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corresponding variables, while the other variables are held
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can be estimated from the synchronization parameter.
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1. Introduction

The infinite horizon, discounted dynamic programming problem

with finite state and control spaces can be shown (see Bertsekas

[3]; Denardo (6]) to be equivalent to a very large linear
programming problem wihose constraints satisfy some diagonal
dominance condition. However, the number of constraints in this

linear program grows as a product of the size of the state space
and the size of the control space. This number is typically very
large, thus rendering conventional linear programming methods
impractical for solving this problem. In this paper, a method for

solving a more general case of the above linear programming problem
is proposed. The advantages of this method are that (i) it
exploits the diagonal dominance structure of the problem, and (ii)

its computation can be distributed over many processors in

parallel. In this way, even very large problems can be solved in a

reasonably short time. bore specifically, this method partitions

the original linear program into subprograms where each subprogram

is associated with a processor. At each iteration, one of the
subprograms is solved by adjusting its corresponding variable(s),

while the other variables are held fixed. The algorithmic mapping

underlying this method is shown to be contractive and, using the

contractive property, we show convergence even if the method is

implemented in an asynchronous, distributed manner and furthermore

we obtain rate of convergence estimate as a function of the
synchronization parameter.

2. Problem, Definition

Consider linear program of the following special form

Maximize aTx

(A) subject to Clx < d1

CKx < dK
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where a and dk ,k=i,...,K, are given vectors in RI ; Ck ,k=l ....

are given mcm real matrices. We make the following assumptions

regardin P':

Assumption A: a is nonnegative.

Assumption B: Each Ck (k=i,...,K) is a Ame diagonally dominant

matrix whose diagonal entries are positive and whose off-diagonal

entries are nonpositive.

Ye denote the (i,j)th entry of Ck by Cijk, the ith entry of dk by

dik, the jth entry of a and x by aj and xj respectively. Ye also

denote the index set {1,2,...,m} by NI. For any vector x we will use

IxL, to denote the sup norm of x , i.e. Ixl = maxj I xjl and for

two vectors x and y of equal dimension we will use x < y to mean xj

< yj for all j. Note that for a given P the point (AA,...,. ) is

feasible for P for all A sufficiently negative.

We may interpret P physically as a production problem
involving a production centers, each of which is responsible for

producing an item, some fractional amount of which is used by the

other production centers as resource to produce their own items,

and the efficiency of resource usage as well as external resouce

supply are both random variables. More precisely, let the amount

of the jth item produced be denoted by xj which carries with it a

nonnegative utility of ajxj. There are K possible scenarios that

may be realized. Under the kth scenario, the amount of the ith

item that can be produced is limited by the amount of external

materials available, given by dik/Ciik, plus the sum of a fraction,

given by Cik/Ciik, of the jth item produced summed over all jti.

We wish to plan a production level (xl,x2,...,x,) that maximizes the

total utility alxi+... +axxm such that none of the production

constraints is violated regardless of which scenario is realized in

the future.
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P is a special case of linear programming problems and can be
solved using any linear programming method, such as the simplex

method. However, if the size of P is very large, and noting that t

is not necessarily sparse in structure, the time required to solve

P would likely be large even for very efficient linear programming

methods. As an example, if =1i00 and K=100, then Phas 100

decision variables and 10,000 inequality constraints. A special

case of P, the infinte horizon, discounted dynamic programming

problem with finite state and control spaces, typically has n,K r

100 for real applications.

It is therefore important to design methods for solving P that

can take advantage of its special structure. Such approach has

been successful for other special cases of linear programs such as

network flow problems and Leontief systems. In fact, the

constraint matrix for Pand its transpose are both Leontief (a

matrix E is Leontief if E has exactly one positive entry per column

and there exists a x i 0 such that Ex > 0). It is known that if E

is Leontief, then there exists a x*, called the least element, such

that x* solves the following problem

'faximize aex

subject to EIx g d

for all a > 0 ard d such that the above problem is bounded (see

[7]). In our work we only require that a be nonnegative but the

existence of a least element still holds and is crucial for the

method proposed here to work.

The infinite horizon, discounted dynamic programming problem

with finite state and control spaces is described below. This
problem frequently arises in the areas of inventory control,
investment planning, and Markovian decision theory. It is
traditionally solved by the successive approximation method or the

policy iteration method (see [31 or [6]). However neither method

has a theoretical rate of convergence as good as that of the method

proposed here.

Special case of P
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The infinite horizon, discounted dynamic programming problem

with finite state and control spaces is equivalent (see for example

[3]) to the following special type of linear program

Maximize i: xj
j-l

subject to x i s g(i,u) + i . Pij(u)xj , uEU(i), i=i .... ,
j=1

where moE(O.1) is called the discount factor, {1,2,....m} denotes the

state space, U(i) denotes the set of possible controls when in

state i (size of U(i) is finite), pij(u) denotes the probability

that the next state is j given that the current state is i aend the

control u is applied, and g(i,u) is the average reward per stage

when in state i and control u is applied.

We can make the identification with Prore explicit by

rewriting the above program as

MaEximize 7 x;
j=1

subject to (i-o-Pii(u))xi - E oxpij(u)Xj s g(i,u), VueU(i),
j= i1 .....

Then given that cte(0,1), and augmentin the constraint set with

duplicate constraints if necessary, we can easily verify that the
above problem is a special case of P

3. The Sequential Relaxation Method

Consider an arbitrary nonempty subset of M, denoted S, and for

each xeRm define the following maximization subproblem associated

wit.h S and x
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Maximize ZjeS ajtj

subject to 2 jeS Cijk Ij < dik -IjS Cijk xj , k= ....K

where *j jeS, are the decision variables. Note that J?(x) is

just the original problem P For any nonempty S and x the problem

Ps(x) is clearly feasible since the vector (lA, ... ) of dimension

1St is a feasible solution. However using the following lema we

can show that FS(x) in fact has an optimal solution.

Lemma I Suppose A is a n by n diagonally dominant matrix with

positive diagonal entries and nonpositive off-diagonal entries.

Then the following holds:

(a) A-1 exists and is a nonnegative.

(b) If B is a nonnegative matrix of n rows such that [A -B] has

all row suns greater than zero then A-1B is nonnegative and has all

row sums less than one.

Proof

We prove (a) first. That A is invertible follows from the

Gershgorin Circle Theorem (see for example [10]). To prove (a) we

write A as A = D-B where D is the diagonal matrix whose diagonal

entries are the diagonal entries of A. Then

A-1 = (I-D-IB)-1D-1 . (1)

D-1B has zero diagonal entries, nonnegative off-diagonal entries.

and row sums each less than 1. Then by Gershgorin Circle Theorem

D-lB has spectral radius less than i and from (1) it follows that
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A71 = (I+(D-IB)+(D-IB) 2+ ... )D-1

Since D-1 and D-1B are both nonnegative it follows that A-1 is

nonnegative.

We now prove (bj. We are given that Ae - Be' > 0 where e

ard e' denote vectors of appropriate dimensions whose entries are

all 1's. lMultiplying both sides by A-1 and using (a) we obtain that

e - A-1Be' > 0 . from which (b) follows. Q.E.D.

To show that Ps(x) has an optimal solution we note that its

constraints written in vector notation has the form

-t i , k=i,....,

where ~ is the vector with components tj ,jeS, and each VL by

Assumption B is a ISIXISI diagonally dominant matrix whose diagonal

entries are positive and whose off-diagonal entries are

nonpositive. Then Lemma i (a) implies that all feasible solutions t

of FS(x) must satisfy { ! (t)-Il , k=i,...,K which together with

Assumption A imply that Ps(x) has an optimal solution.

The following lemma shows that the optimal solution set of

PS(x) has certain special properties:

Lemma 2 For each nonempty subset S of M and each xERm the

following holds

(a) There exists an (unique) optimal solution ~* of PFS() such

that i* >_ , jeS, for all other optimal solutions t of Ps(x) (*

will be called the largest optimal solution of Ps(x)).

(b) The t* of part (a) has the property that there exists a set of
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indices {ki})i S such that

:eS Cijki ' j* = diki - .jS Cijk Xj , for all iES

where ~j* denotes the jth coordinate of *.

Proof

We first prove part (a). Let E denote the set of optimal

solutions of PS(x). If - is a singleton then (a) follows

trivially. Otherwise let t and t' denote any two distinct elements

of 2. It is straightforward to verify that '" given by

j= max { tj , t'j } . jS

is also feasible for Ps(x). Since all the aj's are nonnegative, "
has an objective value that is greater than or equal to the

objective value of either ~ or t'. Since 2 is easily seen to be
bounded from above part (a) follows.

Ye now prove part (b). Suppose that (b) does not hold. Then

for some ieS

S Cij < dik - j S Cij j , .. K

in which case ~ given by

~j = j* , jS{i}

i = max { di3'k jj5 C -j Cj x j - S'{i Cij 3
ktl,2,...,fC~~~~~~~~~~



is feasible for Ps(x), has an objective value greater than or equal

to that of . and is strictly greater than ~* in the ith entry.

This contradicts the definition of i*. Q.E.D.

For each nonempty subset S of 11 and each xeRO we define the

mapping TS(x):RP-+RSI3 by

Ts(x) = largest optimal solution of PS(x).

That TS(x) is well defined follows frog Lemma 2 (a). Now consider

an arbitrary partitioning of the index set h into a collection C of

disjoint subsets. Define the mapping TC:R'-)Rm by

TC(x) = ( ... TS(x) . )SC.

The sequential version of the proposed method can be described by

an initial estimate x4 and an infinite sequence of collections

{°,1.... }. The solution sequence {xt} thus generated is given by

xt = Tt-z (Tt-2 (...(TD(x°))...)) , t=l, 2...

We will show in the next section that this method converges, in the

sense that as t-A-, xt approaches an optimal solution of P for any

starting point x° and any sequence {°,Cx,...}. In the special case

where C =({{),{2),.....{m}} Tc is the algorithmic zapping associated

with the single coordinate relaxation (Gauss-Seidel) method for

solving P By considering other possible C the proposed method may

be viewed as a generalized relaxation method that allows several

coordinates to be relaxed simultaneously.
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4. Convergence analysis

To prove convergence of the sequential relaxation method we

will first show that for any collection i the mapping Tc is

contractive and thus Te possesses an unique fixed point. We will

next show that this fixed point is a solution of P and is

independent of the choice of C. In addition we obtain rate of

convergence estimate as a function of the size of the subsets in C.

For each nonempty subset S of 11 and each mapping

a:S-{I,2,...,K) we define the following matrices

A(S',) = [ cij ] k=(i),ieS, jS

B(S,) = [ -Cik ] k=(i).ieS.jOS

We note that A(S,a) is diagonally dominant with positive diagonal

entries and nonpositive off-diagonal entries. Furthermore by the

definition of TS and Lemma 2 we can express TS(x) as

TS(x) = d(S,a) + A(S,a)-IB(S,a}x)MS

where d(S,a) denotes (.. diO(i)-..)ieS , xlns denotes ( ..xj- -)jI\S and

a is some mapping from S to {1,2,....K). Ye have the following

lemma :

Lemma 3 For any arbitrary subset S of N and two arbitrary

vectors x and y in RR, we have, for some a:S-{i,2,...,K) and

a' :S-4(1,2,...,K}, that
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A(S,o)-lB(S,,)(w -z) < Ts(x)- Ts(Y) < A(S, ' )-1B(S, a' )(w-z)

Twhere v-xM~ S and z=yM\S'

Proof

Let t= Ts(x) and i = Ts(Y). By Lemma 2 (b) we have

'jeS Cijki j = dik - I'jS Cijii j , V ieS (2)

for soxe set of scalars (ki}iES , and similarly

7'jeS cijki' 'j = diki' - jS Cij4' Yj , V iCS (3)

for some set of scalars (ki' }iES Since ~ is feasible for PS(x)

and -f is feasible for Ps(y) it follows that

IjeS Ciji' j < disi' - IjoS Cijki xj , v iXS (4

1'jeS Cijki j < diki - jS Cijk yj IV iS . (5)

By defining c(i)=ki and a' (i)=k i' for all i=S, we can rewrite (2),

(3) as

A(S,a), = d + B(S,a)v (6)

A(S,a' ) = d' + B(S,a')z (7)

and (4), (5) as

A(Sa')~ c< d' + B(S,a')w (8)



A(S,a)4 < d + B(S,o)z, (9)

where d=( ...diki.. )iS d=(... diki' )i S · Equations (6),(9)

together with Lemma I (a) imply that

~-y > A(S,a)-1B(S,a)(w-z)

while (7).(8) together with Lemma i (a) imply that

-V -< A(s,a' )-~B(So' )(v-z)

Q.E.D.

Let e denote the vector whose entries are all 1's and u i (ielM)

the vector whose ith coordinate is I and the other coordinates are

0's (the dimension of e and u i will be clear from the context). For

each nonempty subset S of M we define

=s - max max { (ui)fA(S,a)-1B(S,a)e 
all o iES

It immediately follows from Lemma 3 that

ITS(x)-TS(y)l. s pSIx-yI. , for all x and y. (10)

From Lemma 1 (b) it is easily seen that 0 5 PS < I so that TS is in

fact a contraction mapping. Let

(J = maxiEt P{i} = maxf -(-jziCijk )/Ciik I k=1i,2 .... ie }.

Ve also define
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a S = min min (ui)?A(S,})-lB(S,cr)e 

all a ieS

and correspondingly

M = Ain.fieM 0M{i} 

Leuma I (b) implies that 0 < x, cS, 3PS, P < 1. However we can show

the following stronger result

Proposition 4 For any two disjoint nonempty subsets S and T of

IM we have

S3 uT < max{S, PT} (1)

and

mS uT m in{(.S, } (12)

Proof

Consider an arbitrary a . e can write A(SuT,a) and

B(SuT,a) as

A(Su T,a) - r A -B 1 , B(S uT,a) = r E l (13)
L -C D J F J

where A = A(S,a) , D = A(T,a), and B, C, E, and F are nonnegative

matrices of appropriate dimensions such that B(S,a) = [B E] and

B(T,a) = [C F]. We will show that

A(SuT,)- 1 B(SuJT.a)e" < r A-1( Be' + Ee" )1 (14)

L D-1( Ce + Fe") J
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where e . e', and e" are vectors whose entries are all 1's, with

dimensions of IjS, JTJ,and m-JSl-rrl respectively. Since the choice of

a was arbitrary and the inequality in (14) holds coordinrate-wise

(11) and (12) will follow almost immediately. To prove (14) we

first express A(SuT,a)-l in the following form [cf. (13)]

A(5uT,o) -l = r (A-BD-AC) -1 (A-BD-LC)-I1BD- 1. (15)
l D-X(A-BD-C) -1 D-tII+C(A-BD-C)-1 BD-1 I J

It is straightforward to verify that (15) is valid. Direct
multiplication using (15) yields

A(SuT,a)- r E le = r (A-BD-1C)-1 (Ee" + BD-1Fe" )

L F J D-LC(A-BDXC)-IC Ee"+ D-I[I+C(A-BD-IC)'-BD-t]Fe" ]

We will now show that

(A-BD-IC)1-(Ee"+ BD-1Fe" ) < A-l(Be' +Ee") . (16)

To prove (16) we consider the difference

(Ee"+ BD-1Fe") - (A-BD-1C)A-1(Be' +Ee")

- BD-1Fe" - Be' + BD-XCA 1L(Be'+Ee")

< BD-'Fe" - Be' + BD3-Ce = -B(e'-D-l(Fe"+Ce))

< 0 . (17)

The last inequality follows from the fact that D-l(Feu+Ce) is a

nonnegative vector whose entries are strictly less than one [cf.

Lemma I (b)j and B is a nonnegative matrix.

By Lema 1I (b), both A-1B and D-IC are nonnegative and have
their row sums less than one so that I-(A-IB)(D-IC) is diagonally
dominant with positive diagonal entries and nonpositive
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of f-diagonal entries. Since (A-BD-C)-I = A-I[I-(A-KB)(ID-C) -} it
follows from Lemma I (a) that (A-BD-tC)- is nonnegative and
therefore [cf. (17)]

(A-BD-1C)-1 [ (Ee"+ BD-'Fe ") - (A-BD-1C)A-1(Be'+Ee")] < 0

This proves (16).

To complete the proof of (14) we express A(SuT,)'-l in a form
analogous to (15) [cf. (13)]

A(SuT,ar)-l = A-[ I+B(D-CA-IB)-1 CA-LI A7-B(D-CN-B)- 1 . (18)
L (D-CA-B)-yC-' (D-CA 1-B)-l J

Direct multiplication using (18) yields

A(SuT, )-i r E e" = r A-l[ I+C(D-CA-B)-ICA- ] Ee + KA-1B(D-CA 1B)-1Fe ] .
LF J L (D-CA-B)- 1 (CA-1Ee + Fen) J

By an argument analogous to that used in the proof of (16) we
obtain that

(D-CA-B)-I(CA-IEe"+ Fe") < D-l(Ce+Fe " )

which together with (16) proves (14).

To prove (ii) and (12) we note that (14) implies

[(ui)T 0 JA(SuTa,)-lB(SuT,a)e" < (ui)TA(S,a)-IB(S,a) [e' 1

[ 0 (uJ)l]A(SuT,a)-B(suT ,a)eu <_ (uJ)TA(T,a)-lB(T,a) [e 1

for all iES , jeT and all a. Taking the a xi imum on both sides over
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all iES , jET and all a we obtain (11) Similarly taklng the

siniuma on both sides over all icS . jeT ad all a we obtain (12)

Q.E.D.

Corollary 4 For any nonempty strict subset S of M we have

O < a s S c .

The result of Proposition 4 can be sharpened by using

Corollary 4

Proposition 5 For any two disjoint nonempty subset S and T of MI
we have

PS u=T c x({PSp T } - c-(ST)(l- )/(i+f2 ) (19)

and

,5 u T < xain({os,mT} - o(S,T)(1-P)/(i+32) (20)

where we define the nonnegative scalar

%(S.T) = rin { A(S,)- 1 -Ciji)] iES, jeT

A(T,'y)-l [ -Cij*i)I ieT, jeS }

Proof

Consider an arbitrary a Ye can write A(S uT, a) and

B(SuT,a) as (cf. (13)]

A(Su T.a) = r A -B 1 B(S vT.a) = r E
[ -c D J L FJ
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where A = A(S,a) , D = A(T,u), and B, C, E, and F are nonnegative

matrices of appropriate dimensions such that B(S,a) = [B E] and

B(T,a) = [C Fl. Ve will show that

r i-'(Be'+ Ee") 1 t(S,T)(I-p) r e 1
A(SuT,c)- B(SuT,a)e" c I I - I I (21)

L D-<(Ce + Fe') l+J2 L e' J

where e , e', and e" are all vectors whose entries are i's, with

dimensions of ISl, Frl,and a-ISlf-TI respectively. Since the choice of

a was arbitrary and the inequality in (21) holds coordinate-vise

(i9) and (20) then follows. To prove (21) we first express

A(SuT,ao)-B(SuT,)e" in the form given by (13) and (15)

A(SuT,a)-l rE le" = r (A-BD-1C)-l(Ee"+BD-iFe H")
LF j LD-1C(A-BD-IC)--Ee"+ D-I[I+C(A-BD-1'C)IBD-]jFe" j

Then (21) will be partially proven if we can show

(A-BD1-C)-I(Ee"+ BD-1Fe") - A-l(Be '+Ee") < -cx(S,T)(i-)/(l+ 2 )e. (22)

To prove (22) we first bound the difference

(Ee"+ BD-IFe") - (A-BD-C)A-1(Be' +Ee")

= BD-1Fe" - Be' + BD-1CA-1(Be'+Ee")

< BD-1Fe" - Be' + BD-ICe = -B(e'-D-l(Fe"+Ce))

< -Be' (i-p) . (23)

where the last inequality follows from Corollary 4. Now consider

(A-BTD-C)1- = A- I-(A-1B)(D-IC)J]- . By Lemsa I (b) and Corollary 4
both A-1B and D-IC are nonnegative matrices whose row sums are all

less than or equal to P. It then follows that their product is a
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nonnegative matrix whose row sums are all less than or equal to J2

and therefore the eigenvalues of I-(A1-B)(D-lC) are (by Gershgorin

Circle Theorem) in the interval [l- i2,I+2]. Furthermore by Lemma

1 (a) both A -1 and [I-(A-1B)(D-1C)J]- are nonnegative matrices so

that (23) implies that the left side quantity of (22) is

c - A-'I-(A1 B)(D-C) jlBe' (i-p)

< - A-1Be' (1-p)/(1+P2)

< - e c(S,T)(1 -p)/(i+p 2 )

where the last inequality follows from the definition of oa(S,T).

This proves (22).

To complete the proof of (21) we express A(SuT,a)-iB(SuT,o)e"

in the alternate form given by (13) and (18)

A(SuT,a) - i r E le" = r A-I I+C(D-CA-1B)-lCA-]lEe"+ A-'B(D-CA-1B)-IFe 
LF L (D[CA1B)1(CA7IEeN + Fe") J

By an argument analogous to that used in the proof of (22) we

obtain that

(D-CA-IB)-I(CA7IEe"+ Fe") - D-l(Ce+Fe") s -m(S,T)(1-P)/(l+P2)e'

which together with (22) prove (21). Q.E.D.

The coefficient m(S,T) in some sense estimates the amount of

interaction between those variables with index in S and those

variables with index in T as imposed by the problem constraints (if

c(S,T) > 0 then an interaction surely exists). Unfortunately

¢(S,T) is difficult to compute in general. Using Proposition 5 we

can show that, for any collection C, TI is a contraction mapping



Proposition 6 There exists a set of scalars {f3C)all C ,each

between 0 and 1, such that

Tc(x) -TC(y}). c PC I1x-yD. ,for all x and y, (24)

where {C) satisfies

Nu, (a= ) (25)

Furthermore if C and C' are two partitions such that each element

of C is strictly contained in an element of C', then

, < r -C y(C,C')(I-/(I+~2 ) (26:)

where we define

y(C,C') = rin ({ (S,T) Se , TeC and SUTEc' }

Proof

The proof is by construction (of the set of scalars {~})

since kr given by

vk = max I s I SC 

by Proposition 5 and the definition of y(C,C') satisfies (24),(25),

and (26). Q.E.D.

The contractiveness of TE implies that TE has an unique fixed point

(see for example [81;[101). The following proposition shows that

this fixed point belongs to the set of optimal solutions of P
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Proposition 7 For any collection C of disjoint subsets of M

whose union is M, x* is a fixed point of TC (i.e. x* = TC(x*)) if

and only if x* is the largest optimal solution of F

Proof

Suppose that x* = TC(x*), then from the definition of TC and

Lemma 2 we have

'jES cijk Xj < di -'joS Ci xj* , k=i....,K, ViS, VSEC

and

jeS Ciji Xj = diki - Ijo S Ciji Xj* . VieS, VS

for some set of indices {ki}. Clearly x* is feasible for P To

show that x* is an optimal solution we assume that the constraints

of P have been ordered such that P has the form

M1axiaize aOx

(P') subject to Cx < c

Dx < d

where C = [ Cijk ]iM.jj and C = [ dik ]i e LI The dual

problem of P' is

linimize cfu + dv

(D') subject to Cu + Dbv = a

Let u* = (C T)-la, v* = 0. Since C is diagonally dominant with

positive diagonal entries and nonpositive off-diagonal entries, by
Lemma i (a) (and the nonnegativity of a) u* is nonnegative.
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Therefore (u*, v*) is feasible for D'. Furthermore, since Cx*=c,

we have

(U*)?(Cx *-) = 0

(v*)T(Dx*-d) = 0

and thus the complementary slackness condition is satisfied. It

follows from classical duality theory that x* is an optimal

solution of P'. To show that x* is the largest optimal solution of

P' we note that any optimal solution x' of f' necessarily satisfies

Cx' < c, or equivalently [cf. Lemma i (a)] x' < C-1c . Since x* =

C-Ic then x* must be the largest optimal solution of f'. Q.E.D.

In what follows we will use x* to denote the largest optimal

solution of P. Combining Proposition 6 with 7 we obtain our main

convergence result:

proposition 8 For any arbitrary sequence {C,C... and

starting point x° we have

li' t4. Xt = i* d Xt - XX* -X*1 ,

where xt is given by

xt = Tt-(T(Tt-2(...(Teo(x°))... ) , t=12, ...

and m = max t0,1,.. . (27)

The diagonal dominance of the constraint matrices Ck's is

necessary for the mapping TC to be contractive. One can easily

construct examples for which the diagonal dominance assumption is

violated and for which the mapping TC is not contractive. Note

that the classical Gauss-Seidel method (see [10]) for solving a

system of linear equalities Ex=b is very similar in nature to the

special case of the proposed method with C ={1i},{2}),..... m}} for

all t. The Gauss-Seidel method also requires the diagonal

dominance assumption on the matrix E to ensure convergence.

Furthermore, at each iteration, it adjusts one of the coordinate
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variables, say xi, to satisfy the ith equality constraint (while

the other xj's , j*i, are held fixed), at the expense of violating

other equality constraints. The relaxation method proposed here

does much the same, except that each equality constraint is

replaced by a set of inequality constraints and that several

coordinates may be relaxed simultaneously. Drawing upon this

analogy we see that the concept of relaxing several coordinates

simultaneously and the associated convergence theory [cf.

Proposition 61 are equally applicable to solving a system of linear

equalities.

Equations (25) and (26) suggests that if groups of coordinates

are relaxed simultaneously then the rate of convergence of the

proposed method, as estimated by PC for some partition C, can only

improve. This improvement is likely to be strict if the

coordinates in each group are in some sense strongly coupled (i.e.

y(C',C) > 0 where C' denotes the partition {{1}, {2},.... {m} }).

The mapping TC apart from being contractive bas the additional

property of being monotone (i.e. if y < x then Ti(y) < TO(x)).

This is not hard to see using equations (6), (9) and the fact that

A(S,u)-l and B(S,o) are both nonnegative matrices for all S and a.

The monotonicity property is often useful for proving convergence

of algorithms (see for example [31,[41) although in our case the

contractiveness of TC is alone sufficient for establishing all the

convergence results needed.

In the special case where the cost vector a has positive

entries it is easily verified that the set of optimal solutions of

Pis a singleton. As a final remark, all our results still hold if

the linear cost aex is replaced by

L) aj(xj)

where each aj :R-*R is a subdifferentiable function with

nonnegative slopes.
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5. Asslchronous distributed implementation

In this section, we consider the asynchronous, distributed

implementation of the sequential relaxation method described in

Section 3 and show that the rate of convergence for this

implementation can be estimated as a function of the

synchronization parameter.

Distributed implementation is of interest because the rapid

increase in the speed and the computing power of processors has

made distributing the computational load over many processors in

parallel very attractive. In the conventional scenario for

distributed implementation, the computational load is divided among

several processors during each iteration; and, at the end of each

iteration, the processors are assumed to exchange all necessary

information regarding the outcome of the current iteration. Such

an implementation where a round of information exchange, involving

all processors, occurs at the end of each iteration is called

synchronous. However, for many applications in the areas of power

systems, manufacturing, and data communication, synchronization is

impractical. Furthermore, in such a synchronous environment, the

faster processors must always wait for the slower ones.

Asynchronous, distributed implementation permits the processors to

compute and exchange (local) information essentially independent of

each other. A minimum amount of coordination among the processors

is required, thus alleviating the need for initialization and

synchronization protocols.

A study of asynchronous, distributed implementation is given

in [1i. An example of asynchronous, distributed implementation on

a "real" system is the ARPANET (see for example ([9) data

communication network, where nodes and arcs on the network can fail

withoug warning. However, convergence analysis in such a chaotic

setting is typically difficult and restricted to simple problems.

The recent work of Bertsekas [4] on distributed computation of

fixed points and of Tsitsiklis [11i] show that convergence is

provable for a broad class of problems, among which is the problem
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of computing the fixed point of a contractive (with respect to sup

norm) mapping.

The model for asynchronous, distributed implementation

considered here is similar to that considered in [4]. In [4],

convergence is shown under the assumption that the time between

successive computations at each processor and the communication

time between each pair of processors are finite. here we further

assume that this time is bounded by some constant. Using this

boundedness assumption, we estimate the rate of convergence of the

distributed relaxation method as a function of the bounding

constant. This rate of convergence result is similar to that given

by Baudet [2] and it holds for the fixed point computation of any

contractive (with respect to the sup norm) mapping. The argument

used here however is still interesting in that it is a simpler and

more intuitive than that given in [2].

Description of the implementation

For simplicity we will assume that the same collection C is

used throughout the method (i.e. C = C,Cl,...) and denote the

subsets of nodes belonging to C by Si, S2, ..., SR. Now we

consider finding the fixed point of TC by distributing the

computation over R processors, where the communication and the

computation done by the processors are not coordinated.

Let processor r, denoted by Pr, be responsible for updating

the value of the coordinates in Sr. In other words, Pr takes the

current value of x it possess, applies the mapping TSr to x, and

then sends the coordinates of TSr(X) to the other processors. Each

Pr upon receiving a value, say that of coordinate j, from some Pq

(jeSq), q*r, replaces its value of xj by the received value. We

assume that Pr does not apply Tr unless a new value is received

since Pr had last computed. In what follows, we will count each
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application of T, by some Pr as a computation.

Let the communication time between any pair of processors be

upper bounded by L1, where L 1 is in units of "consecutive

computations". In other words, at most L1 consecutive computations

can pass before a value sent by Pr to Pq is received by Pq, for all

r, q such that rwq. We also assume that each Pr always uses the

most recently received values in its computations (note that due to

communication delay Pr may not receive values from Pq by the order

in which they were sent).

Let L2 denote the upper bound on the number of consecutive

computations that can pass before each Pr has made at least a

computation.

The assumption that both Li and L 2 are finite is reasonable

for any useful system; for otherwise the system may either wait

arbitrarily long time to hear from a processor, or leave some

processor out of the computation altogether. Let L = Lj + L2.

Then we have that every processor always computes using values all

of which were computed within the last L computations.

Convergence of the relaxation method under distributed

_~plementation

The following proposition is the main result in this section.

Proposition 9 The iterates generated by the asynchronous,

distributed version of the relaxation method converge to the fixed

point of TC at a. geometric rate, with rate of convergence bounded

by (fl).
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Proof

The idea of the proof is quite simple, although the notation

may become a little unwieldy. Define

It (t=i,2 ....) = Index of the processor performing the

t-th computation.

Qt (t=1,2 .... ) = SIt

xjt (je;t=i,2 .... ) = Pr's value of the jth coordinate

immediately following the t-th

computation, where j belongs to Sr.

mjt (jQtt=it,2....) = The number such that, when processor I t

performs the t-th computation (thus

generating xjt,jeQt), the xj (j*ot)

value used is generated by the ojt-th

computation. In other words,

(xj t... )jE Qt = Tot(...xi..)

and

t- L ; Cijt < t . V jOt

Using Proposition 6 we obtain (recall that x*= TC(x*)) that

t t
Xjt- Xj* 3C axjnQt Xaj - Xj* I , ¥ jt Q t - (28)

Since (using the definition of fjt and Qt )

t

jER jE , t=1, 2 ....
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and t = ot t=1,2,... , for all j and k

belonging to the same element of C,

we can apply (28) recursively to the righthand side of (28) to

obtain

I i- Xj* I maxl I x j - xj* 
jo Qt

gjt< (1e)2 u ax I xn - xn*

' (fe)'x I xn° -Xn* I
ncM

where Y is some positive integer, and xn° denotes Pr s initial

estimate of xn* for all nfSr. Then using the fact that

t - cjt s L V j Qt

t tOajt -t L V kQ v j Qt

t 0jt ajt 

- S L V 1 Q I v k Q V j0 Ot

we obtain (upon summing the above set of inequalities)

t < Y L.

It follows that
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and therefore

I xj - xj*1 < (PCl )t max jM I xjO - xj* .¢ js Q t

Q.E.D.

The scalar L is a measure of the level of synchronization in

the system : the worse the synchronization, the larger the L. An

example of near-perfect synchronization is when the processors

compute in a cyclical order (round robin) under zero communication

delay. For the special case where C ={{1},{2},..., m}} and the

order of computation being 1,2,...m, we can verify that

ajt = t-(i-j) if i > j

t-(r+i-j) if i < j

We then see that t - j.t < a-i for all j, t=O,1i.... and

therefore L = m-1. Proposition 9 can be extended to the case where

the It's are not all equal by replacing k with p where p. is given

by (27). Note that the proof of Proposition 9 relies only on the

contractivity of Tc and therefore Proposition 9 holds for any

contractive (with respective to the sup norm) mapping. For some

recent results on distributed computation of fixed points see [4].

A Numerical Example

We illustrate the relaxation method with a very simple

example. Ye consider solving the following problem using the

relaxation method

1Maximize aTx

Subject to Clx s dl

C2x & d2
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where a > 0, and

C= 1 -1/2 1 d = r1 C2 = 1 -1/4 1 , d2 = f14 1
L-112 1 J [J L-3/4 1 J L1 J

For the above problem, we obtain that

p-3/4 ; X*= r4n .
L[n J

The only nontrivial partitioning of It is {(i,{2})) which yields

Tl(x) = ain{ x2/2,1/4+ 21/4 ) ; T 2(x) = rin( i+xl/2,1+3x1/4 }

Since z=2 for the above example, the only possible sequence of

computations is when P1 and P2 alternate in computing. If we

denote xit to be the value of ith coordinate held by Pi after the

t-th computation, and xt to be the vector whose ith entry is xit (x°

is the initial estimate of x*), then for x° = (2. 0) and with P1

initiating the computations, we obtain the following seTqence of

iterates as shown in the figure below

Ai X2 X
4

X*T X,
2X

X
3

feasible set

(xl C'x s d '
C2x S d2}

F /
X' X0

Figure 1 { x' } converging to x*, the fixed point of T.
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6. Conclusion

The method proposed in this paper is simple both in concept

and in implementation. Yet despite this simplicity it possesses

very strong convergence properties. Such strong properties are due

in great part to the special structure of the problems themselves.

It is possible that other classes of problems exist for which

results similar to those obtained here hold and, in particular, it

would be of practical as well as theoretical interest to generalize

the rate of convergence result on the asynchronous, distributed

implementation of the proposed method. This interest stems from

the growing role which distributed computation plays in the area of

optimization.
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