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FOREWORD 

A common approach in coping with multiperiod optimization problems under uncer- 
tainty where statistical information is not really strong enough to  support a stochastic 
programming model, has been to  set up and analyze a number of scenarios. The aim then 
is to identify trends and essential features on which a robust decision policy can be based. 
This paper develops for the first time a rigorous algorithmic procedure for determining 
such a policy in response to  any weighting of the scenarios. The scenarios are bundled a t  
various levels to reflect the availability of information, and iterative adjustments are 
made to  the decision policy to  adapt to  this structure and remove the dependence on 
hindsight. 
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SCENARIOS AND POLICY AGGREGATION 

IN OPTIMIZATION UNDER UNCERTAINTY * 

R. T. Rockafellar, University of Washington 

and 

Roger J-B Wets, University of California - Davis 

1. Introduction 

Most systems that need to be controlled or analyzed iiivolve some level of uncertainty about the value 

to be assigned to various paranieters or tlie actual layout of some of the systeni's coinponelits. Not. 

~iiucli is lost by siinply assigning "reasonablen values to the uiik~iow~i elements, as long as tlieir role is 

relatively insignificant. But in other situations tlie model builder cannot do this witliout running tlie 

risk of invalidatilig all tlie implicatiolis that are supposed to be drawn fro111 tlie analysis. 

When a proba.bilistic description of tlie unknowii elements is a t  hand, eitlier because a subst,aiit.ial 

statistical base is available or because a probabilistic law can be derived from coliceptual considera.t.iolis 

(measurement errors, life and death processes, etc.), one is naturally led to consider stocl~astic models. 

Wlieli only partial illformatioil, or no inforniation at all, is available, liowever, tliere is uliderstalidably 

a reluctance to rely on such models. In presulriing that probabilit,y distributions exist. they seen1 

inlierelitly misdirected. Besides, tlie problelns of stocliastic optilniza.tiol1 tliat they lead t40 call he 

notoriously hard to solve. 

A common approach in practice is to rely on scenario analysis. The uncertainty about parameters 

or colnponents of the system is modeled by a sniall number of versions of subproblenis derived froiii 

an underlying optimization problem. These correspond to different "scenariosn, a word that is used 

to suggest some kind of limited representatioii of information on the ulicertaiii elellleiits or liow such 

information may evolve. The idea is that by studying tlie different subproblems and their optimal 

solutions one may be able to discover similarities and trends and eventually come up witli a 'well 

hedgedn solution to the underlying problem, something which can be expected to  perform rather well 

under all scenarios, relative to some weighting of scenarios. As examples, see [I]  and 121. 

* The work of both authors was supported in part by grants from the Ai r  Force Office of Scientific 

Research and the National Science Found a t '  ]on. 



To give this a mathematical formulation, let us write the scenario subproblems as 

( p n  minimize f,(x) over all x E C. c IR" 

where the index s ranges over a relatively modest, finite set S: the set of scenarios. It is not our 

intention t o  address in this paper the question of how the scenario subproblems might be chosen or 

constructed. We take them for granted and suppose that  we know how t o  solve the111 individually 

t o  obtain optimal solutions x,. The question we d o  raise is tha t  of how to  work with the different 

vectors x, and consolidate them into an overall decision or decision policy. The  esseritial difficulty 

obviously lies in the fact tha t  actions in the real world must be taken without the hindsight tha t  goes 

into solving the  problems (P,). In multistage n~odels  the actions could, however, respond in time t o  

increasing degrees of information that  become available about the particular scenario being followed. 

The expression of sucli information structure must be an important part  of the forn~ulation.  

Let us suppose we are dealing with time periods t = 1,. . . , T and write 

where nl + . . . , + n ~  = n. The component zt represents the decision that  n~ust ,  be nlade a.t time t .  

More generally let X denote a function or  mapping that  assigns to  each s E S a vector 

where Xt(s) denotes the  decision t o  be ma.de a t  time t if the scenario happens t o  be s. I t  is such 

a mapping-let us call it a policy-that we are rea.lly looking for, but  it has to  sat,isfy the crucial 

constraint tha t  if two different scennrios s and s' are indistillguishable a t  tillle t on the basis of 

information available about the111 a t  time t ,  then Xf(s) = Xt(sl). A policy, if it is t o  make sense, 

cannot require different courses of action a t  t i i r~e  t relative to  s c e ~ ~ a r i o s  s and s' if there is no way t o  

tell a t  time t which of the two scenarios one happeils t o  be following. 

A good way of modeling this constraint is to  introduce an information structure by scenario 

bundling, i.e. by partitioning the scenario set S a t  each time t into finitely mauy disjoint subsets, 

which can be termed scenario bundles. The scenarios in ally one bundle are regarded as observationally 

indistinguishable a t  time t. Denoting the collection of all scenario bundles a t  time t by At, we impose 

the requirement tha t  Xt(s) must be constant relative to s E A for each A E At. Thus from tlie space 

of all mappings X : S --, IRn with components Xt : S -+ Rn' as in (1.2), a space we denote by t ,  we 

single out the subspace 

(1.3) ,U = {X E l I Xt is constant on each A E At for t = 1,. . ., T) 

as specifying the policies tha t  meet our fundamental constrai i~t  of not being based on hi i~dsigl~t .  The 

policies X belonging to  ,U will be called implementable policies. We make a distinction here between 

imple~i~entable  policies and admissible policies, which belong to  tlle set 

(1.4) C = {X E EIXt(s) E C ,  for all s E S).  



For most purposes it would be reasonable to suppose that  the partition A t + l  is a refinement of 

tlie partition At in tlie sense tliat each bundle A E At is a union of bundles in A t + l .  This would be 

consistent wit11 tlie idea that  iliforma.tion increases in time and is never lost. Interestiiigly enougli, 

none of what we say in this paper actually depends on sucli an assumption, tliougli. Inforlnatio~l 

about the scenario being followed could be allowed to  vary quite generally. 

The central question of scenario analysis can now be stated. Given the collection of scenario 

subproblems (P,) and a license perhaps to modify then1 (perturb their objectives) so as to assist in 

adapting to the information structure, we have tlie means of generating various policies X E f that  

may be called contingent policies: X ( s )  is obtained by solving a version of tlie scenario subproble~il 

(P,) for each s E S. How can we use these means to  determine an implementable policy X' E .A/ tha t  

in some sense is good for the underlying problem of optimization under uncertainty? 

Note that  a contingent policy is a t  least always adn~issible: X E C. But tliis condition is not 

built into our use of tlie tern1 "implementablen. Obviously a policy that  is botli admissible and iniple- 

mentable is what we really want-this is what we sliall n lea~i  by a feasible policy. But i ~ ~ ~ p l e n ~ e n t a b i l i t y  

is a logically inescapable requirement, whereas admissibility 111ig1it be waived by the modeler in sonie 

situations that  only risk the violation of X ( s )  E G,. for a few extreme or unlikely scenarios, or entail 

mild transgressio~is of certain lion-key coiistraints in inore ordinary scenarios. 

The simplest case of a one-stage model (T = 1) helps to illustrate these ideas. In t,liis case we only 

know the present. We know nothing that  would pin down a particular scenario or  subclass of scenarios, 

but are forced t,o make a decision "liere and nown. A policy X ,  with just one ttinie co~rlponent, is 

implementa.ble if for all s E S one has X ( s )  = z for soine (fixed) vector z. In other words, tlie space 

.A/ consists of just tlie constant mappings from S t,o IR", in coritrast t o  t.he space f ,  wliicli consists 

of all possible mappings from S to IR". (The partition A l  in tliis example is the "trivial parbitzionn 

consisting of tlie set S by itself, no scenario being regarded as distinguishable from any otlier a t  the 

time the single decision has to  be ta.ken. All of S is a sii~gle bundle.) In this sett,ing, tlie quest,ion 

is one of proceeding fro111 a mapping X that  is not consta~it  t o  a mapping tliat is constant by some 

method making use of the insights gained by solving the individual scenario subproble~ns in various 

forms. 

An attractive way of passing from a general policy X to  a policy that  is in~plementable is to assign 

to each scenario s E S a weight p ,  t ha t  reflects its relative importance in the uncertain environment, 

wit11 

p,  > 0 for all s E S, and p ,  = 1 .  
8E.G 

These weights are used in blending the responses X ( s )  of X so as to nieet tlie require~iielit of not 

allowing tlie decision a t  time t t o  distinguish among tlie scenarios in a bundle A E A t .  Specifically 



one calculates for every time t and for every A E At the vector 

which represeiits a "weighted average" of all the responses Xt(s) for scenarios in the bundle A. T l ~ e i ~  

one defines a new policy by taking 

(1.7) 2, (s) = Xt ( A )  for all s E A. 

Clearly 2 is implementable: 9 E A. (In the one-stage model, 2 would simply be the constant 

mapping whose value is the vector CnE5 pPCX(s).) 

The transformation 

defined by (1.6)-(1.7) is obviously linear and satisfies J2 = J. It is a projectioii from f onto N wllicll 

depends only on the weights p,*. We call it tlie aggregation operator relative to tlie given inforn1at.ion 

structure and weights. It aggregates the possibly different references tliat a policy illiglit, l i~ake for tlre 

scenarios in any bundle into a single compron~ise response to tliat bundle. 

If we were to start  from the contingent policy XO ill which XO(s) is for eacli s an optillla1 s01ut.ioi1 

to the uiiniodified scenario subproblen~ (P,), wliicli is the typical beginniiig for all sceiiario ana.lysis, 

the correspondil~g in~plementable policy X" = JX0 might be coi~ten~plated as a kind of solut.ion to 

the underlying problem. There is IIO guarantee, however, tha.t 2" will inherit from X0 t l ~ e  propert'y 

of admissibility. Eveti if 9' is admissible as well as iinplementable, therefore feasible, tlie sense in 

wliicl~ it migl~t  be regarded as "optimal" needs to be clarified. As a matter of fact, 9') is ail optillla1 

solution to a certain "projectedn problem, which will be described presently, but this is not a t  all (.he 

problem that one is interested ill. 

If instead of introducing the weigllts p, in an a posteriori manner we were to do so a t  t11e outset, 

we would be led ill our search for a well liedged decision policy to the functional 

(1.9) 

and the problem 

(1.10) minimize F(X)  over all X E C n N. 

An optimal solution X* to this problem would indeed be admissible and implementable. Anlong all 

admissible, implementable policies it would do the best job, in a certain specific sense, of respondilig 

to  the relative importance of the scenarios as assessed through the weights p,. It would provide a 

sound method of hedging against the unknowns. 



The weights need not be regarded as "hard datan  for this interpretation to  be valid. Tlie road 

is always open a t  another level to  play wit11 the values of the weiglits and see how sensitively tlie 

problem is affected by them, altllough we d o  not take that  issue up  here. 

The trouble is tha t  problem (1.10) may be mucli larger and therefore much harcler to  solve than 

tlie individual scenario subproblems (P,), so that  i t  cannot be tackled directly. There is little prospect, 

either, tha t  the  desired policy X* is approximated a t  all closely by the policy 2" already described. 

This is seen from the elementary fact that  2" actually solves 

(1.11) minimize F(v) over all Y E e, 

where 

(1.12) & = { Y E N ~ ~ X E C  with J X = Y ) ,  

(1.12) P ( Y )  = min{F(X) ( X E C ,  J X  = Y). 

The projected problem (1.11) is utterly different from (1.10). 

Nonetheless there turns out t o  be a relationsliip tha t  can be exploited to  trace a. path from 2" 
t o  X* by solving a sequence of projected problems in which the  scenario subproblems are not tlie 

original ones but modified by the incorporatioli of tentative "information pricesn and penalties. At. 

iteration Y we take a contingent policy X" obtained by solving modified scenario subproblenls (P:) 

and aggregat,e it into an implementable policy 2L' wliose robustness in the  face of all event,ualities is 

illcreasingly demanded. An advantage of this  approacll is tliat even if we do not pursue tlie searcli 

until 2" converges t o  X*, we always have a t  hand a solution estimate tha t  is better tha t  just 2" or 

any otlier policy tha t  could reliably be gleaned from scenario analysis as practiced until now. Tlie 

word "bettern is given specific meaning by our convergence theory. The very process of blending 

decisiori componellts iteratively in the  manner we suggest is likely moreover to  identify fairly early tlie 

trends and activities that  will lead to  the final solution. 

The general principle tha t  allows us t,o proceed in this manner in generating improving sequences 

of policies is what we call the principle of progressive hedging in optimization under uncertainby. 

It enables us by simple means to  insist more and more on having our subproblenls reflect tlie ulti- 

mate  requirement that  a policy, to be implementable, cannot distinguish between scerlarios tha t  a t  a 

particular t ime are regarded as indistinguisllable from each otlier on the basis of information so far 

available. The realization of the  principle tha t  we give here is based matliematically 011 the  theory of 

the  proximal point algorithm in nonlinear programming. It does not depend on convexity, although 

convexity provides a big boost. 

A notable byproduce of our hedging algorithm is the  generation of information prices relative to 

the chosen weights p,. Potentially these might be used in some larger scheme for adjusting tlie weiglits 



or judiciously supplying more detail t o  the set of scenarios. In the limit the information prices solve a 

dual problem, which l~owever is likely t o  have dimension a t  least as high as tha t  of the  primal problem. 

Because of this high dimensionality, approaches like Dantzig-Wolfe generalized programming, which ill 

effect applies a cutting-plane method to  the dual, are not suitable. Our approach is not blocked by this 

difficulty and yet it retains properties of decompositio~i that  allow the  separate scenario subproblems 

in each iteration to be solved by parallel processors, if desired. 

2. G e n e r a l  F r a m e w o r k .  

There is no harm in interpreting the  weights p, mathematically as probabilities. They may indeed 

represent "subjective probabilitiesn, but  the reader should not conclude from the  probabilistic language 

tliat follows that  we necessarily regard them so. In passing to a probability framework we merely ta.ke 

advantage of the fact tha t  it provides a convenient scheme for organizing ideas tha t  mathematically 

fall into the  sanie patterns as are found in dealing wit11 probability. Much the saliie could be said 

about the use of geometric language in a nongeometric situation. 

 from now on, sums with the weights p, will be written as expectations in the traditional notation: 

for instance. T1le11 ill (1.6) we have 

(2.1)  Xt (A) = E{X (s) ( A), 

the conditional expectation of X t ( s )  given that  s E A, and we can interpret the projectiox~ J : X ++ x 
quite simply as the conditional expectation operator relative to  tlie given information structure and 

values p,. 

The infor~nation structure can itself be furnished with a traditional interpretation in t,erliis of 

fields of sets: 5 is for each t the collection of all subsets expressible as unions of tlie (disjoint) sets ill 

A t .  Then Rt is the  co~iditional expectation of Xt relative to 5 .  Such terxninology, bringing to  mind 

all the subtleties of measure theory, is not in any way needed, however, in the present context where 

S is just a finite set. It could just get in the way of a "user-friendlyn explanatiol~ of ideas that  are 

really quite elementary, so for the purposes a t  hand we avoid it. 

An inner product on the vector space f of all mappings from S t o  IRn is defined by 

(X, Y )  := E { X ( s )  Y (s)} = C p . ~ ( s ) .  Y (s). 
*E.q 

We think of f as a Euclidean space in this sense, tlie norm being 



wliere I . I is tlie ordinary Euclidean norm on Rn. Tlie aggregation operator J is then actually the 

orthogonal projection on the subspace N, as is well known. The operator 

is the orthogonal projection on tlie subspace of f colnple~nentary to  N, which we denote by M:  

(2.5) M = N ~ = { w E ~ I J W = O )  
= { W E  f IE{Wt(s ) lA)=Ofora l l  A E A ~ ,  t =  1 ,..., T). 

Clearly, on the  other hand, 

Tlius a policy X is implementable if and only if it sat.isfies the linear constraint equation K X  = 0. 

The functional F in (1.9) can be written now as 

Tlie problem we wish to solve tlien has the formulation 

(PI nii~iilliize F(X) subject to X E C ,  K X  = 0 

An optimal solution X* to  this problem is what we take to  be tlie best response we can offer t.o 

tlie uncertain environment, relat,ive to the given weighting of the scenarios. Tlle cha.llenge for us, ill 

adopting this point of view as a practical expedient, is that  of delnollstratilig how sucli all X' call be 

determined without going beyolid the tools tha t  are available. 

We see our capabilities as extending in two directions. First we can readily calcu1a.t.e for ally X 

the corresponding 2 = J X  and therefore also X - 2 = K X .  The projections J arid K are t.lius 

coniputa.ble and appropriate to  use in the context of an algoritlirn. Second, we call solve, a t  least. 

approxi~nately to  ally desired degree, the sceliario subproblelns (P,) and a certain class of lnodified 

versions of these subproblems. The specific form of modified scenario subproblenl tha t  we work will1 

in this paper is 

(k(% W ,  r ) )  mininiize j , (z)  + z .  w + i r l z  - iI2 over all z E C,  

The vector i will stand for an estimate of z from which we d o  not want to  stray too far; w E IR'" will 

be a price vector and r > 0 a penalty parameter. 

Motivation comes in part from Lagrangian representations for problem (P) .  The ordinary La- 

grangian for this problenl could be defined as the expression 
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with multiplier Y ,  but since K is an orthogonal projection one has 

(2-8) ( K X ,  Y)  = (X ,  K Y )  = ( K X ,  K Y ) .  

Only the component W = K Y  E M can really matter. We therefore find it convenient to define 

(2.9) L(X,  W )  = F ( X )  + (X,  W )  for X E C ,  W E M, 

as the Lagrangian. Tlie multiplier element W will be called an inforn~ation price system because of 

its role relative t o  the implementability constraint K X  = 0. More will be said about this later. 

The ordinary Lagrangian (2.9), important as it can be for instance in stating optimality conditions, 

is limited in its numerical usefulness. More powerful in many ways if one can work with it, and not 

limited to  problenls where convexity is present, is the corresponding augmented Lagrangian 

(2.10) L,(X, W)  = F ( X )  + (X ,  W )  + ~ ~ ( ~ K x J J ~  

= F ( X )  + (X ,  W )  + $IIX - x ~ ~ " o r  z E C ,  W E M ,  

where r > 0. 

There is no place here for a general discussio~l of aug~ilented Lagrangians, except to  say that  t,liey 

combine features of ~nult~ipliers and penalties. Tllrough a good choice of W E M and r > 0 one can 

expect tha.t the subprobleln 

(2.11) minimize L, ( X ,  W )  over X E C 

can be used as a close representation of (P), in the sense that  its nearly optimal solutions will be good 

approxi~llates to  an optimal s o l u t i o ~ ~  X* of (P).  This is true without any assuil lptio~~ of convexity and 

does not necessarily entail r g e t t h g  too large for comfort; much of the work can be done by W. Even 

in the convex case the augmented Lagrangian can be advantageous by providing greater stability t.o 

solution methods. We refer the reader to  Bertsekas (31 and Rockafellar 141 for more on this t,opic. 

Unfortur~ately, the augmented Lagrangian (2.10) cannot serve directly in our scheme. To use it 

we would have t o  be able to  solve subproblems of the form (2.11), which do not meet our prescription. 

The difficulty lies in the fact that  the term llKX112 is not "decomposablen into separate terms for each 

scenario. Nonetheless we are able to take an approach which seenls quite similar and does achieve the 

required decomposition. 

The approach can be described quite broadly in terms of the following algoritl~mic scheme. We 

shall subsequently make it more specific, in order t o  have results on convergence. A fixed parameter 

value r > 0 is considered througllout this paper for simplicity. 111 practice one rnigllt wish to  111a.ke 

adjustments in the value of r. This is an issue for which the theoretical backing is illcomplete, altllougll 

some elucidation will be provided in Proposition 5.3 and the comment that  follows it. 



Progressive Hedging Algorithm. In iteration v (where u = 0 , 1 , .  ..) one has an admissible but 

not necessarily implenlentable policy X" E C and a price system W" E M.  (Initially one can take X" 

to be the policy obtained by letting X"(s) be for each scenario s E S an o p t i n ~ a l  solution to the given 

scenario subproblen~ (P,) .  One can take W O  = 0.) 

1. Calculate the  policy 2" = J X V ,  which is implen~en table but not necessarily adl~~issible.  (lf ever 

one wishes to stop, this policy 2" is to be offered as  the best substitute yet available for a solution 

to (PI.) 

2. Calculate as XV+' an (approximately) optinlal solution to the subproblem 

(P") minin~ize  F(X) + (X, WV) + i r l J X  - 2"(12 over all X E C 

This decomposes in to solving (approximately), for each scenario s E S, the su bproblen~ 

(P;) n ~ i n i n ~ i z e  j" (z) + z .  W1.'(s) + i r  lz - 2 " ( s )  l 2  over all z E C, 

in order to  get XV+'(s) .  The policy X u + '  will again be adn~issible but not necessarily in~ple-  

n ~ e n  table. 

3. Update from WL' to WV+'  by t l ~ e  rule W"" = W" + r K X V + ' .  T l ~ e  price s y s l e i ~ ~  WL'+' will 

again be an element of the subspace M. 

4. Return to Step  1 with v replaced by v + 1. 

Left open in tliis sta.tement is the sense in which t l ~ e  subproblem in St,ep 2 need only be solved 

"approximatelyn. Actually the scenario subproblen~s in rllany applications will turn out to be quadratic 

p r o g r a ~ ~ l n ~ i r ~ g  problenis of reasonable d in iens io~~.  Then one could well ima.gine solving them "exa.ctlyn. 

This question of approximation therefore is not a sine qua non. A substantial answer will nevertl~eless 

be presented in $5. 

The updating rule for the price systems in Step 3 could in principle be replaced by something 

else without destroying the truly critical property of decomposability in Step 2. This rule is strongly 

motivated, though, by a.ugment-ed Lagrangian theory (cf. (41). It is essential not merely to  the proofs 

of our theorems on convergence but the very nature of the reformulation of the algorit l~m on which 

these proofs rely. 

An obvious strength of the procedure we are proposing is that  it involves a t  every iteration botli 

an  admissible policy X" and an in~plementable policy 2". The distance expression 

can readily be computed and taken as a measure of how far one is from satisfying all the constraints. 

Note tha t  (2.12) is a kind of conditional variance relative to the weiglits p,. In our convergence 

theorems for the convex case, at  least, this quantity will tend to  0. At the same tinie, the price 

systems W" will tend to an optimal solution to t l ~ e  Lagrangian dual of problem ( P ) .  



Such results for the convex case are established in 95. The  nonconvex case is taken up in 56. We 

have much less t o  say about it a t  the present stage of development and try only t o  indicate a potelltial 

in this direction. Our immediate task, in 93 and 94, is to  lay the foundations for tlie derivatioli of 

these results. 

3. Basic Assumption and Properties. 

It will be assumed throughout tlle rest of this paper tliat for each 3 E S the feasible set C, in the 

scenario subproblem (P,) is nonempty and closed, and the objective function f, is locally Lipschitz 

continuous on IRn with all level sets of the form 

bounded. This last condition is trivially satisfied, of course, if C,  itself is bounded. The  closedness of 

C ,  presumably comes from the constraint structure used to  define C,", but such explicit structure will 

not play any role liere. Tlle local Lipscliitz continuity of f, is present if f, is sinooth (i.e. of class C '  

on IRn) or, on the other hand, if f, is convex. 

We shall speak of the convex case of our problenl (PI when for every s E S tlie ful~ction f. is 

convex and the set C, is convex. The linear-quadratic case will refer to  the more special sit,uat.ior~ 

where f, is quadratic (convex) and C,  is polyl~edral (convex). We regard linear a r ~ d  affine furict.iolls 

as included under the lieading of 'quadraticn. 

We proceed wit11 some of tlie elemelitary coilsequences of these conditions. Tlie first topic is 

their effect on the given scenario subproblems (P,), whose solution is called for a t  the outset of our 

proposed algorithrll. 

Proposition 3.1. Each of the scenario subprobler~is (P,) has finite optinla1 value and a t  least one 

optinial solution. Furtherniore, the value 

(3.2) ii = nlin F ( X ) ,  
XEC 

exists and is given by 

(3.3) = E{a.), where a, = min(P.). 

It is a lower bound for the optinla1 value in (P). 

Proof. For the  first part the argument is the standard one. The  sets (3.1) for a > inf (P,) are 

i~onempty arld compact under our assumptions, alld since they are nested tliey must have a nonernpty 

intersection. This intersection consists of the optima.] solutions to  (P,). The exist,ence of an optinlal 

solution implies of course tha t  the optimal value in (P,) is finite. Tlie second part of t,he proposition 

merely records tha.t because of decomposability we are actually minimizing F over C when solving 



each of the problems (P,). Indeed, C is just the direct product of the sets C, and F is by (2.7) 

separable, witli components p, f.. Tlie minimum value for p, f, over C, is p.a,, and tlie s u ~ i l  of all 

these quantities p.a, is therefore 8. This sum is E{a,,) in our probabilistic notation. Problem (P) 

requires the minimization of F over C n N, now just C ,  so 8 is merely a lower bound for tlie optiiilal 

value in (P). 

Next we provide background for the decomposed solution of the subproblems (P") appearing in 

our algorithm. 

Proposition 5.2. Every modified scenario subproblem of the form (f', (2,  w, r ) )  (where r > 0) h u  

finite optinlal value and a t  least one optinlal solution. In the convex case, this optinlal solution is 

unique. 

Proof. Let f, denote the objective function in (f ' ,(2, w, r ) ) ,  

In tlie convex case, this is of course a strictly convex function on C, and therefore has at. rliost, 

one minimizing point relative to C,. To reacli the desired conclusio~is it will suffice (in view of the 

existence argurileiit used for the preceding proposition) to denloristrate tha t  all level sets of tlie for111 

{ z  E C, I f:.(z) 5 a ) ,  a E IR, are closed and bounded. They are obviously closed, since C, is closed 

and f, is continuous. Tha t  tliey are bounded can be seen from the inequa1it.y 

where a ,  is the optir~lal  value in (P,.) as in Proposition 2.2. This yields tlie inclusion 

{z E C, I f , (z )  5 a)  c {z E IRn 1z .w  + :rlz - ? I 2  5 a - a , ) ,  

where tlie right side is a certain ball in IRn. 

I11 the convex case f', (2 ,  w, r ) )  is a convex programming problerl~. Thus in executing our algoritlirl~ 

the critical step of solving all the modified scenario subproblems (Py)  is open to the metliods of convex 

programming. In the linear-quadratic case, these problenis fall into the category of quadratic (corivex) 

programming: a quadratic function with positive definite Hessian is minimized over a polyhedron. 

Special techniques such as pivoting algorithms can then produce an  "exactn optinial solution to (Pf') 

as long as the dimension n and the number of linear constraints used in defining C, are not too large. 

In the important  case where f, is linear, i.e. where the original scenario subproblems (P,)  arise 

from a linear programming model, the nature of (f ' , (f ,  w, r, ))  and ( P r )  is even more special. Although 

the proximal term in lz - ? I 2  requires a quadratic programming technique rather t.11a11 the simplex 

method, say, in solving such a subproblem, the Hessian matrix is just TI. It is possible tlien by 



elementary algebra to reduce the subproblem to  one of finding the  point of C, nearest t o  a certain 

point in IRn, namely in the  case of (P:) the poiiit 

Special methods are available for such a problem too. 

Another thing that  sliould be noted about the modified scenario subprob le i~~s  solved ill our 

algorithm is the  quite simple way they call be updated from one iteration to the next. In iteratioil v 

we must (approximately) solve 

(PY minimize j , ( z )  + (z,  W"(s))  + i r l z  - 2"(s)12 over C,, 

but in the preceding iteration we already solved 

(PY-') minimize j , ( z )  + (z ,  W"-'(s)) + i r l z  - xu-' (s)  1' over C, 

in order to  get XL'(s) ,  and we then set Wu(s)  = W1'-'(s) + r [ X u ( s )  - z L ' ( s ) ] .  By expanding the 

objectives in these two subproblenls around the initial Xo(s )  (as suitable reference poilit,), we call 

express the  object.ive in (PL,'-') as 

(3.6) I f.. ( z )  - a, + i r l z  - X n ( s )  1' + z .  (WV-'(s)  - r[X"-'(s) - X n ( s ) ] )  + const. 

wliere a, = n i i ~ i  (P,) ,  and the objective in (Pi') as 

(3.7) I I. (z) - a, + +r lz  - X0(s)12 + z -  (WL'(s)  - r ( T U ( s )  - X O ( s ) ] )  + const. 

The value a, has beeii introduced ill these expressio~~s,  for what it might be worth, because the first 

two terms are tlieil both nonnegative and vanish wliei~ z = Xf ' ( s ) .  Tlie important observa.tioii, siiice 

constant teriils in an objective have no effect oil the calculatioii of an optimal solutioi~,  is tha t  t,be 

objectives in (Py-') and (P',') differ only in a linear tern,. As a matter  of fact, tlie linear t .er~ns ill the 

objectives differ in coefficient only by 

In passing froni (Py-') to (Py) we therefore need only add to the objective a linear tern1 with this 

vector as i t s  coefficient vector, in order to  move toward calculating the new elements XL'+'(s) .  

The reason this observation can be useful is t ha t  it allows parametric techniques to  come ir1t.o 

play, particularly in the linear-quadratic case, in solving the modified scenario subproblerils. The work 

involved can thereby be reduced very significantly. Other possibilities for reducing effort could lie in 

the informa.tion structure a t  hand. If scenarios s a.nd s' are almost the same, for instance if they are 



indistinguisllable to  the decision maker until final time periods, then ( P r )  and (Pr , )  ought t o  liave 

strong similarities. One might be able t o  take advantage of an overlap in form t o  increase efficiency in 

solviiig the two problems, or  a "bunch" of such problems. This is an idea tha t  can only be developed 

in terms of greater detail about the scenario subproblems than we are ready t o  explore in tlie present 

paper. 

Let us now look a t  problem ( P )  itself. 

Proposition 3.3. In probleni (P) the feasible set C is nonempty and closed, the objective F is locally 

Lipschitz continuous on P ,  and all level sets of the form 

(3.8) {X E C I F(X) I a) ,  a E IR, 

Proof. The  assertions about C and F are obvious from the corresponding assumptions about C, and 

f ,  for each s E S. They imply the closedness of tlie sets (3.8). The  boundedi~ess is verified by using 

the constallt 8 in Proposition 3.1 t o  express the inequality F(X) < a as 

- 8 2 F(X)  - 8 = C p , [ f , ( ~ ( s ) )  - a,]. 
r E .' 

This inequality implies 

f 8 ( x ( s ) )  5 a, + [a - B]/p, for each s E S. 

Any set (3.8) is therefore included in a set of the form 

I-JIZEC* If8(Z) I a,.+ [" -~ I /P .} ,  
sE.5 

wliere each factor is bounded by one of our basic assurrlptions. It follows tha t  any set (3.8) is coli~pact. 

All sets of the  form 

are then compact too. In (P )  we minimize F over C n 4, so this conipactness leads by tlie staiidard 

existence argument in the proof of Proposition 3.1 to the assurance that ,  when C n N # 0, probleli~ 

(P) has an optimal solution and consequently finite optimal value. 

A further observation about the nature of (P) will complete this section. 

Proposition 3.4. In the  convex case (P) is a (large-scale) problem of convex progranin~ing: the 

feasible set C is convex and the objective F is convex. In the linear-quadratic case ( P )  is a (large- 

scale) problem of linear or  quadratic programming: C is a polyhedron in C and F is linear or  (convex) 

quadratic. 

Proof. In the  first case C is a product of convex sets and F is a weighted sum of convex functions. 

In the second case C is a product of polyhedral sets, therefore polyhedral, and F is a weighted sum of 

functions tha t  are a t  most quadratic, hence itself is a t  most quadratic. 

The large-scale nature of ( P ) ,  mentioned in Proposition 3.4, stems partly fro111 tlie very int.roduc- 

tion of scenarios in the  mathematical model. As so011 as one att,empts t o  cover a variety of occurrences 



that could influence tlie decision process, oue aliilost inevitably becomes interested in a scenario set 

S as large as technically can be managed in the calculation of solutions. Tlien in addition tliere is 

the presence of multiple time periods. This could itself lead to large-scale structure. Ea.cli of t,lie 

scenario subproblems (P,) might itself be a challelige. The fact that we shall be able to decoiiipose 

(P) into solving modified versions (Py) of such subproblems may in that situatioii seem to Iiave only 

a muted effect, even if parallel processing or tlie like is available for the subproble~ns. However, tlie 

principle developed in this paper need only cover an outer layer. The problems (PI:), with their mul- 

tiple time periods but fixed (not %ncertainn) structure, could themselves be decomposed by otlier 

techniques. In particular we have in mind here tlie idea of algorithms based on the separable saddle 

point representations we have developed recently in 151. 

4. Op t ima l i t y  a n d  Duality.  

The question of what conditioris can be used to cha.racterize optimal solutions to  (P) has t.o be 

a.ddressed for its own reasons, but it is critical also in the formulation of a notion of "approxi~ilate" 

solutioii tha.t can be used in ilnplementing our algorit,hm. Tlie iiiterpretatio~i of tlie ri~ultiplier ele~iie~its 

W" in the algorithm is involved witli this matter as well. 

To cover with adequate generality tlie diverse instances of tlie scenario subproble~ns (P,)  that 

interest us, wliere j, miglit be a sn1oot.h fu~iction hut on the otlier hand miglit be colivex slid orily 

piecewise smooth, due to tlie introduction of pelialty terms, we use the noti011 of nonsrilootli aria.lysis. 

Tlie syriibol a j , ( z )  will denote tlie set of generalized subgradients of j, at z ,  as defined by Clarke 

161 for arbitrary Lipscliitz contiliuous functions. The reader does not need to understarid fully wliat 

this mearis in order to appreciate our results. Tlie main facts are simply that if j, liappeiis to be 

snlooth (continuously differentiable) tlie set a j,(z)  consist,^ of the single vector V j , ( z ) ,  whereas if j, 

is coiivex a j , ( z )  is the usual subgradierit set in corivexity theory. In all cases aj, .(z) is a lionempty 

compact convex set that depends on z. 

Sinlilarly the symbol N(:,(z) will denote tlie generalized normal cone to C, at z ,  as defined lor 

any closed set C, 161. If C, is convex, this is the normal cone of convex analysis. If C, is convex, 

this is the normal cone of coiivex analysis. If C,, whether convex or not, is defined by a systelii of 

snlooth constraints such that the Mangasarian-Fromovitz constraint qualification is satisfied at z ,  then 

N(;,(z) is the polyhedral cone generated by the gradients of the active constraints at z .  (Nonnegative 

coefficients are used for the gradients of the active inequality constraints, of course, and arbitrary 

coefficients for the equality constraints.) The set Nc.:,(z) is always a closed convex cone colitai~iirig 

tlie zero vector, and it reduces solely to the zero vector if and oiily if z is all interior point of C,.. 

This notation and its interpretations can be carried over to C and F in problem (P) as well. 

Theo rem 4.1. Let X* be a feasible solution to (P): one has X* E U and X* E C ,  i.e. 

(4.1) X'(s) E C, for all s E S. 



-15- 

Suppose that  X* is locally optimal and  that  the following constraint qualification is satisfied a t  X*: 

(4.2)  The only element W E M satisfying - W ( s )  E NI;, (X' ( s ) )  

for all s E S is W = 0. 

Then there exists W *  E M satisfying 

and this is equivalent to 

(4.4) - W * (s) E a f3 ( X *  ( s ) )  + Nr:, (X* ( s ) )  for all 3 E S. 

In the  convex case, the existence of such an elenient W* implies conversely tha t  X *  is an optinial 

solution to ( P )  (in the global sense). 

Proof. The overall character of tliis result is not surprisilig, but  its forn~ulation in terms of conditions 

ill (4.1) ,  (4.2) and (4.4) tliat colicern C ,  and f, for each s E S needs t o  be cliecked for correctiiess. 

The two crucial formulas which yield tliis formulation are 

(4.5) aF(X) = { Y  E f 1 Y(s )  E a f , . ( x ( ~ ) )  for all s E s), 

(4.6) a N c ( X )  = { Y  E f I Y(s)  E N, , (X(s ) )  for all s E S). 

These are perhaps more subtle tlian may first appear, because subgradients and normal vectors depend 

by definition or1 tlie inner product being used iri tlie Euclidean space in question, and our iriner product. 

(2.2) is a specially adapted one. 

We can tliink of the  Euclidean space l as the direct product of Euclidean spaces f ,  for s E S, 

where l, is lRn under the  rescaled iliner product 

Correspondingly F can be viewed in the  separable form 

and C can be viewed of course as the product of the sets C, in the spaces l,. According to a general 

formula of nonsmooth analysis proved in Rockafellar 17, Prop. 2.5 and Corollary 2.5.1.1, one then has 



(4.10) NC(X) = n a : . ( ~ ( ~ ) ) ,  
n€.S 

where the tilde is introduced to  indicate tha t  the subgradient set and normal cone are to  be taken 

relative to the inner product (4.7) rather tlian the canonical one. I11 the case of tlie lloril~al coiles 

this modification makes no difference a t  all, because the nature of a cone is not affected by a positive 

rescaling. Thus (4.10) is equivalent to  (4.6). On the otlier hand 

Z F ~ ( X ( ~ ) )  = {p,llz Iz E aF , (X(s ) ) ) ,  

aFn(X(s ) )  = { P ~ Y  1 Y E afA(X(s)) ) ,  

so in the end we just have ZF,(X(S)) = a f , (X(s ) ) .  Formula (4.9) therefore reduces to (4.5). 

Armed with (4.5) and (4.6) we can apply the general theory of necessary conditions in nonsmooth 

analysis to problem (P).  Viewing (P )  in terms of minimizing F (which is Lipscliitz coiitinuous by 

Proposition 3.3) over C n .A/, we first invoke the basic result [7, Corollary 2.4.11 to  conclude that  if X *  

gives a local lniiiiilium theii 

Next we recall from 17, Corollary 8.1.21 tha t  

as long as there does not exist 

(4.13) W E N u  ( X * )  wilh - W E Nc(X*) ,  W # 0. 

Formula (4.6) gives us Nc(X*) ,  and since Jl is a subspace of C,  tlie normal cone N N  (X ' )  is just 

the subspace orthogonally complementary to  .A/ (with respect to the specified inner product for C ) ,  

namely M. The lionexistence of a vector W having the properties in (4.13) is thus tlie condit,ion we 

have set up in (4.2) as the constraint qualification for (P) .  The combination of (4.11) and (4.12) iiow 

comes down to  the  assertion that  

(4.14) -W* E a F ( X * )  + Nc(X*)  for some W* E ht, 

where the subgra.dient condition reduces by (4.5) and (4.6) to the relations claimed in (4.4). 

In the  convex case, of course, all these subgradient calculations can be carried out in the less 

demanding context of convex analysis rather tlian general nonsmooth analysis. Tlie asserted conditiolis 

for optiniality, which are equivalent to  (4.14), are then sufficient because of the stronger meaning 

assigned to  subgradients and normal vectors in that  context. Specifically, (4.14) says tha t  for some 

Y E a F ( X * ) ,  which means 

(4.15) F ( X )  > F ( X * )  + ( X  - X * ,  Y )  for all X E C,  



the vector W *  - Y belongs to N c ( X * ) ,  wliich means 

(4 .16)  ( X  - X * ,  - W *  - Y )  5 0 for all X  E C .  

Taking arbitrary X  E C n U  and using the fact that  ( X ,  W * )  = 0 and ( X * ,  W )  = 0 (because W  E ihl 

slid I 4 )  we see in (4 .15)  tha t  (4 .16)  implies ( X  - X * ,  Y )  > 0 and therefore F ( X )  2 F ( X * ) .  

Thus X *  is globally optimal for ( P )  in this case. 17 

Theorem 4.2. In the convex case, the decomposed conditions (4.1) and (4.4) on a pair  ( X ' ,  W ' )  E 

U  x M are equivalent to ( X * ,  W * )  being a saddle point of the ordinary Lagrangian L ( X ,  W )  = 

F ( X )  + ( X ,  W )  relative to nlinimizing over X  E C and nlaxi~~l iz ing over W  E M .  

Proof. This is just a small extension of the argunielit with which we concluded the preceding proof. 

I t  fits the standard patterns of convex analysis, so we omit i t .  

Theorem 4.3. In the linear quadratic case, the constraint qualification in Theorem 4.1 is superfluous. 

The condition given for optimality is always both necessary and sufficient. 

Proof. In this case ( P )  is just a linear or quadratic programming problem, albeit of large size; cf. 

Proposition 3.4.  In particular C is a polyhedrol~ and F  is sniootli, so no constrai l~t  qualificatioli is 

needed for the general optilnality condition (4 .3 )  t o  be necessary. 17 

As support for our algorithm we must develop optiniality conditions for the subproblellis ( P " )  

and ( P y )  as well. Fortunately the circulnstallces ill these problems are closely parallel to tlie ones 

already treated, so there is no call for going tlirougli tlie arguments in deta.il. We silnply stat,e the 

result,s wit,hout writing out tlie proofs. 

Proposition 4.4. If a policy Xu+' is locally opt, i~nal for the subproblenl 

( P" 1 nlini~llize F ( X )  + ( X ,  W L ' )  + i r I ( X  - % L ' 1 ( 2  over C ,  

i t  satisfies 

(4 .17)  xu+' E C and  - W Y  - r[XL'+' - xL'] E ~ F ( x " + ' )  + N ~ ( x ~ ' + ' ) ,  

and  this is equivalent to 

(4.18) X1'+'(s)  E C ,  for all s  E S, 

In the convex case, this property of Xu+' implies conversely that  Xu+' is the  unique (globally) optillla1 

solution to ( P Y ) .  Conditions (4.18) and (4.19) in fact characterize in the same pattern the optilllality 

of X U + ' ( s )  for the subproblenl ( P y ) .  

Tlle main point here is t ha t  problem (PI') deconlposes illto the individual problenis (PL,'). Tlie 

conditions in Proposition 4.4 are the ones obtained for each (P f ; ' ) .  No constraint qualification is needed, 

because the subspace U  is not involved. 



Finally, the  connection with duality in tlie convex case must be noted. The  problerr~ dual  t>o (P) 

with respect t o  the  ordinary Lagrangian L is 

(Dl maximize G ( W )  over all W E Dn MI 

where 

(4.20) C ( W )  = inf L ( X ,  W )  = inf {F(X) + (X ,  W ) ) ,  
x EC X E C  

The working out of the formula for the dual objective is not really relevant for our purposes. 111stea.d 

we are interested in the relationship between (D)  and (P) insofar as it reflects on the character and 

interpretation of the multipliers W.  The facts can be derived fronl the general dualiby theory for 

convex programming problems in 181. They focus most significantly on the ful~ctioli 

(4.22) @(U) = min{F(X)  1 X E C ,  KX = U)  for U E M. 

This expresses the optimal value in a perturbed forni of ( P ) ,  where the implenieiitability constrn.i~it 

XK = 0 is relaxed t o  KX = U. Note tha t  the n i i~ i in~um in tlie fornlula is indeed attained as long 

as there does exist an  X E C satisfying KX = U. This is clear from the compactness in Propositioii 

3.3. When tliere does not exist such an XI @(U) is regarded as m. Thus is extended-real-valued 

but nowhere ta.kes on -m (because of the at t ,ai l in~el~t of the  ~~liniriiulii). Its donisin of f i l~itei~ess is 

t l ~ e  nonempty set KC, the projection of C on M. 

Proposition 4.5. The functional on M is lower senlicontinuous, in fact i t s  level sets { [ I  E 

M 1 @(U) 5 a )  for a E IR are all compact. Fur t , l l e r~~~ore  

@(0) = nlin (P) 

(where mi11 (P) is the optinla1 value in (P) and is interpreted a s  m if (P) Bas n o  feasible solution, i.e. 

if C n .M = 0), and  

min @(U) = 6 ,  
l J E  M 

where 6 is the value in Proposition 2.1. In the convex case, cP is convex on M. 

Proof. The  level set {U E M I @(U)  5 a)  is simply the image under the projection K of the level 

set {X E C 1 F(X) 5 a). The latter is compact by Proposition 3.3, so the former is compact as well. 

This point of view also makes obvious the fact tha t  t l ~ e  minimum value of cP 011 M is the sanie as tlie 

minimum value of F on C ,  which is & by Proposition 3.1. The epigraph of cP is seen in t,he same way 

t o  be the image of the epigraph of F + 6(: (with 6,; the indicator of C )  under the extended project,ioii 



(X, a) H (KX, a )  from E x IR onto M x IR. In the convex case the epigraph of F + 6(: is a convex 

set, hence so is the epigraph of (9. Thus (9 is a convex function. 

Theorem 4.6. In the convex case the relation 

(4.23) -co < min ( P )  = sup (D) 5 co 

holds, and moreover the set of all optimal solutions to  (D) is given by 

(4.24) argmax(D) = -a(9(O) 

= {W* E MI(9(U) > @(O) - (U, W*) for all U E A ) .  

The elements W *  in this set, if any, are precisely the ones associated with an optinlal solution X *  to  

( P )  by the optililality conditions in Theorenl 4.1 or  Theorenl 4.2. 

In particular the set (4.24) is nonempty if ( P )  has  an optinial solution S* and the constraint 

qualification in Theorem 4.1 is satisfied. In the linear-quadratic case it is sure t o  be nonenlpty just 

from ( P )  being feasible, i.e. having C n N # 0. 

Proof. This specializes the theory in 18, $301 to  tlie present case. The assertions about the set (4.24) 

being nonempty are justified by Tlleorenls 4.1 and 4.2 (and t o  sollle extent the existence ill Propositioli 

3.3 of an optimal solution to  ( P )  when C n N # 0). U 

The iniportalice of formula (4.24) in Theorem 4.6 is tha t  it identifies tlie optimal multipliers W' 

in our framework witli differential properties of the colivex fulictional (9. The subgradient inequa1it.y 

(4.25) @(u)  > @ ( O )  - (U, W*)  for all U E M ,  

furnishes us a means of seeing what W*  represent,^. 

Let us go back t o  tlie idea that  W *  is an "information price systenin and give it the followillg, 

niore specific interpretation: W'(s) is a price vector tha t  can be used, if the scena.rio filially turns 

out t o  be s ,  t o  take the decisioli X ( s ) ,  which liad to  be chosen as part of an  implementa.ble policy 

X ,  and change i t  with hindsight t o  a different decision X1(s) = X ( s )  + U(s).  The cost of this service 

is U(s ) ,  W*(s) .  Taking all possible scenarios into account with their various weights, and inlagiliil~g 

how one might want to  alter decisions after the fact in all cases, we come up  with the  cost expression 

C P . u ( s ) -  w*(S) = (U, W*) .  
0 € .< 

Only deviations U that  belong t o  M need to  be considered, because all other aspects of the un- 

certain environment could already be taken care of in our model through the selection of X as an 

inlplenlen t able policy. 

The inequality (4.25) expresses W* as a system of "equilibrium" prices in the sense that  under 

this system there is no incentive for such a posteriori change of decisions. A change represented by a 



deviation U E M would achieve @(U) in place of @ ( O )  as the optimal value in the problem, but the 

cost of the change, as perceived a t  the time of decision making, would be ( U ,  W e ) .  The ]let result, 

for the decision maker would be @(U) + (U, W*) .  Because of the inequality in (4.25), there is no 

advalltage in this procedure as conlpared with just accepting the implenlentability collstrailit X E Jl 

and the corresponding optimal value @(O). 

In summary, the price systems W f  are the ones that  would charge for hindsight everything it miglit, 

be worth. They do therefore truly embody the value of information in the uncertain environnlent. 

Tighter expressions than (4.25) can be derived under additional assumptions. For instance, if W' 

is unique then 

w* = -V@(O). 

We refer to the  theory of subgradients of convex functions in [8, 5523-251. 

5 .  Convergence in the Convex Case. 

This section contains our main results. So as not to  overburden t,he reader wit11 all t,he details a t  ollce, 

we begill with the forni of the a lg~r i t~h ln  ill which exact solutiol~s are calculated for the subproblerlis 

in Step 2. Tliis is referred to  as the case of exact n~inin~ization,  in c ~ n t ~ r a s t  t o  the case of approx i l~~a te  

nlinin~ization tha t  will be trea.ted afterward. Exact ~i l i~~i ln iza t ion,  as tlie reader will recall, is entirely 

appropriate wliell the  scenario subprobielns fall witllill tlie real111 of linear or quadra.tic prograrllrllilig 

and are not tliemselves of larger scale. 

Theorem 5.1. Consider the a lgor i th l~~  in the convex case with exact ~~~inil l l izat , iol l .  Let {xL'),30. I 

and  {WL')F=l be the sequences it generates from arbitrary initial X" E C and W" E .hi. (In particular 

X"(s)  could be obtained by solving (P,), but that is not essential here.) 

l'hese sequences will be bounded if and only if optinla1 solutions exist for the suhproblen~s ( P )  

and (D),  i.e. there exist elelllents X *  and W' satisfying the optinlality conditions in Theorell1 4.1, or 

equivalently the saddle point condition in Theoren] 4.2. In that  case, for some particular pair of such 

elements X *  and  W' (even though optinla1 solutions to  (P )  and  (D)  might not be unique), i t  will be 

true that  

(5.1 ) 2" -+ X *  and W" -+ W*. 

Furthermore, in terlns of the nornl expression 

one will have in every iteration v = 0 ,1 ,2 , .  . . that  

(5.3)  ~ ~ ( ~ " + l j ~ u + l )  - (X*,W*]l l r  5 ~ ~ ( ~ " , w ~ )  - (X* ,W*) l l r ,  

with strict inequality unless (RV, WV)  = ( X * ,  W*) .  



Thus every iteration of the algorithm f r o n ~  the start  makes a definite improvement until solutions are 

attained (if tha t  occurs in finitely many steps). One will also have in every iteration v = 1 , 2 , .  . . that  

(5.4) 1 1 ( 2 " + ~ ,  w"+') - (A+, WW)Ilr 5 11(2", W") - (2'.,-', ww-')Ilr 

Proof. A sliglit shift of notation will be useful. Let 

and rescale all multiplier vectors by 

- Y - 
(5.6) W = r-'W, W = r-'W", W = r- 'W* (etc.). 

Our essential line of argument will be to show that  in terms of the genera.tion of the sequence 
Y 

{(V", W )I:==, our procedure can be construed as a certain instance of the proximal point algo- 

rithm in Rockafellar [9]. It will be the form of that  algorithm obtained from the maximal monotolie 

operator associated with the projected saddle furictiol~ 

(5.8) t , (V ,W)  =inf{r- 'F(x)+ (x,W) I X E C ,  R =  V )  for V E N, W E  M 

In this we are claiming that  

(5.9) (V"+',WY+') is the (unique) saddle point of 

-' 2 t,v(V, W) = &(v, W) + $ 1 1 ~  - v " I ( ~  - ;IIW - W 1 1  

subject t o  minimizing in V E N and maximizing in W E M 

The nature of the  function & must be clarified first. 

We can write the  formula for & in (5.8) alternatively as 

where 

cpr (V, U )  =r-'F(x) + bc(X) for the unique 

X E  f having J X  = V, K X  = IT. 

This just amounts to  a 'change of coordinatesn corresponding to the orthogonal decomposition f = 

N x M which expresses the closed proper convex funct,ion r - ' F  + bc (where bc is the indicator of 



C )  ill ter~ils  of the con~pone~ i t s  V and U of X. Obviously p, is a closed proper convex fu~ lc t io i~  011 

.U x M ,  and from this it follows by (5.10) tha t  4 is a closed proper saddle functioii on .U x M in the 

terminology of convex analysis [8, 8341. 

Associated with & is the multifunction 

which is known to  be m a x i n ~ a l  monotone and to  be given also by 

(See [8,  $351 for a review of subgradients of saddle functions.) Our claim in (5.9) is t.hat 

Y +  I 
(0 ,  0) E ae;(vL1+l, w ) = a 4  (vv+l, W"') + ( v v + l  - v W , ~  - w'+l), 

In order to verify t,his claini we eniploy (5.13) arid (5.11) to  get all expression for Tr ill the original 

colitext of F arid C .  We have 

(5.15) (Y, -W) E ap, (V,  U) e Y - W E  a ( r - ' F  + 6c)(X)  where X = V + U. 

Moreover the subdifferelitiatioli rules of convex alialysis [8, $231 

Therefore by (5.13), 

(5.17) (Y, -u) E T,(v, W) - Y - W E  T-'BF(X) + NC(X) 

where X = V + U, V E N ,  U E M, Y E N. 

We can now transmute our claim from (5.14) into tlie equivalent form 

(5.18) vLf - vV+l - F+' E T - l a ~ ( ~ V + l  + r+' - r) + N ~ ( V " + ~  + F + I  - r). 

At this point a return to our original notation is in order. From (5.5) (5.6) and the updating forniula 

-+I 7 
used in our algorithm, wliicli says W - W = Xv+l - x~,+l, we get 

v L , + I  + W'+l- wy = p + 1 +  x v + I  _ p + l =  x v + I  9 

Vv - vv+l-  w+l= r j u  _ R v + l _  T-IWL1+l _ - - XV+I - T-lWI, 
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Thus (5.18) as a version of our claim is the same as 

or better still: 

where F" is the objective in the subproblem (PL') in Step 2 of our algorithmic procedure, 

(5.20) F Y ( X )  = F ( X )  + (X,  WV) + $ r l ( X  - 2V112 

But because we are working a t  present in a framework of convex programming, the subdifferential 

condition (5.19) is necessary and sufficient for 

(5.21) X"+' E argmin FL' (X)  = argmin(PV).  
zEC 

Recapitulating up  to  this point, we have established that  the three conditions (5.9), (5.14), a.nd 

(5.21) are equivalent. The uniqueness mentioned ill (5.9) is evident from the strict convexity-co~lcavit~y 

induced on the function f!: by the proximal terms in V and W. I t  is equivalent also to  the urliquerless 

of XY+ '  in (5.21)) which comes from tlle proxilnal term in (5.20). In terms of the operator T,, whicli 

will play an ever more important role in our analysis, the uniquelless property is expressed by writing 

(5.14) as 

where 

Although T, is itself generally multiva.lued, its maximal monotonicity ensures, as is well known (cf. 

Minty [lo]) tha t  the operator M, is single-valued everywhere and actually nonexpansive. This means 

in the notation 

tha t  one has always 

Indeed, (5.25) can be stated even more strongly (cf. [9, Prop. 11) as 



The assertions of the theorem follow from the representation of our procedure ill the form (5.22)- 

(5.23), which is the exact version of the proximal point algorithm associated with the maxinial moilo- 

toile operator Tr. As a special case of (9, Theorem 1) ( a  result stated to  allow also for inexacti~ess in 

(5.22)), the sequence { ( V " , W Y ) ) ~ = ~  is bounded if and only if there is a pair (v*, W') satisfying 

(5.27) ( O , O )  E T,(v*,T) with V* E N, 3 E M, 

in which case the sequence actually converges to some such pair. We must confirm that the pairs 

(v*, %) satisfying (5.28) are precisely the pairs (X*, r-'W*) such that  X* solves tlle primal probleni 

(P) and W *  solves the dual problem (D). We have from (5.17) that the pairs satisfying (5.27) are the 

ones with 
-* 

-W E r - ' a  F(X*) + Nc(X*) for X* = V*. 

This relation can also be written as 

-W* E aF(X*) + Nc(X*) for X* = V *  

and is equivalent by Theorem 4.1 to  X* being optimal for (P)  and W *  being an associated multiplier. 

By Theorem 4.6, W' is such a multiplier if and only if W *  solves (D).  

All that remains to  the proof of Theorem 5.1 is the verification of the inequalities (5.3) and (5.4). 

In the notation (5.24) these take the form 

(5.28) (IZW+' - Z* 1 1  5 I(ZW - Z*I( for all v, 

with strict inequality unless Z" = Z*,  

and 

(5.29) I ( z " + '  - Z" 1 1  5 I(ZW - ZW-'II for all v. 

Noting that  the optinlality relation (5.27) can be written as Z* = M r ( Z * ) ,  whereas ZV+' = Mr(ZL') 

for every v ,  we can get both of these inequalities from (5.26), as we now show. 

In the case of (5.28) we take Z = Z* and Z' = ZV t o  turn (5.26) into 

//ZW+' - Z*(IZ + I((ZW - ZW+') - OllZ 5 ((Z" - z*J IZ .  

This yields the inequality in (5.28) and the information that the inequality is strict unless ((ZL' - 

ZW+'ll = 0. Of course 112" - ZW+'ll = 0 if and only if Z" = Mr(ZW), in which event the sequence 

generated by our procedure must forever more remain fixed at Z V ,  and Z" must by force coincide 

with 27. The full assertion of (5.28) is thereby justified. 

In the case of (5.29) we apply (5.26) with Z = ZW-' and Z' = Z". This gives 

and in particular proves (5.29). 

A stronger result about the rate of convergence will be obtained now for the linear-quadrabic ca.se 

of problem (P) .  



Theorem 5.2. Consider the algorithm in the linear-quadratic case with exact nii~iin~ization, and 

suppose that (P) and (D) have unique opt in~al  solutions. Then the convergence in Theorem 5.1 is at  

a linear ra te  froni the start: There is a value 8, E [O,1) such that in every iteration u = 0 , 1 , 2 , .  . . one 

has 

Proof. To demonstrate this we return to the context of the proximal poi~lt  algoritllm in the proof of 

Theorem 5.1. The results will follow from [9, Theorem 21 by verifying a Lipschitz property for Tr-' 

at (010) 

Recall that in the linear-quadratic case F is a quadratic (possibly affine) function and C is a poly- 

hedral convex set. In this case the multifunction X ++ aF(X)  reduces to an affine transformation. At 

the same time the multifunction Nc : X ++ NC(X)  is polyhedral in a sense defined and demonstrated 

by Robinson (111: The graph of Nc is the union of a finite collection of polyhedral coIlvex subsets of 

C x C. The multifunction r - ' a F  + Nc is then polyhedral too, and hence so is the mult.ifullction acp, 

for cpr in (5.11), because of (5.16). The graph of T, differs from that of acp, only by some clianges in 

sign and shifts in the roles of various components; this is seen in (5.13). Therefore Tr is polyhedral, 

a i ~ d  it follows now that Tr-' is polyhedral. 

We have seen that (5.27) characterizes the optimal solutions X* to (P) and W *  to  (D): For each 

such pair we get (v*,W) satisfying (5.27) by takillg V' = X', W- = r-'W', and conversely. Our 

uniqueness assumption implies therefore that T;'(o, 0) is a singleton. Of course Tr-' is a.t, the sallie 

time a maximal monotone operator, because Tr is. Any maximal moliotone operator has t l ~ e  propertly 

of being single-valued (in fact differentiable) almost everywhere on the iiiterior of it,s effective dornain 

(the set of points where it is nonempty-valued) 112, Theorem 1.31. Furtllermore, tlle interior of the 

effective domain is characterized as the set of points where tlle opera.tor is noneinpty-compact-valued 

[IS]. Since Tr-'(0, 0) is a singleton (which in particular is a nonempty conlpact set), we may co~lclude 

from these facts that T;' is single-valued almost everywhere in a neighborhood of (0,O). But the 

graph of Tr-' is the union of finitely many polyhedral convex sets in C x C. The conclusion must 

be drawn that Tr-' is actually single-valued on an entire neighborhood of (0,O) and indeed must be 

piecewise afine there. In particular Tr-' is Lipschitz continuous at  (0,O). 

The Lipschitz property guarantees by [9, Theorem 21 that a value 8, E [ O , l )  exists for wliich 

the desired inequality (5.30) holds when u is sufficiently large. The strict inequality in property (5.3) 

in Theorem 5.1 makes it possible for us, by raising the value of 8, somewhat if necessary, to  get the 

inequality to hold for all v. 

The behavior of the algorithm and in particular the modulus of convergence in Theorem 5.2 

depend on the choice of the parameter r > 0. This is a matter that will require further exploration. 

Some preliminary insights can be gained from the saddle point representation of our algorithm that 
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was observed in (5.9) of the proof of Theorem 5.1. We can record that representation in a more useful 

form for the present as follows. 

Proposition 5.3. When the algorithm is executed in the convex case with exact rnininlization, the 

basic iteration can be expressed in terms of the function 

e(V, W) = inf{F(X) + (X, W)  I X E C ,  2 = V) 

forV E U, W E  M ,  

by saying that (x"+', WV+l)  is the unique saddle point of the convex-concave function 

with respect to minin~ieing over V E U and mwin~izing over W E M .  

Proof. This differs only in notation from tlle version of (5.9) that was established in tlie proof of 

Theorern 5.1. 

The fornlulation of our algorithni in terins of Proposition 5.3 reveals a trade-off that must be 

respected in choosing r. A low value of r is likely to encourage progress in the primal sequence {Z"), 
but it could hinder progress in the dual sequence {W"). A high value of r may be expected to have 

the opposite effects. The ultimate consequences for the numerical behavior of the algoritlinl will have 

to be seen in practice, but a deeper study of convergence properties of the underlying proxinlal point 

algorithm could also lead to a better understanding of this situation. We cannot pursue the matt.er 

further in the present paper. 

We now take up the questioil of how the algorithni may be realized with only a.pproxiniate 

minimizatioii in the subproblems (Py). As  seen in Proposition 4.4, the condition which ill tlie corivex 

case is necessary and sufficient for tlie point XU+'(s)  E C ,  to be the exact (unique) opt,in~al solutioii 

to (Py) is (4.19), which can be written as 

for the function 

Problem (Py) consists, of course, of minimizing f,V over C,. 

The criterion we shall use for approximate minimization in (Py) is, in place of (5.33), the inequality 



where p > 0 and 0 < E < 1 (fixed values). The left side of this inequality involves tlie Euclidean 

distance of the set a f ~ ( X V + ' ( s ) )  + Nc,(XV+'(s)) from the origin of IRn, a distance we know to be 

0 in the case of exact minimization in (5.33). Note that unless x V ( s )  itself is the unique solution to 

(Py), a special possibility that could be tested for at the outset of any procedure for solvilig (Pf;'), the 

right side of the inequality in (5.35) will tend to some positive value. Then there will be leeway for 

determining in finitely many iterations an XV+'(s) for which the condition is met. 

This form of stopping criterion is easier to  implement than might be suspected. The exact 

condition in (5.33) corresponds in a standard linear or smooth nonlinear programming formulation of 

(P:), for instance, to the Kuhn-Tucker conditions. Then t l ~ e  set a fF(z)  reduces just to the gradient 

vector V f,V(z), which is 

Vf,(z) + WL'(s) + r ( z  - x V ( s ) ) ,  

and N,;, (2) is a cone generated by the gradients of tlie active constraint vectors at z in the constraint 

representation for C,, as was explained at the beginning of 94. The fulfillment of the Kuhn-Tucker 

conditions at XV+'(s) means then that a vector 

has been determined and shown to equal 0. 

In the approximate minimization we are proposing, one has (5.36) holding but tlie vector YL'(s) 

is not quite 0. Nonetheless 

then our stopping criterion (5.35) is satisfied, and Xu+'(s) is appropriately deemed an approximate 

solution to (Py). 

Theorem 5.4. If the algorithm in the convex case is inlplemented with approxin~ate n~in imiza t io~~ 

in the sense of criterion (5.35) for the modified scenario su bproblenls (P: ), then ;rll the convergence 

results in Theorems 5.1 and 5.2 remain valid. 

Proof. Going back again to the formulation of the algorithm in terms of T, and M, in the proof 

of Theorem 5.1, we aim at applying the criterion given in [9] for approximate implementa.tion of the 

proximal point algorithm. This criterion in present notation takes the form that 

-. 

I ~ ( V ~ + ' ,  r") - M, (vU, r) 1 1  < E~ with cu > 0, E~ < m, 



with 6, > 0, 6, < m. 

We can subsume the two inequalities into the single, somewhat simpler condition that  

for fixed p > 0 and E E ( 0 , l ) .  (The factor i r  anticipates a relationship that  will subsequently emerge.) 

We set out now t o  demonstrate that  (5.41) is implied by (5.35). 

To say tha t  (5.35) is satisfied is t o  say that  for some vector satisfying (5.36) one has (5.38). (The 

set on the right side of (5.36) is nonempty and closed.) Let us suppose we have such a vector YL'(s) 

for every scenario s E S and observe that  then 

in the notation (5.20), or wha.t is the same thing, 

To relate this expression more closely to  the formula in (5.17) for T,, we can write it as 

where WY = r-'WL' as in the notation (5.6). The vector on the left in (5.43) can be decomposed into 

a component 

and a component 

Here we are also using the notation (5.5) and the fact that  

Decomposing XV+' itself by 

1 = JX"+ 1 + KXW+' = v"+ 1 + (W+' - W) 
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we can now invoke ( 5 . 1 7 )  and write (5 .43)  in terms of Tr as 

This in turn becomes 

and for the mapping M r  = (I + Tr)-'  can be expressed as 

The nonexpansive property of M r  in (5 .25)  lets us estimate 

(where we use the fact tha.t J Y "  and KYV are the components of Y "  with respect to the orthogonal 

decomposition P = .A/ @ M). But ( 5 . 4 6 )  gives 

In combining ( 5 . 4 7 )  with ( 5 . 4 8 )  we achieve 

( 5 . 4 9 )  I ( ( V ~ + ' , W Y + ' )  - M , ( V ~ , ~ ) I I  5 2r1111~"IJ.  

We originally cliose Y "  so as to have ( 5 . 3 8 )  satisfied for every s E S. This condition gives 

Calculating 

we therefore have 

Tliis brings us to  the finish: ( 5 . 4 9 )  plus (5 .50)  implies ( 5 . 4 1 ) .  Thus the proposed stopping criterion 

( 5 . 3 5 )  does ensure that ( 5 . 4 1 )  will be respected a t  every iteration, and tlie colivergence facts in 19, 

Theorems 1  and 21 can be applied to get the results claimed. 



Remark. As represented in Proposition 5.3, our progressive hedging algorithm draws directly on the 

basic theory of the proximal point algorithm for monotone operators. It can also be seen, however, 

as an instance of the "method of partial inversesn of monotone operators that has been developed by 

Spingarn [14],  1151. Spingarn's approach focuses on the subdifferential a F  and its partial inverse a!, 
instead of on F and t? themselves. 

6. Convergence in the Nonconvex Case 

Outside of the convex case of problem (P) we really have no substantial results of convergence of 

the algorithm along the lines of the ones in 55, a t  least at  present. This territory has not been well 

investigated, however. We do think there are possibilities for using the algorithm effectively in tlie 

nonconvex case as well. So that the reader is not left with too narrow an impression, we wish to 

provide in this section some evidence supporting that opinion. 

In tlie nonconvex case it is probably futile to count on being able to solve (P) globally. Tlle saine 

could well to be true even for the subproblems (Py). The analog of "exact minimizationn (we do not 

try to deal with "approxiinate minimizationn here) is the calculation of XV+'(s)  as a locally optinlal 

solution to (Py) at  each iteration. A slippery quality of local minimiza.tion, however, is the variabilit'y 

of what Ulocaln niiglit mean froin one iteration to the next. 

Let us speak of a 6-locally optimalsolution as an optimal solution relative to a.n 6-neighborliood of 

tlie point in question. While the calculation of a globally optimal solution may be out of tlie questioii, 

an idea not very fa.r-fetched is that the technology of optimization will allow us to calculate for fixed 

(possibly small) 6 > 0 specified in advance a 6-locally optimal solution XV+'(s) to (Py). Properties 

such as Lipschitz continuity of objective and constraint functions could support this capa.bility. 

Proceeding anywa.y oil such a basis, we are able to sliow that the algoritl~m, if it does converge 

to  sonletl~ing ( a  big assumption?), produces in tlie nonconvex case of (P) about as good a "solut,ionn 

as could be hoped for. 

Theorem 6.1. Suppose that the algorithnl is inlplenlented in the nonconvex case in such a way that 

in each iteration the calculated vector XV+'(s) is 6-locally optinial for (PF), where 6 > 0 is fixed. If 

the generated sequences {XV);==, and { W V ) ~ = = ,  do converge to elements X *  and W* respectively, 

then X *  and W* satisfy the optiniality conditions in Theoren] 4.1. In this sense, X* is a stationary 

point for (P) .  

Under these circun~stances, in fact, X *  is a locally optimal solution to, and W* a corresponding 

multiplier vector for, the problem (F) obtained from (P)  by replacing each function f, by 

(6.1) fa(.) = fz(.) + 5.12 - X*(s)I2. 

Proof. The assertion about problem (F) implies the one about X *  being a stationary point for (P), 

because 

a f : . (~ )  = a f , ( ~ )  + T ( Z  - x*(s)) 



(see [7,  Corollary 2.4.21) and consequently 

The only distinction between (f') and (P)  in the optimality conditions of Theorem 4 .1  would lie ill  a 

possible discrepancy between the two sets shown in (6.2) to coincide. We may concentrate therefore 

on the assertion about (p).  

The condition that XV+'(s) is 6-locally optimal in (P;) for every s E S implies that Xu+' is 

locally optimal in the problem ( P V )  where 

(6.3 FV(X) = F(X) + (XI W") + i r l ( X  - A"1I2 

is minimized over C.  Indeed, Xu+' is 6'-locally optimal in (PV) ,  where 

6' = 6 min pa/2, 
s€.< 

because 

IJX - XV+11(2 5 (6')' + C P 8 ( x ( s )  - xu+' (s)  1' 5 (6')2 
re.' 

* IX(s) - XV+'(s)l 5 (6')2/p, for a11 s 

and consequel~tly 

(6.5) IIX - x " + ' I I  5 6' + JX(s )  - xV+'(s)l 5 6 for all s. 

Working now with our assumption that Xu 4 X* and W" -, W* we see, because 

FL'(X) 2 F"(x"+') when X E C ,  IJX - Xu+'II < 6', 

that in the limit, one has 

(6.6) F(X) + (XI W * )  + i r  I(X - x ' ( ( ~  2 F(Xt )  + ( X f l  W t )  + !jrl(X* - Xf 1 1 '  
when X E C ,  IIX - X*IJ 5 6', 

or in other words, X* is 6'-locally optimal for the problem 

(P* minimize F(X) + (XI W*) + 4rlJX - X* 1 1 2  over X E C. 

The convergence of WV to W* implies, because W" E M and WV+'- W" = rKXV+' ,  that W* E M 

and KXV -, 0. The latter means XV - AV -, 0. Hence X* - A* = 0, i.e. X* E A. The fact that 

X* is 6'-locally optimal in (P*) gives us then in particular, because (XI W*) = 0 when X E A,  that 

X* is 6'-locally optimal for minimizing the expression 

over X E C n A. This is all we needed to prove. 
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