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ABSTRACT

We investigate an abstract linear duality model which has as special instances
several duality systems of interest in combinatorial optimization: subspace orthogonality,
cone polarity, lattice duality, blocking polyhedra and antiblocking polyhedra. The
descriptive duélity present in the model is that of specifying a set in terms of linear
constraints or viewing a set as being generated by certain types of linear combinations. We
define properties of Weyl, Farkas and Minkowski for the general model by analogy with
classical results in cone polarity and we investigate relationships among these properties
and further properties of Lehman and Fulkerson, defined by analogy with results on dual
pairs of polyhedra of the blocking or antiblocking type. In particular, we show that, for
any given duality system, the Weyl property is equivalent to the combined properties of
Farkas and Minkowski (or Lehman), that the Farkas property implies the Fulkerson
property and that the Minkowski property is equivalent to the combined properties of
Lehman and Fulkerson. We also adapt results of Dixon [5] in order to obtain general
sufficient conditions for validity of the Weyl property.

In the second part of the paper, specific instahces of the model are examined in
more detail. The instances studied here are "integral duality” and "nonnegative integral
duality", which are related to the problem of finding integral solutions and nonnegative
integral solutions, respectively, for linear systems. For each instance, the validity of the
Weyl, Minkowski, Farkas, Lehman and Fulkerson properties is examined. We also

characterize the constrained sets under each duality.



Introduction

There is an apparent formal similarity in the definition of the orthogonal
complement of a vector subspace of R™ and the cone polar to a given convex cone in R™
both prescribe that the inner product between the elements of the initial object and elements
of its corresponding "dual partner” belong to a particular subset of the reals. This subset is
{0} for the subspace case and is the nonnegative reals R, in the cone case. In[17] a
general model for linear duality was proposed which encompasses these similarities. In
this paper we develop this model further and we study in detail specific instances of the
model for integral and nonnegative integral duality. The development here closely follows

that in [2] and [17]."

1. Duality Model
An abstraction of the linear algebraic featureé of orthogonality and polarity requires
a framework in which "inner product” makes sense. We thus assume an underlying
commutative ring R, which for all applications in this paper will be the real numbers with
the usual addition and multiplication. All sets involved are assumed to be subsets of R",
the free R-module of rank n, for some n, and the inner product between elements of R™is
the ordinary "dot product”; i.e., where x = (X1yesXp) and y = (¥1,...;¥n), we define xy =
X1y1 + ... + Xn¥n-
1.1 Definition: Let R be a commutative ring with D € X c R and {0,1} ¢ X. For

any subset S C X", the (X,D)-dual of S is
s*={xe X" Sxe D},
where Sx € D denotes sxe D,Vse S. []

Thus for R = R, when X =R and D = {0}, the (X,D)-dual of subset S cRMis the

subspace orthogonal to S, and when X = R and D = R, the (X,D)-dual of S is the cone -



polar to S. In the following we will assume that R, X and D have been fixed and we will
refer to S* simply as the "dual of S".
Definition 1.1 stipulates that members of S* satisfy constraints defined by the

elements of S. We thus use the following terminology.

1.2 Definition: A subset S C XD is constrained provided S = T* for some T c X"

Moreover, when S = T* and IT! is finite, then S is finitely constrained. O

Thus finitely constrained sets are of the form {x € X™: Axe D™} for some mxn

matrix A € Xmxn,

1.3 Definition: A subsetS C X1 is closed (under (S,D)-duality) if S = S**  where
S** denotes (S*)*.  [J

The following properties are easily derived from Definition 1.3 (see [2] or [17] for

the proofs).

1.4 Proposition: Suppose S and T are subsets of X". Then:
(@) ScT= S* T*
(b) SuTD*=S*NT*
() S ¢ S**x
(d) S* = S***.
(e) S is closed < S is constrained.

0 S** is the smallest closed set containing S.  []

#

Emphasis thus far has been placed on defining certain subsets of X", the
constrained or closed subsets, from the "outside”, i.e., in terms of constraints. We
observe also that any subspace or convex cone can be equally well described from the
“inside", i.e., in terms of linear combinations of a set of generators in the subspace case or

of nonnegative combinations in the cone case. This descriptive equivalence between
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external and internal representations of the same set is the "duality" which serves as the

focus for the remainder of our development.

We thus require an appfopriate definition of "generated sets” in terms of certain
types of linear combinations. Note that in the subspace and cone cases, the types of linear
combinations considered are those under which the constrained sets are closed (S ¢ X" is
closed with respect to T-linear combinations, where T ¢ X™, provided
(y1a1 + ... + Ymam) € S whenever aj,....am € Sandy e T). Thatis, sets of the form
{x e R™ Sx =0} and {x € R": Sx 20}, where S C RD, are closed under arbitrary and
nonnegative linear combinations, respectively. We nov;z show that with (D™)*-linear
combinations, where (D™)* is the (X,D)-dual of D™ we achieve closure for constrained

sets in the general model.

1.5 Theorem: Foreachm =21, (D™)* is the set of those m-vectors providing
coefficients for linear combinations under which all constrained sets are closed; i.e., for

eachmz21,

DODM*= (ye X™:Vn21,S¢X"and aj,...am € $* =

(yia1 + ... + Ymam) € S*}.

Proof: Letye (D™)*, S C X" and aj,...,am € S*, where m 2 1. Then for any s € S

we have

(y1ar + ... + Ymam)s = ¥1(a18) + ... + Ym(@ms) = yz,

where we denote z;j = ajs, for 1 £i < m.. Since aj € S* and s € S, we have z;€ D,
1<i<m. Hence z € D™and since y € (D™)*, we obtain yz € D. That is,
(yia1 + ... + Yymam)s € D, Vs e S. Thus, as required, (y1a1 + ... + Yymam) € S*.

On the other hand, since 0,1 € X by Definition 1.1, we have that ¢ € xm,

1 <i<m, where ¢ = (0,...,0,1,0,...,0) denotes the ith ynit vector. Clearly ej e (D™)*.

v
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Thus for y € X™, applying the stipulation in the statement of the theorem with m = n,

S =D™and ¢; = a;, 1 £i<m, we obtain that y € (D™)*, which completes the proof. [J

~ Note the explicit use of the fact that 0,1 € X, as stipulated in Definition 1.1, in the
proof of Theorem 1.5. As discussed above, this theorem motivates the following

definition.
1.6 Definition: For S C X", the set generated by S, denoted o(S), is the set
6(S) = {x € X™ x =y1a] + ... + ymam, wherem2 1, aj,....am € Sandy € (DM)*} .

S is itself a generated set provided S = o(T) for some T C X" when S = o(T) and ITl is

finite, then S is finitely generated. []

Since (D™)* contains the unit vectors we have that S € o(S). Itis also obvious that S C T
implies o(S) € o(T). We also remark that finitely generated éets are of the form S = {yA:
y € (D™)*}, where A € X™,

For the particular cases discussed above we have that for (R,{0})-duality (subspace
orthogonality), (D™)* = R™, and for (R,R,)-duality (cone polarity), (DM)* = RT. In
Sections 4, 5 and 6 the properties of (Q,Z)-, (Z,Z,)- and (Q,Z)-duality are investigated,
with particular attention given to characterizing the constrained (closed) sets for these cases;
here (D™)* is given by Z™, ZT and ZT, respectively, with Q, Z and Z denoting the
rationals, the integers and the nonnegative integers, respectively. Additional instances of
interest in combinatorial optimization are obtained by taking X = R4 with D = [1,0),

"blocking" duality, or D = [0,1], "antiblocking" duality (see [7]). For the latter two
instances one verifies that (D™* = {y € RT: yi+ .. +ym 2 1} and (D™)* = {y € {R‘:‘;

Y1+ ... + ym < 1}, respectively.



The next proposition relates generated sets and closure under (D™)*-linear

combinations.

1.7 Proposition: Let S ¢ X". The following are equivalent:
(@ o(S) ¢ S.
(b) o(S)=S.

©) S is a generated set.

Proof: Since it is generally true that o(S) 2 S, (a) and (b) are clearly equivalent. It is also
obvious that (b) = (¢).

To show that (c) = (a), suppose S is generated by T and let m 2 1, S1,...Sm € S
and y € (D™*. Since S is generated by T, there exist elements aj,...,ap € T taken as the
rows of matrix A, for which each s; = z;A with z; € (DP)*. Thus, taking the zj as the rows

of matrix Z, we have
Y181 + - + YmSm = Y(ZA) = (Y2)A.

Note that yZ = y1Z] + ... + YmZm 1S (DM)*-linear combination of elements of (DP)*,
Thus, since (DP)* is constrained, Theorem 1.5 implies that (yZ) € (DP)*. Hence

(yZ)A € S, which proves that S is closed under (D™)*-linear combinations. []
1.8 Corollary: LetS ¢ X". Then o(S) is the smallest generated set containing S.

Proof: Let T be a generated set such that S ¢ T. Then, since o(T) = T, we have that

oS)coM=T. [J

The following corollary relates the notions of generated and constrained sets via Theorem

1.5 and Proposition 1.7.

1.9 Corollary: Every constrained set is generated. O



Note the similarity which this corollary bears to the well-known theorem of
Minkowski for "finite" cones, i.¢., that any polyhedral (finitely constrained) cone is finitely
generated. However, Corollary 1.9 requires no finiteness and, in general, nothing special
can be said about the generation properties of a finitely constrained set. In the following
section we discuss the relation between constrained and generated sets when finiteness is
stipulated. The following example shows that the converse of Corollary 1.9 is generally

false.

1.10 Example: LetR=X=RandD = R, (cone polarity) and define S = {00} v

{(x1,x2) € R2; x;>0,x2>0}. ThenSisa generated set, since it is closed under linear

combinations with nonnegative coefficients. However, S is not constrained, as
Sk = (S¥)* = ({x e RZ: x20})*=(x€ R2: x20}=S. [

We conclude this section by showing that the function o(*) has no effect on the

duality operation.
1.11 Proposition: LetS ¢ X". Then (c(8))* = §* = o(S%).

Proof: Since S** is a generated set (by 1.9) containing S (by 1.4c), Nwe obtain from
Corollary 1.8 that SC 6(S) C S#**  Hence 1.4a implies that S* 2 (G(S)){* O S*** and we
may apply 1.4d to obtain S* = (5(S))*. Furthermore, Corollary 1.9 and Proposition 1.7
immediately imply that S* =o(S*). [

1.12 Corollary: LetS,TC X" with 6(S) = T. Then S* = T*.
Proof: By 1.11, (6(S))* = S* and by assumption, o(S) = T. O

1.13 Corollary: Let A e Xmxn and define T = (yA: ye (D™*}. Then T* =

(x e X™ Ax e D™}. Thus any finitely generated set has a finitely constrained dual.



Proof: Apply 1.12, taking S as the rows of matrix A. O

2. Finiteness Properties

The development of the previous section is in terms of properties which hold for the
general (X,D)-duality model. The settings of subspace orthogonality and cone polarity
which motivated the general model, however, suggest that other important properties are
valid for certain (X,D) pairs. These properties deal with finitely generated and finitely
constrained subsets, i.e., sets of the form {yA: y € (D™)*} and {x € X" Axe D™},
respectively, where A € X™@, In order to facilitate the statement of the properties which
we now study, we assumé throughout this section that all generated sets under
consideration are nonempty.

The following three definitions are motivated by classical results in cone polarity

(see, e.g., [14,16]).

2.1 Farkas property: For any A € X™*n and any ¢ € X", exactly one of the

following holds:
(@ Jye (D™* suchthatyA=c.
() Ixe X"suchthat Axe D™andcxe D. [J

2.2  Minkowski property: Every finitely constrained set is finitely generated. []
2.3  Weyl property: Every finitely generated set is finitely constrained. []

The following additional properties are motivated by results established for the respective

dualities associated with blocking polyhedra and antiblocking polyhedra (see [7]).

2.4 Lehman property: Every finitely constrained set has a finitely constrained

dual. [J



2.5 Fulkerson property: Every finitely constrained set has a finitely generated

dual. [J

Note the similarity between the Lehman and Fulkerson properties and Corollary
1.13, which asserts that finitely generated sets have finitely constrained duals. The latter
property holds for any (X,D)-duality, however, in contrast to 2.4 and 2.5, which hold
only in certain instances. For example, with X = Q and D = Z we have that since Qnr={x
e QM 0xy + .. +0xpe Z}, theset S = Qn is finitely constrained. But S* = (x e QM
Sx € Z} = {0} and S* cannot be represented by finitely many constraints of the form sx €

Z, where s € S. Thus S* is not finitely constrained and so the Lehman property fails for
(Q,Z)-duality. Similarly, for X = R, and D =[1l,), theset S = {x € Rf_: x12 1} is

finitely constrained, while the dual $* =S is not finitely generated. Thus the Fulkerson

property fails for (R4, [1,00))-duality.

We now show that the combination of the properties of Lehman and Fulkerson is

equivalent to the Minkowski property.

2.6 Proposition: For a specific (X,D)-duality, the Minkowski property holds if and
only if the Lehman and Fulkerson properties both hold.

Proof: Suppose the properties of Lehman and Fulkerson are valid. Then S finitely
constrained implies (Lehman) that S* is finitely constrained, which in turn implies
(Fulkerson) that S** is finitely generated. But now 1.4(e) implies S = S**, since S is
constrained. Thus the Minkowski property holds. Conversely, if the Minkowski property
holds and S is finitely constrained, then S is also finitely generated and 1.13 implies that $*
is finitely constrained, so that the Lehman property holds. Applying the Minkowski
property to S* shows that S* is finitely generated, hence the Fulkerson property also is

valid. [
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We note that the property, "Every finitely generated set has a finitely generated dual.”, is
equivalent to the Minkowski property; this fact is an easy consequence of Corollary 1. 13.
The Farkas property has well-known algorithmic implications for decision

problems of the following form.

2.7 Problem: Given Ae X™"andce X" is there a solution y € (D™)* for the

linear system yA =c?

When one can demonstrate in polynomial-time that a given vector y satisfies alternative
2.1a, Problem 2.7 is in the class NP of decision problems. When the Farkas property
holds and one can validate in polynomial-time that a given vector X satisfies alternative
2.1b, Problem 2.7 is in the class co-NP of decision problems. Thus validity of the Farkas
property suggests that Problem 2.7 is in the problem class NP M co-NP, which in turn
suggests the likelihood that Problem 2.7 is in the class P of polynomial-time solvable
decision problems. For a more detailed discussion we réfer the reader to [8].

In order to relate the Farkas property to the others, we first establish equivalent

statements for it.

2.8 Theorem: For a specific (X,D)-duality, the following are equivalent:
(@) The Farkas property holds.
(b) Every finitely generated set is constrained.
(©) IfS ={xe X% Axe D™}, where A € X™*", then S$* = (yA: y e
(D™*}.

Proof: Since (c) stipulates that any finitely generated set is in fact the dual of a finitely
constrained set, clearly (c) = (b). Also, if a finitely generated set T={yA: ye (D™*} is
constrained, then by Proposition 1.4e and Corollary 1.13 we have T = (T*)* = ({x e X™
Ax € D™})*. Thus (b) = (c).

11



We may restate alternatives 2.1a and 2.1b as (@) c € {yA: ye (D™*} and

®MYce ([xe X™ "Ax'e D™))*. Since the Farkas property asserts that 2.1a holds if and

only if 2.1b fails, we conclude that the Farkas property is equivalent to
ce (yA: ye OD™*} o ce ({xe X" Ax e D™)*.

That is, the Farkas propertyw holds if and only if
(yA: ye D™*}) = ((xe X" Axe D™))*.

Hence (a) and (c) are equivalent. []

Note that 2.8c is actually the "dual" result to that expressed in Corollary 1.13.
Furthermore, the form of 2.8c shows immediately that the Farkas property implies the

Fulkerson property.

2.9 Corollary: For a specific (X,D)-duality, if the Farkas property holds then the
Fulkerson property also holds. []

Note also that 2.8b serves to highlight the distinction between the Farkas and Weyl
properties, indicating that the Weyl property is stronger (see Theorem 2.10 below), since it
concludes that finitely generated sets are finitely constrained. This distinction is evident if
one considers the (R,R.)-duality of convex cones in geometric terms. Here both the
Farkas and Weyl properties are valid. The Farkas property asserts that either a vector ¢ is
in the cone K generated by the rows of matrix A (i.e., 3y 20s.t. yA =c¢) or it is not, in
which case some hyperplane defined by x separates ¢ from K (i.e., Ixst Ax20,cx<
0). On the other hand, the Weyl property makes the stronger assertion that, since K is
(finitely) generated by the rows of A, it can also be described by finitely many constraints
(.e., K = {x: Bx 2 0} for some matrix B); thus when ¢ ¢ K, one of the finitely many

rows of B may be used to separate ¢ from K.
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2.10 Theorem: For a specific (X,D)-duality, the Weyl property holds if and only if the
Farkas and Minkowski properties both hold.

Proof: Assume the Weyl property holds. To see that the Minkowski property is also
valid, suppose S = {x € X™: Ax € D™} is a finitely constrained set. By 2.8¢, S* is
finitely generated, and so the Weyl property implies that S* is finitely constrained.
Applying 2.8c to S* now shows that S** is finitely generated. Since S** = S, the
Minkowski property follows.

For the reverse implication, assume that the Farkas and Minkowski properties are
validand let S = {yA: y € (D™)*} be a finitely generated set. Suppose T = {x € X™ Ax
e D™}. The Minkowski property now implies that for some matrix B € Xpa T={yB:y
e (DP)*). By applying 2.8¢ and then 1.13 we obtain that

S=T*=({yB: ye DP)*H*=(xe X" Bx e DP}.
Thus the Weyl property is valid. [J |

We note that Theorem 2.10 provides abstract justification for the observation of
Stoer and Witzgall [16, p. 57] concerning the classical results of cone polarity: "The
theorems of Minkowski and Farkas may be derived from the theore;m of Weyl. However,
the theorems of Farkas and Minkowski must be combined in order to yield the theorem of
Weyl." Proposition 2.6 shows that the Lehman property is implied by the Minkowski
property. This relation is actually strict, since in blocking duality X = R4, D = [1,0)),
for example, the Lehman property holds but the Minkowski bpr0perty fails. Thus it is of
interest that the Minkowski property can be replaced by the Lehman property in Theorem

2.10, thereby providing a sharper characterization.

2.11 Corollary: For a specific (X,D)-duality, the Weyl property holds if and only if
the Farkas and Lehman properties both hold.
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Proof: The "only if" assertion is immediate from 2.6 and 2.10. To see the "if" part, note
that when S is finitely generated, 2.8b implies that S is constrained, hence S = S**. Also,
1.13 implies that S* is finitely constrained, hence the Lehman property implies that SH**

(=S) is finitely constrained. [J

The relationships just derived actually describe all logical dependence among
properties 2.1-2.5. Indeed, one can verify that, with respect to properties 2.1-2.5, an

(X,D)-duality may:

i)  satisfy only the Fulkerson property (e.g., X = R4, D = [0,1], "anti-

blocking duality™);

ii) satisfy only the Lehman property (e.g., X = R4, D = [1,), "blocking
duality” or X = Q, D= Z,, see Section 6);

iii)  satisfy only the Fulkerson, Lehman and Minkowski properties (e.g., X =
Z,D=2Z.,, see Section 5);

iv)  satisfy only the Farkas and Fulkerson properties (e.g., X = Q, D =Z, see
Section 4);

v)  satisfy all five properties (e.g., X = R, D = {0} (or D=R})).

As seen above, the Weyl property (2.3) is the strongest of those stated here. In the
following section we investigate sufficient conditions for the validity of the Weyl property.
We conclude this section with a brief summary of the behavior of subspace and cone
dualities with respect to the properties investigated above.

For subspace duality we have X = R, D = {0} and (D™)* = RM, Thus the
generated subsets of RP are exactly the vector subspaces in R™. Here all generated sets are,
of course, finitely generated. The dual of any set S is the orthogonal complement of the
subspace generated by S. Since any nonempty subspace satisfies (§*)* = S, it follows that

any nonempty generated set is finitely constrained by a basis of its orthogonal complement.
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Hence the notions of generated set, finitely generated set, constrained set and finitely
constrained set are all equivalent in this case. Thus the five properties 2.1-5 are valid for
subspace duality. This discussion remains valid if one considers subspace duality in the

field of rationals (i.e., (Q,{0})-duality).
‘ For cone duality, with X = R, D =R, and (D™)* = IRT, the generated sets are the

subsets of RN which are closed under nonnegative linear combinations, that is, the convex

cones. In contrast to the subspace case, not all generated sets are finitely generated;
"circular” cones, for instance, are not finitely generated. Also, not all convex cones are
constrained, as is demonstrated in Example 1.10. It can be shown (see [14, p.121] fora
proof) that a cone is constrained if and only if it is topologically closed. Furthermore, not
all constrained cones are finitely constrained. However, properties 2.1-5 are all valid for
cones and in the following section we indicate how to prove the validity of the Weyl
property (and hence of all the others) in this setting. This proof remains valid if one

considers cone duality in the rationals ((Q,Q+)-duality). However, closure under this

duality is not equivalent to topological closure. As shown by Hartmann [11], a set S is

closed under (Q,Q4)-duality if and only if S is topologically closed and its lineality space

has a basis of radonal vectors.

3. Validation of Duélity Properties

We now consider the question of determining whether the properties 2.1-5 are valid
for a specific (X,D)-duality. Since the Weyl property (2.3) has been shown to imply the
others, we focus attention on means for validating it. One approach is based on using an
"elimination procedure” under which finitely generated sets have their representation altered
until the validity of the Weyl property becomes obvious. We discuss this now for cone

duality, using Fourier-Motzkin elimination.

‘Suppose that K ¢ RP is a nonempty, finitely generated cone; i.e., where the rows

of A e RMXn constitute a set of generators for K, K = {x € R™ 3y e R™ such that
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yA = x, y 2 0 is consistent}. By applying Fourier-Motzkin elimination (see, e.g., [16]),
we eliminate y to obtain an equivalent (in terms of consistency) homogeneous linear
inequality system in x only, say {Bx 2 0} for some B € RPX0. Thus we have K={xe
RN: Bx = 0}; hence K is finitely constrained, establishing Weyl's result.

Gauss-Jordan elimination can be similarly used to establish the Weyl property for
subspace duality (see [17]) and in Section 4 below we make similar use of "unimodular”
elimination in studying (Q,Z)-duality.

In [5] Dixon presents an algebraic framework for linear duality similar to that
studied here and obtains general conditions under which the Farkas property (2.1) holds.
We now discuss his result and show that it may be altered slightly to obtain a
corresponding theorem for the Weyl property. The development here closely follows that
of [5].

Throughout the remainder we assume that X = R. Following [5], we call any
surjective X-linear function f: X" — X™ (where n 2 m) a retraction; i.e., a retraction f is of
the form f(x) = Ax for some matrix A € Xmxn with rank m. Let 8 be a collection of
subsets of (X1 u X2 U ...) and denote Sy = {Se 8 :S¢ X"} forn=1.2,... Wesay
that S is closed under retractions provided f(S) € 8 v_vhenever n>1,Se Spandfisa
retraction defined on X". The family of all finitely generated sets provides an important
example; this family is closed under retractions because f((S)) = o(f(S)) for any S C X"
and any retraction f defined on X", The following theorem provides conditions under
which all sets in a family 8 closed under retractions are constrained. In particulaf, by
taking S as the family of all finitely generated sets, it yields conditions under which the
Farkas property holds.

3.1 Theorem (Dixon [5]): LetS be closed under retractions. Then every S € 8 is
constrained provided:

(a) S** =S for all S € S (the one-dimensional case).
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(b) Foreachn22,Se 8pandze XS, there exists an X-basis of X", say
uj,...,up, for which (z+Xu;) NS = O (thereis a line through z which does

not intersect S).
Conversely, if every S € S is constrained and R (=X) is a principal ideal domain, then (a)

and (b) must hold. [

In [5] Dixon uses Theorem 3.1 to obtain validations of the Farkas broperty for several
(X,D) pairs, including subspace (X =R, D = {0}), cone (X =R, D =Ry) and integral (X
=@, D = Z) duality. He also shows that the Farkas property holds for the case in which D
is a principal ideal domain and X is its field of quotients (see, €.g., [13]); this case is
treated in more detail in [2].

We now modify Theorem 3.1 to insure that all sets in a family 8 closed under
retractions are finitely constrained, which, when S is taken as the family of all finitely
generated sets, amounts to establishing conditions under which the Weyl property (2.3)

holds.

3.2 Theorem: LetS be closed under retractions. Then every S € 8 is finitely
constrained provided:
(@) Every S € 8 is finitely constrained (the one-dimensional case).

(b) For each n > 2 and S € Sy, there exists a finite collection of X-bases of X",

say {ull,...,ulll}, (ukl,...,ulfl}, such that to each z € X™S there

corresponds an index j, 1 £j <k, for which (z+Xujl) N S =@ (there is a

finite set of directions {ui,...,uli} such that the line through z in a least one

of these directions does not intersect S).

Conversely, if every S € 8 is finitely constrained and R (=X) is a principal ideal domain,

then (a) and (b) must hold.
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Proof: Our proof follows that given in [5] for Theorem 3.1. First, assume that (a) and

(b) hold. We will use induction on n to prove that every S € 8 is finitely constrained. By

(a), this is true for-n = 1. Assume that the property holds for 1,...,n-1, where n 2 2 and
let S € S,. Condition (b) now provides a (finite) collection of X-bases, {u}, Uy }

{uy,.up,} such that for every z € X™S we have (z+Xu31) N S = @ for some j €

(1,2,....k}. Forj = 1,2,...k, consider the retractions fj: X — Xn-1 defined by
fi(on u’l + ..+ 0p ui‘) = (01,....0n). Then fj(S) € Sp-1, and for any x € X" we have:

fi(xy € £(S) & (x-5) € Xu} forsomese S & x+Xul) N S = B.

Thusz e S implies that for some j, fj(z) ¢ fj(S). By the induction hypothesis, there is a
finite set {aJ )} c Xn-1 such that

£(S) = (xeXn-l: dx e D, 1<i<p().

Let Aj e X® " be marrices for which fj(x) = Ajx, 1<j<k. We claim then that
={xe X™ (gAjxe D, 1<j<k 1 <i<p(}.

Clearly, z € S.-implies fj(z) = Ajze £i(S) for any j and hence (agAj)z = a{(Ajz) e D, for
1<j<kand 1 <i<p(Q). On the other hand, when z ¢ S, Ajz= fj(z) ¢ £;(S) for some
index j € {1,2,....k}. Thus the claim is valid and hence every S € 8 is finitely
constrained, completing the induction.

For the converse assertion, assume now that X is a principal ideal domain and that
every S e 8 is finitely constrained. Then condition (a) holds trivially and to establish (b),

‘let S € Sy, where n > 2. Since S is finitely constrained, there are elements vi,...,vk € X!

suchthat S = {x e X0: vixe D, 1 < j <k}. Corresponding to each j, 1 <j <k, we now

construct an X-basis for X1, {uj ,...,ujn} for which Vjujl' = 0. Note that this will complete

the proof, since then for z € X“\S we have vjz ¢ D for some index j, 1<j <k; hence for
any vector of the form z+5u with & € X, we have vJ(z+8u1) = vjz ¢ D so that
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(2+X1)) A S = @, establishing (b). To construct the desired bases, fix j, 1 <j <k, and

write vj= oj€1 + ... + Onln, where e;, 1 <1< n, are the unit vectors of XM and each
o; € X. Let d be the greatest common divisor of a1 and & and choose B1, Bp so that

a1 = dPa, op = d(-PB1). Clearly a1B1 + a2PB2 = 0. Moreover, the greatest common
divisor of P1 and By is 1 and hence there exist ¥;, ¥, € X such that 3,7y, - B,Y, = 1. Now
define uJ1 ,...,ujn by

u) = Bre1 + Boe2. ) =1oe1 + viez and w=¢ fori>2.

Since
By B, O
det| %, Yy, 0 | =87 -BY=1,
0 0 L,

(here I,.2 is the (n-2) X (n-2) identity matrix) it follows that the matrix which transforms

(e1,...,en) 1NtO oy ,...,ujn) is invertible over X. Hence, {qu,...,an} is an X-basis of XM

Note also that the relation a1By + o2f32 = 0 implies that Vjuj1 =0, asrequired. []

To illustrate the manner in which Theorem 3.2 may be used to establish the Weyl

property, we consider again subspace and cone duality. For subspace duality, let 8 denote

the family of all (nonempty) vector subspaces of RA, forn = 1,2,... . The only nonempty
subspaces of R are {0} ={x € R: 1x =0} and R = {x € R: 0x =0}; hence 3.2a holds.
Now let S be a subspace of R? for some n22. If S # (0}, then let uj € S\(0} and extend

uj to a basis {uy,...,un} for R0 Forany z € RMS we have
(z+Ru))NS#@ e s-ze Ruy forsomese Seze S.

Therefore z ¢ S implies (z + Rup) N S = @, and hence 3.2b holds in this case (a single

basis suffices in this case). If S = {0}, let u; and u be any two linearly independent

vectors of R (recall n > 2). For each z#0, at least one of the lines z + Ruy, z + Rup does
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not contain the origin, so that 3.2b also holds in this case. The validity of the Weyl

property for (R,{0})-duality thus follows.

For the cone case, let S be the family of all (nonempty) finitely generated cones in
RO forn = 1,2,.... Again, 3.2a is trivially true, as the only finitely generated cones in R
are {0} = {xe R: 1x20,(-Dx20},R+={x¢€ R: 1x20},R.={xe R: (-1)x 20}
and R = {x e R: 0x 2 0}. Now suppose K € Sy, where n 2 2. If K is simply a ray
(half-line), say K = {yu1: y 20}, then let up be any nonzero vector of RM not parallel to
uj. Then it is easy to check that for each z ¢ K, at least one of the lines z + Ruy, z + Ruy

fails to intersect K. If K is not a ray, suppose K has generators G = {uy,....ux}, where k

>2. Here, (z+Rup "nK#@ifandonlyifze K.(G U {-ui}), the cone generated by G
U {-u;}. Stoer and Witzgall [16, p. 58] show that {’5 X.(G U {-y;}) = K, provided K is

not a ray. Hence for every z ¢ K, at least one of the lines z + Ruj, 1 <1 <k, does not
intersect K. Thus 3.2b holds and the Weyl property is valid for cone duality X=R,D =

R.). It is of interest to observe that the proof obtained here is essentially the same as that

given in [16].

4. Integral duality

In this and in the following sections we examine specific instances of (X,D)-duality
which are related to integer programming. As is customary in this subject we will restrict
attention to the case of rational data. In particular, when we refer to subspace and cone

duality in the remaining sections we mean (Q,{0})- and (Q,Q.)-duality, respectively. In

order to distinguish among the duals of a set S under each duality we will use the symbols

SL, S* and S* to denote the dual of a set S C QM under (Q,{0})-, (Q,Q4+)- and (Q,Z)-
duality. |

We term integral duality (or simply Z-duality) the (X,D)-duality obtained by taking
R =X =Q and D=2Z. In this case
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(DM* = (x e QM xye Z, Vye Z") =Zm,

Hence, the generated sets here are exactly those subsets of Q" which are closed
under integral linear combinations, that is, modules over the ring of integers Z (or Z-
modules for short). Given S C Q", the set M/(S) of all finite integral linear combinations of
elements of S is called the Z-module generated by S. If IS! is finite, M(S) is finfzely

generated. Hence, finitely generated Z-modules are sets of the form
M= (yA: ye ZM}, whereAe Q@mxn,

Not all Z-modules are ﬁnitely generated. The set of the dyadic rationals D = {m/2™M:
m,n e Z)} is an example of a Z-module which is not finitely generated. Vector subspaces
of Q0 (except for {0}) constitute another important example of such Z-modules.

We will denote the (Q,Z)-dual of a set S € Q by S¥. Hence S* is defined by S* =
{x € Qn: Sx € Z}. Recall that by Corollary 1.9 S* is a generated set, i.., Z-module,
for every S C QP. Z-modules of the form M = S¥ for some S C Qn are called constrained
Z-modules. If, in addition, IS! is finite, M is said to be finitely constrained. Hence, finitely

constrained Z-modules are sets of the form {x € Q" Ax e Zm}, where A € QM1

The general duality properties derived in Section 1 immediately imply the following

»

properties for integral duality.

4.1 Proposition: Let S,T denote subsets of Qn.
(@) SCcT= S*o T*.
(b) (SUTH=S*NTH
©) S ¢ S##,
d)  S* =St
() S=S* & S isaconstrained Z-module.
()  S**is the smallest constrained Z-module containing S.

(g)  If S generates the Z-module M, then S* = M*.
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(h) IfS={yA: ye ZM}, where A € @Qmxn_then
St=(xe Qn Axe ZM}.
) I£S and T are Z-modules then (S+T)* =S¥ " T#.  []

Proposition 4.1(h) provides an expression for the (Q,Z)-dual of a finitely generated
Z-module. It is also of interest to obtain an expression for the (Q,Z)-dual of Z-modules
which are the sum of a finitely generated Z-module and a subspace (as we will see, in

Theorem 4.9 below, these are exactly the constrained sets for Z-duality).

4.2 Proposition: LetS={yA+2zB: ye Qm, z € ZP}, where A e QM and B €
@Qpr>xn_ Then

S* = {x e Q: Ax =0, Bx e ZP}.

Proof: S=T+ U, where T= {yA: ye QP®}and U= {zB: z€ ZP}. By Proposition
4.1(h), U* = {x € QM Bx e ZP}. Now

T# ={xe Q" (yAxe Z,Vye QM)
={xe Q" y(Ax)e Z,Vye Qm}
={xe Qn Ax=0}

Hence, by Proposition 4.1(i),

S#=TFAU*={xe Qn: Ax=0,Bxe Z°). []

Next we shall examine the properties of finitely generated and finitely constrained

Z-modules. As seen in Section 2, the study of these properties for subspaces was greatly

simplified by the fact that the properties of being generated, finitely generated, constrained
and finitely constrained are all equivalent. For Z-modules, as in the cone case, this is not
true. We have already seen that the set D of dyadic rationals provides an example of a Z-

module which is not finitely generated. D also gives an example of a Z-module which 1s
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not constrained (just observe that D¥ = {(x € Q: mx/2"e Z,V mn € Z) = {0}, which
implies D¥ = Q = D). Itis also easy to see that not all constrained Z-modules are finitely
constrained. Let S = {x e Q": Bx =0}, where B QmXn_ be a subspace of Qn of
dimension less than n. Then S is constrained (since S = {yB: y € Qm}#) but not finitely
constrained, since the restrictions Bx = 0 cannot be replaced by a finite number of
restrictions of the type ax € Z (see [2] for more details).

Actually, this example shows that the Weyl and Minkowski properties, as described
in Section 2, cannot hold for Z-duality. Indeed {0} is an example of a finitely generated
Z-module which is not finitely constrained. Also, QM is a finitely constrained Z-module
(note that Q@ = {x € Q" Ox e Z}) which is not finitely generated. The Lehman property
also fails: @0 is finitely constrained but its dual {0} is not.

The difference between the duality properties of Z—mociules and cones results from
the fact that subspaces behave differently with fespect to these two dualities. Subspaces
can be viewed both as finitely generated and finitely constrained cones. However,
subspaces are neither finitely generated nor finitely constrained Z-modules (unless their
dimension is O or n, respectively). In order to obtain an equivalence property between
finitely generated and finitely constrained Z-modules, we have to treat their span and
lineality explicitly (the lineality of a Z-module M C Qn is the largest subspace contained in
M; i.e., it is the set of all vectors x € QM such that Ax e M, V A e Q). Thatis, we must
deal with sets of the form {yA + zB: ye QM, z e ZP} on the one hand and {x € Q™M Cx
=0, Dx € ZM} on the other. We shall show that in fact these two forms are equivalent,
which means that Weyl-, Farkas-, Minkowski-, Lehman- and Fulkerson-type properties
are valid for these "extended” concepts of finitely generated and finitely constrained sets.

To prove the equivalence between the extended notions of finitely generated and

finitely constrained Z-modules, we use the concept of unimodular elimination, a refinement

of Gaussian elimination which preserves integrality.
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A matrix P € ZM*0 is said to be unimodular if detP =% 1. Observe that if P is
unimodular, then P-1 exists and has integral entries. Hence, for every y € QM we have
ye ZM & yP e Z™.

Now, let A € QmXn  let P € ZM*M be unimodular and define B = PA. Then,

using the fact that y € Z™ <> yPe Z™, we have
(yA: ye ZM} = {((yP)A: ye 2™} = (yB: ye ZM}.

Thus, the module generated by the rows of a matrix A does not change when A is
premultiplied by a unimodular matrix.
This fact can be used to row-reduce a rational matrix to a triangular form without
altering the Z-module which it generates. Let
41 312

B3 oY)

A=

be a rational matrix. Let L be an integer such that Lajj and La; are integers. Let g =
ged(Lagg,Lazg). It follows from the Euclidean algorithm (see [13]) that there are integers p

and q such that pLaj) + gLa) = g. Consider the matrix

p q

P=
-La, /g La),/g

P has integral entries, its determinant is 1 (i.e., P is unimodular) and PA is of the form

a, 4,

0 2,

1

By repeatedly applying this process, an arbitrary rational matrix can be row-reduced to an

upper triangular matrix which generates the same Z-module. We call this process

unimodular elimination.

By combining Gaussian and unimodular elimination we obtain the following:
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4.3 Theorem: Let M= {yA +2zB: ye QM,ze ZP} where A € Qmxn gnd B €
Qpxn, Letr=rank(A) and s = rank([g])—rank(A). Assume that the first r+s columns of

[g] are linearly independent. Then there are matrices A' e Q0 and B' € Q%" such that

M={yA' +zB: ye Q, z¢€ Zs}, with

A’ A | A2
BT |67 B, T B, |

where A; € QU and By € QS*S are upper triangular matrices with nonzero diagonal

entries.
Proof: By using Gaussian elimination, we can row reduce [B] to a matrix of the form
r{|A A

m_r{o O
pfl0 B

where A € QX is upper triangular.
This is equivalent to premultiplying [g] by a matrix of the form

P, O
P= ,
P, L

where P; € QMM is a nonsingular matrix and Ip denotes the p X p identity matrix.

Now, by using unimodular elimination, we can find a unimodular matrix Q such

that Qﬁ is of the form

B, B,
o o}’

where B; € Q%S is upper triangular.
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Hence, premultiplying [‘g] by the product
I 0 P, 0 P, 0
o ol L|T]® @

yields a matrix of the form:

1 ,
MM LA
0 0 0
O BB B
0. 0 0
The correspondence
P, O

1
yal =2 e, q

defines a bijection on QM x ZP, since:

e 2P = 27Qe ZP < ze ZP.

Thus:
. A
xe M e3ye Qn,3ze ZPsuch that [y,z] [gl=x

P 0] 4
e 3y'e Q™,3z e ZP such that [y',2]] [ B] =X

QpP, Q
N
0
e 3JyeQm,3z e ZP suchthat [y',z1| B'|=x%
0
" " " " A'
o3Jy'e Q,32"e Zssuchthat [y"z"] [g] =x. O

We can now state and prove the following:
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4.4 Theorem: LetS = {yA +zB: ye Qm, ze ZP}, where A e Qmxn and B € QP*1,
' Then there are integers 1, s and matrices C e Q™0 and D € Q¥ such that

S={xe Qu Cx=0,DxeZs}.
(Note that by Proposition 4.2 this implies that S is constrained.)

Proof: By Theorem 4.3 we can assume, without loss of generality, that

where A; € QMM and By € QP*P are upper triangular matrices having nonzero diagonal

entries.

Hence, using Gaussian elimination, we can find an invertible matrix Q such that
A Im 0 0
sl9°lo 1 o

S ={x: x=yA+zB,ye QM ze ZP}

Therefore

= {x: xQ=(yA +2zB)Q,ye Qm, ze ZP}
= {x: xQ = (y,z,0),y e Qm, ze ZP}
= {x: xQ € Z, for m+1 <j <m+p and
xQl = 0, for j > m+p}
(where QI is the jth column of Q)
= {x: Dx e ZP, Cx =0}, where

D, _ [Qm+1,...,Qm+p]t and C = [Qm+p+l’m’Qn]t. D

Theorem 4.4 is a Weyl-type property. By an analysis similar to that used to establish the
results in Section 2, corresponding Farkas-, Minkowski-, Lehman- and Fulkerson-type

properties are obtained. Hence, we have
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4.5 Corollary:

(a) Forany Ae Qmxn, Be QpPxn and ¢ € Qn exactly one of the following is true:
() Iye QM ze ZP such that yA + zB =¢;
(i) 3 x € Qsuch that Ax=0,Bx e ZPand cx & Z.
(b) IfS={xe Q" Ax=0,Bxe ZP}, where A € Qmxnand B € QP*1,
then S* = (yA +zB: ye QM, ze ZP}.
) IfS={xe Q" Ax=0,Bxe ZP}, where A € QM*n and B € QP*1,
then there are integers r and s and matrices C € Q@ and D € Q¥ such that

S={yC+zD: ye Q,ze Z8}. [

Now, let us again consider the Weyl, Minkowski, Farkas, Lehman and Fulkerson
properties for Z-duality, in the strict sense defined in Section 2. Recall that the Weyl,
Minkowski and Lehman properties fail. However, the validity of the extended versions of
these properties (derived in Theorem 4.4 and Corollary 4.5) is sufficient to show that the
Farkas (hence also the Fulkerson) property still holds in the original sense. Indeed, taking

A vacuous (i.e., m = 0) in 4.5(a) yields:

4.6 Corollary: The Farkas property holds for Z-duality. That is, for any B € QpPxn

andce Qn, cxactly one of the following is true:

(i) 3Jze ZPsuchthatzB=c¢;
(i) Ixe Q" such that Bx € ZP and cx ¢ Z. O

We now focus on the problem of characterizing constrained (or closed) Z-modules,
i.e., Z-modules with the property that $## = S.

We will show that the Z-modules which are constrained are precisely the ones
which are the sum of a subspace and a finitely generated Z-module, i.e., modules of the
form {yA + zB: y € Qm, z € ZP) or, equivalently, of the form {x € Q" Cx =0,

Dx e ZP}. Observe that, in this aspect, Z-duality differs from cone duality, since not all
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constrained cones can be expressed as a sum of a subspace and a finitely generated cone

(recall that circular cones are examples of cones which are constrained but not finitely

generated).

We will use the fact that a submodule of a finitely generated Z-module is again
finitely generated. This is a well-known theorem in algebra. However, we present here an
elementary proof of this result which uses standard techniques in integer programming (see
[1, p. 496] for another simple proof).

First we need the following:

4.7 Lemma: Let M C Q0 be a Z-module. Then M is finitely generated if and only if

there is a nonzero k € Z such that kM ¢ Z™.

Proof:

(a) (=) LetM = {yA: ye Z™}, where A € Qmxn_ Since all entries in A are
rational numbers, we can choose a nonzero integer k such that kA € Zmxn  Hence kM =
(ykA): y e ZMm} C2ZM

(b) (<) Suppose that N =kM C Z". Let S be the subspace generated by N. Let

a1,...,.ar denote elements of N such that {a1....,ar} constitute a basis of S. Forany x € N,

there exist rationals 1,...,0t; (uniquely determined) such that x = Zli’zl aai. Define T =

{xe N: 0<a;<1,Vi}). (Observe that T 2 {aj,...,ar}). Since N C Zn, it is clear that T
is finite. Let T = {t1,...,ts}. Clearly, {Z?=1 yiti: yi€ Z} ¢ N, since N is closed under

integer linear combinations.

Now, let x € N. We can express X as

x = 5: a2 = i Lo, Ja; + 2 (o -LaiJ)ai-,

i=1 1i=1 1=1
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which shows that every x € N is an integer combination of elements of T. Hence, N C

(Z, vitit vie Z}.

Therefore, we proved that N = {Z?=1 yiti: yi € 2}, which shows that N (and
hence M) is finitely generated. []

4.8 Proposition: Let M C QP be a finitely generated Z-module. Then any

submodule of M is also finitely generated.

Proof: Let N be a submodule of M. By Lemma 4.7, there exists a nonzero ke Z

such that kN C kM C Zn. But, again by Lemma 4.7, this implies that N is finitely

generated. [J

Now we are ready for the main result of this section.

4.9 Theorem: Let M C QM. Then M is a constrained Z-module if and only if there

exist matrices A € Qmxn and B € QPXn such that M = {yA + zB: ye QM z e ZP}.

Proof: The "if" part was established in Theorem 4.4. To show the converse, suppose
that M is a constrained Z-module. Thatis, 3 S ¢ Q" such that M = S*={xe QM Sxe
Z).

Let m be the dimension of the subspace spanned by S. We consider two cases:
(@ m=n
Since S is full dimensional, we can choose n linearly independent elements si,...,Sn
e S. Let Sp be the matrix which has rows s1,...,5n and let Mg = {s1,....sn}% = {x € Q™
Sox € Zn}. ’
Then
xe Mg &
Sox e 2" &

dyeZnsty=Sx &
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JdyeZhtst x= S'Oly.

Thus, Mg = {(So)ly: y € Z"}, which shows that Mo is finitely generated.
But since {s1,...,sn} € S we have M € Mo. Hence Proposition 4.8 implies that M

is finitely generated.

(b) m<n

Let T = [t;t2...tmtm+1---tn] € QPX0 be a matrix with columns ty,...,ty, Where
{tm+1.-.-tn} is a basis of the subspace orthogonal to S and {ty,....tn} is a basis of QM.

Let ST denote the set of all vectors of the form sT, where s € S. Since the last n-m
columns of T are orthogonal to S, the last n-m components of all elements of ST are .zero.
We will represent this by writing

ST=[S 0], whereS cQm.
m  nm
" (Actually, "post-multiplying” S by T is equivalent to doing "column operations"” in
S to reduce the last n-m "columns” to 0.)
Define N=T-IM = {T-!m: me M}. Then
N ={ye Q™ Tye M}
={ye Q" STye Z}
={ye Qu [S' Olye Z}
={y=(y1.y2: Syi€ Zandyz € Q")
= {(y1,0): Sy1€ Z} + {(O;y2): y2€ Q™™M}.

Since rank S' = m, by part (a) we conclude that {(y1,0): S'y1 €Z} is finitely

generated (say by the columns of [‘8], where A € QM>p),

Thus

A 0
N= {[O]w +[ I]yzz we ZP,yze Q“"m},

kand hence
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A 0
M=TN={T w + T I yztweZP,yzeQ“‘m},

0

which is the desired result.  []

In [2] we also give an alternative proof of Theorem 4.9, based on geometrical

properties of Zn. As a by-product of that proof one can easily derive an additional
characterization for the Z-modules which are constrained under Z-duality: these are

precisely the Z-modules which are topologically closed (this result was also pointed out to

us by a referee, who suggested a shorter, more algebraically oriented proof). The approach

used here, which is fundamentally based on Proposition 4.8, has, however, the advantage

of being applicable to more general dualities, namely dualities in which X = Qand D is any
subring of Q. (Observe that D contains 0 and 1, as required in Section 1.)

Note, first, that unimodular elimination is still appropriate for D-modules. That is,
given a unimodular matrix P € Z™*™, we have {yA: y € DM} = (y(PA): y € D™}, for
any A € QM1 (this follows from the fact that, for P unimodular, y € D™ & yP € D™M).

Therefore, an analogue of Theorem 4.4 remains true for this case; i.e., sets of the form S =

{yA +zB: y e Qm, ze DP} are constrained under (Q,D)-duality whenever D is a subring
of Q.

The basic result used to prove the converse was Proposition 4.8. A similar result
holds for modules over any subring D of the rationals. That is, submodules of finitely

generated D-modules are again finitely generated (see [2] for an elementary proof). This

implies that the proof of Theorem 4.9 remains valid with Z replaced by any subring D of

Q. Hence, we have the following:

4.10 Theorem: Let D be a subring of Q. Then S C @Qn is constrained under (Q,D)-

duality if and only if there exist matrices A € Qm>n and B € QP< such that S = {yA + zB:

ye Qm ze DP}. []
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We end this section by remarking that Theorem 4.9 can be stated in an even more
general context. Actually, the results concerning unimodular elimination remain true -
whenever D is a principal ideal domain and X is its field of quotients (see [18], for
example). On the other hand, principal ideal domains are special cases of Noetherian rings,
which have the property that submodules of finitely generated modules are again finitely
generated (see [10], Section 18). Hence the proofs of both implications of Theorem 49

proceed as before, allowing us to state the following:

4.11 Theorem: Let D be a principal ideal domain and X its field of quotients. Then
S ¢ X" is constrained under (X,D)-duality if and only if there exist matrices A € X™X0 and

B e XP*Msuch that S = {yA +zB: ye XM, ze DP}. [J

5. Nonnegative integral duality in Z

As seen in Section 2, the (X,D)-duality model is relevant to the study of the
problem of deciding whether there is a vector y € (D™)* such that yA =c. If X and D are
chosen in such a way that (Dp)* = ZT , the duality thus obtained is useful to the study of

the problem of existence of nonnegative integral solutions to 2 linear system. In this

section we investigate one such model: the case X =Z,D =Z, ((Z,Z.)-duality or simply
Z.-duality). In the next section we examine the case X=Q,D=2Z,.

The problem of deciding whether a linear system has a nonnegative integral solution
(i.e., the feasibility problem for integer programming) is "hard", in the sense that it is NP-
complete and, hence, no polynomial algorithm is known to solve it. Our duality models

will reflect this fact through the failure of the Farkas property.

First, we note that if X = Z and D = Z, we have:
(D™* = {xe ZM: xye Z;,Vye ZT} =ZT.

Hence, the generated sets here are the subsets of Z" which are closed under nonnegative

integral linear combinations, which we will call Z.-modules. Given S C ZD, the Z -
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module generated by S is the set o(S) of all nonnegative integral combinations of elements

of S. Finitely generated Z,-modules are those of the form o(S) for some finite S, i.e., sets

of the form {yA: y e ZT} where A € ZM>1,

The Z.,-dual of a set S C Zn is the set S* defined by S* = {x e ZM: Sx € Z+};

i.e., S* is the set of all vectors in Z" which make a nonnegative inner product with each

element of S (observe that the integrality of the inner product is guaranteed by the fact that
all sets involved are contained in Z). In other words, S* is the set of all integer-valued
points in the cone S* = {x € Q™ Sx 20} polarto S. A setS C Zn is said to be (finitely)
constrained if S = T* for some (finite) T C Z". Note that finitely Z.-constrained sets are
of the form {x € Z": Ax =0} for some A € Z™<N, Also recall that Corollary 1.9 implies
that every Z.-constrained set is a Z4-module.

From the results in Section 1 it immediately follows that:

5.1 Proposition: Let S,T denote subsets of Z". Then:
@ ScT=S* T*
(b)y (SuUTT*=S*NT*
() S ¢ S**
(d) S* = S¥¥x,
() S =S**& §isaconstrained Z,-module.
(f)  S** is the smallest constrained Z,-module containing S.
(g) If T generates the Z,-module S, then T* = S*,
(h) IfS={yA: ye ZT}, for some A € Z™¥0, then

$*={xe Z" Axe Z,).

In the definition of the Z.-dual of a set S C Z" we observed that S* is the set of all

integer-valued points in the cone S* polar to S. The next proposition emphasizes the

relationship between constrained sets under Z.-duality and constrained cones.
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5.2 Proposition: Let S CZn. S is (finitely) constrained under Z,-duality if and only

if S = Z0 A K for some (finitely) constrained cone K € Q.

Proof: First, suppose that S =T*isa Z.-constrained set. Then S = {x € Zn: Tx =20} =

T+ A Z0, where T+ = {x € Q0: Tx 20} is a constrained cone. Also, it is clear that if S is

finitely constrained (i.e., IT! is finite), then T+ is also finitely constrained.

Now, assume that S = Z0 N K, where K= {x € Q™ Tx 2 0} for some T C QM.

By properly scaling each element of T we can assume, without loss of generality, that

T C 2", Thus S = {x € Z": Tx 2 0}, which shows that S is Z,-constrained. If, in

particular, K is finitely constrained, it is clear that § is also finitely constrained. [J

The previous proposition related constrained Z.-modules to constrained cones.

Now, we establish the relationship between Z,-modules and cones from the point of view

of generation.

5.3 Proposition: Let K CQM be a cone, letS=KnN Z" and let T C Z". If the Z,-

module generated by T is S, then the cone generated by T is K.

Proof: Since T C K it suffices to show that every x € K can be expressed as a
nonnegative combination of elements of T. So, letx € K. Since K ¢ Qn, there is some
A > 0 such that Ax € Z0, which implies Ax € S. But T generates S as a Z,-module.
Thus, Xx can be expressed as a nofmegative integral combinatibn of elements of T. This

implies that x is a nonnegative comibination of elements of T, as desired. []

We can now improve the characterization of the Z.-constrained sets given in

Proposition 5.2.
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5.4 Proposition: LetS ¢ Z™ and let K C Q" be the cone generated by S. Then Sisa
(finitely) constrained Z.-module if and only if (i) K is a (finitely) constrained cone and (i1)

S=KnZn

Proof: By Proposition 5.2, (i) and (i1) immediatcly imply that S is Z4-constrained
(finitely constrained if K is).

Now, suppose that S is (finitely) Z.-constrained. By Proposition 5.2, S = K' N
Zn for some (finitely) constrained cone K'. But by Proposition 5.3, K' is the cone
generated by S, which shows that K =K' and hence that (i) and (ii) hold. [J

Proposition; 5.3 and 5.4 together with the theorems of Weyl and Minkowski for
cones, imply an immediate relationship between finitely generated and finitely constrained
Z.-modules. If a Z,-module S is constrained but not finitely constrained, thgn it cannot be
finitely generated (since this would imply that the cone generated by S is finitely generated
and hence finitely constrained, by Weyl's theorem). AnotI;cr way of stating the same
property is that if a finitely generated Z.-module is constrained, then it must be finirely
constrained.

We are now ready to discuss the validity of the Farkas, Weyl, Minkowski, Lehman
and Fulkerson properties for Z,-duality. Recall that, by Theorem 2.8, the Farkas property

holds for Z,-duality if and only if every finitely generated Z,-module is constrained. Let S
={yA: ye ZT}, where A € ZmX0, be a finitely generated Z,-module. It is easily shown

that the cone generated by Sis K = {yA: y € QT }, which is constrained by the Farkas

property for cones. Hence, Proposition 5.4 implies that S is a constrained Z,-module if

and only if S contains all integral points in K. This is not always the case. For example,

let S = {2y; + 3y2: y1.y2 € Z4+} C Z1. The cone generated by Sis K=Q,. Itiseasyto

see that 1 ¢ S; thus, S does not contain all integral points in K.
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" Therefore, the Farkas property (and hence the Weyl property) fails for Z-duality.

That is, given A € Z™X% and c € Z", i is not necessarily true that exactly one of the

following alternatives holds:
@ 3Jye Z_T such that yA =¢;

(i) 3Jxe Z"suchthat Ax20 and cx < 0.
The Minko;xski property, on the other hand, does hold for Z,-duality (see Trotter
[17]). Itis an immediate consequence of the following result usually attributed to Hilbert
[12] (see, e.g., Giles and Pulleyblank [91). See Schrijver [15, p. 232] for a brief

discussion on the origin of this result.

5.5 Theorem (Hilbert's finite basis theorem): Let K= {x € Qn: Ax 2 0}, where
A e Qmxn, be a finitely constrained cone. Let S = K M Z". Then there is a finite set

H C S such that H generates S as a Z,-module. []

5.6 Corollary: The Minkowski property (and hence the Lehman and Fulkerson
properties) holds for Z,-duality. []

Motivated by Theorem 5.5, we say that a set H = {hy,...,hx} CZ"isa Hilbert

basis if every integral vector in the cone generated by H can be expressed as a nonnegative
integral combination of hj,...,hx. Observe that Proposition 5.4 immediately implies the

following result.

5.7 Proposition: A finitely generated Z,-module S = {yA: y € ZT} is constrained

if and only if the set of row-vectors of A constitutes a Hilbert basis (in this case, we say

that A is a Hilbert matrix). []

A rational linear system {Axa < b} is totally dual integral (see Edmonds and Giles
[6]) provided the linear programming problem {min yb: yA =c,y 20} has an integral

optimal solution for each ¢ for which an optimal solution exists. Thus the Hilbert basis
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requirement of Proposition 5.7 is equivalent to the requirement that the system {Ax < 0} be
totally dual integral (see also Cook [4]5. That is, homogeneous totally dual integral
systems with integral coefficients correspond precisely to Hilbert bases which, in turn,

correspond (by 5.7) precisely to those finitely generated Z,-modules for which the Weyl

property holds.

We remark further that the failure of the Farkas property for Z,-duality can be seen

as another indication that integer programming is "hard". By the same token, we may also

expect that finitely generated Z;-modules which are also constrained (and in this case they
must be finitely constrained, as pointed out earlier) should be associated with instances of
integer programming problems which are "easy” to solve. The following theorem of

Chandrasekaran [3] shows that this is indeed the case.

5.8 Theorem (Chandrasekaran [3]):
There is a polynomial time algorithm that, given a linear system yA=c,where Ae

Zmxn and ¢ is an integral vector in the cone generated by the rows of A, either finds a
nonnegative integral solution y or shows that A is not a Hilbert matrix (i.e., that the Z4-

module generated by the rows of A is not constrained). [

It follows that Theorem 5.8 can be used along with any'polynomial-time algorithm for
linear programming (see [15]) in order to validate (in polynomial-time) which alternative of

the Farkas property holds, given a Hilbert matrix A and an integral vector c.

6.- Nonnegative integral duality in Q
We now investigate another Z,-duality model, which differs from (Z,Z+)-duality

only in that X is taken as Q instead of Z. This means that we are allowing rational data,

instead of all-integral data. In this section we compare the properties of these two dualities.
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We start by observing that for X = Q and D = Z, we still have

(D™* = {xe Qn: xye Z;,Vye ZT}=ZT.

Hence, as in (Z,Z,)-duality, the generated sets for (Q,Z.)-duality are those sets
(now contained in @) which are closed under nonnegative integral combinations (we will
continue to call such sets Z,-modules).

Recall that, under (Z,Z.)-duality, the dual S* of a set S ¢ Zn is given by S* =
S+ A Zn, where S+ is the cone polar to S. Under (Q,Z,)-duality, the dual of a set S C Qn

is given by

S* = {xe QM Sxe Z;}
={xe Qu: Sxe Z} N {xe Q" Sx=20}
=S* N S+,
where S* and S+ denote the duals of S under (Q,Z)- and (Q,Q4)-duality, respectively.

Therefore, every constrained set under (Q,Z+)-duality is the intersection of a
constrained Z-module and a constrained cone. A natural question to ask at this point is
whether the converse is true; i.e., is the intersection of a constrained Z-module M# and a
constrained cone K+ always constrained under (Q,Z,)-duality? The answer is no. For
example, let M# = Z and K* = Q. Then M* N K* =Z is not (Q,Z)-constrained, since Z*
={xe Q: xy e Z;, Vy e Z} = {0} and hence Z** = {0}* =Q=Z.

To obtain conditions under which M¥#¥ N K+ is (Q,Z,)-constrained we first
establish some notation. For any T C Q® we denote by 8(T), X (T) and M (T),
respectively, the subspace, the cone and the Z-module generated by T. If T is closed under
addition we denote by s(T) the lineality space of T, i.e., the set of all x € QM such that AX €
T for every A € Q. It is easy to see that for every T C QI we have s(T*) = s(TH = s(T*)

=TL, where T-lis the subspace orthogonal to T.
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6.1 Lemma: Let M C Qn be a Z-module and let K C QN be a cone. Assume that M
and K generate the same subspace S. Then

a) XM nNK)=K;

b) MM nNK)=M.
Proof: (a) Clearly, KM n K) ¢ K. To prove the reverse inclusion, let u € K. Since

S(K) = S(M), we have u € S(M). Hence, there are elements my,...,mkx € M and rationals
Al,...,Ak such that u = X li(=1 Aijm;. Let A be a positive integer such that AN € Z,
i=1,.,k. Then Aue M N K, which implies that u € X(M N K). Thus, K C

KM N K).
(b) Clearly, M(M N K) ¢ M. Now, select elements mi,....mg € M such that they
k .
form a basis for the subspace S generated by M. Let T = (xe M: x=2Z j=1 Oimi, with

0<o;<1). Each element m € M can be expressed as

m=2X am=2F logm+[Z K | @i-Laihmi] |

which is an integral combination of the elements myj,...,mk, < !1(=1 (o - Lai_i)mi), all of

which are in T. Thus, T generates M. Also, T is bounded, since for any x € T we have

k k
Il = 125 q oyl < 25y lmgll = 8.

Choose any relatively interior element u of K. As in part (a), there is a positive
integer A; such that Aju e M N K. Since Aju is again in the relative interior of K, we can
select a positive integer A7 such that the intersection of the sphere of center mg = AA1u and
radius S with S is contained in K. Since T C S and litll < & for all t € T, this implies that
mo+T={mg+t: te T} C K Infact, my+TCMn K, since mg € MandTg M.
Finally notice that each t € T is the difference (mg + t) - mg of two elements of mg + T.

Hence M(mg + T) 2 T and we have
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n(MmK);ﬂ(mo+D;>ﬂ,(T)=M. O

Using Lemma 6.1 we can now establish necessary and sufficient conditions under

which the Z-module M and the cone K satisfy M M K)* = M#* A K+

6.2 Theorem: LetM C Q0 aﬁd K C Qn denote a Z-module and a cone, respectively.

Then M A K)* = M# N K+ if and only if S(M) =8(K).

‘Proof: First, assume that M and K satisfy S(M) = S(K). By Lemma 6.1-we have
KM N K) =K and MM N K) = M. Therefore,

MANK* =MnK¥nMnKr=MM AR N (KM N K)*
=M# N K.

Now, suppose that (M N K)* =M# A K+. By considering the lineality spaces of the sets

on each side of this equality we have:

s(M#) N s(K+) = s(M N K)*), which is equivalent to
MinKi=MnNK)-™L

Using the fact that for any sets Ti1,T2 c QM we have T‘li N le =

(S(T7) + S(T2))4, this last equality {mplies that SM) + S(K) = S(M n K), which shows
that SM) =S(K)=SM NK). []

We can now obtain characterizations for constrained sets under (Q,Z,)-duality.

6.3 Proposition: Let TC Q" Then T is (QZ,)-constrained if and only if there exist
a constrained Z-module M and a constrained cone K such that (i) s(M) = s(K) and

@ T=MnNK.
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Proof: (=) Assume T = U* for some UC QM. LetM = U#* and K = U*. Clearly, T =
U* A U*+r=M K. So, (ii) holds. Also, we have s(M) = s(U#) = UL and s(K) = s(U*) =

U<, Thus, (i) also holds.
(=) Assume T =M N K, where M C Qn is a Z-module and K € Qn is a cone.

Suppose that s(M) = s(K). Since M = M## and K = K*+, this last condition implies that
(M#)L = (K*+)+, which in turn implies that S(M#) = §(K*). Now, by Proposition 6.2, we

have
M* AKH)*=MH*¥NEKH*=MNnK=T.
Hence T is (Q,Z,)-constrained. []

The next proposition improves the characterization given in Proposition 6.3 by

showing that M and K can be chosen as the Z-module and the cone generated by T,

respectively.

6.4 Proposition: Let TC QP Then T is (Q,Z,)-constrained if and only if (1) M(T)
is a constrained Z-module, (ii) X.(T) is a constrained cone, (iii) s(*.(T)) = s(X(T)) and (iv)
T =M(T) " X(T).

Proof: The "if" part is immediately implied by Proposition 6.3.
Now, suppose that T is (Q,Z4)-constrained. By Proposition 6.3, there exist a

constrained Z-module M and a constrained cone K satisfying T =M m K and s(M) = s(K).

Define M'=M N S(T) and K' = K N 8(T). We have
MAT=MNSMAKNSD=TNST)=T.

Also, since M and K have the same lineality space, we have s(M') = s(K).

Moreover, M' and K' are a constrained Z-module and a constrained cone, respectively,

since M' is the intersection of two constrained Z-modules and K’ is the intersection of two

a7



constrained cones (recall that subspaces are special cases of constrained cones and Z-

modules).
Hence, if we show that M' = M(T) and K’ = X(T) the proof will be complete. It is
clear that S(M") ¢ S(T) and S(K") ¢ S(T). Since T = M' N K' we also have S(T) C S(M)H
and S(T) C S(K"). Therefore S(M") = 8(K) =8(T) and Lemma 6.1 implies |
MT=MMNK)=M
and
KMD=KMnK)=K. [
Applying Proposition 6.4 to the special case where S is a finitely generated Z..-

" module yields the following (a pointed cone has lineality {0}):

6.5 Proposition: LetS = {yA: ye€ ZT}, where A € Qmxn_ be a finitely generated

.

" Z,-module. Then S is finitely constrained if and only if:
) the cone {yA: y € QT } is pointed;

(i) S={yA: ye QT} N {yA: ye Z™} (i.e., S contains all points in the
intersection of the Z-module and the cone generated by the rows of A).

Proof: This follows from Proposition 6.4 by observing that M(S) = {yA: y € Zm} is a
finitely generated Z-module and hence has lineality space {0}. Thus, the condition

s(M(S)) = s(K(S)) holds if and only if X(S) is pointed. []

Proposition 6.5 establishes the conditions under which a finitely generated Z,-

module S = {yA: y € ZT}, where A € QMXn_ ig constrained. First of all, the cone

K.(S) = {yA: y =0} must be pointed. Also S must contain all points in {yA: y=20} N

{yA:y e Zm}. Neither of these properties holds in general, as the following examples

show:
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a) LetS=Z = {ly1 + (-Dy2: y1,y2 € Z.}. Then S is a finitely generated Z+-
module. Since X.(S) = Q is not pointed, S cannot be constrained.
b) Let S = {2y1 + 3y2: yuy2€ &4} = {0,2,3,4,...}. In this case X(§) = Qi isa
pointed cone. But X(S) M M(S)=Q+"Z=2Z,=S. Thus, S is not constrained.
Therefore, the Farkas and Weyl properties fail again for (Q,Z,)-duality, as they did
for (Z,Z.)-duality. In contrast to (Z,Z.)-duality, however, (Q,Z+)-duality does not have
the Minkowski and Fulkerson properties. To see this, note that for S = {0} we have S* =
@, and here S is finitely constrained since S = {x : x € Zy4, -x € Z+}, while S* is not
finitely generated (over Z). Thus the Fulkerson property, and hence also the Minkowski
property, fails for (Q,Z+)-duality. The Lehman property is valid for (Q,Z,)-duality, as we
discuss following Theorem 6.6 below. As done for Z-duality, we now describe any

finitely constrained Z,-module as the sum of a subspace and a finitely generated Zy-

module.

6.6 Theorem: LetAe Qmxnandlet T={xe Q™ Axe ZT} be a finitely

constrained Z,-module. Then there exist integers and h and matricesCe Q™" andH €

Qhxn suych that T= {yC+ wH: ye Qf, we Zi‘_} (i.e., T is the sum of a subspace and a

finitely generated Z,-module).

Proof: By Corollary 4.5(c) there exist matrices Ce erh and D € @s*n such that {x: Ax
e Zm} = (yC +zD: ye Q, ze Z8}. Thus, we have

T={(yC+zD: ye @, ze Z5, (yC+zD)Ale Z'}.

Since CA! = 0 (because the subspace {yC: y € QF} must be orthogonal to each rOv.v of A),

we have

T = {yC+2zD: ye Q' ze 25, z(DAY € Z, )



= (yC: ye Q)+ {zD: ze Z5,z(DAY € z7)

(yC: y e @) + (2D: ze Z3,z(DAY) 20}, ‘

this last step being justified by the fact that (DAY must be an integral matrix, since the rows
of D are in the (Q,Z)-dual of the Z-module generated by the rows of A.
By observing that {z € ZS: z(DA?Y) 2 0} is the set of integral points in a cone, we

conclude, by Theorem 5.5, that there exists a matrix H' € Zh%s such that {z € Z%: z(DAYH
20} ={wH": we le}. Hence, defining H = H'D, we obtain

T = (yC: ye @) + (WHD): we Z)

={yC: ye @} + {wH: we Zg},

which is the desired result. []
Suppose T= {x € Q": Ax € ZT}, where A € Qm*n, Then by Theorem 6.6 we

have that T= {yC+wH: y e QF, we Zg} for matrices C € Q1 He QX0 Asin

Proposition 4.2 (the corresponding result holds in the present setting), we then have that
T*={xe Q:Cx=0,Hxe ZE}. Hence T* = {x€ Qn: Cx e Z,-Cx e Z. ,Hxe

ZE}, and so T* is finitely constrained. Thus the Lehman property holds for (Q,Z;)-
duality. More generally, if T = {(x e QM Bx = 0, Ax e ZT} with B € QP*n, then we
have T= {xe Qm:Bx € Zi, -Bx e Zg, Ax € ZT}, so we may still express T = {yC +
wH:ye QF, we Z:‘_} and T*={xe Qm: Cx=0,Hx e Z:‘_}. Applying Theorem 6.6

now to T* shows that T* itself may be represented as the sum of a subspace and a finitely

generated Z.-module. Hence explicit consideration of orthogonality restrictions and

lineality spaces leads to valid analogues of the Minkowski and Fulkerson properties, even

though in the strict sense these properties fail for (Q,Z4)-duality.
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