

(iii) there is an integrable random variable Y such that for all t ~ 0, 

Q(X(t)) ~ Y. 

Then Q ~ V. 

Proof: Let x e FO and Xe ~(x). For each positive e which is smaller than the 

distance from x to the complement of F, let 
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and 

F - (y E F 
E 

ly-zl ~ E for all z E Fe} 

T - inf (t ~ 0: X (t) E F }. 
E E 

Let r be an almost surely finite {lt} stopping time. Now Q is smooth on the 

open set FO which contains F and the proof of Proposition 1.1 of [5] shows 
E 

EQ(XrAT) ~ Q(x). 
E 

Let E approach O and use Fatou's inequality and the continuity of Q on F to see 

that 

EQ(X(r)) = EQ(X(rAT)) 

E(lim Q(X(rAT ))) 
e-+O E 

~ lim inf EQ(X(rAT )) 
e-+O E 

~ Q(x). 

By condition (i) and by Lemma 1 of [6], it follows that Q ~ V. D 

3. Proof of Theorem 1,1, The goal problem described in section 1 will now be 

reformulated as a continuous-time gambling problem in R2 . The first coordinate, 

x1 , of the state vector x will correspond to the player's position in [a,b]. 

The second coordinate, x2 , will represent time. It is convenient to allow 

negative as well as positive times up to the time limit t 0 . So we define 
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(3.1) 
2 

F - {x ER: as xl s b, x2 s to>· 

For x E FO - (a,b) x (-~, t
0
), the set of controls is 

(3.2) C(x) - {((i), (~)): (µ,u) E A(x1)} 

where A(x1) is a non-empty subset of RxR.+ as in section 1. According to our 

conventions every available process X - {X(t)) - (X1(t), x2(t))} E E(x) 

satisfies a stochastic differential equation 

(3.3) 

dX1(t) - µ(t)dt + u(t)dW(t) 

dX2(t) - dt 

X(O) - x 

prior to its time T of absorption at the boundary of F. The time Tis given by 

T - min{inf (t:Xi(t) E (a,b}), t 0-x2). 

The control functionsµ and u satisfy (1.2) and are equal to zero fort~ T. 

The appropriate utility function is 

' 
u(x) - 1 if x1 - band x2 s t 0 

(3.4) 
- 0 otherwise. 

Thus, for Xe E(x), 
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u(X) - P[X1(T) - b] 

= P[X1(t) - b for some t ~ t 0-x2] 

= P[~(t0-x2) - b]. 

Assume condition C of section 1 and, for x E F
0

, let Y - (Y1 , Y2) 

satisfy 

dY
1
(t) - µ0(Y1(t))dt + u0(Y1(t))dW(t) 

dY2 (t) - dt 

Y(O) ID X 

prior to absorption at the boundary of F. 

Set 

(3.5) 

0 
Q(x) - u(Y) for x E F 

0 
- u(x) for x E F-F 

To prove Theorem 1, it suffices to show 

(3.6) Q ~ V, 

'-

where Vis the value function for the continous-time gambling problem (F, ~, u). 

We would like to apply the verification lemma of section 2. However, there are 

two technical difficulties. First, Q may not be sufficiently smooth on Fo. 
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Second Q is not continuous on F. (In fact, Q is discontinuous at the point 

(b, t 0) since Q(b,x2) - 1 for x2 ~ t 0 , and Q(x1 , t 0) - 0 for x1 < b.) 

To overcome the first difficulty, approximate µ0 and u0 by smooth functions 

~ 

(say C) µ and u on (a,b) such that for n - 1, 2, ... , n n 

2 2 
u ~ u0 , p - µ /u ~ µ 0/u0 - p, n n n n 

and 

(3.7) sup (lµn(x1)-µ0(x1)1 + u (x1)-u(x1)} ~ 1/n. 
a<x <b n 

1 

For x £ Fo, let x<n) - (~ (n), x
2

(n)) be a process satisfying 

dX
1 

(n) (t) - µn (~ Cn\t)).dt + un (~ (n) (t))dW(t) 

dX (n)(t) - dt 
2 

x<n)(O) -x 

prior to absorption at the boundary of F. It follows from (3.7) that x<n) 

converges weakly to Y as n ~ ~. (See, for example, Stroock and Varadhan [8, 

Theorem 11.1.4 p. 264]. 

Hence, 

" 
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~ lim sup P[X (n)(t -x) = b] 
1 0 2 n-+«> 

- lim sup u cx<n>). 
n-+«> 

So, to prove (3.6), it suffices to show 

~~ V 

where~ is defined as in (3.5) with Y replaced there by x<n> .. Thus, without 
a) 

loss of generality, we now assume µ0 and Po to be C functions. 

Standard arguments will now show that Q satisfies the following partial 

differential equation on FO 

(3.8) 

with boundary conditions 

(3.9) 

2 0 for x1 < b1 . It follows that Q is C on F. (Apply Theorem 6.2.4 of Friedman 

[2] to a nice neighborhood of any x e Fo.) 

However, Q remains discontinuous at the point x - (b, to?· To sidestep this 

difficulty, define, for E > 0, the function 

E 2 0 Then Q is C on F and continuous on F. E Also Q 

converges to Q as E decreases to zero. So, to prove (3.6), it suffices to show 
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(3.10) E 
Q ~ V. 

This will be established once we check the conditions of the lemma in section 2. 

Conditions {i) and (iii) are obvious because 

E 
Q ~ u ~ o. 

To check (ii), let x e FO and 

(a,P) - ((i), {~)) E C(x). 

Then 

(3.11) D(a,P)QE - ½ u2~ + µ~ ~ • 
lxl 1 2 

(We omit the argument x here and below.) 

x1 and decreasing in x
2

; so 

(3.12) ~ ~ 0, ~ :So. 
1 2 

Consider the two cases: u - 0 and u > 0. 

p(x1) < oo. 

Hence, 
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2 If u - 0, thenµ :SO because µ/u :S 

'· 



E E E 
D(a,P)Q = µ~ + ~ S 0. 

1 2 

by (3.12). Now suppose u > 0. Then 

.!_ D(a,P)QE .... ! OE +~OE +.!_OE 
u2 2 -;c1x1 u2 ,cl u2 ,c2 

/J (x ) 
s½~x+Ol2~+ 12~ 

1 1 uo<x1> 1 -uo<x1) 2 

- 0. 

The inequality is by (1.3), (1.4), (1.5) and (3.12). The final equality is by 

(3.8) which still holds when Q is replaced by QE. 

Inequality (3.10) now follows from the lemma. 

4. Two comparison theorems. 

Consider processes X and Yon the real line satisfying (1.1) and (1.6), 

respectively. Hajek (3, Theorem 1.3] showed that if µ
0 

and u
0 

are constants and 

if 

X(O) s Y(O), µ(t) s µo, lu(t)I s qo 

then '-

P[X(t) ~ b] s 2P[Y(t) ~ b] 
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for every t ~ 0 and every b. 

We will formulate two related results in terms of a goal problem as in 

section 1 taking the left hand endpoint a to be-~. Assume µ
0 

and u0 are 

bounded, continuous functions on(-~, b) and, for - ~ < x < b, define the 

control sets 

(4.1) A(x) - {(µ,u) 

Theorem 4.1. If µ0(x) s O and u0 (x) > 0 for - ~ < x < b, then 

P[sup X(s) ~ b] s P[sup Y(s) ~ b] 
Oss~t O~sst 

for every XE ~(x), x < b, t ~ 0. 

Proof: Immediate from Theorem 1.1 because condition C holds. o 

Theorem 4.1 depends crucially on the assumption that the processes are 

subfair (µ
0 
~ 0). We do not know the optimal process in the general superfair 

case, but our final result does give the solution when µ0 and u0 are both 

positive constants. To state the result, consider a fixed time limit t 0 and 

define for x < b, t < t 0 , 

(4.2) 

- u0 if not. 
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'-

Let Z be a process satisfying 

(4.3) Z(O) - x 1 , dZ(t) - µ0dt + u1(Z(t),t)dW(t). 

prior to absorption at b. 

Theorem 4.2 If µ
0 

and u
0 

are positive constants, - ~ < x
1 

< b, and t
0 

> 0, 

then 

P[sup X(t) ~ b] s P[sup Z(t) ~ b] 
~~t0 o~~t0 

for every X £ ~(x1). 

Proof: The proof is somewhat similar to that of Theorem 1.1 given in the 

previous section. First we reformulate the problem as a gambling problem in R
2 

with 

2 F - {x £ R: x1 ~ b, x
2 

S t 0 }. 

The control sets C(x) are defined as in (3.2) with A(x1) given by (4.1). The 

utility function is defined by (3.4). 

Set 

Q(x1 ,x2) - P[Z(t0-x2) = b]. 

We need to show 
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(4.4) Q ~ V. 

First we will calculate Q explicitly. Let L be the linear function 

(4.5) x1 - L(x2) - b - µ0(t0-x2). 

Clearly, 

(4.6) Q(x1 ,x2) - 1 if x1 ~ L(x2) 

for, in this case, by (4.2) and (4.3), Z moves deterministically to the goal at 

rate µo· 

On the other hand, if x1 < L(x2), then 

Z(t) - x1 + µ0t + u0W(t) 

until the first t ~ t
0

-x
2 

(if any) such that 

Z(t) ~ L(x2 + t) 

or, equivalently, 

W(t) ~ 
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Thus 

(4. 7) Q(x1 ,x2) - P[ sup Z(t) ~ b] 
0:S~t

0
-x

2 

where~ is the standard normal distribution function. 

We would now like to use.the verification lemma to establish (4.4). As in 

the proof of Theorem 1.1, there are technical difficulties. First Q is not 

smooth along the line L of (4 .. 5). Now to the right of L, Q=l, by (4.6) and, 

hence, V=l. Thus (4.4) is satisfied. This suggests we redefine the state space 

to be 

and the utility function to be 

- 1 if x1 - L(x2), 

- 0 if not. 

The control sets remain the same on the interior.of F1 and, clearly, v1 - v on 
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F1 . The advantage of the new problem is that Q is obviously C~ on the interior 

1 of F. 

Unfortunately Q is not continuous at the point (b,t
0
). To handle this 

difficulty, define for E > 0 

E Q (x1 , x2) - Q(x1-µ0E, x2 - E). 

E Then Q ~ Q as E ~ 0. So it suffices to show 

E 
Q ~ V. 

The application of the lemma is now relatively straightforward. 

Conditions (i) and (iii) are immediate because 

QE ~ Ul ~ 0. 

To verify (ii), let x - (x1 ,x2) be in the interior of F1 . So x2 < t 0 and x1 < 

µ a L(x2). Let (a,P) .... ((1), (0)) E C(x) 

so thatµ~ µ
0

, a~ a
0

. Use (4.7) to calculate 

(4.8) E 1 2 E E E 
D(a,P)Q - 2 a~ + µ~ + ~, 

lxl 1 2 

Set 

A .... ~, [ xl - L(x2)] 
u0Jt0-X2 + < /u0(t0-X2 + <)3/2. 
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After some calculation, the right-hand-side of (4.8) becomes 

2 
~[- a

2 
(x

1
-L(x

2
)) + 2µ(t0-x2 + E)-2µ0(t0-x2 + e) + x1-L(x2)J 

ao 

:S O. 

The first inequality holds becauseµ :S µ0 ; the second because a :S a0 and x1 < 

L(x2). The proof is now complete. D 

The reader may have noticed that the optimal process Z of Theorem 4.2 is 

"bang-bang" in the sense that a is always chosen to be O or a
0

. The fact that 

the optimal control is "bang-bang" was suggested to us by Steven Orey and can be 

proved for more general superfair problems in which µ0 and a0 are not assumed to 

be constant. 
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