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GENERALIZED QUASI-VARIATIONAL-LIKE 
INEQUALITY PROBLEM 

GUOQIANG TIAN 

This paper gives some very general results on the generalized quasi-variational-like 
inequality problem. Since the problem includes all the existing extensions of the classical 
variational inequality problem as special cases, our existence theorems extend the previous 
results in the literature by relaxing both continuity and concavity of the functional. The 

approach adopted in this paper is based on continuous selection-type arguments and thus is 
quite different from the Berge Maximum Theorem or Hahn-Banach Theorem approach used 
in the literature. 

1. Introduction. In recent years, various extensions of the classical variational 
inequality problem have been proposed and studied such as those in Mosco [18], 
Aubin [3], Chan and Pang [6], Fang and Peterson [12], Parida and Sen [19], Aubin and 
Ekeland [4], Shih and Tan [21], Zhou and Chen [30], Ding and Tan [10], Yao [29], 
Chang and Zhang [7], and Tian and Zhou [25, 26]. Motivations for this come from the 
fact that the variational inequality problem and its various extensions have applica- 
tions to problems in mathematical programming, partial differential equation theory, 
game theory, impulsive control, and economics [2,3,9, 14, 18,23,24]. In these exten- 
sions of the variational inequality problem, a functional (x, y, z) -+* (x, y, z) is 
involved. However, in studies of the existence of solutions to the various generalized 
variational inequality problems, some (e.g., Chan and Pang [6], Fang and Peterson 
[12], Parida and Sen [19], and Yao [29]) have used the Berge Maximum Theorem to 
prove the existence of a solution and restricted their discussions to the finite 
dimensional Euclidean space and continuous functions. But in many cases, functions 
are not continuous, and topological spaces are not finite. For instance, in the study of 
free boundary value problems for partial differential equations, the problems reduce 
to variational inequality problems over infinite dimensional spaces (see, e.g., [14]). 
Also, to use the Berge Maximum Theorem, one needs to assume that 4 is con- 
tinuous. This is clearly a very strong assumption. On the other hand, some (e.g., 
[3, p. 281], or [4, p. 349], Zhou and Chen [30], Tian and Zhou [25]) have used the 
Hahn-Banach theorem to prove the existence of solution to quasi-variational inequal- 
ity problems. This approach does not need to assume that 4 is continuous and 
topological spaces are finite dimensional, but, it needs to assume that b is (y-diago- 
nally) concave in y, while in problems of variational (minimax) inequalities only 
(0-diagonal) quasi-concavity and lower semi-continuity are needed to prove the 
existence. Indeed, (0-diagonal) concavity is a crucial assumption in using the Hahn- 
Banach theorem since it requires that the sum of the functions satisfy the (quasi-) 
concavity in order to apply the Ky-Fan minimax inequality. 
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GENERALIZED QUASI-VARIATIONAL-LIKE INEQUALITY PROBLEM 

In this paper we use a quite different approach to show the existence of a solution 
to the generalized quasi-variational-like inequality problem. The approach we adopt 
is based on continuous selection-type arguments and is developed in Tian and Zhou 
[26] to study the quasi-variational inequality problem. This approach enables us to 

generalize the existing results by relaxing both the (O-diagonal) concavity and continu- 

ity conditions. Since the generalized quasi-variational-like inequality problem in- 
cludes the classical variational inequality, generalized variational inequality, general- 
ized variational-like inequality, quasi-variational inequality, and generalized quasi- 
variational inequality problems as special cases, our results also prove the existence of 
solutions to these problems by relaxing both the (O-diagonal) concavity and continuity 
conditions. 

2. Notation and definitions. Let X and Y be two topological spaces, and let 2Y 
be the collection of all subsets of Y. A correspondence F: X -> 2Y is said to be upper 
semi-continuous (in short, u.s.c.) if the short {x e X: F(x) c V} is open in X for 

every open subset V of Y. A correspondence F: X -> 2Y is said to be lower 
semi-continuous (in short, l.s.c.) if the set {x E X: F(x) n V # 0} is open in X for 
every open subset V of Y. A correspondence F: X -o 2Y is said to be continuous if it 
is both u.s.c. and l.s.c. A correspondence F: X -> 2Y is said to have open lower 
sections if the set F-l(y) = {x E S: y E F(x)} is open in X for every y E Y. A 
correspondence F: X -> 2Y is said to have open upper sections if for every x E X, 
F(x) is open in Y. A correspondence F: X -o 2Y is said to be closed if the 

correspondence has a closed graph, i.e., if the set {(x, y) e X x Y: y E F(x)} is 
closed in X x Y. A correspondence F: X -> 2Y is said to have an open graph if the 
set {(x, y) E X x Y: y E F(x)} is open in X x Y. A set X is said to be contractible if 
there is a point x0 E X and a continuous function g: X x [0, 1] - X such that 
g(x, 0) = x and g(x, 1) = x0 for all x E X. Note that any convex set is contractible. A 
set X in a topological vector space is said to be finite dimensional if the number of 
linearly independent vectors (points) in the set is finite. 

A subset K in a topological space X is said to be solid if its interior set int K *= 0. 
Denote by co B and B the convex hull and closure of the set B, respectively. 

REMARK 1. It is known that if a correspondence F has an open graph then F 
has open upper and lower sections, and the converse statement may not be true 
(cf. [5, pp. 265-266]). Also, Yannelis and Prabhakar [28, p. 237] showed that, if F has 
open lower sections, then it is l.s.c., and the converse statement may not be true. 

REMARK 2. There has been some blurring in the literature of the distinction 
between closed correspondences and upper semi-continuous correspondences. (Many 
people use the definition of closed correspondences as the definition of upper 
semi-continuous correspondences.) In general, a correspondence may be closed 
without being upper semi-continuous, and vice versa. For instance, define F: R -> 2R 
via 

F(x)= x sif x 0, 

({0} otherwise. 

Then F is closed but not upper semi-continuous. Define G: R -- 2R via G(x) = (0,1). 
Then G is upper semi-continuous but not closed. Nevertheless, the following rela- 
tionships exist under some additional conditions. For a correspondence F: X -> 2, if 
Y is compact and F is closed, then F is upper semi-continuous (cf. Aubin and 
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Ekeland [4, p. 111]). And, if F is upper semi-continuous and closed-valued, then it is 
closed (cf. Aubin and Ekeland [4, p. 111]). 

Let X be a topological space. A function f: X -> R u { ? oo} is said to be lower 
semi-continuous (in short, l.s.c.) on X if for each point x' E X, we have 

liminff(x) > f(x'), x -x' 

or equivalently, its epigraph epi f - {(x, a) E X x R: f(x) < a) is a closed subset of 
X x IR. A function f: X -o R u {+ oo} is said to be upper semi-continuous (in short, 
u.s.c.) on X if -f is l.s.c. on X. 

Let X be a convex set of a topological vector space E and let 0: X x X - 
Rl U { + ?) be a functional. The functional (x, y) + Ob(x, y) is said to be y-diagonally 
concave (in short, y-DCV) in y (cf. [30]), if for any finite subset {y1,..., Ym) C X and 

any YA E= co{Y1,.., Ym} (i.e., YA = EJ1Ajyj for Aj > 0 with Em 1Aj = 1), we have 

m 

(1) E Aji(yA, yj) < y, 
j=l 

where y is a real number. A functional (x, y) +- (x, y) is said to be y-diagonally 
quasi-concave (in short, y-DQCV) in y if for any finite subset {y, ..., Ym} C X and 

any YA E co{y1,..., Ym}, 

min(yA, yj) < y. 

A functional (x, y) +-> 4(x, y) is said to be y-diagonally (quasi-)convex (in short, 
y-DQCX) in y if - is y-diagonally (quasi-)concave. 

Let X be a set in a Banach space E and let Y be a set in the dual E' of E. We 
now state the definition of the classical variational inequality problem as well as its 
various extensions. 

Let f: X -> 2Y be a single-valued function. The classical variational inequality 
problem (VIP) is to find a vector x* E X such that 

( - x*, f(x*))> > 0, Vx E X. 

Let F: X -> 2Y be a correspondence. The generalized variational inequality prob- 
lem (GVIP) (cf. [12]) is to find a vector x* e X and a vector y* E F(x*) such that 

(x-x*,y*) > 0, V E X. 

Note that GVIP reduces to VIP by letting F be a single-valued function. 
Let f: X -- 2Y be a single-valued function and let K: X -> 2x be a correspon- 

dence. The quasi-variational inequality problem (QVIP) (cf. [3,18]) is to find a vector 
x* E K(x*) such that 

(x -x*,f(x*))> 0, Vx EK(x*). 

Note that QVIP reduces to VIP by letting K(x) = X for all x E X. 
Let K: X -> 2x and F: X -> 2Y be two correspondences. The generalized quasi- 

variational inequality problem (GQVIP) (cf. [3,6,25]) is to find a vector x* E K(x*) 
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and a vector y* E F(x*) such that 

(x -x*,y*) >0, Vx K(x*). 

Note that GQVIP reduces to GVIP by letting K(x) X for all x E X and reduces 
to QVIP by letting F be a single-valued function. 

Let F: X -> 2Y be a correspondence. Let 0: X x Y - E and rr: X x X -> E' be 
two single-valued functions. The generalized variational-like inequality problem 
(GVLIP) (cf. [19]) is to find a vector x* e X and a vector y* e F(x*) such that 

(<(x*,y*),r(z, *) > 0, Vz X. 

Note that GVLIP reduces to GVIP by letting 0(x, y) = y and 7r(x, z) = z - x. 
Let K: X -> 2X and F: X -> 2Y be two correspondences. Let 0: X X Y -> E and 

Tr: X X X -> E' be two single-valued functions. The generalized quasi-variational-like 
inequality problem (GQVLIP) (cf. [29]) is to find a vector x* E K(x*) and a vector 

y* E F(x*) such that 

(0(x*, Y*),r(,x*)> 0, Vz E K(x*). 

Note that GQVLIP which is introduced by Yao [29] contains all the above "varia- 
tional inequality" problems as special cases. 

Before proceeding to the main theorems, we state some technical lemmas which 
are needed in the discussions below. Lemmas 1 and 2 are due to Yannelis [27, p. 103], 
Lemma 3 is due to Michael [17, Theorem 3.1"'], and Lemmas 4-6 are due to Yannelis 
and Prabhakar [28]. 

LEMMA 1. Let X and Y be two topological spaces, and let G: X -> 2Y, K: X -> 2Y 
be correspondences such that 

(i) G has an open graph, 
(ii) K is l.s.c. 

Then the correspondence F: X -> 2Y defined by F(x) = G(x) n K(x) is l.s.c. 

LEMMA 2. Let X be a topological space and Y a convex set of a topological vector 

space, and let G: X -> 2Y have an open graph. Then the correspondence F: X - 2Y 
defined by F(x) = co G(x) has an open graph. 

LEMMA 3. Let X be a perfectly normal T1-topological space and Y be a separable 
Banach space. Let 9(Y) be the set of all nonempty and convex subsets of Y which are 
either finite-dimensional or closed or solid. Suppose F: X > S(Y) is a lower semi- 
continuous correspondence. Then there exists a continuous function: f: X - Y such that 

f(x) e F(x) for all x e X. 

LEMMA 4. Let X and Y be two topological spaces, and let G: X -> 2Y and 
K: X - 2Y be correspondences having an open lower sections. Then the correspondence 
0: X -* 2Y defined by, for all x E X, 0(x) = G(x) n K(x), has open lower sections. 

LEMMA 5. Let X be a topological space and let Y be a convex set of a topological 
vector space. Suppose a correspondence G: X -> 2Y has open lower sections. Then the 

correspondence F: X -> 2 defined by F(x) = co G(x) for all x E X has open lower 
sections. 

LEMMA 6. Let X be a paracompact Hausdorff space and Y be a topological vector 
space. Suppose F: X -- 2Y is a correspondence with nonempty convex values and has 
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open lower sections. Then there exists a continuous function f: X -> Y such that 

f(x) E F(x) for all x E X. 

3. Existence theorems for general functions. The following theorems are impor- 
tant in establishing existence results for the generalized quasi-variational-like inequal- 
ity problem and extend the previous existence results in the literature by relaxing 
both the continuity and (y-diagonally) concavity conditions. For instance, these 
theorems extend the results of Chan and Pang [6, Theorem 3.1], Parida and Sen 
[19, Theorem 1], and Yao [29, Theorem 3.1] by relaxing the continuity of (b and the 
finite dimensionality of topological spaces and extend the results of Aubin [3, 
Theorem 9.3.2] and Aubin and Ekeland [4, Corollary 6.4.22], Zhou and Chen [30, 
Theorem 3.1] by relaxing the (y-diagonal) concavity condition. These theorems also 
include the results in Hartman and Stampacchia [14], Saigal [20], and Tian and Zhou 
[26, Theorem 2] as special cases. 

For simplicity, we state the following theorem and some other theorems below with 
the weak topology even though they hold for any Hausdorff vector space topology r 
provided it is weaker than the norm topology. 

THEOREM 1. Let X and Y be two nonempty weakly compact convex subsets in two 
separable Banach spaces, and let Xw and Yw denote the same sets X and Y endowed with 
the weak topology, respectively. Suppose that 

(i) K: Xw - 2X is a continuous correspondence with nonempty closed and convex 
values such that K(x) is either finite dimensional or solid for each x E Xw; 

(ii) F: Xw - 2Y is an upper semi-continuous correspondence with nonempty closed 
and convex values; 

(iii) ): Xw X Yw X X - R U { ?+ o} is l.s.c. and is y-diagonal quasi-concave in z. 
Then there exist x* E K(x*) andy* E F(x*) such that supz K((x*)(x*, y*, z) < y. 

PROOF. Define a correspondence P: Xw x Yw 
- 2X by, for each (x, y) E 

Xw x Y,, P(x, y) = {z e X: f(x, y, z) > y}. Thus, proving the theorem is equiv- 
alent to proving that there exist x* E K(x*) and y* E F(x*) such that K(x*) n 
P(x*, y*) = 0. 

Since f is l.s.c. in Xw x Yw X X, the set {(x, y, z) E Xw X Yw X Z: z E P(x, y)} = 
{(x, y, z) E Xw X Yw X Z: (x, y, z) > y} is open and thus P has an open graph in 

Xw x Yw. Also, by the y-diagonal quasi-concavity, x 0 co P(x, y) for all x E X and 
y E Y. To see this, suppose, by way of contradiction, that there exist xA E X and 
y E Y such that xA E co P(XA, y). Then there exist finite points, xI,..., xm in X, 
and Aj > 0 and E IA = 1 such that x = m Ajx and xi E P(XA, y) for all 
i = 1,..., m. That is, ()(xA, y, xi) > y for all i, which contradicts the hypothesis that 

q) is y-DQCV in z for each y. 
Define another correspondence G: Xw X Yw 

- 2X by G(x, y) = K(x) n 
co P(x, y). Let Uw = {(x, y) e Xw X Yw: G(x, y) * 01. If Uw = 0, this implies 
K(x) n P(x, y) = 0 for every x X y E X X Y,, and so to get the result, we need 
only to show that (K(x), F(x)) has a fixed point (x*, y*). But this is guaranteed by 
the Takutani-Himmelberg fixed point theorem (cf. [15]) and by noting the fact that a 
correspondence is u.s.c from the weak topology to the weak topology if it is u.s.c. 
from the weak topology to the norm topology (this is because every weak open set is a 
norm open set). Now assume Uw = 0. Since P has an open graph in Xw Yw, by 
Lemma 2, co P has an open graph in Xw X Yw. Then, by Lemma 1, G is l.s.c. in 
Xw X Yw and thus the correspondence GIUw: Uw -> 2X is I.s.c. in Uw. Also, for all 
(x, y) E Uw, G(x, y) is nonempty and convex. Now we claim G(x, y) is either solid or 
finite dimensional. This is clearly true if K(x) is finite dimensional. So we only need 
to show that G(x, y) has an interior point if K(x) contains an interior point z0. To 
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see this, let (x, y) E Uw and z E G(x, y) = K(x) n co P(x, y). Since K(x) is convex, 

z, = z + A(zo - z) is an interior point for any 0 < A < 1. Thus any neighborhood 
Aj(z) of z contains an interior point of K(x). Since co P(x, y) has a relative open 

graph, co P(x, y) is open relative to X that contains K(x) and P(x, y). There should 
be a neighborhood >X2(z) such that 2/2(z) n X c co P(x, y). So 42(z) contains an 
interior point of G(x, y) = K(x) n co P(x, y), i.e., G(x, y) is solid. 

Next we show that Zw is a perfectly normal T1-topological vector space if it is a 

weakly compact subset in a separable Banach space E. It is clear that Zw is a normal 

T1-topological space, since the dual E* of a Banach space E separates points in E, 
and Zw is weakly compact. To show that Zw is perfectly normal, we have to show that 

any closed set C of Zw can be written as an intersection of countable open sets. By 
the assumption that E is separable, Ew is also separable, since the norm-convergence 
implies the weak-convergence. Let Qf be a countable dense set in Ew. For each 
closed set C in Zw, the set 1f \ C is also countable and dense in Ew \ C. For each 
x E (f \ C), there are neighborhoods V(x) and tx(C) such that XJ(x) n xC(C) 
= 0. It is clear that C = n xE(, c)/1x(C), since(n xE(nx\"x(C)(C) n 

(U x E( ,(c)x (x)) = 0 and (Xw \ C) c U x E (,\c)(X). 

Hence, we can apply Lemma 3 to assure that there exists a continuous function 

g: Uw -* X such that g(x, y) E G(x, y) for all (x, y) E Uw. Note that Uw is relatively 
open since G is l.s.c. Define the correspondence M: Xw X Yw 2xxY by 

(2) M(x, |)J(g(x,y),F(x)) if(x,y) Uw, 
(2) M(x, y) 

(K(x), F(x)) otherwise. 

Then M: Xw x Yw -* 2xxY is u.s.c from the weak topology to the norm topology and 
thus M: Xw X Yw - 2XWXYW is u.s.c. from the weak topology to the weak topology. 
And, for all (x, y) E X x Y, M(x, y) is nonempty, closed, and convex. Hence, by the 

Takutani-Himmelberg fixed point theorem, there exists a point (x*, y*) X x Y 
such that (x*, y*) E M(x*, y*). Note that, if (x*, y*) E Uw, then x* = g(x*, y*) E 
G(x*, y*) c co P(x*, y*), a contradiction to x* - co P(x*, y*). Hence, (x*, y*) ? 

Uw and thus x* E K(x*), y* E F(x*), and K(x*) n co P(x*, y*) = 0 which im- 

plies K(x*) n P(x*, y*) = 0. 0 

In Theorem 1, we need to assume that X is a subset of a separable Banach space 
and need to use a topology which is weaker than the norm topology. The following 
theorem relaxes these assumptions. Note that in Theorem 2 below the conditions on 
b are weaker than those in Theorem 1, but we need to strengthen K to have open 
lower sections. However, when K is a constant correspondence so that K(x) = X for 
all x E X, the conditions in Theorem 2 are strictly weaker than those in Theorem 1. 

THEOREM 2. Let X and Y be two nonempty, compact, convex, and metrizable sets 
in two locally convex Hausdorff topological vector spaces, respectively. Suppose that 

(i) K: X -> 2x is a nonempty closed convex valued upper semi-continuous correspon- 
dence which has open lower sections; 

(ii) F: X -> 2Y is a nonempty closed contractible valued upper semi-continuous 

correspondence; 
(iii) 4: X x Y x X -- R U { oo} is l.s.c. in x and y and is y-diagonally quasi-con- 

cave in z. 
Then there exists x* E K(x*) and y* E F(x*) such that suPZEK(X*).(x*, y*, z) < 

y. 

PROOF. The proof of this theorem is very similar to that of Theorem 1. Define a 
correspondence P: X x Y -- 2x as before. Again we only need to show that there 
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exist x* E K(x*) and y* e F(x*) such that K(x*) n P(x*, y*) = 0. Since b is 
l.s.c. in x and y, then for each (x, y) e X x Y, P-l(z) = {(x, y) e X x Y: b(x, y, z) 
> y} is open. Thus P has open lower sections. Also, x 4 co P(x, y) for all x e X by 
y-DQCV condition. 

Also define the correspondence G: X x Y -> 2x and U as before. Since K and P 
have open lower sections in X x Y, so they have open lower sections in U. Then, by 
Lemma 5, co P has open lower sections in U. Hence, by Lemma 4, the correspon- 
dence GIU: U - 2x has open lower sections in U and for all (x, y) E U, G(x, y) 
is nonempty and convex. Also, since X is a metrizable space, it is paracompact 
(cf. Michael [17, p. 831]). Hence, by Lemma 6, there exists a continuous function 
g: U -> X such that g(x, y) e G(x, y) for all (x, y) e U. Note that, since G has 

open lower sections and thus is l.s.c. (cf. Remark 1), U is open. Define the 
correspondence M: X x Y - 2XXY by 

((g(x,y),F(x)) if(x,y) eU, 

( (K(x),F(x)) otherwise. 

The remaining arguments are as in the proof of Theorem 1 except for using the 
Eilenberg-Montgomery fixed point theorem [11] instead of Takutani-Himmelberg 
fixed point theorem. ] 

REMARK 3. When K(x) = X for all x e X, Theorem 2 (and thus Theorem 1) can 
be used to establish the existence of a solution to the GVLIP which significantly 
generalizes Theorem 1 of Parida and Sen [19] in three directions: (1) Their theorem 
assumes that ((x, y, z) is continuous while our theorem only needs to assume that 
4(x, y, z) is lower semi-continuous in x and y. (2) Their theorem assumes that 
+(x, y, z) > 0 for all x E X and b is quasi-concave while our theorem only needs to 
assume that 4( is O-diagonally quasi-concave in z. (3) Their theorem assumes that the 
topological spaces are finite dimensional while our theorem allows the topological 
spaces to be infinite dimensional. 

REMARK 4. If F is convex-valued, it is sufficient to use the Takutani-Himmelberg 
fixed point theorem instead of the more general Eilenberg-Montgomery fixed point 
theorem in the proofs of Theorem 2. 

REMARK 5. In the case where Y is finite dimensional, the compactness of Y can 
be relaxed. Indeed, since F(X) is compact, H - co F(X) is also compact if Y is 
finite dimensional. 

REMARK 6. The lower semi-continuity of b and openness of lower sections of K 
in Theorem 2 can be further weakened using the transfer continuity method which is 
introduced in Tian [24] and Zhou and Tian [31]. 

A slight generalization of Theorem 2 can be obtained by relaxing the closedness 
of K. 

PROPOSITION 1. Let X and Y be two nonempty, compact, convex, and metrizable 
sets in two locally convex Hausdorff topological vector spaces, respectively. Suppose that 

(i) K: X -* 2x is a correspondence with nonempty convex values and has open lower 
sections such that K: X -> 2X is u.s.c.; 

(ii) F: X -> 2Y is a nonempty closed contractible valued upper semi-continuous 

correspondence; 
(iii) 0: X x Y x X -> R u { +oo} is l.s.c. in x and y and is y-diagonally quasi-con- 

cave in z. 
Then there existx* E K(x*) and y* e F(x*) such that supZeK(x*)4(X*, y*, z) < y. 
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The proof of this proposition is the same as the one of Theorem 2 except replacing 
K(x) in (3) by K(x). 

The compactness of X and Y in Theorems 1 and 2 can be relaxed if we make some 
additional assumptions. In the following theorem and other theorems below, when 
conditions are connected with Theorem 1, compactness or closedness means weakly 
compactness or weakly closedness. 

THEOREM 3. Suppose all the conditions in Theorem 1 or Theorem 2 are satisfied 
except for the compactness of X and Y. If there exist nonempty compact convex sets 
Z c X and D c Y, and a nonempty subset C c Z such that 

(a) K(C) c Z; 
(b) (K(x) n Z, F(x) n D) : 0 for all x E Z; 
(c) for each x E Z \ C there exists z E K(x) Z with f(x, y, z) > y for all 

y F(x), 
then there exist x* E K(x*) and y* E F(x*) such that supz e K(x*)(x* y*, z) < y. 

PROOF. Define a correspondence G: Z -> 2Z by, for each x E Z, 

(4) G(x) = K(x) n Z. 

Then G(x) is nonempty and convex for all x E Z. Since Z is compact and K is 
closed by Proposition 3.7 in Aubin and Ekeland [4, p. 111], G is closed and therefore 
is u.s.c. on Z by Theorem 3.8 in Aubin and Ekeland [4, p. 111]. Similarly, we can 
show that the correspondence M: Z > 2D, defined via M(x) = F(x) n D, is a 

nonempty closed contractible valued upper semi-continuous correspondence. Also, 
note that 

(5) G(x) 
K(x) if xC, 

(5) G(x) = \K(x) n Z otherwise. 

Then, by Theorem 1 or Theorem 2, there is a vector x* E Z and a vector y* E 

F(x*) n D c F(x*) such that sup,zG(X*)(x*, y*, z) < y. Now x* E C, for other- 
wise Hypothesis (c) would be violated; and hence G(x*) = K(x*). Therefore, we 
have x* E K(x*), y* E F(x*), and supz EK(*(x) *, y*, z) < y. 

Observe that in the case where X and Y are compact, Assumptions (a)-(b) in 
Theorem 3 are satisfied by taking C = Z = X and D = Y and thus Theorem 3 
reduces to Theorem 1 or to Theorem 2. The assumption that K(x) n Z -= 0 for all 
x E Z is the necessary and sufficient condition for the correspondence K to have a 
fixed point when X is not compact (cf. Tian [22]). Assumption (c) is similar to the 
condition imposed by Allen [1] for variational inequalities with noncompact sets. 

REMARK 7. When X is finite dimensional, the conditions in Theorem 3 can be 

replaced by the following conditions: There exists a nonempty compact set C c X 
and a nonempty compact contractible set D c Y such that 

(a) (K(x) n Z, F(x) n D) - 0 for all x E Z, where Z = co{K(C) u C}; 
(b) for each x E Z \ C there exists y E K(x) n Z such that +(x, y) > y. 
REMARK 8. We can also similarly use the conditions imposed in Chan and Pang 

[6], Parida and Sen [19], and Yao [29] to relax the compactness of X in Theorems 1 
and 2. However, these types of generalizations are needed to strengthen ) from 
(y-diagonally) quasi-concavity to concavity. 
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4. Existence results for GQVLIP. By applying Theorems 1 and 2, we immedi- 

ately have the following existence results for the GQVLIP. 

THEOREM 4. Let X and Y be two nonempty weakly compact convex subsets in two 

separable Banach spaces, and let Xw and Yw denote the same sets X and Y endowed with 
the weak topology, respectively. Suppose that 

(i) K: Xw -> 2X is a continuous correspondence with nonempty closed and convex 
values such that K(x) is either finite dimensional or solid for each x E X; 

(ii) F: Xw -> 2Y is an upper semi-continuous correspondence with nonempty closed 
and convex values; 

(iii) 0: X X Y - E and -r: X x X -> E' are two single-valued functions such that 
i: Xw x Yw X X -, ->, defined by /(x, y, z) = (O(x, y), r(z, x)), is u.s.c. and is 

O-diagonally quasi-convex in z. 

Then there exists a solution to the GQVLIP. That is, there exist x* E K(x*) and 

y* E F(x*) such that (O(x*, y*), 7r(z, x*)) > 0 for all z E K(x*). 

THEOREM 5. Let X and Y be two nonempty, compact, convex, and metrizable sets 
in two locally convex Hausdorff topological vector spaces. Suppose that 

(i) K: X -> 2x is a nonempty closed convex valued upper semi-continuous correspon- 
dence which has open lower sections; 

(ii) F: X -> 2Y is a nonempty closed contractible valued upper semi-continuous 

correspondence; 
(iii) 0: X X Y -> E and rr: X X X - E' are two single-valued functions such that 

i: X x Y x X -> R, defined by f(x, y, z) = (O(x, y), rr(z, x)), is u.s.c. in x and y 
and is O-diagonally quasi-convex in z. 

Then there exists a solution to the GQVLIP. 
PROOFS OF THEOREMS 4 AND 5. Define ((x, y, z)= -(x, y, z) = -(0(x, y), 

7r(z, x)), and apply Theorems 1 and 2, respectively. o 

Similarly, by applying Theorem 3, the compactness of X and Y in Theorems 4 and 
5 can be relaxed. 

THEOREM 6. Suppose all the conditions in Theorem 4 or Theorem 5 are satisfied 
except for the compactness of X and Y. If there exist nonempty compact convex sets 
Z c X and D c Y, and a nonempty subset C c Z such that 

(a) K(C) c Z; 
(b) (K(x) n Z, F(x) n D) # 0for all x E Z; 
(c) for each x e Z \ C there exists z E K(x) n Z with (O(x, y), -(z, x)) > 0 for all 

y E F(x). 
Then there exists a solution to the GQVLIP. 

If K(x) = X for all x E X, the GQVLIP reduces to the GVLIP. Thus, by applying 
Theorem 5, we have the following corollary which generalizes Theorem 2 of Parida 
and Sen [19]. 

COROLLARY 1. Let X and Ybe two nonempty, compact, convex, and metrizable sets 
in two locally convex Hausdorff topological vector spaces. Suppose that 

(i) F: X - 2Y is a nonempty closed contractible valued upper semi-continuous 

correspondence; 
(ii) 0: X x Y - E and Tr: X X X -o E' are two single-valued functions such that 

?: X x Y x X -> R, defined by i(x, y, z) = (0(x, y), rr(z, x)), in u.s.c. in x and y 
and is O-diagonally quasi-convex in z. 

Then there exists a solution to the GVLIP, i.e., there exists a vector x* e X and a 
vector y* E F(x*) such that (0(x*, y*), 7r(z, x*)> > 0 for all z e X. 
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5. Applications. In this section we apply our general results to some problems in 
mathematical programming and equilibrium analysis which are two major areas of the 

applications. The applications are generalized saddle point problems and equilibrium 
problems of generalized abstract economies. 

5.1. Generalized saddle point problems. The saddle point problem is a basic 

problem in optimization theory. It states that under some conditions a saddle point of 
the Lagrangian function is equivalent to an optimum of the associated programming 
problem satisfying a constraint qualification (cf. Mangasarian and Ponstein [16], Yao 
[29]). In this subsection we give a general result on the existence of solutions to the 
(generalized) saddle point problems. We first give some notation and definitions. 

Let X and Y be two topological spaces, let K: X -> 2x and F: X -> 2Y be two 

correspondences, and let qp be a real function on X x Y. 
The generalized saddle point problem (GSPP) (cf. [29]) is to find x* E K(x*) and 

y* E F(x*) such that 

p(x*, y) < p(x*, y*) < p(x, y*) 

for all x e K(x*) and all y E F(x*). Note that GSPP reduces to the conventional 
SPP by letting K(x) = X and F(x) = Y for all x E X introduced in [16]. 

Let X be a set in [R". A differentiable function f defined on X is said to be invex 
(cf. [8, 13, 29]) if there exists a vector function 7r: X xX -> Rl" such that 

f(x) - f(y) > (Vf(y), 7(X, y)), Vx, y E X. 

It is clear that every differentiable convex function is invex but the converse statement 
may not be true. 

By using Theorem 4, we have the following existence result for (GSPP). 

THEOREM 7. Let X and Y be a nonempty compact convex subsets of Rn and Rm, 

respectively. Let K: X -> 2x and F: X -> 2Y be two nonempty closed convex valued 
continuous correspondences. Let (o: X x Y -> be a continuous function and 
w: X x X --> lRn be a function such that 

(i) f(x, y, z) = (Vxp(x, y), rr(z, x)) is u.s.c. and is O-diagonally quasi-convex in z 
for each y; 

(ii) p((x, y) is invex with respect to rr in x for each fixed y E Y, and concave in y for 
each fixed x E X. 

Then there is a solution to the GSPP. That is, there exist x* E K(x*) and y* e F(x*) 
such that 

p(x*, y) < p(x*,y*) (x, yY*) 

for all x E K(x*) and all y E F(x*). 

PROOF. Define a correspondence M: X -- 2Y by, for each x e X, M(x) = {y E 
F(x): p(x, y) > (p(x, u) Vu E F(x)}. Since cp and F are both continuous, by the 

Berge Maximum Theorem, M is a nonempty compact valued upper semi-continuous 
correspondence. Also, since (p is concave in y, M is convex valued. All the conditions 
of Theorem 4 are satisfied and thus there exist x* e K(x*) and y* E M(x*) such 
that (Vxq(x*, y*), 7r(x, x*)) > 0 for all x E K(x*). Then, by the invexity of 'p, we 
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have for any x E K(x*), 

cp(x, y*) - p(x*, y*) > (Vxp(x*, y*), r(x, x*)) > 0. 

On the other hand, since y* e M(x*), we have for all y e F(x*), 

p(x*, y) < (p(x*y*). 

Hence (x*, y*) solves the generalized saddle point problem. a 

5.2. Generalized abstract economies. Another application of our general results is 
to establish the existence of equilibria in generalized abstract economies. The notion 
of generalized abstract economies is very general and include the conventional games, 
abstract economies (the so-called generalized games) introduced by Debreu [9], and 
the competitive market economic mechanism as special cases. We first introduce the 
notion of generalized abstract economies. 

Let I be the set of agents which is any (finite or infinite) countable set. Each agent 
i chooses an action (xi, Yi) from his strategy set Xi X Yi. Let Si: X -> 2xi and Fi: 
X -> 2Yi be two feasible constraints, and let ui: X x Y -> R u { oo} be the payoff 
function of agent i. Hence X = Hi EiXi and Y = Hii Y/. Denote X-i = jj E ,\{i)Xj 
S = HVliSj, and F = HiEIFj. Denote by x and x_i an element of X and an 
element of Xi, respectively. 

A generalized abstract economy F = (Xi x Yi, Si X Fi, ui)i , is defined as a family 
of ordered triples (Xi x Yi, Si x Fi, ui). An equilibrium for F is a pair (x*, y*) E 
X x Y such that x* E S(x*), y* E F(x*), and ui(x*, y*) > u(x*i, xi, y*) for all 

xi E S(x*i) and all i e I. 
Note that if Fi is a constant single-valued mapping for all i E I, the generalized 

abstract economy reduces to the conventional abstract economy F = (Xi, Si, ui). 
Further, if Si(x) = Xi and F; is a constant single-valued mapping for all i E I, the 

generalized abstract economy reduces to the conventional game F = (Xi, ui) and the 

equilibrium is called a Nash equilibrium. 
Accordingly, we introduce an aggregate payoff function U: X X Y x X-> R u 

{ oo} defined by 

1 
(6) U(x, y,z) = -[ui(x, y) - ui(x_i, zi, Y)] 

We then have the following theorem which generalize the results in [4, 6, 25, 
26, 29]. 

THEOREM 8. Let X and Y be two nonempty weakly compact convex subsets in two 

separable Banach spaces, and let Xw and Y,, denote the same sets X and Y endowed with 
the weak topology, respectively. Suppose that 

(i) S: Xw - 2X is a continuous correspondence with nonempty closed and convex 
values such that S(x) is either finite dimensional or solid for each x e X; 

(ii) F: Xw -> 2Y is an upper semi-continuous correspondence with nonempty closed 
and convex values; 

(iii) U: Xw x Yw X X --> R U { + o} is u.s.c. and is O-diagonally quasi-convex in z. 
Then F has an equilibrium. 

PROOF. Let (P(x, y, z) = - U(x, y, z). Then all the conditions of Theorem 1 are 
satisfied and thus we know there is x* E S(x*) and y* e F(x*) such that 

+(x*, y*, z) < 0 for all z E S(x*). Thus, U(x*, y*, z) > 0 for all z E S(x*). Now 
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let z = (x*i, zi). We then have 

2'[i(x*,y*) 
- Ui(X* i,y)] > 0 

for any zi E Si(x*) and all i E I. Hence (x*, y*) is an equilibrium of the generalized 
abstract economy. w 
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useful comments and suggestions. 
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