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Abstract

Using constructive, sample-path arguments, we derive a variety of transform-free results

about queue lengths and waiting times for the M/G/1/K queue. In classical analyses of

M/G/1/K, it is typical to work with Markov processes obtained by defining the “state” of

the system at a time epoch to be the number of customers present and, as supplementary

information, the remaining service time of the customer, if any, in service. In contrast,

the key idea behind our analysis is to work with a modified Markov process that has a

more-detailed state description: At any time epoch t when the server is busy, we replace

“the number of customers present” by two variables, namely (a) the number of customers

who were (and still are) waiting in the queue immediately after the start of the service

in progress, and (b) the number of customers who arrived during that same service but

prior to t. We show that this minor change of state definition, coupled with a rigorous

formalization of the intuitive notion of a “test customer” (whose viewpoint is adopted in

our analysis of the modified Markov process), makes possible a surprisingly simple analysis

of the M/G/1/K queue. We also show that our method can be extended easily to yield

similar results for several generalizations of the basic M/G/1/K model.

AMS 1980 subject classification. Primary: 90B22; Secondary: 60K25.

IAOR 1973 subject classification. Main: Queues.

OR/MS Index 1978 subject classification. Primary: 681 Queues.

Key words. M/G/1 queue, finite capacity, test customer, sample-path analysis, exceptional

first services, server vacations, semi-Markovian services.



1 Introduction

Although the M/G/1/K queue has been studied extensively (for K = ∞, in particular)

for over sixty years, there are still new and interesting insights to be discovered. In this

paper, we derive, without using any transforms, a variety of explicit results about queue

lengths and waiting times for the M/G/1/K queue. The majority of our results are new

as stated, but many can be related to previously-known results in transform form. For

most of the related transform results that we have examined, the explicit inversions of the

transforms appear to be difficult (although recent work has shown that numerical inversions

of transforms can be remarkably easy; see, e.g., Abate and Whitt [1992] for a comprehensive

review).

In the standard M/G/1/K queue, it is assumed that: The arrival process is Poisson at

rate λ; the service times are identically distributed random variables, independent of the

arrival process and each other, following distribution function G with mean 1/µ; and the

system has a total capacity of K customers, including the one, if any, in service. An arriving

customer enters the system only if at least one of the K − 1 waiting positions is available;

otherwise, the customer is lost immediately, without receiving any service. When waiting-

time distributions are considered, we also assume that entering customers are served in the

order of their arrival.
For t ≥ 0, let L(t) be the number of customers in the system at time t; and, when

L(t) > 0, let R(t) be the remaining service time of the customer in service. Define

Z(t) =











0 if L(t) = 0 ,

(L(t), R(t)) if L(t) > 0 ;
(1.1)

then, the Markov process Z ≡ {Z(t), t ≥ 0} (or related processes obtained by embedding

at arrival and/or departure epochs) is the typical starting point of classical analyses of the

M/G/1/K queue (e.g., Cohen [1982], Chapters II.4 and III.6; Keilson [1966]; Kendall [1951,

1953]; Takács [1963]; and Wishart [1961]). In contrast, the key idea behind the analysis in

our paper is to “decompose” the variable L(·) in Z into the sum of three variables (see (1.3)

below), whenever it is positive: For any time epoch t at which the server is busy, let Qs(t)

be the number of customers waiting in queue immediately after the start of the current

service, and let Qa(t) be the number of customers who arrived during the current service

interval but prior to t, including those, if any, who did not enter; then, we shall work with

the more-detailed Markov process Z+ ≡ {Z+(t), t ≥ 0} defined by

Z+(t) =











0 if L(t) = 0 ,

(Qs(t), Qa(t), R(t)) if L(t) > 0 ;
(1.2)
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Observe that if L(t) > 0, then, since the number of waiting positions equals K − 1, we have

L(t) = 1 + Qs(t) + min [Qa(t), K − 1 − Qs(t)] , (1.3)

where the first term 1 accounts for the customer in service; thus, using (1.3), we can indeed

recover (1.1) easily from (1.2).

We will analyze the continuous-time process Z+ from the viewpoint of a “randomly-

selected” arriving customer (Niu [1988], pp. 160–162): At a given time epoch t, we say

that Z+ is in state Θ+
0 if L(t) = 0; and that it is in state Θ+

ij(x) if L(t) > 0, Qs(t) = i,

Qa(t) = j, and R(t) ≤ x, where 0 ≤ i ≤ K − 2, 0 ≤ j < ∞, and x ≥ 0. We also assume, for

convenience, that sample paths of Z+ are left-continuous at arrival epochs, so that, with

{Ak, k ≥ 1} denoting customer-arrival epochs, Z+(Ak) is the state of Z+ as seen by the kth

arriving customer. Then, we shall study the following long-run averages (or proportions)

associated with Z+:

α+
0 ≡ lim

n→∞

1

n

n
∑

k=1

1Θ+

0

(Z+(Ak)) (1.4)

and, for 0 ≤ i ≤ K − 2, 0 ≤ j < ∞, and x ≥ 0,

α+
ij(x) ≡ lim

n→∞

1

n

n
∑

k=1

1Θ+

ij
(x)(Z

+(Ak)) , (1.5)

where 1θ(·) denotes the indicator function of a given state θ (and we assume that these

limits converge to constants w.p.1, independent of initial conditions). Observe that, for any

given sample path, the term 1/n in (1.4) and (1.5) can be interpreted as the “probability”

of selecting any one of the first n arriving customers, and 1θ(Z
+(Ak)), 1 ≤ k ≤ n, as the

“conditional probability” for the kth customer, if selected, to find Z+ in state θ; therefore,

by letting n → ∞, (1.4) and (1.5), indeed, give the “state distribution” of Z+ as seen by a

randomly-selected arriving customer.

An important reason for working with (1.4) and (1.5), which formalize the intuitive

(and fuzzy) notion of a “test” or “tagged” customer frequently encountered in the queue-

ing literature, is that they are explicit averages over sample paths and, as such, facilitate

rigorous constructive proofs. In particular, our main result, given as Theorem 1 in Section

2, is a set of formulas that relate, w.p.1, α+
0 and α+

ij(x) to several other simpler (or eas-

ily computable) sample-path averages associated with the variables Qs(·), Qa(·), and R(·);

moreover, its proof is essentially deterministic, in the same spirit as the classical proofs of

L = λW (Stidham [1974]) and PASTA (Wolff [1982]).

Obtaining transform-free results has long been of interest in queueing theory (see, e.g.,

Neuts [1981], pp. 3 and 27; and Neuts [1982]). In this regard, the contribution of our paper,

which can be viewed as a continuation of Niu [1988] and Niu and Cooper [1989, 1991], is
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to show that the surprisingly minor shift of attention from the process Z to the process

Z+, coupled with the concept of a randomly-selected arriving customer, makes possible a

constructive, transform-free analysis of the M/G/1/K queue. This approach, in particular,

circumvents the difficulties that arise when one adapts the standard arguments for infinite-

capacity M/G/1 (e.g., the ingenious departure-epoch embedded-Markov-chain approach of

Kendall [1951, 1953]) to the analysis of finite-capacity M/G/1/K (see Neuts [1981], p. 83,

for related comments). We will also show that our method, once developed rigorously and

understood, can be extended easily to yield explicit results for a variety of generalizations

of the basic M/G/1/K model.

The outline of the rest of our paper is as follows. In Section 2, we state all of our

results for the M/G/1/K queue and summarize (some of) their connections to previously-

known results for this model. In Section 3, we provide proofs for the assertions of Section

2. In Section 4, we derive similar results for three generalizations of the M/G/1/K queue

that allow, respectively, exceptional first service in each busy period, server vacations, and

semi-Markovian services. Finally, in Section 5, we comment on future work.

2 M/G/1/K

We begin with some preliminary definitions and results, starting with the description of a

service-start-epoch embedded Markov chain Q: For k ≥ 1, let Qk be the number of customers

waiting in the queue immediately after the kth service-start epoch, and let Nk be the number

of customers who arrive during the kth service interval. Then, Q is defined to be the process

{Qk, k ≥ 1}, with Qk determined recursively by

Qk+1 = max {0, Qk + min [Nk, K − 1 − Qk] − 1} . (2.1)

Observe that Nk is independent of Qk for every k ≥ 1; and that the sequence {Nk, k ≥ 1}

is i.i.d., with

aj ≡ P{N1 = j} =

∫

∞

0

(λy)j

j!
e−λy dG(y) , 0 ≤ j < ∞ . (2.2)

Hence, the process Q is indeed a Markov chain. (This service-start-epoch embedded Markov

chain has been used previously by Keilson [1966] to study queue lengths in M/G/1/K; we

will use it in a different way.)

All of our results in this section will be expressed in terms of the stationary probabilities

of Q: From (2.1) and (2.2), it is easy to see that Q is irreducible and aperiodic; and therefore,

its stationary probabilities σ0, σ1, · · ·, σK−2 are, from standard Markov-chain theory (e.g.,

Theorem 4.3.3 of Ross [1983]), uniquely determined by the equations

σ0 = σ0 (a0 + a1) + σ1a0 , (2.3)

3



σj =
j+1
∑

i=0

σi aj+1−i , 1 ≤ j < K − 2 , (2.4)

σK−2 =
K−2
∑

i=0

σi

∞
∑

j=K−2

aj+1−i , (2.5)

and the normalization condition,
K−2
∑

j=0

σj = 1 . (2.6)

Notice that (2.3), (2.4), and (2.5) are valid only if K ≥ 3, which we will assume throughout

to avoid notational complications (if K = 1, 2, then σ0 = 1).

That σ0, σ1, · · ·, σK−2 arise in our results is a consequence (the detailed connection will

be fully described in Section 3.2) of monitoring the status of the variable Qs(·) (see (1.2))

in Z+ from the viewpoint of a randomly-selected service-start epoch: We say that Z+ is in

state Θ+
i· (∞), where 0 ≤ i ≤ K−2, at time t if L(t) > 0 and Qs(t) = i; and let 1i·(k), k ≥ 1,

be the indicator function of the event that Z+ is in state Θ+
i· (∞) immediately after the kth

service-start epoch. Then, again from standard Markov-chain theory (e.g., Ross [1983], p.

135, Problem 4.14), we have, w.p.1,

lim
n→∞

1

n

n
∑

k=1

1i·(k) = σi . (2.7)

Paralleling (2.7), our results will also be expressed in terms of averages derived from

monitoring the status of the remaining variables Qa(·) and R(·) in Z+, but now from the

viewpoint of a randomly-selected blocked customer (i.e., one who on arrival finds the server

busy): We say that Z+ is in state Θ+
·j(x), where 0 ≤ j < ∞ and x ≥ 0, at time t if L(t) > 0,

Qa(t) = j, and R(t) ≤ x; and let 1·j;x(k), k ≥ 1, be the indicator function of the event that,

of the Nk customers (all of which are blocked) that arrive during the kth service interval,

there is one, namely the (j +1)th, who on arrival finds the process Z+ in state Θ+
·j(x) (there

can be either 1 or 0 such customer). Then, our results will depend (the detailed connection

will be fully described in Section 3.2) on

β+
·j (x) ≡ lim

n→∞

∑n
k=1 1·j;x(k)
∑n

k=1 Nk

, (2.8)

that is, the proportion of blocked customers who, on arrival, find Z+ in state Θ+
·j(x). Observe

that the sequence {1·j;x(k), k ≥ 1} is i.i.d.; and that, by conditioning on the time of the
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(j + 1)th arrival after a service-start epoch, we have

E[1·j;x(1)] = P{1·j;x(1) = 1} =

∫

∞

0
[G(y + x) − G(y)]

(λy)j

j!
e−λy λdy . (2.9)

Hence, after dividing by n in both the numerator and the denominator on the right-hand

side of (2.8) and applying the SLLN (Strong Law of Large Numbers), we have, w.p.1,

β+
·j (x) = E[1·j;x(1)]/E(N1) ≡ νj(x), where, upon substituting (2.9) and E(N1) = λ/µ ≡ ρ

(not necessarily less than 1),

νj(x) = µ

∫

∞

0

(λy)j

j!
e−λy [G(y + x) − G(y)] dy . (2.10)

A commonly-adopted starting point for proving results for queues of M/G/1 type, as

introduced by Kendall [1951, 1953], is the analysis of a Markov chain embedded just after

departure (or service-completion) epochs. Our final preliminary result is a relation between

the solutions to the service-start-epoch and the departure-epoch embedded Markov chains

in M/G/1/K: Let δj , 0 ≤ j ≤ K − 1, be the proportion (defined similar to (2.7)) of

departing served customers who leave j other customers behind; then,

δ0 = σ0a0 , (2.11)

δ1 = σ0 (1 − a0) , (2.12)

and

δj = σj−1, 2 ≤ j ≤ K − 1 . (2.13)

We will prove (2.11), (2.12), and (2.13), which appear to be new, in Section 3.1, using a

direct sample-path argument.

We are now ready for the statement of our main result, which gives transform-free

formulas for α+
0 and α+

ij(x) in terms of σ0, σ1, · · ·, σK−2 and νj(x):

Theorem 1 The state distribution of Z+ as seen by a randomly-selected arriving customer

is, w.p.1, given by

α+
0 = (σ0a0 + ρ)−1σ0a0 (2.14)

and

α+
ij(x) = (1 − α+

0 )σi νj(x) , 0 ≤ i ≤ K − 2, 0 ≤ j < ∞, and x ≥ 0 . (2.15)

Furthermore, let η be the proportion of arriving customers who actually enter the system

(and receive service); then, w.p.1,

η = (σ0a0 + ρ)−1 . (2.16)
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The explicit term-by-term interpretations for the formulas (2.14) and (2.15) are as fol-

lows: Consider a randomly-selected arriving customer, whom we shall denote by Cr (see our

discussion after (1.4) and (1.5)). Then, in (2.14), (σ0a0 +ρ)−1 (see (2.16)) is the probability

for Cr to enter the system; and σ0a0 equals the conditional probability for Cr to also find

the system empty. And in (2.15), (1 − α+
0 ) is the probability for Cr to be blocked; and

σi and νj(x) are the conditional probabilities for Cr to also find, in the service interval

“interrupted” by the arrival of Cr, Qs(·) = i and, respectively, Qa(·) = j and R(·) ≤ x.

Moreover, the most important assertion in (2.15) is that the status of Qs(·) and the status

of (Qa(·), R(·)) are, from the viewpoint of the blocked customer Cr, “conditionally indepen-

dent”. Our proof of Theorem 1, which rigorously establishes all of the above interpretations,

will be given in Section 3.2.

We now turn our attention to the process Z. At a given time epoch t, we say that Z

is in state Θ0 if L(t) = 0; and that it is in state Θj(x), where 1 ≤ j ≤ K and x ≥ 0, if

L(t) = j and R(t) ≤ x. Similar to (1.4) and (1.5), we define α0 and αj(x), 1 ≤ j ≤ K and

x ≥ 0, as the proportions of customers (including those who do not enter) who, on arrival,

find Z in states Θ0 and Θj(x), respectively. Then, it follows immediately from (1.3) that

α0 = α+
0 , (2.17)

αj(x) =
j−1
∑

i=0

α+
i, j−1−i(x) , 1 ≤ j ≤ K − 1 and x ≥ 0 , (2.18)

and

αK(x) =
∞
∑

j=K

K−2
∑

i=0

α+
i, j−1−i(x) , x ≥ 0 ; (2.19)

and therefore, substitution of (2.14) and (2.15) into the right-hand sides of (2.17), (2.18),

and (2.19) yields the following consequence of Theorem 1:

Theorem 2 The state distribution of Z as seen by a randomly-selected arriving customer

is, w.p.1, given by

α0 = (σ0a0 + ρ)−1σ0a0 , (2.20)

αj(x) = (1 − α0)
j−1
∑

i=0

σi νj−1−i(x) , 1 ≤ j ≤ K − 1 and x ≥ 0 , (2.21)

and

αK(x) = (1 − α0)
∞
∑

j=K

K−2
∑

i=0

σi νj−1−i(x) , x ≥ 0 . (2.22)
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(See Cohen [1982], pp. 574–575, equations (6.34) and (6.35), for related formulas that are

expressed in terms of integrals in the complex plane; also, under the assumption of phase-

type services, see Neuts [1981], p. 88, equations (3.2.15) and (3.2.16), for formulas in terms

of a rate matrix “R”. Our formulas appear to be new.)

Let αj ≡ αj(∞) for 1 ≤ j ≤ K; then αK , being the proportion of arriving customers

that are lost (or the “loss probability”), is of particular interest: Since 1 − αK = η by

definition, we have immediately from (2.16) that

αK = 1 − (σ0a0 + ρ)−1, (2.23)

an interesting formula that is due originally to Keilson [1966], p. 197, equation (6.3b) (see

also Cooper [1981], p. 237, equation (9.13); and Keilson and Servi [1989], for related recent

results). Alternatively, we note that (2.23) can also be obtained from (2.22), by setting

x = ∞, substituting (2.20) and the easily-established formula νj(∞) = (1/ρ)
∑

∞

i=j+1 ai,

and some algebra; we omit the details.

By excluding lost customers, we can also easily obtain from Theorem 2 the state distri-

bution of Z from the viewpoint of a randomly-selected entering customer: Denote by η0 and

ηj(x), 1 ≤ j ≤ K − 1 and x ≥ 0, the proportions of entering customers who, on arrival, find

the process Z in, respectively, states Θ0 and Θj(x). Then, since η is the proportion of ar-

riving customers who actually enter, we immediately have η0 = α0/η and ηj(x) = αj(x)/η;

and, upon substitution of (2.20), (2.21), and (2.16), this leads to:

Theorem 3 The state distribution of Z as seen by a randomly-selected entering customer

is, w.p.1, given by

η0 = σ0a0 (2.24)

and

ηj(x) = ρ
j−1
∑

i=0

σi νj−1−i(x) , 1 ≤ j ≤ K − 1 and x ≥ 0 . (2.25)

It is interesting to observe that the right-hand sides of (2.24) and (2.25) depend on K only

through the probabilities σ0, σ1, · · ·, σK−2, and then in a very direct way; moreover, in

(2.25), notice that ρ νj(x) = P{1·j;x(1) = 1} (see (2.9) and (2.10)). Prompted by these

observations, we give an independent sample-path argument for Theorem 3 in Section 3.3.

In the remainder of this section, we state a series of other results that are consequences

of our three theorems, and defer their proofs to Section 3.

In Section 3.4, we show that (2.11), (2.12), (2.13), and (2.25) can be used to derive a new

transform formula for the state distribution of Z as seen by a randomly-selected entering

customer: Define the probability-generating function

η∗(z, x) ≡
K−1
∑

j=1

ηj(x) zj , x ≥ 0 , (2.26)
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and the Laplace-Stieltjes transform

η∗∗(z, s) ≡

∫

∞

0
e−sx dxη∗(z, x) ; (2.27)

then, we prove that

η∗∗(z, s) =
λ

λ − s
z

K−2
∑

j=0

zj
j
∑

i=0

[σiG
∗(s) − δi]

(

λ

λ − s

)j−i

, (2.28)

where G∗ denotes the Laplace-Stieltjes transform of the service-time distribution G. Apart

from its very interesting form, formula (2.28) is useful, for example, for the calculation of

moments and for numerical inversion.
In Section 3.5, we derive from (2.24) and (2.25) a transform-free formula, apparently

new, for the distribution of the waiting time (in queue) W of a randomly-selected entering

customer:

P{W ≤ t} = σ0a0 +
K−2
∑

j=0

∫ t

0
G[j](t − x)

∫

∞

x





j
∑

i=0

σi
[λ(y − x)]j−i

(j − i)!
e−λ(y−x)



 dG(y)λdx ,

(2.29)

where G[n] denotes the n-fold self-convolution of G. Interestingly, by considering an equiv-

alent closed cyclic two-station tandem queue, Lavenberg [1975] (p. 505, equation (8)) has

shown that the Laplace-Stieltjes transform of the distribution of W is given by

∫

∞

0
e−st dP{W ≤ t} = [G∗(s)]K−1

K−1
∑

j=0

δj

(

λ

λ − s

)K−j

− δ0

(

s

λ − s

)K−1
∑

j=0

(

λG∗(s)

λ − s

)j

(2.30)

(also, as noted by Lavenberg, see Cohen [1982], p. 577, for another expression in terms of

an integral in the complex plane). We also show, in Section 3.5, that (2.30) can be derived

from (2.24) and (2.25), via (2.11), (2.12), (2.13), and (2.28); thus (2.29), indeed, is the

inversion of (2.30).

In Section 3.6, we compare two M/G/1 finite-capacity queues with capacities K and

K + 1 : Using superscripts K and K + 1 to differentiate between the respective models, we

prove that

ηK+1
0 = πKηK

0 , (2.31)

ηK+1
j (x) = πKηK

j (x) , 1 ≤ j ≤ K − 1 and x ≥ 0 , (2.32)

and

ηK+1
K (x) = ρ

[

πK
K−2
∑

i=0

σK
i νK−1−i(x) + (1 − πK) ν0(x)

]

, x ≥ 0 , (2.33)
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where

πK =



1 + a−1
0

K−2
∑

i=0

σK
i

∞
∑

j=K

aj−i





−1

; (2.34)

that is, the joint distributions of the number of customers present and the remaining service

time of the customer (if any) in service as seen by randomly-selected entering customers

in the two models are, with the exception of ηK+1
K (x), proportional. This generalizes (to

include remaining service times) a striking proportionality result of Keilson [1966] (p. 190,

equations (1.1) and (1.2)) for the queue-length distributions (see also Cooper [1981], p. 238,

Exercise 21). In particular, our argument, which is based on (2.24) and (2.25), shows that

results of this type are inherited from proportionality of the solutions of the service-start-

epoch embedded Markov chains for different values of K (see Keilson [1966], Section 5, and

Cooper [1981], pp. 235–237, for related discussions).

In Section 3.7, we show (again from (2.24) and (2.25)) that if a randomly-selected

entering customer is blocked, then the conditional distribution of the time R needed to

complete the service in progress is given by

P{R ≤ x} = (1 − σ0a0)
−1
∫

∞

0





K−2
∑

j=0

j
∑

i=0

σi

(λy)j−i

(j − i)!
e−λy



 [G(y + x) − G(y)]λdy, x ≥ 0,

(2.35)

another apparently new result (see Mandelbaum and Yechiali [1979] and Krakowski [1989]

for related results). Moreover, we show, also in Section 3.7, that if we assume ρ < 1 and

consider R as a function of K, then

lim
K→∞

P{R ≤ x} = µ

∫ x

0
[1 − G(y)] dy , x ≥ 0 . (2.36)

Notice that the right-hand side of (2.36) is the equilibrium-excess (or forward-recurrence-

time) distribution of a renewal process with interevent-time distribution G; thus, (2.35)

agrees with and generalizes a well-known result of Takács [1963] (p. 491, equation (17)) for

M/G/1.

In Section 3.8, we consider the standard M/G/1 queue, that is, let K = ∞ and assume

ρ < 1: Wishart [1961] established that

η∗∗(z, s) =
λz(1 − ρ)(1 − z)

G∗(λ − λz) − z

G∗(s) − G∗(λ − λz)

λ(1 − z) − s
(2.37)

(see also Cohen [1982], p. 258, equation (4.88)). Subsequently, Takács [1963] rederived

(2.37) and observed in a “remark” that it follows from (2.37) “by inversion” (with respect

to s) that

η∗(z, x) =
λz(1 − ρ)(1 − z)

G∗(λ − λz) − z

∫

∞

0
e−λ(1−z)y[G(y + x) − G(y)] dy (2.38)
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(see also Cohen [1982], p. 257, equation (4.86)). We show that our proof for (2.28) specializes

easily to yield formulas (2.37) and (2.38). In the process, we uncover new term-by-term

interpretations for the mysterious forms of these classical transform results. (In fact, our

(2.25) is the “full” inversion of (2.37), with respect to both z and s.)

Finally, as an aside, we note the following consequence of (2.11), (2.12), and (2.13):

The distribution of the number of customers in queue (i.e., excluding the customer, if any,

in service) immediately after a randomly-selected service-start epoch is identical to that

left behind by a randomly-selected departing served customer; that is, σ0 = δ0 + δ1 and

σj = δj+1 for 1 ≤ j ≤ K − 2. Moreover, since “arrival” and “departure” averages in

discrete-state, skip-free processes coincide (Burke; see Cooper [1981], p. 187, or Gross and

Harris [1985], pp. 264–265), implying that ηj = δj for 0 ≤ j ≤ K − 1, where ηj ≡ ηj(∞),

we see that this identification also carries over to the queue-length distribution as seen by a

randomly-selected entering customer. If, in particular, K = ∞ and ρ < 1, so that αj = ηj

for 0 ≤ j < ∞ (since all arriving customers enter), then, the identification extends even

further to the arrival queue-length distribution. Thus, formulas (2.11), (2.12), and (2.13)

illuminate “the interesting result” of Keilson [1966] (p. 197, equations (6.4) and (6.5)).

3 Proofs

3.1 Proofs of (2.11), (2.12), and (2.13)

We first observe that, with the exceptions of j = 0 and 1, every (served) departure leaving

j other customers behind also is a service start with j − 1 customers waiting in the queue,

and vice versa. It follows that for every j from 2 to K − 1, δj and σj−1, being limiting

proportions, are identical by definition; and this establishes (2.13).

To establish (2.11) and (2.12), we “split” state 0 of Q into two, more-detailed states:

We say that a service-start epoch with no customer waiting in the queue is of type 1, if it is

the first in a busy period; and it is of type 2 otherwise. Let σ01
and σ02

be the proportions

of service-start epochs of types 1 and 2, respectively; then, we obviously have

σ0 = σ01
+ σ02

. (3.1)

Next, observe that for every type-1 service-start epoch, there corresponds exactly one

departure (the last one in the ensuing busy period, more precisely) leaving the system

empty; and also that every type-2 service-start epoch is identified with a departure leaving

one customer behind. Hence, δ0 = σ01
and δ1 = σ02

. We shall, therefore, complete the

proof by showing that

σ01
= σ0a0 (3.2)

and
σ02

= σ0 (1 − a0) . (3.3)

10



Since each busy period is initiated by and contains exactly one type-1 service-start

epoch, it follows by first considering n busy periods and then letting n → ∞ that

σ02

σ01

= lim
n→∞

1

n

n
∑

k=1

Yk , (3.4)

where Yk, k ≥ 1, denotes the number of type-2 service-start epochs within the kth busy

period.

Clearly, the sequence {Yk, k ≥ 1} is i.i.d. To determine the distribution of Y1, we

observe that every service-start epoch with no customer waiting in the queue will either,

with probability a0, be the last one in the busy period in progress, or else, with probability

1 − a0, “generate” within the same busy period a subsequent type-2 service-start epoch,

which occurs when the number of customers in the system drops back to one again. It

follows that P{Y1 = j} = (1 − a0)
ja0 for j = 0, 1, · · ·, with E(Y1) = (1 − a0)/a0. Hence,

(3.4) simplifies, by the SLLN, to σ02
/σ01

= (1 − a0)/a0, which, together with (3.1), implies

both (3.2) and (3.3); and this completes our proof. 2

3.2 Proof of Theorem 1

We begin with (2.14) and (2.16). We will determine α+
0 and η, together, by solving two

equations that relate them: First, we note that the rate at which customers enter the

system is, by definition, given by λη; and that entering customers spend an average of 1/µ

units of time in service. Hence, from a standard application of “H = λG” (e.g., Heyman

and Stidham [1980]), we have that the proportion of time the server is busy is given by

λη(1/µ), which, since Poisson arrivals see time averages (Wolff [1982]), also equals 1 − α+
0 ,

the proportion of arriving customers that are blocked on their arrival. Therefore, w.p.1,

1 − α+
0 = η ρ (3.5)

(a result due originally to Keilson [1966], p. 193, equation (2.7)).

To obtain another relation between α+
0 and η, we first note that the ratio α+

0 /η, being

a “relative proportion”, equals the proportion of entering customers who find the system

empty. Next, observe that, since every entering customer eventually initiates exactly one

service, there exists a one-to-one correspondence between entering customers and service-

start epochs; furthermore, in this correspondence, every entering customer who finds the

system empty is identified with a type-1 service-start epoch (see Section 3.1). It follows that

α+
0 /η = σ01

w.p.1; and therefore, from (3.2),

α+
0

η
= σ0a0 . (3.6)

Solving (3.5) and (3.6) for α+
0 and η now yields both (2.14) and (2.16).

11



We now turn our attention to (2.15). For 0 ≤ i ≤ K − 2, 0 ≤ j < ∞, and x ≥ 0, let

β+
ij (x) ≡

α+
ij(x)

1 − α+
0

; (3.7)

then, upon comparison of (3.7) and (2.15), we see that we need to prove, w.p.1,

β+
ij (x) = σi νj(x) . (3.8)

To establish (3.8), observe that, since (1 − α+
0 ) is the proportion of arriving customers

that are blocked, the ratio on the right-hand side of (3.7) equals the proportion of blocked

customers who, on arrival, find the process Z+ in state Θ+
ij(x). Therefore, similar to (2.8),

we can take the viewpoint of a randomly-selected blocked customer, and rewrite β+
ij (x) in

the following equivalent, explicit form:

β+
ij (x) = lim

n→∞

∑n
k=1 1ij;x(k)
∑n

k=1 Nk

, (3.9)

where 1ij;x(k) ≡ 1i·(k)1·j;x(k).

To evaluate the right-hand side of (3.9), we further define, for 0 ≤ i ≤ K−2, 0 ≤ j < ∞,

and x ≥ 0, the (relative) proportions

β+
i· (∞) ≡

α+
i· (∞)

1 − α+
0

(3.10)

and

β+
·j (x) ≡

α+
·j (x)

1 − α+
0

, (3.11)

with interpretations similar to that of β+
ij (x) but for states Θ+

i· (∞) and Θ+
·j(x), and with

corresponding explicit forms given, respectively, by

β+
i· (∞) = lim

n→∞

∑n
k=1 1i·(k)Nk
∑n

k=1 Nk

(3.12)

and (2.8); and we make the key “conditional-independence” claim

β+
ij (x) = β+

i· (∞)β+
·j (x) . (3.13)

Upon comparison of (3.8) and (3.13) and recalling that β+
·j (x) was evaluated to νj(x) in

Section 2 (see (2.10)), we see that our proof will be complete when we establish both (3.13)

and

β+
i· (∞) = σi , 0 ≤ i ≤ K − 2 . (3.14)
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To prove (3.14), we interpret the number of customers who arrive during a service interval

that starts with Qs(·) = i as a “sojourn in state i” in a “discrete-time” (or an ordinal) semi-

Markov process. Then, it is easily seen from (3.12) that under this interpretation, β+
i· (∞)

is the proportion of “time epochs” (or indices) this semi-Markov process spends in state

i. Hence, an application of, for example, Theorem 4.8.3 (its proof, more precisely), pp.

131–132, of Ross [1983] yields

β+
i· (∞) = lim

n→∞

1

n

n
∑

k=1

1i·(k) , (3.15)

which, in view of (2.7), establishes (3.14).

Before proceeding to (3.13), we digress to make explicit an important conceptual point

regarding (3.12) and (3.15): With respect to states Θ+
i· (∞) for 0 ≤ i ≤ K−2, the viewpoint

of a randomly-selected blocked customer (cf. (3.12)) is identical to that of a randomly-

selected service-start epoch (cf. (3.15)); that is, no bias is introduced when we “translate”

from the former viewpoint to the latter, and vice versa. This unbiasedness is a consequence

of the fact that (a) the distribution of the number of arrivals in a service interval does not

depend on the value of Qs(·) associated with that interval; and (b) all arrivals, if any, in a

service interval “see” the same Qs(·). Therefore, if we allow the possibility of having different

types of services, then explicit length-biasing effects will be present when we translate from

one of these viewpoints to another, because property (a) will no longer hold. This, indeed,

will be the case for our generalizations in Section 4; and the needed “bias corrections” will

be discussed there.
We now consider (3.13): Imagine monitoring the status of the process Z+ from the

viewpoint of a randomly-selected blocked customer Cr; and observe that Qa(·) and R(·) are

determined from information accumulated during the service interval interrupted by the

arrival of Cr, whereas Qs(·) depends on the history of the system prior to the beginning

of that service. Therefore, intuitively, (3.13) can be seen as a consequence of both the

independent-increments property of Poisson arrivals and the i.i.d.-service-times assumption,

provided that the arrival epoch of Cr is “at time infinity”, so that any effects from the initial

condition of Z+ have worn off (imagine, at a finite time epoch, the effects on both Qs(·)

and Qa(·) when a “longer” R(·) is selected as a result of sampling bias; see Feller [1971],

Chapter I, p. 11, the “waiting-time paradox”). For prudence, we provide below a rigorous

formalization of this intuition.
From (3.9) and (3.12), we have (similar to the proof of Lemma 1 in Niu [1988])

β+
ij (x)

β+
i· (∞)

= lim
n→∞

(
∑n

k=1 1ij;x(k)) / (
∑n

k=1 Nk)

(
∑n

k=1 1i·(k)Nk) / (
∑n

k=1 Nk)
= lim

n→∞

∑n
k=1 1ij;x(k)

∑n
k=1 1i·(k)Nk

.

Observe that 1i·(k) = 0 implies 1ij;x(k) = 0; and that 1i·(k) = 1 implies 1ij;x(k) = 1·j;x(k).

Therefore, by skipping terms with 1i·(k) = 0 in both the denominator and the numerator
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in the last-displayed expression, it is further simplified to

β+
ij (x)

β+
i· (∞)

= lim
m→∞

∑m
ℓ=1 1ij;x(kℓ)

∑m
ℓ=1 1i·(kℓ)Nkℓ

= lim
m→∞

∑m
ℓ=1 1·j;x(kℓ)
∑m

ℓ=1 Nkℓ

, (3.16)

where {kℓ, ℓ = 1, 2, · · ·} enumerates the subset of the indices k = 1, 2, · · · for which

1i·(k) = 1 (that is, if 1i·(1) = 1, 1i·(2) = 0, 1i·(3) = 1, · · ·, then k1 = 1, k2 = 3, · · ·).

Finally, since {1·j;x(k), k ≥ 1} and {Nk, k ≥ 1} are sequences of i.i.d. random variables,

the right-hand side of (3.16) is, w.p.1, identical to that of (2.8). This formally establishes

(3.13), and our proof of Theorem 1 is complete. 2

3.3 Proof of Theorem 3

Recall from the argument leading up to (3.6) that there exists a one-to-one correspondence

between entering customers and service-start epochs. Therefore, (2.24) is an immediate

consequence of (3.2). It also follows that we can reinterpret ηj(x), 1 ≤ j ≤ K−1 and x ≥ 0,

as the proportion of service-start epochs that “generate” in their respective ensuing service

intervals an (entering) arrival finding the system in state Θj(x). Hence, by first considering

n (initial) service-start epochs and then letting n → ∞, we have

ηj(x) = lim
n→∞

1

n

n
∑

k=1

j−1
∑

i=0

1i, j−1−i;x(k)

=
j−1
∑

i=0

(

lim
n→∞

1

n

n
∑

k=1

1i, j−1−i;x(k)

)

(3.17)

where the indicator functions are as defined in (3.9). To evaluate the limits on the right-hand

side of (3.17), observe that we have

limn→∞

∑n
k=1 1i, j−1−i;x(k)/n

limn→∞

∑n
k=1 1i·(k)/n

= lim
m→∞

1

m

m
∑

ℓ=1

1·, j−1−i;x(kℓ) , (3.18)

where the subsequence {kℓ, ℓ = 1, 2, · · ·} is as defined in (3.16). Next, notice that the

denominator on the left-hand side of (3.18) equals σi (see (2.7)); and the limit on the right-

hand side of (3.18) equals E[1·, j−1−i;x(1)] (by the SLLN), which evaluates to ρ νj−1−i(x)

(see (2.9) and (2.10)). Therefore, (3.18) becomes, w.p.1,

lim
n→∞

1

n

n
∑

k=1

1i, j−1−i;x(k) = σi ρ νj−1−i(x) . (3.19)

Substitution of (3.19) into the right-hand side of (3.17) now yields (2.25), completing our

proof. 2

14



3.4 Proof of (2.28)

Substituting (2.25) into (2.26) and changing a summation index, we have

η∗(z, x) = ρ z
K−2
∑

j=0

zj
j
∑

i=0

σi νj−i(x) , x ≥ 0 , (3.20)

which, upon taking transforms (see (2.27)), leads to

η∗∗(z, s) = ρ z
K−2
∑

j=0

zj
j
∑

i=0

σi ν
∗

j−i(s) , (3.21)

where, by definition,

ν∗

j (s) ≡

∫

∞

0
e−sx dνj(x) , 0 ≤ j < ∞ . (3.22)

To calculate ν∗

j (s), we first rewrite (2.10) as

νj(x) =

∫

∞

0

(λy)j

j!
e−λy G(y + x) − G(y)

1 − G(y)
µ[1 − G(y)] dy ,

which can then be given the following term-by-term probabilistic interpretation: µ[1−G(y)]

is the density function (see the right-hand side of (2.36)) of the age of the service interval

interrupted by a randomly-selected blocked (not necessarily entering) customer; given that

the age at the point of interruption equals y, [G(y +x)−G(y)]/[1−G(y)] is the conditional

probability for the excess to not exceed x, and [(λy)j/j!]e−λy is, independently of the excess,

the conditional probability for j customers to arrive during the age. Now, if we condition

on the excess (which, by symmetry, also has density µ[1−G(y)]) and look backward in time,

then a similar probabilistic argument yields

νj(x) =

∫ x

0

{

∫

∞

y

[λ(z − y)]j

j!
e−λ(z−y) dz

G(z) − G(y)

1 − G(y)

}

µ[1 − G(y)] dy

(dz[G(z) − G(y)]/[1 − G(y)] is the conditional “probability” for the age to equal z − y),

which simplifies to yet another expression that is equivalent to (2.10):

νj(x) = µ

∫ x

0

∫

∞

y

[λ(z − y)]j

j!
e−λ(z−y) dG(z) dy . (3.23)

Substituting (3.23) into (3.22), we have

ν∗

j (s) = µ

∫

∞

0
e−sx

∫

∞

x

[λ(z − x)]j

j!
e−λ(z−x) dG(z) dx ,
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which, after an interchange of the order of integration and some algebra, leads to

ν∗

j (s) =
1

ρ

(

λ

λ − s

)j+1


G∗(s) −
j
∑

k=0

ak

(

λ − s

λ

)k


 . (3.24)

Substitution of (3.24) into (3.21) now yields

η∗∗(z, s) =
λ

λ − s
z

K−2
∑

j=0

zj
j
∑

i=0

σi

(

λ

λ − s

)j−i


G∗(s) −
j−i
∑

k=0

ak

(

λ − s

λ

)k


 . (3.25)

To evaluate the right-hand side of (3.25) further, observe that, after an interchange of

the order of summation, we have

j
∑

i=0

σi

(

λ

λ − s

)j−i j−i
∑

k=0

ak

(

λ − s

λ

)k

=
j
∑

i=0

(

λ

λ − s

)j−i i
∑

k=0

σk ai−k , (3.26)

where, it follows easily from (2.3), (2.4), (2.11), (2.12), and (2.13),

i
∑

k=0

σk ai−k = δi , 0 ≤ i ≤ K − 2 . (3.27)

Finally, substitution of (3.26) and (3.27) into (3.25) yields (2.28), completing our proof. 2

3.5 Proofs of (2.29) and (2.30)

By conditioning on the state of Z as seen by a randomly-selected entering customer, it

immediately follows that

P {W ≤ t} = η0 +
K−1
∑

j=1

∫ t

0
G[j−1](t − x) dηj(x) . (3.28)

Substituting (2.24) and (2.25) into (3.28) and changing a summation index, we have

P {W ≤ t} = σ0a0 +
K−2
∑

j=0

∫ t

0
G[j](t − x) ρ

j
∑

i=0

σi dνj−i(x) ,

which, upon substitution of (3.23), rearranges to (2.29).

To derive (2.30), observe that we have, from (3.28),

∫

∞

0
e−st dP {W ≤ t} = η0 +

∫

∞

0
e−st dt

K−1
∑

j=1

∫ t

0
G[j−1](t − x) dηj(x)

= η0 +
K−1
∑

j=1

η∗j (s) [G∗(s)]j−1 , (3.29)
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where, by definition, η∗j (s) ≡
∫

∞

0 e−stdηj(t) for 1 ≤ j ≤ K−1. Comparison of the right-hand

side of (3.29) with (2.26) and (2.27) shows that

∫

∞

0
e−st dP {W ≤ t} = η0 + [G∗(s)]−1 η∗∗ (G∗(s), s) ,

which, after substituting η0 = δ0 and (2.28), using (2.11), (2.12), and (2.13), and straight-

forward (lengthy) algebra, simplifies to (2.30). 2

3.6 Proofs of (2.31), (2.32), and (2.33)

By equating the up- and down-crossing rates between states j − 1 and j of Q, we have,

equivalent to (2.3), (2.4), and (2.5),

j−1
∑

i=0

σK+1
i

∞
∑

k=j+1

ak−i = σK+1
j a0 , 1 ≤ j ≤ K − 1 , (3.30)

and
j−1
∑

i=0

σK
i

∞
∑

k=j+1

ak−i = σK
j a0 , 1 ≤ j ≤ K − 2 . (3.31)

Define

πK ≡
σK+1

0

σK
0

; (3.32)

then, it follows immediately from (3.30) and (3.31) by induction on j that

σK+1
j = πKσK

j , 1 ≤ j ≤ K − 2 . (3.33)

To determine πK , observe that we have, from (3.32), (3.33), and (2.6),

K−2
∑

i=0

σK+1
i = πK

K−2
∑

i=0

σK
i = πK ,

implying, by normalization,

σK+1
K−1 = 1 − πK (3.34)

(and πK is necessarily less than 1). Next, substituting j = K − 1, (3.32), and (3.33) into

(3.30), we also have

σK+1
K−1 = a−1

0

K−2
∑

i=0

σK+1
i

∞
∑

k=K

ak−i

= a−1
0 πK

K−2
∑

i=0

σK
i

∞
∑

k=K

ak−i . (3.35)
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Finally, equating the right-hand sides of (3.34) and (3.35) leads to (2.34).

We now show that (3.32) and (3.33) carry over to the averages ηj(x) for different values

of K. First, we observe that (2.31) is an immediate consequence of (2.24) (that is, ηK+1
0 =

σK+1
0 a0 and ηK

0 = σK
0 a0) and (3.32). Next, from (2.25), (3.32), and (3.33), we have, for

1 ≤ j ≤ K − 1 and x ≥ 0,

ηK+1
j (x) = ρ

j−1
∑

i=0

σK+1
i νj−1−i(x)

= πKρ
j−1
∑

i=0

σK
i νj−1−i(x)

= πKηK
j (x) ,

establishing (2.32). Finally, with j = K in (2.25), we have

ηK+1
K (x) = ρ

K−1
∑

i=0

σK+1
i νK−1−i(x)

= πKρ
K−2
∑

i=0

σK
i νK−1−i(x) + ρ σK+1

K−1 ν0(x) ,

which, upon substitution of (3.34), rearranges to (2.33), completing our proof. 2

3.7 Proofs of (2.35) and (2.36)

Since 1 − η0 is the proportion of entering customers that are blocked on their arrival, we

have

P{R ≤ x} = (1 − η0)
−1

K−1
∑

j=1

ηj(x) . (3.36)

Substituting (2.24) and (2.25) into (3.36) and changing a summation index, we have

P{R ≤ x} = ρ (1 − σ0a0)
−1

K−2
∑

j=0

j
∑

i=0

σi νj−i(x) ,

which, upon substitution of (2.10), rearranges to (2.35).

To prove (2.36), we first note that if ρ < 1, then {σK
i , i = 0, 1, · · · , K − 2} converges

in distribution, as K → ∞, to a non-defective distribution {σ∞

i , i = 0, 1, · · ·} (see, e.g.,

Theorem 2.2, p. 602, of Gibson and Seneta [1987]). Next, the well-known (and easily-shown)

result α∞

0 = 1 − ρ and the relation α∞

0 = η∞0 = σ∞

0 a0 together imply σ∞

0 = (1 − ρ)/a0. It

follows that

lim
K→∞

σK
0 a0 = 1 − ρ . (3.37)
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Moreover, since [(λy)j/j!]e−λy for 0 ≤ j < ∞ are (Poisson) probabilities, we have that

lim
K→∞

K−2
∑

j=0

j
∑

i=0

σK
i

(λy)j−i

(j − i)!
e−λy = 1 . (3.38)

In light of (3.37) and (3.38), we see that the right-hand side of (2.35) converges to

(1/ρ)
∫

∞

0 [G(y + x) − G(y)]λdy, which easily simplifies to the right-hand side of (2.36);

and our proof is complete. 2

3.8 Proofs of (2.37) and (2.38)

We begin with Takács’s inversion (2.38). Letting K → ∞ in (3.20) and noting that

j
∑

i=0

ρi νj−i(x)

becomes (similar to (3.38)) a convolution when the range of j is extended to infinity, we

have the following factorization (or decomposition) result:

η∗(z, x) = ρ z σ∗(z) ν∗(z, x) , (3.39)

where ρ (less than 1) is the proportion of arrivals finding the server busy, z is the p.g.f.

(probability-generating function) of 1 (accounting for the customer in service; see (1.3)),

σ∗(z) ≡
∞
∑

j=0

σj zj (3.40)

is the p.g.f. of {σi, i = 0, 1, · · ·}, and

ν∗(z, x) ≡
∞
∑

j=0

νj(x) zj , x ≥ 0 , (3.41)

is the p.g.f. of {νj(x), j = 0, 1, · · ·}.

It immediately follows from (2.10) and (3.41) that

ν∗(z, x) = µ

∫

∞

0
e−λ(1−z)y [G(y + x) − G(y)] dy ; (3.42)

hence we see, upon comparison of (2.38) with (3.39) and (3.42), that (2.38) will follow if

σ∗(z) =
(1 − ρ)(1 − z)

G∗(λ − λz) − z
. (3.43)
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To prove (3.43), define the p.g.f.

δ∗(z) ≡
∞
∑

j=0

δj zj (3.44)

and observe that, from (2.11), (2.12), (2.13), (3.40), and (3.44), we have δ∗(z) = σ0a0 (1 −

z) + z σ∗(z) (valid, in fact, for all K), which, since σ0a0 = 1 − ρ (see (3.37)) when K = ∞

and ρ < 1, leads to

δ∗(z) = (1 − ρ)(1 − z) + z σ∗(z) . (3.45)

For the stable M/G/1 queue, it is well known (Kendall [1951, 1953]) that

δ∗(z) =
(1 − ρ)(1 − z)G∗(λ − λz)

G∗(λ − λz) − z
, (3.46)

where G∗(λ − λz) is the p.g.f. of {aj , j = 0, 1, · · ·}. Substitution of (3.46) into the left-

hand side of (3.45) now leads easily to (3.43), completing our proof of (2.38). (Alternatively,

(3.43) can also be derived directly from (2.1) with K = ∞, along standard lines, similar to,

e.g., Takács [1962], pp. 70–72.)

To prove (2.37), we take Laplace-Stieltjes transforms in (3.39) to obtain

η∗∗(z, s) = ρ z σ∗(z) ν∗∗(z, s) , (3.47)

where, by definition, ν∗∗(z, s) ≡
∫

∞

0 e−sx dxν∗(z, x). After taking the Laplace-Stieltjes

transform of the right-hand side of (3.42), it is straightforward to verify (see, e.g., Tilt

[1981], p. 138) that

ν∗∗(z, s) = µ
G∗(s) − G∗(λ − λz)

λ(1 − z) − s
. (3.48)

Finally, substitution of (3.43) and (3.48) into (3.47) yields (2.37), completing our proof. 2

4 Generalizations

The purpose of this section is to show that our proofs in Section 3 actually provide the

basis for a formal “calculus” by which transform-free results can be obtained for a host of

similar models in a mechanical manner. We will outline the analyses for three specific gen-

eralizations of the basic M/G/1/K model that allow, respectively, exceptional first services,

server vacations, and semi-Markovian services. It will become apparent that our methods

also readily apply to the solution of combinations of these as well as other generalizations,

such as state-dependent services, Bernoulli feedback, etc.
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4.1 Exceptional First Services

Welch [1964] and Avi-Itzhak, Maxwell, and Miller [1965] proposed a very useful general-

ization of the standard, infinite-capacity M/G/1 queue in which the first service in each

busy period is allowed to follow a distribution function Ĝ that is possibly different from G,

the service-time distribution for all other “ordinary” services; and they derived a variety of

results about queue-length as well as waiting-time distributions, in transform form. Here,

we consider the finite-capacity version of their model, which does not appear to have been

explicitly studied in the literature before, and we show how to obtain transform-free results

similar to those of Section 2.
For 1 ≤ j ≤ K and x ≥ 0, let α̂j(x) be the proportion of customers who, on arrival, find

that: (a) there are j customers in the system, (b) an “exceptional” service is in progress,

and (c) the time needed to complete that service is not greater than x; and let αj(x)

be the corresponding proportion defined by replacing “exceptional” in (b) by “ordinary”.

In similar ways, we shall also carry over to this model, without further comment, other

notations defined for M/G/1/K in Sections 2 and 3, to avoid repetition; that is, the general

rule is notations with a “hat” are with respect to either an exceptional service or the

exceptional-first-service model.

We first generalize Q to a corresponding Q̂: The key idea is to judiciously design the

state space of Q̂ to include “enough information” so that the state of Ẑ (defined similar to

(1.1), with service type supplemented) at the arrival epoch of a blocked customer can be

determined (similar to (1.2) and (1.3)) once the status of Q̂ is given. With this in mind,

it is then clear that Q̂ should have, in addition to {0, 1, · · · , K − 2}, an extra state 0̂ to

represent an exceptional-service start with (necessarily) no customer waiting in the queue

(this is closely related to “splitting state 0” in Section 3.1); and therefore, after modifying

(2.1) and (2.2) accordingly (which we omit), we have that the stationary probabilities σ0̂,

σ0, · · ·, σK−2 of Q̂ are determined uniquely by the equations

σ0̂ = σ0̂â0 + σ0a0 , (4.1)

σj = σ0̂âj+1 +
j+1
∑

i=0

σi aj+1−i , 0 ≤ j < K − 2 , (4.2)

σK−2 = σ0̂

∞
∑

j=K−2

âj+1 +
K−2
∑

i=0

σi

∞
∑

j=K−2

aj+1−i , (4.3)

and the normalization condition

σ0̂ +
K−2
∑

j=0

σj = 1 . (4.4)
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We next generalize (2.16) and (2.20) (or (2.14)). Observe that an entering customer

initiates an exceptional service if and only if the customer finds the system empty; therefore,

the proportions of entering customers who receive exceptional and, respectively, ordinary

services are given by η0 and 1 − η0. Moreover, since there is a one-to-one correspondence

between entering customers and service-start epochs, we also have η0 = σ0̂. Hence, the

average time spent in service by entering customers is given by [σ0̂(1/µ̂) + (1 − σ0̂)(1/µ)].

Since λη is, by definition, the rate at which customers enter the system, an application of

both H = λG and PASTA (as in Section 3.2) yields

1 − α0 = η [σ0̂ρ̂ + (1 − σ0̂)ρ] ; (4.5)

and this, together with the fact that α0/η = η0 = σ0̂, leads, after a little bit of algebra, to

η = [σ0̂(1 + ρ̂) + (1 − σ0̂)ρ]−1 and α0 = [σ0̂(1 + ρ̂) + (1− σ0̂)ρ]−1σ0̂, generalizing (2.16) and

(2.20), respectively.

To generalize (2.21) and (2.22), we now take the viewpoint of a randomly-selected

blocked customer. Observe that the distribution of the number of arrivals during a ser-

vice interval depends on whether the service is exceptional or ordinary. Therefore, we need

to first generalize (3.13); the idea is to “condition” on the type of the service interval inter-

rupted by the randomly-selected blocked customer: Classify service-start epochs as either

exceptional or ordinary, according to the ensuing service type; and denote the set of indices

corresponding to the former by Γ, and the latter by Γc. Define (similar to (3.9), (3.12), and

the right-hand side of (3.16)) the proportions

β+
0̂j

(x) ≡ lim
n→∞

∑

k∈Γn
10̂j;x(k)

∑

k∈Γn
N̂k +

∑

k∈Γc
n

Nk

, (4.6)

β+
0̂·

(∞) ≡ lim
n→∞

∑

k∈Γn
10̂·(k)N̂k

∑

k∈Γn
N̂k +

∑

k∈Γc
n

Nk

, (4.7)

and

β̂+
·j (x) ≡ lim

n→∞

∑

k∈Γn
1̂·j;x(k)

∑

k∈Γn
N̂k

, (4.8)

where Γn ≡ Γ ∩ {1, 2, · · · , n} and Γc
n ≡ Γc ∩ {1, 2, · · · , n}. Then, since 10̂j;x(k) ≡

10̂·(k)1̂·j; x(k), it follows immediately (similar to (3.16)) that, for 0 ≤ j < ∞ and x ≥ 0,

β+
0̂j

(x) = β+
0̂·

(∞) β̂+
·j (x) . (4.9)

Furthermore, with β+
ij (x), β+

i· (∞), and β+
·j (x) defined similar to (4.6), (4.7), and (4.8)

respectively, we also have, for 0 ≤ i ≤ K − 2, 0 ≤ j < ∞, and x ≥ 0,

β+
ij (x) = β+

i· (∞)β+
·j (x) ; (4.10)
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and (4.9) and (4.10), together, generalize (3.13).

Clearly, we still have β+
·j (x) = νj(x) w.p.1 (see (2.10)), and similarly β̂+

·j (x) = ν̂j(x). To

calculate β+
0̂·

(∞) and β+
i· (∞) for 0 ≤ i ≤ K − 2, we again (see our proof of (3.14)) apply

Theorem 4.8.3 of Ross [1983] to obtain

β+
0̂·

(∞) =
σ0̂E(N̂1)

σ0̂E(N̂1) + (1 − σ0̂)E(N1)
(4.11)

and

β+
i· (∞) =

σiE(N1)

σ0̂E(N̂1) + (1 − σ0̂)E(N1)
, (4.12)

where E(N̂1) = ρ̂ and E(N1) = ρ; thus, indeed, bias corrections are needed when we

translate from the viewpoint of a randomly-selected service-start epoch to that of a blocked

customer (see the paragraph after (3.15)).

Finally, after substituting (4.5), (4.9), (4.10), (4.11), and (4.12) into the exceptional-

first-service versions of (2.17), (2.18), (2.19), and (3.7) (whose explicit statements we omit)

and simplifying, we have, for x ≥ 0,

α̂j(x) = η ρ̂ σ0̂ ν̂j−1(x) , 1 ≤ j ≤ K − 1 , (4.13)

αj(x) = η ρ
j−1
∑

i=0

σi νj−1−i(x) , 1 ≤ j ≤ K − 1 , (4.14)

α̂K(x) = η ρ̂ σ0̂

∞
∑

j=K

ν̂j−1(x) , (4.15)

and

αK(x) = η ρ
∞
∑

j=K

K−2
∑

i=0

σi νj−1−i(x) ; (4.16)

and this generalizes (2.21) and (2.22).

All other results in Section 2 can also be generalized mechanically. For example, after

dividing the right-hand sides of (4.13) and (4.14) by η to generalize (2.25) (which can also

be proved directly by an argument similar to that in Section 3.3) and noting again that

η0 = σ0̂, it is easily seen that (2.29) generalizes, in form, to

P{W ≤ t} = σ0̂ +
K−2
∑

j=0

∫ t

0
G[j](t − x)

∫

∞

x
σ0̂

[λ(y − x)]j

j!
e−λ(y−x) dĜ(y)λdx

+
K−2
∑

j=0

∫ t

0
G[j](t − x)

∫

∞

x





j
∑

i=0

σi
[λ(y − x)]j−i

(j − i)!
e−λ(y−x)



 dG(y)λdx .
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4.2 Server Vacations with Exhaustive-Service Discipline

In this generalization, the server takes a vacation immediately after the completion of a

busy period. Upon returning from a vacation, the server will either start another vacation

if there is no waiting customer, or else begin service and continue serving until there are no

more customers in the system. The successive vacation durations are i.i.d. random variables

following distribution function Ĝ, and are independent of the arrival and service processes.

This finite-capacity exhaustive-service vacation model has been studied previously by Cour-

tois [1980] and Lee [1984]. (For a comprehensive survey of the extensive literature on this

and other variations of such vacation models, see Doshi [1990].) Our purpose here, as in

Section 4.1, is to outline transform-free results for this particular version of vacation models

(other variations can also be analyzed similarly).

Our arguments will be based on the following standard reinterpretation (Keilson [1966],

Section 7.1; Doshi [1986], p. 36, last paragraph): The time needed to complete each vacation

is conceptually equivalent to an “exceptional” service taken up by the server. With this rein-

terpretation, the methods and results of Section 4.1 directly apply here, after incorporating

the fact that although the server is never “idle”, exceptional services (since they are actually

vacations) do not contribute to the total customer count. In particular, we note that, since

the number of waiting positions during an exceptional-service interval equals K (as opposed

to K − 1, for an ordinary-service interval), a maximum of K − 1 customers (cf. (2.1)) can

be waiting in the queue immediately after the subsequent ordinary-service-start epoch (if

any); and hence, the state space of Q̂ should have, in addition to {0̂, 0, 1, · · · , K − 2}, an

extra state K − 1.

In light of the above discussion, we need to replace (4.3) by

σK−2 = σ0̂âK−1 +
K−1
∑

i=0

σi

∞
∑

j=K−2

aj+1−i

and σK−1 = σ0̂

∑

∞

j=K âj, while making no changes in (4.1) and (4.2); and we need to add

α̂0(x) to α̂j(x) and αj(x) for 1 ≤ j ≤ K, while retaining their meanings in Section 4.1.

The expressions in (4.11) and (4.12) also carry over here, after extending the range of i for

β+
i· (∞) to include i = K − 1.

Observe that although the server is never idle, the proportion of customers who, on

arrival, find the system not holding any (waiting) ordinary (or “real”) customers is given

by α̂0(∞); and this, a generalization of (2.20), will be a specialization of (4.18) below. To

generalize (2.16), we denote by B the proportion of time the server is busy serving ordinary

customers, and compute it in two different ways: First, from Theorem 4.8.3 of Ross [1983] (in

continuous time now), we have that, w.p.1, B = [(1−σ0̂)(1/µ)] [σ0̂(1/µ̂)+ (1−σ0̂)(1/µ)]−1.

Next, from H = λG, we also have B = λη(1/µ). Equating these two expressions and
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rearranging then yields

η = (1 − σ0̂)
[

σ0̂ρ̂ + (1 − σ0̂)ρ
]

−1
. (4.17)

Since all arriving customers are “blocked”, it follows immediately (similar to (2.18) and

(2.19)) from (4.9) and (4.10) (with i = K − 1 included in (4.10)) that, for x ≥ 0,

α̂j(x) = β+
0̂·

(∞) ν̂j(x) , 0 ≤ j ≤ K − 1 , (4.18)

αj(x) =
j−1
∑

i=0

β+
i· (∞) νj−1−i(x) , 1 ≤ j ≤ K − 1 , (4.19)

α̂K(x) = β+
0̂·

(∞)
∞
∑

j=K

ν̂j(x) , (4.20)

and

αK(x) =
∞
∑

j=K

K−1
∑

i=0

β+
i· (∞) νj−1−i(x) ; (4.21)

and these generalize (2.21) and (2.22). (From the above results, we see that stochastic

decomposition results such as those discussed in, e.g., Fuhrmann and Cooper [1985] do not

hold when the queue capacity is finite; however, proportionality results similar to (2.31),

(2.32), (2.33), and (2.34) can be exploited to facilitate computations.)

Finally, dividing the right-hand sides of (4.18) and (4.19) by η and substituting (4.17),

(4.11), and (4.12) yields immediately a generalization of (2.25), which leads to

P{W ≤ t} =
(

1 − σ0̂

)

−1







K−1
∑

j=0

∫ t

0
G[j](t − x)

∫

∞

x
σ0̂

[λ(y − x)]j

j!
e−λ(y−x) dĜ(y)λdx

+
K−2
∑

j=0

∫ t

0
G[j](t − x)

∫

∞

x





j
∑

i=0

σi
[λ(y − x)]j−i

(j − i)!
e−λ(y−x)



 dG(y)λdx







(the factor (1− σ0̂)
−1 reflects the fact that not all service-start epochs are “real”), another

generalization of (2.29).

4.3 Semi-Markovian Services

In this generalization, we assume that: (a) there are M (possibly infinite) different types

of services; (b) services of type m, 1 ≤ m ≤ M , follow distribution Gm, with mean 1/µm;

and (c) a type-m service will be followed by a type-n service with probability pmn that is

taken from a given M × M transition-probability matrix P. The infinite-capacity version

of this model has been studied previously by Çinlar [1967] and Neuts [1966, 1977, 1986],
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among others. In this section, we, again, describe how to obtain transform-free results; and

we will be very brief.

We shall append an extra subscript (separated by a semicolon) in our notation to differ-

entiate between different types of services, as illustrated by: For 1 ≤ j ≤ K, 1 ≤ m ≤ M ,

and x ≥ 0, let αj;m(x) be the proportion of customers who, on arrival, find that (a) there

are j customers in the system, (b) a type-m service is in progress, and (c) the time needed to

complete that service is not greater than x; and for 1 ≤ m ≤ M , let α0; m be the proportion

of customers who, on arrival, find that the system is empty and the ensuing service will

be of type m. Other notations in Sections 2 and 3 are also carried over this way, without

further comment.

The state space of Q is designed to be the set {(i, m) : i = 0̂, 0, 1, · · · , K − 2 and

1 ≤ m ≤ M} where the first component i is interpreted as the number of customers in

queue, with the additional stipulation that the service is the first one in a busy period if

and only if i = 0̂, and the second component m is interpreted as the ensuing service type.

The stationary probabilities σi; m for i = 0̂, 0, 1, · · ·, K − 2 and 1 ≤ m ≤ M of Q are

determined uniquely by solving a system of linear equations (which we omit) similar to

(2.3), (2.4), (2.5), and (2.6) (or (4.1), (4.2), (4.3), and (4.4)).

Observe that a proportion σ0̂; m +
∑K−2

i=0 σi;m of entering customers eventually receive

a type-m service. Therefore, from H = λG and PASTA, we have that the proportion of

arriving customers that are blocked on their arrival is given by

1 −
M
∑

m=1

α0; m = λ η

[

M
∑

m=1

(

σ0̂; m +
K−2
∑

i=0

σi;m

)

µ−1
m

]

, (4.22)

where η ≡ (1 −
∑M

m=1 αK;m). Since every “(0̂, m)” service-start epoch is identified with

the arrival epoch of an entering customer finding the system empty and initiating a type-

m service, we also have η0; m = σ0̂; m for 1 ≤ m ≤ M , which, together with the fact

η0; m = α0; m/η, implies that

α0; m = η σ0̂; m . (4.23)

Substituting (4.23) into (4.22) and solving for η now yields

η =

[

M
∑

m=1

σ0̂; m(1 + ρm) +
K−2
∑

i=0

σi; m ρm

]−1

,

and hence also a formula for α0; m, via (4.23); this generalizes both (2.16) and (2.20).

By “conditioning” on the service type, formulas (4.9) and (4.10) extend immediately to

this model. Therefore, we have, for 1 ≤ j ≤ K − 1, 1 ≤ m ≤ M , and x ≥ 0,

αj;m(x) =

(

1 −
M
∑

m=1

α0; m

)



β+
0̂·;m

(∞) νj−1; m(x) +
j−1
∑

i=0

β+
i·;m(∞) νj−1−i;m(x)
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and, for 1 ≤ m ≤ M and x ≥ 0,

αK;m(x) =

(

1 −
M
∑

m=1

α0; m

)

∞
∑

j=K

(

β+
0̂·;m

(∞) νj−1; m(x) +
K−2
∑

i=0

β+
i·; m(∞) νj−1−i; m(x)

)

;

and, since the proportion of blocked customers who find, on arrival, the system in state

Θ+
i·;m(∞), i = 0̂, 0, 1, · · ·, K − 2 and 1 ≤ m ≤ M , is given (similar to (4.11) and (4.12)) by

β+
i·;m(∞) = σi; mE(Nm)

{

M
∑

m=1

(

σ0̂; m +
K−2
∑

i=0

σi; m

)

E(Nm)

}−1

, (4.24)

where E(Nm) = λ/µm ≡ ρm, these expressions simplify, upon substitution of (4.22) and

(4.24), to

αj;m(x) = η ρm



σ0̂; m νj−1; m(x) +
j−1
∑

i=0

σi;m νj−1−i;m(x)





and

αK;m(x) = η ρm

∞
∑

j=K

(

σ0̂; m νj−1;m(x) +
K−2
∑

i=0

σi; m νj−1−i;m(x)

)

,

generalizing (2.21) and (2.22).

Finally, we note that with additional notation, it is straightforward to generalize other

results in Section 2. We omit the details.

5 Future Work

By monitoring the queue size and the ongoing arrival “phase” immediately after service-

start epochs, it is possible to obtain similar results for the Ek/G/1/K queue (Takács [1961];

Truslove [1975a,b]; Hokstad [1977]) and, in fact, for the more general PH/G/1/K queue,

where PH refers to any appropriately chosen family of phase-type distributions (see Neuts

[1981], for example). Basically, all we need is “sufficient exponentiality” in the arrival

process so that we can analyze the given model by designing a suitable embedded discrete-

state Markov chain immediately after service-start epochs. Moreover, the arrival process

does not even have to be a renewal process. We have chosen, in this paper, to work

with the Poisson-arrival case because of its simplicity and its basic importance. Work is

underway to accommodate more general arrival processes; the immediate focus there, since

the basic method has already been illustrated here, will be on (but not necessarily limited

to) computational issues.
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Note Added in Proof A proportionality result related to formulas (2.31), (2.32), and

(2.33) has recently been established, independently, by Glasserman and Gong [1991] (Jour-

nal of Applied Probability, Vol. 28, No. 3, p. 653, Theorem 2), using a sample-path argu-

ment. Another related paper that has come to our attention is Blondia [1989] (Stochastic

Models, Vol. 5, No. 2, 273–294).
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