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ABSTRACT

We introduce a general class of Hit-and-Run algorithms for generating abso-
lutely continuous distributions on R¢. They include the Hypersphere Directions
algorithm and the Coordinate Directions algorithm that have been proposed for
identifying nonredundant linear constraints and for generating uniform distribu-
tions over subsets of R¢.

Given a bounded open set S in R¢, an absolutely continuous probability
distribution m on S (the target distribution) and an arbitrary probability dis-
tribution v on the boundary dD of the d-dimensional unit sphere D centered
at the origin (the direction distribution), the (v, 7)-Hit-and-Run algorithm pro-
duces a sequence of iteration points as follows. Given the nt* iteration point z,
choose a direction # according to the distribution v and choose the (n+1)*! itera-
tion point according to the conditionalization of the distribution 7 along the line
{z+X6; X € R}. (The Hypersphere Directions algorithm corresponds to the case
where 7 is the uniform distribution on S and where v is the uniform distribution
on 8D. The Coordinate Directions algorithm corresponds to the case where 7 is
the uniform distribution on S and where v is the distribution that assigns equal
probability 1/2d to each of the 2d coordinate directions).

The (v, 7)-Hit-and-Run algorithm defines a Markov chain on S. Our first
main result is that under some mild conditions on the density of , this (v,7)-
Hit-and-Run Markov chain is time reversible with respect to . It then follows
that 7 is a stationary distribution for the chain. Our second main result is that
under an appropriate condition on v and S, the (v, 7)-Hit-and-Run Markov
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chain is Harris-Recurrent with respect to Lebesgue measure. It then follows
from a theorem of Orey that for every initial distribution the (v, r)-Hit-and-
Run Markov chain converges in total variation, and hence in distribution, to its
stationary distribution .

1. INTRODUCTION

Let S be a bounded open subset of R¢ and let 7 be an absolutely continuous proba-
bility measure on S. Let f(z) be a probability density function for 7 and assume that it
is bounded, almost everywhere continuous (with respect to Lebesgue measure on S), and
strictly positive. Let D denote the d-dimensional unit sphere centered at the origin and

let 0D denote its topological boundary. Thus
D={zeR%:|z|<1} and 8D ={zeR?:|z|| =1}

Finally, let v be an arbitrary probability measure on D. The Hit-and-Run algorithm with
direction distribution v and with terget distribution = (for short, the (v, 7)-Hit-and-Run
algorithm on S) can be described as follows:

Step 0. Choose a starting point z¢ € S and set k = 0.

Step 1. Choose a direction 8 on 0D, with distribution v.

Step 2. Choose A € Ay = {A € R: zx + A\bi € S}, from the distribution with density

iy = 260
fA f(zk +r6y)dr

A€ Ag.

Step 3. Set zx4+1 = T + A\k0r and set k =k + 1.
Go to 1.

Figure 1 illustrates fx(A), the (reparametrized) density function of the conditionalization of
the distribution 7 along the line A;. Geometrically, fi is a cross section of the multivariate
density function f, normalized to be a density function.

If v is the uniform distribution on 0D and if 7 is the uniform distribution on S the
algorithm is known as the Hypersphere Directions algorithm. This special case was first
suggested by Boneh and Golan [1979] in the context of non-redundant constraint identifi-
cation and later independently by Smith [1980] for generating points uniformly distributed
over S. Later Smith [1984] showed that, for S open and bounded, the sequence of iteration
points of the Hypersphere Directions algorithm converges to the uniform distributionon S.
If v is the discrete distribution that assigns mass 1/2d to each of the 2d coordinate direc-
tions and if 7 is the uniform distribution on S, the algorithm is known as the Coordinate

Directions algorithm. This special case was suggested by Telgen [1980]. Later Berbee et
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Figure 1. The conditionalization of 7 along the line A«

al. [1987] showed that if S is a convex polyhedron then the sequence of iteration points of
the Coordinate Directions algorithm converges to the uniform distribution on S. Recently
Boender et al. [1989] have introduced a related class of algorithms, known as Shake-and-
Bake algorithms, for generating points that are (asymptotically) uniformly distributed on
the boundary of a full-dimensional convex polyhedron. The Shake-and-Bake algorithms
will not be investigated here.

Clearly the (v, 7)-Hit-and-Run algorithm defines a discrete time Markov chain on S
with stationary transition probabilities. The main purpose of this paper is to investigate
the convergence properties of this Markov chain and to generalize the results of Smith
[1984] and Berbee et al. [1987] in the following three directions: a) the region S will be an
arbitrary bounded open subset of R¢, b) the direction distribution » will be completely ar-
bitrary, c) the target distribution 7 will be an arbitrary absolutely continuous distribution
on S with a bounded, almost everywhere continuous, and strictly positive density.

The paper is organized as follows. In section 2 we give a precise analytical description
of the (v, 7)-Hit-and-Run Markov chain. In section 3 we show that the (v, r)-Hit-and-
Run Markov chain is time reversible with respect to . This implies that = is a stationary
distribution for the (v, 7)-Hit-and-Run Markov chain. In section 4 we show that under
an appropriate communication structure, described in terms of v and S, the stationary
distribution 7 is unique and the (v,7)-Hit-and-Run Markov chain is Harris-recurrent
(with respect to Lebesgue measure on S). Using a theorem of Orey, we then conclude that
for every starting point z, the (v, )-Hit-and-Run Markov chain (X,;n > 0) converges in

total variation to the stationary distribution =, i.e.
lim P[X, € B|Xy=z]=n(B) Vze€S, VBEeBs,
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where Bs denotes the Borel o-field on S. Section 5 is a brief discussion of some general-

izations and practical implications of our results.

2. HIT-AND-RUN MARKOV KERNELS

We begin by recalling some standard definitions. Let (S, B) be a measurable space,
ie. S is an arbitrary set and B is a o-field on S. A kernel on (S, B) is a nonnegative
function, say K, defined on S X B, such that

(i) Vz € S, K(z,-) is a o-finite measure on B.

(ii) VA € B, K(-, A) is a measurable function on §.
A substochastic kernel is a kernel K satisfying K(z,S) < 1 for every z. A stochastic (or
Markov) kernel is a kernel K satisfying K(z,S) =1 for every z. See e.g. Nummelin [1984]
section 1, Orey [1971] chapter 1 section 0, Revuz [1975] chapter 1 section 1.

Now let S, 7, f and v be as described at the beginning of section 1 and let Bs be
the Borel o-field on S. Let © and U be random variables, defined on a probability space
(2, F,P), such that © has distribution v, such that U is uniformly distributed over the
interval (0,1), and such that © and U are independent. For z,y € S, with = # y, let

Az,y) = {AeR:HAﬂ—es}
ly — =]l
and let f; ,) be the p.d.f. on R defined by

e ali=) oy
S = T ey ol—edr €AY

and f(; ,)(A) = 0if A ¢ A(z,y). Let F; ) denote the c.d.f. of f(; ), 1€,

A
F(z,y)()\) = / f(z,y)(u)du.
The function
P(z,4) =P [v+ (F, coyU)) O € n

defines a Markov kernel on (S, Bs). Here F(;ly) is the usual right continuous inverse of
F(; 4)- Since © has distribution v and since U and © are independent, the right hand side

of the last equation can be written as

,/aD P [x + (F(_r,lz+o)(U)> NS A] v(d6).

Furthermore, since F(;lz + 9)( U) is a A(z, 2+ 6)-valued random variable with p.d.f. f; ;+6),
the above Markov kernel is the one-step transition probability of the Hit-and-Run algo-

rithm described in section 1. This motivates the following formal definition:

4



DEFINITION 1. The Markov kernel
P, ) = / Plo+ (Fil,o(0)0ea]uldd) zes, aebs
8D ’

will be called the (v, 7)-Hit-and-Run Markov kernel on S. The probability measure v will

be called the direction distribution. The probability measure = will be called the target
distribution.

3. SYMMETRY, TIME REVERSIBILITY AND STATIONARY DISTRIBUTIONS

Let P be a Markov kernel on an arbitrary measurable space (S,B) and let u be a

probability measure on (S, B).

DEFINITION 2. The Markov kernel P is said to be time reversible with respect to the

probability measure p if

/ P(z,B)u(dz) =/ P(z,A)u(dz)  VA,B e B.
A B

DEFINITION 3. The probability measure u is said to be a stationary distribution for the
Markov kernel P if

u(A) = /SP(x,A),u(dx) VA € B.

Definition 3 is standard. Definition 2 is a straightforward generalization of the concept
of time reversibility for discrete state space Markov chains (See e.g. Ross [1983], page 126)
and it is consistent with the concept of time reversibility for general stochastic processes
as discussed e.g. in Kelly [1979], page 5. A function p(z,y) defined on S? will be called
symmetric if p(z,y) = p(y,z) for every z and y in S. The following propositions are

elementary consequences of the definitions.

PROPOSITION 1. Suppose that P is of the form
Pe.4) = [ Hopu(dy) Veesvaes
A

for some jointly measurable symmetric function p(z,y) on S?. Then P is time reversible

with respect to p.



PROOF: Under the given assumptions, an application of Fubini’s theorem yields

[ PaBwtdn) = [ [ e putdniutas)
- /B /A p(z,y)pu(dz)u(dy)
_ /B /A oy, 2)u(dz)u(dy)

= [ P 4mdy)  vaBeB
B
Thus P is time reversible with respect to u. |
PROPOSITION 2. If P is time reversible with respect to u then u is a stationary distribution
for P.

PROOF: Assuming time reversibility with respect to u yields

/ P(z, A)u(dz) = / P(z, S)u(dz)
S A

- /A u(dz)

=u(A) VAeB.

Thus 4 is stationary for P. |

We now return to the case where S is a bounded Borel subset of R¢, where v is an
arbitrary probability measure on 3D and where 7 is an absolutely continuous probability
measure on S with a bounded, almost everywhere continuous, and strictly positive density

f(z). For every Borel set G C 8D, and for every 0 < r; < rp < 00, let
G®(r1,r2) = {y € R?:y = A for somef € Gand ) € (r1,m2)}.

Figure 2 illustrates the set G ® (r1, 7).

oD -

- =
-
-

Figure 2. An illustration of the set G ® (ry,72)

6



Let m(z, A) be the unique kernel, on (R?, Bg.), satisfying
(1) m(z,z + G ® (r1,r2)) = (U(=G) + v(G))(ry — 11).

Thus m(0,) is the measure with polar infinitesimal volume element (v(—df) + v(df))dr
and m(z,-) is just a translation of the measure m(0,-). The next proposition gives us an

explicit analytical expression for the Hit-and-Run Markov kernel.

PROPOSITION 3.
(a) The (v,r)-Hit-and—-Run Markov kernel can be written as

Pz fy)
A) = /fmy)fxw“r( - z)/|ly = z||)dr

m(z,dy).

(b) If v is absolutely continuous with respect to the uniform probability distribution on
0D then the (v, 7)-Hit-and-Run Markov kernel can be written as

= )/l = =l) + h((= = )/l ~ yI)
@ Paa= fAzy)fw+r =)y = aldr y — 2105

where h(6) denotes the density of v with respect to the uniform probability distribution
on 8D and where Cq = 21%/2 |T(d/2) (i.e. Cy is the surface area of D).

PROOF: Part (a) is an immediate consequence of the definitions:

P(z,A) = /p[ (F(;M(U))eeA] v(d8)

f(z +26)
alz + A0 d\v(df
v/t;D [\(z z+6) )fA(I,:B+9) f(.’L' + r9)dr ( )

_ fly) -
-/, T FG@ 7y — )Ty — o™= %)

Here, and throughout the rest of this paper, 14 denotes the indicator function of the

(3)

set A. The first equality is Definition 1. The second equality follows from the fact that

Fe, I+9)(U) is a A(z,z + 6)-valued random variable with p.d.f.

f(z +A6)
fA(z,z+e) f(z +r)dr

The last equality can be justified as follows. If B is a Borel subset of S of the form
B=z+G®(ry,r2) then

/;D [\(x,x+0) 1B($ t )\9)d,\y(d9) = /S‘ ]-B(y)m(m, dy)

7

f(:c,z+9)()‘) =



since both sides are equal to m(z,z+G®(r1,72)). A standard measure theoretic argument

(see e.g. Breiman [1968] Proposition 2.23) then yields

@ /a ] / L de () = /S o(y)miz,dy)

for every non-negative measurable function g defined on S. This holds in particular for

the function

_ L))
W) = Tty — )Ty — el

in which case (4) reduces to (3).

Now consider part (b). If v is of the form

= / h(8)v,(d6)
G
where v, is the uniform distribution on 8D, then the kernel m(z, A) can be written as

_ [ My ==2)/lly —=l) + A= = y)/lly — =)
m(z,A) = /A Ty — 2[*1Cq dy

and therefore the (v, 7)-Hit-and-Run Markov kernel can be written as

P(z, h((y — 2)/|ly - z|)) + h((z = y)/|ly - =|))
9=, Triew @+ 1y = 2)/Ty = dr Jy —2f-1Ca” VY

/fA( )f—x/ny—xunh«x— D=2l oy

(z +r(y —2)/lly = <l))dr ||y — 2|~ Cq

Proposition 3 is the key step towards our first main result:
THEOREM 1. The (v, 7)-Hit-and—Run Markov kernel is time reversible with respect to .

PROOF: In the absolutely continuous case the result follows from Proposition 1 and part
(b) of Proposition 3 (since the integrand in (2) is symmetric).

Now consider the general case. Let v be an arbitrary probability measure on dD. Let
v1,Va,V3,... be a sequence of probability measures on 0D such that v, converges weakly
to v as n — oo (for a definition of weak convergence, see e.g. Billingsley [1968]) and such
that v, is absolutely continuous with respect to the uniform distribution on 0D. (The fact
that such a sequence exists can be seen as follows. Let © be a dD-valued random variable
with distribution v, let U, be an R%-valued random variable with uniform distribution

over the open ball of radius 1/n centered at the origin and assume that © and U, are
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independent. Let v, be the distribution of (© + Uy,)/||© + U,||. Then v, has the desired
properties). Let my(z, A) be the kernel induced by vy, as in (1), and let P,(z, A) denote
the (vn, 7)-Hit-and-Run Markov kernel. Since v, is absolutely continuous, Pp(z,A) is

time reversible:
(5) / Py(z, B)r(dz) =/ Py(z,A)w(dz)  VA,B € Bs.
A B

Furthermore, since v, converges weakly to v, the measure m,(z,-) converges weakly to

the measure m(z, -), for every z in S. Now from part (a) of Proposition 3 we have

. 1)) -
©) o= T Fa 7y — )Ty —alar (o) VG E€Bs.

If G is a finite intersection of open balls then one can show that for almost every z € S

the set of discontinuity points of the function

. 16(1)f(¥)
Tre 1@ +7(y = 2)/Ty = aldr

has m(z, -) measure zero. This implies that the right hand side of (6) converges, as n — oo,

to
16(y)f(y) o
) Trom F@ +r(y - Dy =%

(see e.g. Billingsley [1968], section 5). Thus, if G is a finite intersection of open balls then
lim P,(z,G) = P(z,G) for almost allz € S.

Thus, letting n — oo in (5) and using the Lebesgue dominated convergence theorem (see
e.g. Billingsley [1986] Theorem 16.4), we obtain

(7) /AP(x,B)ﬂ'(dx) =/;P(z,A)7r(da:)

whenever A and B are finite intersections of open balls in S. To complete the proof, we
need to show that (7) holds for every A and B € Bs. This can be done via a standard
extension argument Fix A a ﬁnite intersection of open balls in S, and let L4 = {B €

s: [,P(z,B)r = [3 P(z,A)n(dz)}. Using the monotone convergence theorem
(see e.g. Billingsley [1986] Theorem 16.2) one can easily verify that £4 is a A-system
(see Billingsley [1986] page 36). Since £,4 contains all finite intersections of open balls,
Dynkin’s 7-A-theorem (see Billingsley [1986] Theorem 3.2) implies that £ 4 = Bs. Thus
(7) holds whenever A is a finite intersection of open balls in S and B is Borel set in S.
Now fix B € Bs and let Lg = {A € Bs : fA P(z,B) fB 7(dz)}. The same
argument yields £p = Bs. Thus (7) holds for every A,B € Bs. 1

In view of Proposition 2, the following result follows from Theorem 1.

9



THEOREM 2. The probability measure 7 is stationary for the (v, 7)-Hit-and-Run Markov
kernel.

It is easy to see that the stationary distribution of a (v, 7)-Hit-and-Run Markov kernel is
not necessarily unique. The next section will present a necessary and sufficient condition

for m to be the unique stationary distribution for the (v, 7)-Hit-and~Run Markov kernel.

4. THE MAIN LIMIT THEOREM

As before, let S be a bounded open set in R¢, let 7 be an absolutely continuous
probability measure on (S, Bs), assume that 7 possesses a density f(z) which is bounded,
almost everywhere continuous, and strictly positive on S, and let v be a probability measure
on dD. By Theorem 2, 7 is stationary for the (v, 7)-Hit-and-Run Markov kernel P =
(P(z,B);z € S,B € Bs). The purpose of this section is to show that under an appropriate
condition on v and S, 7 is the unique stationary distribution for the Markov kernel P and
for every initial distribution the Hit-and-Run Markov chain converges to 7. This will
be achieved by showing that the Hit-and-Run Markov chain is Harris-recurrent (see the
definition below) and by using a well known theorem of Orey. The Hit-and-Run Markov
chain will be denoted (X,;n > 0) and we will write P, to denote conditional probability
given Xy = 2. We begin with some preliminary results on the communicating structure of
the Hit-and-Run Markov kernel. For every non-negative integern, let P* = (P™(z,B);z €
S,B € Bs) denote the n-step Hit-and-Run Markov kernel. Thus

1 fzeB
Po(x’B)z{o ifc¢ B

P(z,B) = P(z, B)

and for n > 2, P"(z,B) = / P*(y,B)P(z,dy) = / P(y, B)P"(z,dy).
S S

Recall that P"*(z, B) has a unique decomposition
Pn(x’ B) = Ps?ng(x7 ‘B) + anbs(z7 B)
= Psrilng(z’B) + /;pn(-’t, y)dy

where PJ (z,B) is a singular substochastic kernel, where P} (z,B) is an absolutely
continuous substochastic kernel and where p,(z,y) is jointly measurable. (See Orey [1971]
section 1.1). If P} (z,S5) > 0 then we say that the probability measure P"(z,-) has an
absolutely continuous part. If the density pn(z,y) is positive for almost all y’s in some

Borel set B, then we say that the probability measure P"(z,-) spreads over B.
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PROPOSITION 4. Let G be an open subset of S. Then

P(y,G)>0 Vyea@q.

PROOF: From Proposition 3,

_ f(z)
Pw.€) /a Jawn F +1(z = 9)/llz = yl)dr

m(y,dz)

The above integrand is strictly positive. Furthermore, if G is open and y € G, then
m(y,G) > 0. Thus the above integral is strictly positive. |

Recall that the support of a probability measure 4 on R?, to be denoted Supp(p), is
defined as

Supp(u) = {z € R¢: u(B(z,€)) > 0, Ve > 0}
where B(z,€) is the open ball of radius € centered at z.

PROPOSITION 5.

Supp(Plis(z,+)) C Supp(PAt!(z,)) Vz €S, Vn>1.

PROOF: Fix n > 1 and z € S, and suppose that v € Supp(P},(z,)). Fix € > 0 small
enough so that B = B(v,e) C S. Then

P1(2,8) = [ Py, B)P"(z,dy)
S
= [ P, BP(a,d) + [ Py BIPR(z. ),
S S

By Proposition 4 we have P(y,B) > 0 for every y in B and since v € Supp(P} (z,)), we
obtain P% (z,B) > 0. Thus the second integral on the right hand side of the last equality
is strictly positive. This implies that P/i*!(z, B) > 0. Since this holds for every e > 0, we
conclude that v € Supp(P}t!(z,+)). Thus Supp(P2 (z,-)) C Supp(PAtY(z,)). I

abs

DEFINITION 4. The probability measure v is said to be full dimensional if Supp(v) contains
a set of vectors that span R (in other words if the set {0} U Supp(v) is not contained in

any linear subspace of dimensiond — 1).

PROPOSITION 6. Suppose that v is full dimensional. Then

11



(a) Vn > d and Vz € S, the probability measure P™(z,-) has an absolutely continuous
part.
(b) Vz € S, limp—oc PR

abs

(z,5) =1.
(c) There exists anr > 0, depending only on v, such that for all z € S and for alln > d,

n

the probability measure P}} (z,-) has a density which is strictly positive on B(z,rv;),
where vy, = infyese |z — y|| (and where S¢ denotes the complement of S).

PROOF: Let L, denote the subset of (0D)" consisting of those points (6,65, ...,8,) for
which there exists integers 1 < i3 < i3 < ... < i4 < n such that 6;,,6;,,...,6;, are linearly
independent in R%. Let ©,,0,,0s3,... be the successive directions taken by the (v, 7)-
Hit-and-Run Markov chain. Since ©,0,, O3, ... are independent random variables with

distribution v and since v is full dimensional,

P[(©1,02,..,0,)€ L] >0 Vn>d
and P[(0,,0,,..,0,)€ L] =1 as n — 00.

One of the most important features of the Hit-and-Run Markov chain is that if (64, 62,...,

6.) € L, then for every z in S the conditional distribution
P, [Xn € GI(G)I, @2, ceny @n) = (91,92, ey 9,,)]

is absolutely continuous with respect to Lebesgue measure on S. Thus parts (a) and (b)
follow from the fact that

Pn<$, G) = / Pz [Xn € G|(@1, (")2, ceey @n) = (01,92, ,9n)] u(dGl)u(d92)u(d6n)
(6D)"

Now consider linearly independent 6,0, ...,04 in Supp(v). By continuity, we can choose

r > 0 and € > 0 small enough so that the sets
Ay = B(6k,e)N 0D k=1,2,..d
are linearly independent (in the sense that uy,us,...,u4 are linearly independent whenever

ux € B(fr,e)N 08D, k=1,2,...,d) and

d
B(0,r) C {Z arup:—1<ap <l k= 1,2,...,d}

k=1

for every (uy,ua,...,uq) € A; X Az X ... X Ag. Then for every (uy,us,...,uq) € A; X A3 X
... X Aq, the conditional distribution

Pz [Xd € GI(@l,GQ, ...,@d) = (ul,ug,,...,ud)]

12



is absolutely continuous and it has a density which is strictly positive on B(z,r7,). Since
01,0,,...,0, are independent random vectors with common distribution v and since

61,62, ...,04 are in the support of v,
P[(01,0,,..,04) € A X Ay X ... x Ag) =1L | P[0; € 4;] = T, v(4;) > 0.

Thus P4 (z,-) has a density which is strictly positive on B(z,rv;). Combined with Propo-
sition 5, this proves part (c). §

Let ¢ be a o-finite measure on (S,Bs). Recall that a Markov kernel P is called
o-irreducble if

Y P"2,B)>0 VzeS
n=1
whenever (B) > 0. In terms of the associated Markov chain (X,;n > 0), -irreducibility

1s equivalent to the statement that
P,[X,€Bforsomen>1]>0 VrzeS

whenever ©(B) > 0. Throughout the rest of this section ¢ will denote the Lebesgue
measure on (S, Bg).

Recall that a topological space T is said to be connected if the only subsets of T which
are both open and closed are the empty set and T itself. It is said to be pathwise connected
if for every a,b € T there exists a continuous function f : [0,1] — T such that f(0) = a
and f(1) = b. If T is an open subset of R¢, then connectedness and path connectedness
are equivalent. Furthermore every open subset T of R¢ is a union of at most countably

many disjoint open connected sets called the connected components of T.

PROPOSITION 7. Suppose that v is full dimensional. Let A be a connected component of

S. Let G be a measurable subset of A with positive Lebesgue measure. Then

(a) For all z € A, there exists an integer n such that P™(z,G) > 0.

(b) If m(-) is a measure on (S, Bg) such that m(A) > 0, then there exists an integer n
such that

/ P"(z,G)m(dz) > 0.
A

PROOF: Fix z € A. Let G be a measurable subset of A with positive Lebesgue measure.
Choose y € A such that for every e > 0 the set B(y,€) N G has positive Lebesgue measure.
Let g:[0,1] — S be such that g(0) = z, g(1) =y, and g is continuous on [0, 1]. Let

v = inf{|ju —v||; u € g([0,1]),v € A°}.

13



Observe that + is strictly positive since it is the distance between the compact set ([0, 1])

and the closed set A¢. Let r be as in proposition 6 and let ¢, = rvy. Now consider open
balls

Bi = B(zi,ex) 1=1,2,...,k

where z; =z, i =y, and z; € B;_; N ¢([0,1]) for : = 2,3, ..., k, as shown in Figure 3.

Tt
AR AN
(R

Figure 3. A path from z to y

Such a construction is possible since the set ¢([0, 1]) is compact. It follows from Proposition
6 that P'¢(z,-) spreads over B;. In particular, P*4(z,-) spreads over B;. This implies
that P¥4(z,G) > 0. This proves part (a). The argument actually shows that P*¥¢(z', G) >
0,Vz' € By. Thus if in the proof of part (a) we take z € Supp(m) , then we obtain

/ Pr(g' GYm(dz") 2/ Pk (3’ GYm(dz') > 0.
A

By

This proves part (b). I

DEFINITION 5. The connected components of S are said to be v-communicating if for

every pair of connected components A and B there exists an ¢ € A and ann > 1 such
that

(8) P*(z,B) >0

In particular if S is connected or if Supp(v) = dD then the connected components of
S v-communicate. If d =2, S = B((0,0),1) U B((10,10),1) and Supp(v) = {(1,0),(0,1)}
then the connected components of S do not v-communicate. If d =2, S = B((0,0),1) U
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B((10,1),1) U B((10,10),1) and Supp(v) = {(1,0),(0,1)} then the connected components
of S do v-communicate.

Using part (a) of Proposition 3 and Theorems 5.2 and 5.5 of Billingsley [1968], one
concludes that the Hit-and-Run Markov kernels and their iterates are continuous in the
sense that if zx — z then, for n > 1, the probability measure P™(zy,-) converges weakly,

as k — oo, to the probability measure P™(z,-). This implies that if B is an open set and
if £ = oo then

liminf P*(z¢,B) > P"(z, B).

k—oo

(See e.g. Billingsley [1968], Theorem 2.1). A consequence of this observation is that
condition (8) is equivalent to the condition that for some n > 1

(9) ¢({z € A: P*"(z,B) > 0}) > 0.

PROPOSITION 8. Suppose that v is full dimensional and that the connected components of

S are v-communicating. Then the (v, 7)-Hit-and—-Run Markov kernel P is o-irreducible.

PROOF: Fix z € S. Fix G € Bs with ¢(G) > 0. We need to show that
(10) P"(z,G) >0  for somen > 1.

Let A be the open connected component of S to which z belongs. Let B be an open
connected component of S such that o(GNB) > 0. If A = B, then (10) follows from part
(a) of Proposition 7. If A # B, then let n; > 1 and y € A be such that P"2(y, B) > 0. By
the remark following Definition 5, the set

C={z€ A: P™(z,B) >0}

has positive Lebesgue measure. By part (a) of Proposition 7, there exists an integern; > 1
such that P™(z,C) > 0. We then obtain

pmtnz(g B) = / P"(z,B)P™(z,dz)
S
> / P™(z,B)P™(z,dz) >0
c
and therefore by part (b) of Proposition 7 there exists an integer n3 > 1 such that

/ P™(z,G N B)P™*t™(z,dz) >0
B

15



Now if we take n = n; + ny + n3, then

P"(z,G) > P"(z,GN B)
> / P™(z,G N B)P™*™2(z dz) > 0,
B

i.e. (10) holds. §

Recall that a Markov kernel P is said to be indecomposible if there are no disjoint

nonempty sets A and B such that
P(z,A)=1VYc€A ad P(z,B)=1Vz€B

(See Breiman [1968]). It is easy to verify that ¢-irreducibility implies indecomposability.

Thus the following proposition is an immediate consequence of Proposition 8.

PROPOSITION 9. Suppose that v is full dimensional and that the connected components

of S are v-communicating. Then the (v, r)-Hit-and-Run Markov kernel is indecomposi-

ble. §

Theorem 7.16 of Breiman [1968] says that an indecomposible Markov chain posseses
at most one stationary probability distribution. The result is stated for the case where
the state space is a Borel subset of R but the proof that Breiman presents is also valid
for the case where the state space is a Borel subset of R4. Thus Theorem 2 combined
with Proposition 9 implies that if v is full dimensional and if the connected components
of S are v-communicating then 7 is the unique stationary distribution for the (v, r)-Hit-
and-Run Markov kernel. It is easy to see that these two conditions are actually necessary
for uniqueness of the stationary distribution. If the connected components of S do not
v-communicate then S is a union of two connected open sets, say A and B, that do
not v-communicate, and the probability measures defined by 7 4(G) = n(G N A)/7(A)
and 7g(G) = (G N B)/w(B) are both stationary. If v is not full dimensional then the
linear subspace of R¢ spanned by Supp(v), say H, is less than d dimensional and any
conditionalization of the probability measure 7 to a set of the form z + H, with z € S,

will be stationary. Thus we have proved the following refinement of Theorem 2:

THEOREM 3. The probability distribution = is stationary for the (v,w)-Hit-and-Run
Markov kernel. Furthermore, it is the unique stationary distribution if and only if v is

full dimensional and the connected components of S are v-communicating. I
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Orey [1971] introduced a notion of periodicity for general p-irreducible Markov kernels.

The next proposition states that Hit-and-Run Markov kernels are aperiodic in Orey’s

sense.

PROPOSITION 10. Suppose that v is full dimensional and that the connected components

of 5 are v-communicating. Then the (v,r)-Hit-and-Run Markov kernel is aperiodic.

PROOF: By Proposition 8 we have p-irreducibility. Thus Theorem 3.1 of Orey (1971)
applies. By part (c) of Proposition 6, we cannot have a cycle of length k > 1 (See Definition
3.2 of Orey (1971)). Thus the (v, 7)-Hit-and-Run Markov kernel is aperiodic. |

Finally, we recall that the Markov kernel P is said to be ¢-recurrent (or Harris-

recurrent with respect to ) if the corresponding Markov chain (X,;n > 0) satisfies
P, [Xn € Bforsomen>1]=1 Vz € S

whenever ¢(B) > 0. This is equivalent to the statement that

o0
P, ZlB(Xn)=oo} =1 VzeSs
n=1

whenever ¢(B) > 0.

THEOREM 4. Suppose that v is full dimensional and that the connected components of S
are v-communicating. Then the (v, n)-Hit-and-Run Markov kernel P is Harris recurrent

with respect to Lebesgue measure on S.

PROOF: By Theorem 2, 7 is invariant for P and by Proposition 9, P is indecomposible.
Thus, under P,, the Hit-and-Run Markov chain (Xn;n > 0) is a stationary ergodic
sequence (see Breiman [1968], Theorem 7.16, page 136). Now fix B € Bs. Then under P,
the sequence (15(Xn);n > 0) is also a stationary ergodic sequence (see Breiman [1968],
Proposition 6.31, page 119; here again Breiman states the result for the case where the
state space is a Borel subset of R but his proof is also valid for the case where the state
space is a Borel subset of R?). Thus by the ergodic theorem (see e.g. Breiman [1968],
Theorem 6.28, page 118) we obtain

.1
. nlg&;;lB(X;)=7r(B) =1
1.e. =1
le / nll.r{.lonle (B)| f(z)dz
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Since f(z) > 0 Vz € S, this implies that

(11) =1

1 n
¢ | lim — 15(X;) =
P nangon; B(Xi) = n(B)

for almost all z in S. We will now show that (11) holds for all z in S. Fix z in S and fix
e > 0. By part (b) of Proposition 6 we can choose k so that PX (z,5) > 1 —¢. Now let

Soz{yESZP nlingonZIB = }
.1
Then P, JL‘&E;IB(X
- / P, | lim -};Zlg(X,):ﬂ'(B)l Xy = y| P¥(z, dy)
S n—oo =1
- / P, | lm %213()(,): (B)| P*(z, dy)
S n-—0o0 1:]
. 1g
2 /S o P, [nlggogzla(Xi)ﬂ(B) P(z, dy)

abs(x S )_Pabs(z S) >1-—e

The last equality follows from the fact that ¢(S,) = ¢(S). This holds for every ¢ > 0.
Thus (11) holds for all z € S. Now if B € Bs and ¢(B) > 0, then 7(B) > 0 and therefore
(11) yields

P, i 15(X;) =
=1

Thus the Markov chain is Harris-recurrent with respect to Lebesgue measure on S. i

Recall that if 7,7, m, 73, ... are probability measures on S then, by definition, 7, is

said to converge in total variation to 7 if

lim 7,(B) =n(B) VB € Bg.

n—oo

(In comparison, 7, is said to converge in distribution to 7 (or converge weakly to 7) if

lim m,(B) =7(B) VB € Bs withn(0B) =0;

n—oo

18



see Billingsley [1968] Theorem 2.1). Orey ([1971], page 30, part (i) of Theorem 7.1) has
shown that if an aperiodic ¢-recurrent Markov chain possesses a stationary probability
distribution 7, then for every initial distribution y, the distribution of X, converges in
total variation, and hence in distribution, to the stationary distribution 7. In view of

Orey’s theorem, the following result is a consequence of Theorem 2, Theorem 4, and
Proposition 10.

THEOREM 5. Let S be a bounded open subset of R?. Let m be an absolutely continu-
ous probability measure on S. Assume that 7 has a density which is bounded, almost
everywhere continuous, and strictly positive on S. Let v be a probability measure on the
boundary 0D of the d-dimensional unit sphere centered at the origin. Assume that v is
full dimensional and that the connected components of S are v-communicating. Then
™ is the unique stationary distribution for the (v,r)-Hit-and-Run Markov kernel. Fur-
thermore, for every initial distribution the (v, 7)-Hit-and-Run Markov chain converges in

total variation, and hence in distribution, to the stationary distribution 7. J

REMARK. We proved the convergence part of Theorem 5 via Harris-recurrence and Orey’s
theorem. If the direction distribution v is absolutely continuous (with respect to the
uniform distribution on 0D) then by part (b) of Proposition 3 the probability measures
P(z,-) are absolutely continuous with respect to the stationary distribution 7. In this case
the convergence part of Theorem 5 can be obtained via a theorem of Doob [1948] which says
that if an aperiodic and indecomposible Markov chain possesses a stationary distribution 7
and if its transition probability distributions P(z, -) are absolutely continuous with respect
to 7 then, for every initial distribution, this Markov chain converges in total variation to
the stationary distribution 7. (See Theorem 7.18 of Breiman [1968].) With this approach
one doesn’t need to prove Harris-recurrence. But if v is not absolutely continuous (with
respect to the uniform distribution on 8D), as in the Coordinate Direction algorithm for
instance, then the probability measures P(z,-) are not absolutely continuous with respect

to 7 and this approach via Doob’s theorem fails.

5. CONCLUSION

Theorem 5 asserts that

lim P,[X, € B]=n(B) VBeBs, Vz€S,

n—0oo

where (Xp;n > 0) is the (v, 7)-Hit-and-Run Markov chain on S. This result has a
significant practical implication for Monte-Carlo methods. It says that one can use the

Hit-and-Run algorithm to generate points that are asymptotically 7-distributed.
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Historically, the Coordinate Directions and the Hypersphere Directions Hit-and-Run
algorithms have been used for generating uniform distributions over bounded open subsets
of R¢. In that context they are known to be efficient when compared to standard methods
such as the acceptance-rejection method, specially when d is large. In this paper we have
generalized these traditional Hit-and—-Run algorithms to allow for an arbitrary direction
distribution v and an essentially arbitrary absolutely continuous target distribution .
Although not addressed here, the boundedness conditions on the open set S and on the
density function f can both be removed. Moreover, the condition that f be strictly positive
on S and the condition that S be open can both be substantially relaxed.

As a final comment, the general (v, 7)-Hit-and-Run algorithms introduced in this
paper show considerable promise for solving certain global optimization problems. For
example, by setting the density f to be a suitable increasing function of the objective
function g, the target distribution 7 will concentrate near the global maximum of ¢ and
therefore the Hit-and-Run Markov chain will, with high probability, find itself near that

global maximum. This idea is currently being investigated.
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