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RECURRENCE CONDITIONS FOR AVERAGE AND BLACKWELL
OPTIMALITY IN DENUMERABLE STATE MARKOV
DECISION CHAINS*7

ROMMERT DEKKER anp ARIE HORDIJK

In a previous paper Dekker and Hordijk (1988) presented an operator theoretical ap-
proach for multichain Markov decision processes with a countable state space, compact
action sets and unbounded rewards. Conditions were presented guaranteeing the existence of
a Laurent series expansion for the discounted rewards, the existence of average and
Blackwell optimal policies and the existence of solutions for the average and Blackwell
optimality equations. While these assumptions were operator oriented and formulated as
conditions for the deviation matrix, we will show in this paper that the same approach can
also be carried out under recurrence conditions. These new conditions seem easier to check
in general and are especially suited for applications in queueing models.

1. Introduction. In this paper we consider average and Blackwell optimality in
denumerable state Markov decision chains with compact action sets. In the introduc-
tion of Dekker and Hordijk (1988) an overview of the literature with 38 references
was given. Let us therefore give a brief introduction in this paper. While the theory of
finite state, finite action Markov decision chains was accomplished in a relatively
short time, the analysis proved to be quite difficult for the average optimality criterion
in denumerable state Markov decision chains and many counterexamples for the
nonexistence of average optimal policies were given. First results for the denumerable
state space required a special Markov chain structure, viz. one ergodic class (the
unichain case). It took some time before that case was studied in detail (see
Federgruen, Hordijk and Tijms 1979). Later on, the analysis was extended to the
so-called communicating case, in which a certain set of states can always be reached
from any state under at least one policy (see Federgruen, Schweitzer and Tijms 1983).
Although this implied a substantial relaxation, the assumptions were still not fulfilled
in any finite state and finite action model. Recent research has shown that assump-
tions are possible which do incorporate the finite state and action model. Zijm (1985)
gives an analysis for the bounded rewards case. Also more sensitive optimality criteria
have attained attention. Mann (1985) gives conditions for n-discount optimality in
case of bounded rewards.

Dekker and Hordijk (1988) presented a new operator theoretical approach for
denumerable state Markov decision chains in which no direct assumptions were made
on the Markov chain structure and which was also valid for the general finite state,
finite action model. That paper only contains conditions which are related to
operators, like the deviation matrix D(f), and a condition on a geometric conver-
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272 ROMMERT DEKKER & ARIE HORDIJK

gence of P*(f) towards the stationary matrix I1(f). A relation of these conditions
with the eigenvalues of P(f) was given by Laserre (1988). Although the operator
theoretical approach is elegant, it may be difficult to check its conditions. Recurrence
conditions can be checked easier, but require a far more technical analysis as many of
the preceding papers show. In this paper we present recurrence conditions which are
sufficient for both average as well as Blackwell optimality. Blackwell optimality is a
stronger criterion than average optimality and is also stronger than n-discount
optimality. Recurrence conditions for rn-discount optimality can be slightly weaker
than for Blackwell optimality, but do not allow for wider problem classes.

Our recurrence conditions consist of a part requiring geometric recurrence to a
finite set and a part which requires continuity of the number of classes. Most
counterexamples (e.g., Hordijk and Dekker 1983) for the nonexistence of average
optimal policies were based on the lack of continuity of the number of classes. As it
seems difficult to check this continuity property, we use the concept of reference
states to facilitate the verification. However, even in finite-state and compact-action
Markov decision chains continuity of the number of ergodic classes is required (see
Schweitzer 1982). In Dekker and Hordijk (1989) the results of this paper and the 1988
paper are applied and extended to semi-Markov decision chains.

Let us briefly review the literature on recurrence conditions. In Hordijk (1974)
recurrence conditions have been used to establish the existence of average optimal
policies in Markov decision chains. Their relation with the simultaneous Doeblin
condition, Liaponuv functions and Foster criteria have been studied there. It easily
follows from the analysis of Chapter 11 of Hordijk (1974) that the simultaneous
Doeblin condition is equivalent to the condition,

(1.1) I, P"(f)] <cB", feF, n=12,...,

where M is a finite set, ¢ is a finite constant, 8 < 1, F is the set of all decision rules,
|| - || is the supremum norm and ,,P(f) is the matrix of transition probabilities under
decision rule f and taboo set M, i.e.,

R, JEM,
MPU(f) - 0, jGM.

A simple argument (cf. Lemma 5.3) gives that the relation (1.1) implies the existence
of a bounded vector u such that 4 P(f) is a contraction in a u-weighted supremum
norm with a contraction factor 8 < 1 for all decision rules, i.e.,

(12) ”MP(f)“#<B~5 fEF-

In this paper we use condition (1.2) for unbounded w. This is essential since the
immediate reward vector which is allowed to be unbounded must have a finite
p-norm (condition A). For one Markov chain the condition (1.2) is closely related to
a criterion of Popov (1977) for geometric ergodicity of the Markov chain. In Hordijk
and Spieksma (1989) ergodicity and recurrence properties of a Markov chain and
their relations to the Foster, Popov and Doeblin condition are studied. For an
overview of the literature on these topics we refer to that paper.

The p-geometric recurrence condition of this paper (Definition 3.2.1) is a stronger
version of (1.2). Indeed, it is equivalent to (1.2) together with the continuity of the
number of recurrent classes (see §3.2 and §5). We introduced this condition in a
technical paper which appeared as Chapter 1 in Dekker (1985). In §4 the condition is
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RECURRENCE CONDITIONS FOR AVERAGE & BLACKWELL OPTIMALITY 273

shown to hold for an exponential queueing model with controlled admission. In Schil
(1987) the relation (1.2) is verified for the M/G /1-queue with unknown input rate
and controllable service rate. In Spieksma (1991) the w-geometric recurrence condi-
tion is proved for two queueing models: the X competing queues and the two-center
open Jackson network with control of the service rates. For Markov decision chains
with the total reward criterion the following relation has been used

(1.3) 1Pl <B,  fEF.

The difference is that no taboo set M is involved, hence the matrices are assumed to
be transient. For characterizations of the condition (1.3) see Van Hee and Wessels
(1978) and Hordijk and Kallenberg (1984). Let us return to recurrence conditions. In
Federgruen et al. (1978) and Thomas (1980) various equivalent recurrence conditions
are given for the unichain Markov decision chain. In Zijm (1985) it is shown for the
aperiodic multichain case that a bounded mean recurrence time to a finite set
together with the continuity of the number of classes is equivalent to uniform
geometric ergodicity.

Recently, it is shown in Dekker, Hordijk and Spieksma (1990) that under the
aperiodicity assumption the w-uniform geometric convergence condition of Dekker
and Hordijk (1988) is equivalent to the p-geometric recurrence condition (Definition
3.2.1), if the number of classes is finite for any deterministic policy.

The structure of this paper is as follows. In §2 we will give the model, state the
problem and give the final objective of this paper. In the following section a normed
linear space is introduced and a recurrence condition are given. We will show that
this recurrence condition is sufficient for average and Blackwell optimality. The
(mostly technical) proofs are left out of this section in order to give the reader a
better overview of the method. In §4 the verification of the recurrence conditidn is
shown in a single-server queueing system. For the application of geometric recur-
rence to multidimensional queues and networks of queues an equivalent but different
condition is needed. In §5 we give other recurrence conditions and discuss their
equivalence. Also it is shown that our u-geometric recurrence conditions imply that
the matrices of taboo probabilities are a contraction with respect to a different
bounding vector. The final section contains the technical proofs.

2. The model. Consider the standard Markov decision model, consisting of the
four tuple (E, A, P,r), where E is the denumerable state space, A(i) the set of
available actions in state i € E, P, (a) the transition probability from state i to state j
under action a and r(a) the immediate reward in state i when action a has been
chosen. In this paper we will restrict ourselves to the class of stationary and
deterministic policies F, with f € F if f(i) € A(i), for all i € E. The extension of the
results to the class of nonstationary policies follows from §5 in Dekker and Hordijk
(1988). Let P(f), r(f) denote the matrix of transition probabilities, vector of immedi-
ate rewards under policy f, respectively, i.e., P, (f) = P, ,(f(@)), etc. Furthermore, let
PX(f) = P(f)P*X(f), k = 1,2,... and P°(f) = I, the identity matrix. The follow-
ing assumption is standard in the case of a denumerable state space.

Assumption 1. (i) A() is a compact metric set for all i € E.

(ii) Both r(a) and P,(a) are continuous on A(i) for all i,j € E.

Throughout this paper we will assume this assumption to hold. The following
infinite horizon optimality criteria will be considered. The expected a-discounted
rewards of policy f, v*(f) are defined by

2.1) b*(f) = ioakP"(f)r(f),
k=
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274 ROMMERT DEKKER & ARIE HORDIJK

with 0 < @ < 1, where the factor « is called the discount factor. In the sequel we also
use p = (1 — @)/a or equivalently @ = 1/(1 + p), where p is called the interest rate.
We also write v*(f) for the (1/(1 + p))-discounted rewards, so the symbols « and p
denote the discounting with a factor « and 1/(1 + p). A policy f, is a-discounted
optimal if forall i € E, f€ F

(2.2) v (fo) 2 08 (f)-

A second criterion is the (long-run) average expected rewards g(f), defined by

N
(23) &(f) = limint 55 T PO,

A policy f, is said to be average optimal, if it maximizes g,(f) for all states i € E
simultaneously. Average optimality is a rather insensitive criterion, as only the long
term counts. More sensitive optimality criteria were therefore introduced, which also
consider short-term rewards. Following Veinott (1969) a policy f, is said to be
n-discount optimal, n > —1,ifforalli € E, fe F

liminf o~ [0 fo) = 0/()] > 0.

Under mild conditions it can be shown that (—1)-discount optimality is equivalent to
average optimality. Another optimality criterion is Blackwell optimality. A policy f,, is
Blackwell optimal if for every i € E, f € F there exists a p(i, f) > 0 such that
vP(fo) —vP(f) = 0,0 <p <pli, f) If for all i € E, f € F a Laurent series expan-
sion for v?(f) exists then it can be shown that Blackwell optimality is equivalent to
n-discount optimality for all n.

For each optimality criterion it is possible to define optimality equations from
which optimal policies can be derived. Dekker and Hordijk (1988) studied the
so-called Blackwell optimality equations, which require a Laurent series expansion
for the discounted rewards. Not surprisingly, the Blackwell optimality equations
contain both the average as well as the n-discount optimality equations for all n.
Assuming the following Laurent series expansion for the discounted rewards (see
also §3)

(2.4)

v?(f) =1 +p)

el > (—l)kp"D"“(f)r(f)], p>0,
k=0

the Blackwell optimality equations in y(~ D, y*) k =0,1,2,... have the following
nested form

max [, (@) =" =0
acA) | ,

max )[r,(a) + LR (a)y® —y® —y,‘““] -0,
J

ac AN
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RECURRENCE CONDITIONS FOR AVERAGE & BLACKWELL OPTIMALITY 275

where A7) contains the maximizing actions of ¥ P

,P,(@)y{~D, and

max |} P (a)y® —y® —y*k DI =0 fork=1,2,...,
acA*-DW) |

where 4A%7D(), k = 0,1,... is the subset of A*~2X(;) consisting of the maximizing
actions of the terms r(a) + L, P, (a)y{” for k = 1 and of T P, (a)y*~" for k =
2,3,....

The goal of this paper is to show that under an appropriate recurrence condition

(see Definition 3.2.1) solutions y~!, y©@ ... to these equations do exist. These
solutions are elements of a normed linear space which is introduced in §3.1.
Moreover, when the vectors y™, y©@ ... y@*D are known the nonempty sets

ATI(D), A9, ..., A™i), i € E are available. Any decision rule f € F with fi) e
A®(G), i € E, k <n + 1 gives a stationary deterministic policy which is n-discount
optimal. A Blackwell optimal policy is obtained by taking a decision rule f for which
fG) € A®G), i € E for all k = —1,0,1,... . Such decision rules, called conserving
decision rules, do exist (see Corollary 3.11).

3. Recurrence conditions for average and Blackwell optimality.

3.1. Normed linear spaces. The approach we will use to handle unbounded
rewards in a denumerable state space is to introduce a weighted supremum norm
Il - Il,., where w is a vector of positive weights (also called bounding vector). For any
vector x on E its p-norm is defined as |ixl|, = sup, ¢ |x,|/u,. For a matrix 4 on
E X E the associated operator norm || Al reduces to sup, .. T4, |u,/p,. Based on
these norms we introduce normed linear spaces V*, M* of vectors, matrices on E
respectively. These spaces guarantee that for any matrix A € M* and vector x € V*
the product Ax exists and is again contained in V*. Our approach is to look for a
vector p such that not only P(f) and r(f) have finite w-norms, but that appropriate
recurrence conditions containing the vector u hold so that all quantities of interest
are properly defined.

The first quantity of interest is the matrix II(f) = lim,, (1 — @)Z}_,a*P*(f),
which is related to the average rewards. It is called the stationary matrix because the
following properties hold: II(f)P(f) = P(F)II(f) = II(f) (cf. Chung 1960). It can be
shown that I1(f) exists in a denumerable state space, although it may be defective. A
second quantity of interest, which is related to more sensitive criteria, is the deviation
matrix D(f), defined as

(3.1) D(f) = lim X a*[PA(f) = 11(/)]
@ k=

provided the limit exists. The importance of D(f) lies in its relation with the Laurent
expansion of the discounted rewards. To state this precisely we need the following
condition

Condition A. For all f € F the following assertions hold:

D Nr(ll, < oo,

(i) supg ., < (1 — AT _oa*P*(Pll,. < oo,

(iii) D(f) exists, | D(f)ll, <  and the following relations are valid

DA =P(H)] = [1 = P(NHID(f) =1~ TI(f),

H(f)D(f) = D(fHI(f) = 0.
In Dekker and Hordijk (1988, Theorem 4.1) the following result is shown.
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276 ROMMERT DEKKER & ARIE HORDIJK

TueoreM 3.1.  If Condition A holds then v°(f) has the Laurent series expansion
2.4).

3.2. Recurrence conditions. In this section we will introduce recurrence condi-
tions for average as well as Blackwell optimality. First we recapitulate briefly the
Markov chain concepts necessary for our analysis (cf. Chung 1960). We call a set of
essential states a class if from every state within the class every other state in that
class can be reached and no other states. A Markov chain can be divided into classes
of essential states and inessential states which do not belong to a class. In this paper
we assume strong recurrence to a set of reference states (Assumption 2(ii)). It follows
from Lemma 3.1 and Theorem 3.5(iii) that the classes consist of positive recurrent
states and hence the inessential states are the transient states. For a subset B of E
we denote by F ,(f) the probability that set B is eventually reached from state i
under policy f. Let the matrix 5 P(f) with elements P, (f), i,j € E be defined as

_ [P, B
sPA(F) =) en

(z P(f))¥ is abbreviated to  P*(f). Following Zijm (1985) we will call a set B(f) C E
a set of reference states for policy f if it contains exactly one state of each class under
policy f and no other states.

The recurrence condition we consider is called u-geometric recurrence to a set of
reference states (abbreviated to u-GRRS).

DerINITION 3.2.1. A set of Markov chains P(f), f € F satisfies condition u-GRRS
if there exist a finite set M C E, a constant ¢ and a B < 1 such that for each fe F
there exists a set of reference states B(f) C M with

lseyP (), seB” n=12,....

If the u-geometric recurrence property holds for a specific set M and constants ¢ and
B, it will be denoted by u-GRRS(M, ¢, B). In §5 we will discuss equivalent conditions
some of which are easier to verify. We will now formulate the main assumption under
which we will develop the first part of our results.

Assumption 2. There exist a vector p of positive weights (> 1), a finite set M and
finite constants ¢, and B < 1 such that

@ (Pl <, f € F,

(ii) condition w-GRRS(M, c,, B) holds.

Notice that Assumption 2 implies that [|P(f)ll, < «, f € F. Although condition
w-GRRS is formulated as a condition uniform in f, the uniformness is only required
in the next section.

Throughout the rest of this paper we denote by B(f) the set of reference states
mentioned in Assumption 2. Consequences of this assumption are stated in the
following lemmas.

LemMa 3.1.  For each policy f € F and state i € E we have Fl-B(f)(f) =1.
sup; c fIPX(fll, < oo

Note that Lemma 3.2 implies Condition A(ii). Remark further that in Assumption
2 the conditions on the Markov chain P(f) and on the reward vector r(f) are
separated. This implies that our analysis remains the same if we replace r(f) by any
other u-bounded reward vector r. We will make use of this fact by considering both
average rewards g(f,r) and discounted rewards vf(f,r) where the u-bounded

Lemma 3.2, Sup,_,

3 e e
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vector r represents the immediate rewards. In the sequel we will establish properties
for the matrices I1(f) and D(f) from properties for g(f, r) and v?(f, r) by taking
suitable reward vectors r. Let 8(j) be the jth unit vector on E, i.., only the jth
element of 8(j) is nonzero and equal to 1 and let e denote the vector with all
elements equal to one. Note that both 6(j) and e are u-bounded vectors.

We will first show that Assumption 2 is sufficient to establish the Laurent series
expansion (2.4). We start with developing a partial Laurent series expansion by using
a technique from Hordijk and Sladky (1977). From this partial Laurent series explicit
expressions for II(f) and D(f) can be obtained, with which the relations of
Condition A(iii) can be proven and the total Laurent series expansion can be
established.

As we will consider one policy f only in the remainder of this section we denote its
classes by Cy,..., C,(s) Where v(f) is the number of classes under policy f-Let b, be
the reference state contained in class C,, i.e., b; = C, N B(f) and let T(f) denote the
set of transient states. The following lemma gives explicit expressions for what later
on will turn out to be terms of the Laurent series expansion.

LemMmA 3.3, For any vectory € V* the following set of equations in u, v

u=P(f)u,
(3.2) utv=P(f)v+y,
v=0 onB(f),

has unique solutions u(f, y), v(f, y) in V* given by

o0

w(f,y) = X (s (f)y)s,| & (5P (f)e)s, ieC,
k=0

w(f)
(33) {u(f.y) = X FulHuy(f,), 1€T(f),

Jj=1

o) = E PNy = ufon)].

Moreover, the following decomposition of the solutions is valid

u(f,y) = Y u(f,8())y, o(f,y) = L o(f,8(i))y,.
1EE 1eFE

Note that by Assumption 2 all expressions are finite, that the sums are absolutely
convergent and that u(f, r) is constant on each class. To establish a partial Laurent
series expansion, we first consider the discounted rewards for a finite horizon,
veT(f,r) = LI a*P*(f)r. Denote the solutions u,v from Lemma 3.3 with y = r
by uC"P(f,r) and vO(f, r). We now replace r in the expression for veT(f,r) by
u =D, r) + vO(f, r) — P(FHo®(f, r) and rearrange terms. We again apply Lemma
3.3 now with y = v@(f, r) and denote the solutions by u®(f,r) and v(f, r). It
turns out (see the proof of Theorem 3.4) that by Assumption 2 the limit for 7 — oo
can be taken which yields the following theorem.

THeoreM 3.4.  Under Assumption 2 there exists the following expansion

u=O(f,r
(34) v (for) = (1 + )| L Oy O£y~ pu(£,r)

08 X P FYO(f, 7).
k=0
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From this expansion we will show the properties of the matrices II(f) and D(f).
Let s(f,r) =1 — a)v(f,r) and wo(f,r) =v*(f,r) — g(f, r)/(1 — ). Lemma
3.3 and Theorem 3.4 lead us to the main theorem of this section.

THEOREM 3.5. Under Assumption 2 we have
(W) g(f,r) =lim,, s*(f,r) =uCf, ) =1(f)r, fEF, reV*
(i) D, (f) exists for all i, j € E, f € F and

D(f)r= liITI}w"‘(f,r) =vO(f,ry —uO(f,r), fEF, rev:.
(iii)

lim sup sup lls*(f,r) = II(f)rll.
afl feF |rll,<1

= lim sup sup lw*(f,r) = D(f)rl, =0.
atl feF |rl,<1

(iv) sup; ¢ p ID(F)llc < 0.

Remark. In Theorem 3.5 we gave explicit expressions for II, (f) and D, (f) via
the solutions of Lemma 3.3. These solutions do not depend on the chosen set of
reference states as II(f) and D(f) are defined via Abelian limits. In fact any set of
reference states for which the sums in (3.3) are well defined give the same solution. It
will be shown that Condition A(iii) easily follows from part (iii), hence we have the
following corollary.

COROLLARY 3.6. Under Assumption 2 the matrix D(f) defined in (3.1) exists and
v”(f) has the Laurent series expansion given in (2.4).

3.3. Optimality. Where we showed the existence of a Laurent series expansion
for a single policy in the previous section, we will deal with all stationary and
deterministic policies in this section and derive optimality results. The main concept
we will use to establish optimality in a denumerable state space and compact action
set is continuity. Recall that the policy space F is defined as I'17_,A(i), the product
space of the sets of available actions in each state and that F is endowed with the
product topology. Hence a sequence of policies converges, say f — f©@ if f®™(i)
- fO@) on A(i), i € E. If both E and A(@) for all i € E are finite then F is a finite
set and any function of F is trivially continuous. For a finite state space and compact
action set Schweitzer (1982) showed the existence of an optimal policy. Besides
continuity of both the immediate rewards and the transition probabilities, his assump-
tions also required the continuity of the number of classes v(f). However, this
approach cannot directly be used in a denumerable state space as the standard
continuity concept is not sufficient: e.g., continuity of P, (f) and r(f)foralli,jeE
does not imply continuity of its product £ P, (f)r,(f). Therefore Dekker and Hordijk
(1988) introduced the concept of u-continuity which is related to the p-norm used. It
is defined as

DeriNITION 3.3. A matrix function A(f) € M* is p-continuous on F if for every
state ; € E and sequence f™ — f©@ in F we have

lim Y|A4,(f®) - A,(fO)|u, = 0.

Ff@ 7

Cavrahti @-2004 1 Ricskhic-e. <l
e AR ANL ravava T IghtSTee3ervea



RECURRENCE CONDITIONS FOR AVERAGE & BLACKWELL OPTIMALITY 279

The following lemmas can be proven by standard analysis. Detailed proofs are
given in Dekker (1985).

Lemma 3.7. For any matrix function A(f) € M* assertions (i), (ii) and (iii) are
equivalent:

(i) ACf) is p-continuous on F.

(ii) Both A(f) and |A(f)|p are pointwise continuous on F.

(iii) For any sequence x™ — x©, pointwise converging on E with

sup  x™, < oo,
n=0,1,2,...

it holds that A(f)x™ — A(fO)x© pointwise on E for every sequence f — f©
onF.

LemMma 3.8.  If both A(f) and B(f) € M* are p-continuous on F, then
@) A(f) + B(f) is also p-continuous on F.
Gi) If sup; e plIB(fll, < o, then A(f)B(f) is also w-continuous on F.

We will now formulate the assumption which we require to establish continuity of
the various quantities of interest.

Assumption 3. (i) P(f)u is pointwise continuous on F.

(i) There exists some constant c, such that |[r(fll, <c,, f € F.

Note that by Lemma 3.7 the p-continuity of P(f) follows from Assumption 3(i).
Remark further that by Assumption 3(i), Lemmas 3.2 and 3.8 the same holds for
P*(f), k= 2,3,... . It can be shown (cf. Dekker 1985) that Assumptions 2 and 3
incorporate continuity of the number of classes and thus include the model of
Schweitzer (1982).

Our optimality results will be based on Theorem 4.7 of Dekker and Hordijk (1988).
In terms of this paper it reads:

Tueorem 3.9.  If Condition A(iii) and Assumption 3 hold and if D(f) is w-continu-
ous and has a bounded p-norm then there exist unique solutions to the Blackwell
optimality equations.

The boundedness of ||[D(f)Il, in f is already shown in Theorem 3.5. The u-con-
tinuity of D(f) is a consequence of the uniform convergence in w-norm of the
defining series of TI(f) and D(f).

Tueorem 3.10. (D) TI(f) is u-continuous.
(i) D(f) is w-continuous.

The main theorem of this paper is the following corollary.

CoroLLARY 3.11.  Assumptions 1, 2 and 3 are sufficient to establish the Blackwell
optimality equations, with the following consequences

() there exist unique p-bounded solutions y=V, y©, ... to them.

(ii) Forn = —1,0,1,..., any policy f, with f(i) € A”* (i) is n-discount optimal.

(iii) The intersections A“Xi) = N5__,A®), i € E are nonempty. Any conserving
decision rule f,, i.e., fo(i) € A“Xi), i € E gives a stationary deterministic Blackwell
optimal policy.

We would like to remark that not always all parts of the Blackwell optimality
equations have to be checked. If after two equations for each state i the correspond-
ing action set A@(i) is reduced to one action only, then all other equations are
automatically satisfied. Hence if there exists a unique 0-discount optimal policy, it is
automatically Blackwell optimal.
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4. Admission control of a single-server queueing system. In this section we
demonstrate the ease of checking the recurrence condition w-GRRS for a simple
queueing system. In its simplest form it does not exhibit a multichain structure, but
extensions of the model can be given which do.

We are concerned with a waiting line with controllable input, as is shown in the
following figure.

Poisson
Aq Buffer
Poisson X
- Service time
Exponential ¢
4
tap

Assume that the arrival process is a Poisson process with parameter A. The server
can control the number of arrivals by a tap and allow only a fraction g of the arrivals
to enter the system, where 0 < a < g < b < 1, for some fixed numbers a and b.
When a > 0, the arrival stream can never be stopped completely and any number of
customers in the buffer is possible. Consequently we have a denumerable state space.
The server observes the system at discrete time points ¢ = 0,1,... . If at time ¢ the
server finds a nonempty buffer, he starts serving until the customer is finished or until
t + 1, whichever comes first. The processing time S is exponentially distributed with
parameter 6 > 0.

It would be more natural to formulate this waiting line model as a continuous time
Markov decision chain. However, if we take a small time scale, the Markov decision
chain is a good approximation. There is also another reason to use a small time scale.
In the proof of Lemma 4.1 below we need that Ab + e ® < 1. Assuming that the
traffic intensity A /6 < 1, it is easily verified that for fixed traffic intensity but A and 6
small enough, that means for the time scale small enough, the inequality Ab + e % < 1
is always satisfied. Hence without loss of generality we assume that this inequality
holds.

The transition probabilities for this system are

(Ag) e /)1, i=0,

(1 —e%e™9, i#0,j=i—1,
1)”(61) = (/\ )J—""le—-/\q (/\ )J‘ie—)\q

(1—e—9)—q——+e-"q— i#0,j>i—1.

(j-i+ 1! (j-pt -’

It is clear that P,(g) is a continuous function of g. We assume that the rewards can
be written as

r—rq—c(i—l), i>0,

ria) = -7, i=0,

where r, denotes the cost of using control g, r is the price a customer pays for being
served during one period and c¢ is the cost of having a customer wait during one
period. We assume that r, depends continuously on g.
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In search of a suitable bounding vector we try u, = x', i € E with x > 1 and find

. ex=DAa 1 =90,
'U‘_z XI:I)U(q)I‘LJ = %e(x—l)i\q + (1 — %)e(x_l)}‘qfe’ 1> 0.

Hence for any x > 1, u, = x', i € E is a bounding vector for the rewards and satisfies
Assumptions 2(ii) and 3. We also see that P(g)u is pointwise continuous in q.
Moreover, with this u vector we can also show u-geometric recurrence.

Lemma 4.1.  The Markov chains in our example are u-geometric recurrent with M
being state 0, u, = x', i € E, for some x > 1 and some B < 1.

Accordingly it is clear that Assumptions 2 and 3 are fulfilled and that Blackwell
optimality equations can be established in this case. It is plausible that the structure
of a Blackwell optimal policy is of a bang-bang type. However, as far as we know, a
proof of that is yet to be found in literature.

S. Equivalent recurrence conditions. In §4 the wu-geometric recurrence was
verified for the admission control of a single-server queueing system. In the papers of
Hordijk and Spieksma (1989), Spieksma (1991) multidimensional queues are studied.
For various versions of the k-competing queues model and for networks of queues
with two nodes the p-geometric recurrence can be established. Whereas in the first
paper one Markov chain is analyzed, the second paper includes the control of service
rates. The extension to open exponential networks of queues with more than two
nodes and the existence of average and Blackwell optimal policies for the control of
these networks is as far as we know still an open problem.

It turned out that for the above-mentioned queueing systems it is easier to verify a
different recurrence condition, which we called u-bounded recurrence. In this section
we introduce this condition together with w-uniform recurrence and we show that
both are equivalent to w-geometric recurrence.

DeriNniTION 5.1, Let M C E be a finite set; a set of Markov chains P(f), f € F, is
said to satisfy condition

(i) p-uniform recurrence (u-URRS(M)), if there exist an n, > 0, a ¢, > 0 and a
B < 1 such that for all f € F there exists a set of reference states B(f) C M with

HB(f)PnU(f)“,L <pB and ||P(f)||# <.

(ii) pu-bounded recurrence (u-BRRS(M)), if there exists a constant ¢, such that for
all f € F there exists a set of reference states B(f) ¢ M with

<cj.
i

L unP"(f)

THEOREM 5.2. The conditions u-URRS(M), u-BRRS(M) and p-GRRS(M) are
equivalent.

The recurrence conditions of this paper have all B(f) as set of taboo states, i.e.,
matrices p f)P( f) are considered. Apparently weaker conditions are obtained if we
use M as taboo states. We say that the set P(f), f € F satisfies condition u-GR(M)
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if for a constant c and a 8 < 1,
(5.1) HMP"(f)]|”<cB”, feF, n=12,....

Note that in the notation the RS of reference state are omitted. Similarly conditions
w-UR(M) and wu-BR(M) can be introduced. Since B(f) c M for all fe F, it is
obvious that the conditions of the Definitions 3.2.1 and 5.1 are stronger. In Dekker,
Hordijk and Spieksma (1990) it will be shown that under Assumptions 1 and 3,
w-GRRS(M) is equivalent to u-GR(M) together with the continuity of the number of
classes. Similar equivalence relations hold for the other criteria. If ¢ <1 in the
relation (5.1) then all matrices ,,P(f) are contractions in u-norm with the same
contraction modulus 8 < 1. With a standard argument (cf. Van Nunen and Wessels
1977, Lemma 5.4) one can show that it is possible to find a different bounding vector
[ for which this holds.

Lemma 5.3.  Under the relation (5.1) there are a B~ < 1 and a bounding vector [
such that ||,,P(fll. <B, f€F.

6. Proofs. In this section we will provide the proofs.
ProoF ofF LEmMMA 3.1. Suppose F,ps(f) <1 for some state i € E and policy
f€F. Let F{)-(f) denote the probability of reaching set B(f) from state i after

exactly n time units. Note that F,p (f) = F56(f). Since
n—1
EanP"(H)y =1 - L F5p(f);
J k=1

we have liminf, ., X (3 sP"(f)),; > 0 and, accordingly, liminf, _, . (g s, P"(fIn), >
0, which contradicts condition u-GRRS(M).

Proor orF LEmMa 3.2. Consider a policy f and abbreviate the set of reference
states B(f) to B. By last exit decomposition with respect to B we have for £ > 1

k—1
(PX(FIm), = (P (HHn), + X X (P())ulaP™(f)n),

m=0:€B

k-1
<@EPY (), + X X GPM(Hr),

m=0:€B

1B,u',+21 B:u'z

ieB

1 {1 + Z }/.L], jeE.

zEB

Since BCc M and M is a finite set and furthermore, u > 1, we have sup, . {1 +
L mi,/1,} < . The lemma now follows since the upper bound does not depend on
feF.

Proor oF LEmma 3.3.  From (3.3) we see that u(f, y) is constant on each class C,,
u(f, y) = u,(f,y)e on C, hence P(f)u(f,y) =u(f,y) on each C,. Since
L. P(f)F, b(f) F,bl(f) I € E, we also have u(f, y) = P(f)u(f,y)on E. On C, we
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have from u(f, y) = u,(f, y)e
o(f,y) = )y B(f)Pk(f)y - ”bj(f’)’) Y B(f)Pk(f)e'
k=0 k=0

Hence Ub(f y) = 0. Since v(f,y)= B(f)P(f)u(f y) + (y —u(f,y)), the second
equation of (3.2) is also verified. The w-boundedness of w( f>y) and u(f, y) follows
from condition u-GRRS(M) and the fact that the denominator (X5_, 5, P*(f)e), >

1, j €E.

Let u,v be any solution to (3.2) and let 4 = u — Z"(f)Fb(f)ub, then & = P(f)ii.
Since & = 0 on B(f) we also have i =, P(f)d and @ =, P"(f)i for every n.
However, this implies that [lill, < s P"(fll.ll@ll, hence @ =0 by condition
w-GRRS(M). Accordingly, u = Z”(f )F, ( f )u,,], implying that u is constant on each
class C,. From the last two equations of (3 2) it follows that v = p f)P( v+ (y —w.
Iteratmg this n times yields v =p \P""'(f)v + E}_ g P* (f)(y — u). Since
llmn_,wB(f)P (f)v = 0 by condition u-GRRS(M) and £f_ 5\ P*(f Xy — u) exists,
v is equal to the latter. Since u is constant on each class, say u = u, e on class C,, we
have

v = kgoB(f)Pk(f)y - ublkgoB(f)Pk(f)e on CJ.

From equation v = 0 on B(f) it now follows that the solutions u, v to (3.2) are given
by (3.3). The decomposition of the solutions follows directly from their representation
(3.3) and the dominated convergence theorem.

ProOF oF THEOREM 3.4. Inserting r = uC"U(f, r) + vOCf, r) — P(fHoO(f, r) in
the expression for v* 7(f, r) yields

vl (fr) = Zaﬁﬂuﬁ— Zaﬁﬂwnw'Kfm+u“0r>—mfw@Urn

k=0 k=

T
—T) s (1= 1) £ et e,

1
=u(_l)(far)

(1 k=0
+2PUHOS, ) = @ PO ).

Substituting v O(f, r) = uO(f, r) + v(f, r) = P(fHo(f,r) in the second term
yields

_ T
v TS ) = w0 (TS )+ ) - aTPT( O )

T+1

+(1 _ 1)[u(0)(f r)(_l_L

[24

)+ 5000 = @ TR0, )

2T+1

+1-2) L kPR,

=0

Since vP(f, r) is p-bounded, T5_oa*P*(fHoO(f, r) exists for each a > 0 by the
p-boundedness of ||P(f M., cf. Lemma 3.2. This lemma also implies that both
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lim, . aTPT(FoO(f, r) = 0 and lim _,, a” " 'PTHI(fHoD(f, r) = 0. Consequently,
if we let T — = in the last expression for v*7(f, r) we obtain

v(for) =) (o ) + gt + (1= 3 e

+(1-
"

L (- é)zéloa"f’k(f>v“><f,r).

Rewriting « into 1/(1 + p) yields (3.4).

ProorF oF THEOReEM 3.5. From Lemma 3.3 and Theorem 3.4 it follows that
H ) =lim, ., s3(f, 8(;) =ul"I(f,8(j) and that, for re V¥ LI, (f)r, =
ul=I(f, 8(/)r, = ul~(f, r). Remark that by an equivalence between Abelian and
Tauberlan limits (cf T1tchmarsh 1939, pp. 224-229) we have an alternative expression
for I1,,(f), i.e.

N
() = fim yp KBS =8(f5(7)

and from the same equivalence u{~V(f, u) = g,(f, u). The first equality now follows
from dominated convergence.

To prove the convergence of the defining limits for D, ]( f) we rewrite the expres-
sion for w*(f, r). By absolute convergence, we have for @ <1,

we(f,r) = kioakPk(f)r - 1—_1—Eﬂ(f)r = i a"[P"(f) - H(f)]r.

k=0

On the other hand, it follows from (3.4) and Lemma 3.2 that
limw(f,r) = vO(f.r) = u®(f,r).
al

Hence by substituting » = 8(j) we find that the matrix D(f) is well defined and the
equalities of the second assertion follow now in the same way as for the first
assertion. From Assumption 2 and Lemma 3.3 it follows that

(6.1) lu( £, y) < Buyu (SSE k) and
(6.2) lo(f, )l < (IIyIl +llu(f,v)l.)-

Hence, sup; ¢  Sup,, <llv@(f, Dl <  and the same can be shown for u®O(f, r)
and U“)( f,r). The third assertion now follows from Lemma 3.2 and this uniform
boundedness in p-norm. The last assertion is a consequence of part (ii) and the
inequalities (6.1) and (6.2).

ProOOF oF COROLLARY 3.6. Let W4(f) be the matrix with w2(f, 8(j)) as (i, j)th
element. Since

lim sup [We(f) = D(f) . = lim sup _sup lwe(f,r) = D(f)rll. =
all feF L feFIrll,<1
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by Theorem 3.5, W<(f) converges in u-norm to D(f), uniformly in f. The equalities
in Condition A(iii) can now be proven similarly to the finite state case. For example,
let a be sufficiently close to 1 that [|W*(f) — D(f)ll,, < e. Hence

ICHDH e = ITAHIDS) = Wa(f) + W ()]l

<e-|TI(f)]l, foranye >0,

since TI(YW*(f) = 0.
As the other parts of Condition A already have been established, the assertion
follows from Theorem 3.1.

Proor oF THEOREM 3.10. The w-continuity of D(f) is induced by the u-continu-
ity of W*(f), since by Theorem 3.5(iii) the convergence is uniform in f. The
p-continuity of W(f) itself can be derived from the u-continuity of both P*(f) and
of II(f). As the w-continuity of P*(f) is a direct consequence of Assumptions 2(ii),
3(i) and Lemma 3.8, what remains to show is the u-continuity of I1(f). Again this
follows from the w-continuity of (1 — a)X3_,a*P*(f) and Theorem 3.5(iii). How-
ever, we prefer to show this through the explicit expression for IT(f)r given in
Lemma 3.3 (cf. Theorem 3.5(i)). Indeed, if we show the pointwise continuity of TI( f)r
for any r € V* (including therefore r = u and r = 8(j), j = 1,...) we have estab-
lished the w-continuity of II(f) by Lemma 3.7, since TI(f) > 0.

Now suppose {f™}, m = 1,2,... is a sequence of policies converging to policy f
for some f € F. Let B(f"™) be the set of reference states for policy £ mentioned
in Assumption 2. Since B(f™) c M for all m and M is a finite set, there exist a
subsequence {f"¥}, k = 1,2,... and a set B C M such that B(f") =B, k =
1,2,... . The rest of the proof now consists of the following parts. First we show that
B is also a set of reference states for policy f for which the recurrence part of the
condition u-GRRS(M) holds. Therefore we may use B as set of reference states in
(3.3) (see the remark at the end of §3.2).

Secondly we show that, for each state i, (II( f ™¥)r), converges and that the limit is
equal to (II(f)r),. As this reasoning can also be applied for any subsequence f¢"”
for which (TI(f"?)r), converges, it also follows that every limit point of (TI(f“)r),
equals (II(f)r),, which guarantees the continuity of (ITI(f)r),.

To show that B is a set of reference states for policy f we consider any two states
i,j € B. For any state & € E which is accessible from i under policy f, implying that
Pio(f) > 0 for some ny, > 0, we have by the pointwise continuity of P"(f) that
Pho(fm) > 0, for k large enough, say k > k,. Since B is a set of reference states
for f"0, k =1,2,..., it holds that Pj(f¢"¥) =0, for all n > 0, implying that
Pi(f) = 0for all n > 0, indicating that A cannot be accessed from j under policy f.
This implies that for policy f the class of states containing or accessible from i is
different from the class containing or accessible from j. It now follows that
lim, _,, v(f") = |Bl < v(f), where v(f) denotes the number of classes under
policy f. On the other hand, as by Assumption 2 the u-GRRS property is valid for
this set B, we have

(6.3) (P (f")u), <cB™w,, n=12,..., i€E, k=12,...,
which again implies that

(6.4) (zP"(f)m), <cB™,, n=12,..., i€E.
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Similarly as for Lemma 3.1 one can now prove that F,z(f) = 1, which implies that B
contains a set of reference states for policy f. Hence »(f) < |Bl. We conclude that
v(f) = |B| and consequently that B is a set of reference states for policy f.

To show that, for each state i, (II(f*"#)r), converges and that the limit is equal to
(TI(f)r),, we first notice that Lemma 3.3 provides explicit expressions for T fm)r),.
Remark further that by using B as set of reference states for policy f in Lemma 3.3
we obtain similar explicit expressions for (II(f)r), and that it suffices to show that

©_ogP"(f™)r converges to L% _,zP"(f)r. This last fact follows directly from
(6.4) and the fact that (6.3) holds uniform for all f**¥, k = 1,2, ... . This completes
the proof.

Proor ofF CoroLLARY 3.11. The proof follows from Theorem 4.7 together with
the concluding remark of §5 of Dekker and Hordijk (1988). Indeed Condition 5 there
is Condition A here and in §2 we proved that Assumption 2 implies Condition A.
Condition 6(i) there is Assumption 3(i) of this paper. The boundedness of |[D(f)ll,. as
stated in Condition 6(iii) was shown in Theorem 3.5(iv). The other part of Condition
6(iii) is a consequence of Assumption 3(ii). Finally, the p-continuity of D(f) is the
assertion of Theorem 3.10(ii).

Proor oF LEmmMa 4.1. Since all states communicate and are recurrent under all
policies, we can take state 0 as reference state for all policies.

We will establish w-geometric recurrence by showing that £ (P, (f)u, < Bu, for
all i € E, f € F and some B < 1. For state 0 the action can be represented by the
parameter g and we have

1

(6.5) o

Y Py (q)p; = e DM — e,
J#0

For x = 1 the right-hand side equals 1 — e *? < 1 for all @ < g < b, hence it will be
clear that for x close enough to 1 there is a 8 < 1 such that e®* "D — 7% < B for
all a < g < b. For i # 0 we have

LT ;= bt g (1= etrmas,
tj=i-1

Let us denote the right-hand side by f(x, g). It is clear that sup, _, ., f(x,q) = f(x, b)
for all x > 1. Let

g(x) =f(x,b) = %e("_l)“’ + (l - %)e(""mb_a, x> 1,

g(l)=1, g'(1)=-1+rb+e "

Since we assumed that Ab + e % <1, we have g'(1) <0 and for small x > 1
therefore g(x) < 1. Finally we choose x and B so that the requirement for i = 0 is
also fulfilled.

ProoF oF LEmma 5.2. It will be obvious that condition u-GRRS(M) implies both
conditions w-URRS(M) and u-BRRS(M), so it suffices to show that condition
w-URRS(M) implies condition u-GRRS(M) and finally that condition w-BRRS(M)
implies condition u-URRS(M).
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Suppose therefore that condition w-URRS(M) holds for some constants ny > 0,
¢, > 0and B < 1. For kny < m < (k + Dng, k > 0 we have

lsn P (A <llsernP (O ||l P™ 470 ) ],

<B* sup [[P(f)].

1<i<ng

Let 6 = g'/™, then 6 <1 and B* < 6™B~". Furthermore, sup, ., IIP"(fl, <
(c,)™. Hence

lacrP™ (), < [(e2)™ B ]6™,

which establishes condition u-GRRS(M), with constants ¢, = (c,)"B~! > 0, and
0 <1
Suppose condition w-BRRS(M) holds for some constant c; > 0. Let y(f) =
m~08¢s)P"(f)r. By condition u-BRRS(M) we have p < y(f) < c;u (in the vector
ordering). Since p + 1 P(f)y(f) = y(f) we have

1
s PV =3(F) =w < 1= 2 |y,
Choose a B < 1 and let n, be such that (1 — 1/c;)"c; < B, then

snP™(fIr <ppnP™(f)y(f) < (1 - %) y(f) <Bp.

As ny is independent of f, the first part of condition u-URRS(M) has been
established for this n,; and B. Since

L > Pi(flu, < pl‘[ P Py (fln; + > u,
tljeE

tjeE jeB(f)

1
<cytsup— ) pu <o, fEF,
i€cE "l jeMm

the second part of condition w-URRS(M) has been established as well for

1
c;=C3+sup— ) pu.
1€E T jeM

ProoF oF LEMmMA 5.3. Consider next the positive dynamic programming problem
with 7(a) equal to u, and

P,(a), JEM,

Pla) =
§(a) = 1o i & M.
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It is well known (see Hordijk 1974) that the value vector i of this problem satisfies

w+ Y P(a)p;<f,, I(€E, a€A(i) and
JEM

i =sup Y yP(fn.
fEF k=0

Relation (5.1) implies that @ < éu for a finite ¢. Hence

¥ py(a)i; < (1 - 3 )i

jeEM ¢

Note that fi, > u; > 1, thus 4 is a bounding vector. The new contraction modulus ﬁ
is equal to (1 — 1/¢).
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