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Abstract. A new class of continuation methods is presented which, in partic-
ular, solve linear complementarity problems with copositive-plus and L,-matrices.
Let @,b € R™ be nonnegative vectors. We embed the complementarity problem
with a continuously differentiable mapping f : R" — R™ in an artificial system of
equations

F(z,y) = (na,(b) and (z,y) > 0, (*)
where F : R*" — R?" is defined by

F(:I:,y) = (3613/1,- s Tpln,Y — f(w))

and g > 0 and ¢ > 0 are parameters. A pair («,y) is a solution of the complemen-
tarity problem if and only if it solves (%) for 4 = 0 and { = 0. A general idea of
continuation methods founded on the system (%) is as follows.

1. Choose n-dimensional vectors @ > 0 and b > 0 such that the system () has a
trivial solution (2!, y!) for some p*, ¢ > 0.

2. Trace solutions of () from (2!, y') with u = p! and ¢ = ¢! as the parameters
i and ¢ are decreased to zero.

This idea provides a theoretical basis for various methods such as Lemke’s method
and a method of tracing the central trajectory of linear complementarity problems.
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1. Introduction

Let R™ denote the n-dimensional Euclidean space, and
Ry = {zecR":x >0},
Let f: R" — R" be a C'-mapping, i.e., f is continuously differentiable. We define the
complementarity problem [4; 5; 6; 7; 13; 14; 24; 24; 30] with the mapping f:
CP[f] : Find a pair (,y) € R*" such that

y=f(x), (¢,y) >0 and 2,5, =0 (: =1,...,n).

We say that an (@,y) is a feasible solution (respectively, a strictly positive feasible so-
lution) of CP[f] if it satisfies y = f(«) and (@,y) > 0 (respectively, y = f(«) and
(z,y) > 0). When f(x) = Ma + ¢ for some M € R and ¢ € R", we call the

problem linear and otherwise nonlinear. We define

LCP[M ,q] : Find a pair (,y) € R*" such that

y=Mzx+gq, (xz,y)>0and 2,5, =0 (: =1,...,n).

For every & € R", we denote by X = diagax € R"*" the diagonal matrix with the
coordinates of the vector . Define the mapping F : R?" — R*" by

ren=(, 5 ) .

Let @ > 0 and b > 0 be vectors in R". We embed the problem CP[f] in an artificial
system of equations:

Few=(, )=l ) atevnozo o)

Here 0 < p € R and 0 < ( € R are parameters or artificial variables. Obviously, a pair
(z,y) € R solves CP[f] if and only if it solves (2) for ¢ = 0 and { = 0.

The system (2) provides us with a general theoretical framework for various homotopy
continuation methods [16; 17; 19; 20; 23; 24; 26] which are often called path-following
methods. To design a continuation method, we need to specify
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(i) how to choose an initial point (', y"') together with initial values u' and (! of the

Ly')
parameters g and ( satisfying (2), and



(ii) how to decrease the parameters p and ( from their initial values g and (! to zero.

As we will see below, (i) and (ii) are closely related. We discuss (ii) first.

In general, we prepare in advance two nonnegative continuous functions ji(¢) and ((¢)
(t > 0) such that @(0) = ¢(0) = 0. The functions g and ( control the decrease of the
parameters g and ( as t tends to 0:

ﬂ%mz(yfﬁ@):(?gg) and (2,.1) > 0.

Alternatively, we can change the parameters p and ( adaptively during the execution of
the algorithm. In this paper, however, we restrict ourselves to simple cases where the
change of the parameters ¢ and ( is governed by linear functions:

i(t)=at and ((t)= Bt foreverytc R,.

Here v and 3 are nonnegative constants but at least one of them is positive. Redefining
aa to be a and $b to be b, we may assume without loss of generality that « = 1if a > 0
and § =1if § > 0, respectively. Thus we have three typical models:

(a) a=0and g =1. In this case (2) turns out to be

n%mz(yfﬁ@):(g) and (2,,1) > 0, (3)

This is the system of equations whose solution set is traced by Lemke’s method [23;

24] for LCP[M, q]. Since b > 0, the set
{(@,y,1) = (0, £(0) +tb,1) : t > 0, £(0) +tb > 0}

forms a ray consisting of solutions of (3), from which Lemke’s method starts. Several
classes of linear complementarity problems are known to be solvable by Lemke’s
method. See, for example, [6; 30] for more details. The system (3) was also utilized
in [7; 14] where the existence of solutions of CP[f] was investigated.

(b) a=1and g =0. In this case (2) turns out to be

ﬂ%mz(yfﬁ@):(%) and (z,y.,1) > 0. (4)

Let @ > 0. Suppose f : R" — R" has the form f(x) = M« + q for some
positive semi-definite M € R"*" and q¢ € R". That is, we consider LCP[M ,q]
with a positive semi-definite matrix M. We assume that LCP[M , q] has a strictly
positive feasible solution. Then (4) has a unique solution (&(¢),n(t)) for every
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t > 0, which is smooth with respect to ¢ > 0. Furthermore, the solution curve
{(&(t),n(t)) : t > 0} converges to a solution of LCP[M,q]. When we take a =
(1,...,1)T € R, the trajectory is called the path of centers or the central trajectory,
which was originally studied in the context of linear and convex programs [34;
35] and later extended to LCP[M, q]. The existence of the path of centers leading
to a solution of LOP[M, q] was shown independently in [25; 26; 33]. See also [16;
20]. The path of centers has played an essential role in the design of many interior
point path-following methods for linear programs [12; 22; 28; 32|, convex quadratic
programs [11; 29] and LCP[M , q] [18; 21].
(c) a=1and g =1. In this case (2) turns out to be

ta

F(z,y) = ( o ) ) - ( h ) and (z,y,1) > 0. (5)

The homotopy continuation method given in [17] for the nonlinear CP[f] utilizes
this system. Let @' > 0 and take a sufficiently large y' such that y' — f(x') > 0.
Define a = X'y', b = y' — f(2!) and t! = 1. Then the point (2!, y', ') satisfies
(5). The existence of the trajectory starting from (a!',y',#') and leading to a
solution of CP[f] was shown in [19] when f is a monotone mapping, and in [20]
when f is a uniform P-function. The existence of the trajectory as well as a
numerical method for tracing it was studied in [17] for more general P,-function
cases.

It is interesting to compare (3) of (a) with (5) of (¢). Both contain the subsystem
y = f(x) + tb. The only difference lies in the choice of a; if we take @ to be 0 in
Xy = ta of (5), we obtain (3). This implies that the model (a) is an extreme variant
of (¢). On the other hand, Kojima, Megiddo and Noma [17] took a strictly positive a
in their homotopy continuation method for CP[f], which may be regarded as another
extreme variant of (c¢). One purpose of the present paper is to investigate general cases
where some components of @ are zero and the others are positive.

So far, the studies of both the interior point path-following method in the model (b)
and the homotopy continuation method in the model (c) were limited to the class of
complementarity problems with Py-functions (Py-matrices in linear cases). See [17; 18;
19; 20]. On the other hand, Lemke’s method [24] in (a) solves linear complementarity
problems with larger classes of matrices, some of which are not contained in the class F.
The classes of L,-matrices [6] and copositive-plus matrices [23] fall in this category. An-
other purpose of this paper is to fill this gap. We will apply the model (c¢) to LCP[M , g]
with an L.-matrix M and a copositive-plus matrix M.



2. Compactifying the domain of the parameter ¢

Define G : R*" — R by
Xy—a
Gla) = ( XV,

y—2>b
Let H : R* x [0,1] — R?" be a convex homotopy between the mappings F' : R** — R*"
and G : R* — R*" given by

H(z,y,0) = (1-0)G(z,y)+0F(z,y)
= (o= Ztm-m ) N
Consider the system
H(z,y,0)=0, (z,y)>0 and 0€[0,1]. (7)
This system serves as a continuous deformation from the artificial system of equations
G(xz,y)=0and (x,y) > 0,
which has a known solution (B~ 'a,b) (where B = diag b) into the system
F(z,y)=0and (z,y) > 0,

which is equivalent to CP|[f].

We will show below that (7) is equivalent to (5). Define ¢ : R?*" x Ry — R*" x [0,1)
by

(e, y,t) = (a:, l%rty, IL—I—t) for every (®,y,t) € R* x Ry.
Apparently, 9 is a diffeomorphism from R** x R, onto R*" x [0,1). We have
(i) (@,y,t) is a solution of (5) if and only if (@, y,t) is a solution of (7),
and

(ii) every solution (@,y,8) of (7) such that § < 1 is mapped diffeomorphically to a
solution ¥~ ' (@, y,0) = (;13, =Y, 1%) of (5).

To show the equivalence between (5) and (7), we also need to consider solutions of

(7) on the hyperplane {(@,y,0): 0 = 1}. Recall that we have assumed b > 0. Hence, if

we fix 0 to be 1, then (7) has a unique solution (2,y,1) = (B 'a,b,1). This solution of
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(7) corresponds to a “limit” of solutions of (5) rather than a particular solution thereof,
as we show below.
We observe that )
o B B A
DH(:]Z,’y,l)—(O T )

(i.e., the Jacobian matrix of the mapping H with respect to the vector (z,y) at (z,y,1) =
(B 'a,b,1)) is nonsingular. Here A = diag a, B = diagb, and I € R™ " is the identity.
Hence, by the implicit function theorem, for every 6 sufficiently close to 1, (7) has a
unique solution («(8),y(#),6), which is smooth in the parameter 6, in a neighborhood
of (#,y,1) such that ((1),y(1)) = (&,y). Thus, there always exists a trajectory of the
form

Ts = {((0),y(0),0): 1 — 6 <0 < 1}

in a neighborhood of the known solution (@, y, 1) for some 6 > 0. Therefore,
(iii) the set
{7 (2(0),y(0).0): 1 =6 <0 < 1} = {(2(0), L5y(0). 1) : 1 -6 <0< 1}

forms a trajectory consisting of solutions of (5) such that (@, y,) converges to
0

a unique solution (@, y,1) of (7) on the hyperplane {(x,y,6) = 1} along the

trajectory as t tends to infinity.
We can also see that

(iv) if {(&",y",1")} is a sequence of solutions of (5) such that ¥ tends to infinity
and & converges to some & € R" as p tends to infinity, then o (x?, y* 1*) € T;
for every sufficiently large p and (a?,y", 1) converges to the unique solution

(2,9,1) = (B 'a,b,1) of (7) on the hyperplane {(,y,0): 0 =1}.

Roughly speaking, the domain [0, co] of the parameter ¢ in (5) has been compactified
into the domain [0, 1] of the parameter § in (7). In the remainder of the paper, we will
deal with (7) instead of (5) since the former is mathematically easier to handle.

3. Existence of a trajectory

Let S denote the set of solutions (@, y,#) of (7) such that 6 > 0;
S={(e,y,0): Hx,y,0) =0, (,y) >0, 0 <6 <1}.

The unique solution (2,y,1) = (B 'a,b,1) of (7) on the hyperplane {(z,y,0): 0 =1},
as well as the trajectory Ts emanating from the point (&, y, 1), are contained in the set
S. Let T denote the connected component of S which contains T5.

The following theorem ensures that the set T' generically forms a trajectory.
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Theorem 3.1. Let a € R} be fixred. Then, for almost every b € R}, the set T' forms

a trajectory, a 1-dimensional manifold which is homeomorphic to (0,1], such that

T'={(&(s),m(s),7(s)) : 0 < s < 1}

and lims_o 7(s) = 0 whenever T is bounded. Here £ : (0,1] — R", : (0,1] — R" and
7:(0,1] — (0,1] are piecewise C'-mappings, or C'-mappings when a > 0.

Proof: The proof of the theorem is divided into two parts. First, we reformulate the
set S in terms of the solution set of a system consisting of n piecewise C'! equations
and n 4+ 1 variables. Later, we will utilize the notion of a regular value of a piecewise
C'-mapping to show that generically the set of the solutions of the system of piecewise
C! equations is a disjoint union of 1-dimensional piecewise smooth manifolds. The
first part is interesting in its own right. But the second part, which requires some
other notions such as a polyhedral subdivision of R” and a piecewise C''-mapping on
it, would be lengthy but rather standard in the theory of continuation methods [2; 3;
10], so we omit the details of the second part. See, for example, [1; 15].

For every a € R and u = (uy,...,u,)’ € R", we use the notation
om =max{0,a}, o~ =min{0,a} and u* = (uf,... u¥).

The correspondences u — ut and w — w~ should be regarded as piecewise linear
mappings from R" into itself. For every w € R", obviously,

ut >0, —(u)>0and wfu; =0(=1,...,n).

With ut and w~ we can rewrite CP[f] as the system consisting of n piecewise
C' equations and n variables uq, ..., u,:

u” + f(ut)=0.

This formulation of CP[f] was given in [8]. See also [27]. When we consider LCP[M, q],

the system above turns out to be piecewise linear:
u” +Mu"+qg=0.

Smale [33] proposed a “regularization” of the piecewise linear system for applying
Newton’s Method to LCP[M, q]. According to the analysis given in [16] on Smale’s
regularization technique, we will apply the regularization technique to CP[f], and
derive another representation of the set S of solutions (@, y,8) of (7) such that § > 0.
For every o > 0, @ = (aq,...,a,)" € R} ;v € Rand uw = (uy,...,u,)’ € R", define

n v+Vr? 4+ 4a
e (r;a) = — and

PF(usa) = (¢ (wrsar),. ., 9" (un;an)).
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Then @*(u;a) and @~ (u; a) are piecewise C* mappings (or C* mappings when a > 0)
from R" into itself such that

e (uiai) 20, =7 (ui3a;) 20, and " (ug @) (=9 (uis ar) = a;
(i=1,...,n). Specifically,
&*(u;0) = ut for every u € R".
Now we consider the system
& (u;fa)+ (1 —0)f(®*(u;0a))+0b =0 and (u,0) € R x [0,1]. (8)

The system (8) is equivalent to (7) in the sense that (u, 8) is a solution of (8) if and only
if (2,9,0) = (D (u;0a), —P (u;0a),0) is a solution of (7). To prove the theorem, we
are only concerned with the set of solutions (u,8) of (8) with § > 0. Hence, defining
the piecewise C''-mapping P : R™ x (0,1] — R" by

@ (u;ba) + (1 — 0)f(D* (u;ba))
0

P(u,0;a) = for every (u,8) € R" x (0,1],

we will rewrite (8) as
P(u,0;a) = —b and (u,0) € R" x (0,1].

When the vector a is strictly positive, the mapping P : R" x (0,1] — R"™is C' over R".
When some of the components of @ > 0 are zero, however, the mapping P is generally
a piecewise C''-mapping such that it is C'' on each set of the form @ x (0, 1], where @
denotes an orthant of B". Let S denote the set of solutions of the system above:

S ={(u,0) € B* x (0,1] : P(u,0;a) = —b}.

Then (u,0) € S if and only if (®F (u;0a), —P (u;0a),0) € S. Note that the corre-
spondence

(u,0) € S — (D% (u;0a), —D (u;fa),0) € S

is one-to-one and piecewise C'!. Specifically, the set T' corresponds to the set
T = {(w,0) :u=2—y, (x,y,0) € T}.

Conversely, the set T' can be represented as

T ={(®"(u;0a),—P (u;0a),0): (u,0) € T}.

We also see that T' is bounded if and only if T is.
Consequently, the theorem follows from the result on regular values of piecewise
Clmappings.



(a)’ Almost every —b < 0 is a regular value of the piecewise C''-mapping P.

(b)’ If —b is a regular value of the piecewise C''-mapping P then S is disjoint union
of smooth 1-dimensional manifolds; specifically its connected component T forms a
piecewise smooth trajectory (or a smooth trajectory when a > 0) such that either
||u|| tends to infinity or # tends to 0 along the trajectory T

In view of Theorem 3.1, we know that the set T' generically forms a smooth or piece-
wise smooth trajectory. Furthermore, if the trajectory 7' is bounded, we guarantee that
it will lead us to a solution of CP[f]. The boundedness of S, which ensures the bound-
edness of T', will be discussed in the next section. In general, the trajectory T may not
converge to any (@,y,0). It should be noted, however, that since 7" is bounded, there
exists at least one limit point as # tends to 0 along the trajectory, and every limit point

is a solution of CP[f].

4. Sufficient conditions for boundedness of the trajectory T

The following theorem can be derived easily from the Theorem of [20] and the relations

(i) = (iv) of (2) and (7) which we established in Section 2.

Theorem 4.1. Let a > 0 and b > 0. Suppose that f : R* — R" is a uniform
P-function, i.e., there exists a positive number v satisfying

max (! — e2)(fi(2") = fi(@?) 2 1l — &> for coery @', @® € R".

Then the set S is bounded. Furthermore, for each fired § € [0,1], (7) has a unique
solution (£(0),m(9)), which is continuous with respect to the parameter 6 € [0,1]; hence
the set T', as well as the set S can be written as

T=5={(&),n(0),0):0<6<1}. 9)

We call a continuous mapping f : R* — R" monotone if
(2! — )T (f(z') — f(2?)) >0 for every &', x* € R".

The problem CP[f] with a monotone function f has an important application to convex
programs. See, for example, [13; 14].

Theorem 4.2. Let @ > 0 and b > 0. Suppose that the mapping f : R* — R" is
monotone and that CP[f] has a strictly positive feasible solution. Then S is bounded.
If @ > 0 then, for each fired 6 € (0,1], (7) has a unique solution (&£(8),n(8)), which is
continuous with respect to the parameter 8 € (0,1]; hence the set T as well as the set S
can be written as in (9).



Proof: Let (&,9) be a strictly positive feasible solution of CP[f]. Define the positive
numbers ¢ and w by

¢ = min{b, &;, 4; : 1=1,...,n},

w = max{b, T, ¥ : 1=1,...,n}.
Suppose that (&, y,0) € S. Then, by the monotonicity of f, we have

—0)(@ - &) (f(2) - f(&))
— )" (y— 05— (1— 0)g). (10)

0 < (1
:(;13

Let e = (1,...,1)T € R*. Then

(0b+ (1 —0)y)Te + 2"y (by the definition of ¢)
e'y+a'(0b+(1-0)y) (by (10)
ela+nw? (by Xy = fa and the definition of w).

cefx +ely)

IA N CIA

Thus we have shown that S is contained in the bounded set
{(z,y,0) € R . efa +ely < (eTa+nw?)/e, 6 < 1}.

The second assertion of the theorem follows from Corollary 1.2 of [19] and the relations

(i) = (iv) of the (2) and (7) which we established in Section 2. y

In the remainder of this section, we consider LCP[M , q] with M € R"*" and q € R".
Then the mapping H : R*" x [0,1] — R*" defined by (6) turns out to be

Xy —ba
Hiz.9.0) = (y—(l—@)!(/Mw—l—q)—Hb)'

The matrix M is called a P-matriz if all its principal minors are positive, and a positive
semi-definite matriz if 7 Ma > 0 for every & € R". Suppose f(x) = Mz + q (where
q € R"). It is well-known that M is a P-matrix (respectively, positive semi-definite) if
and only if f is a uniform P-function (respectively, a monotone mapping). Therefore, as
a corollary of the theorems above, we obtain:

Corollary 4.3. Let a > 0 and b > 0. Suppose
(i) M is a P-matriz, or
(ii) M is a positive semi-definite matriz and LCP[M , q] has a strictly positive feasible
solution.

Then the set S ={(x,y,0): H(x,y,0) =0, (x,y) >0, 0 <0 <1} is bounded.
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The results above will be generalized in Theorems 4.5 and 4.7.

Lemma 4.4. Let a > 0 and b > 0. Suppose that the set S = {(x,y,0) : H(z,y,0) =
0, (z,y) >0, 0 <8 <1} is unbounded. Then there exist 6 > 0 and (&§,m) € R* such
that

e’€=1, &6 =03G=1,...,n), n=DME+6band (£,m) > 0. (11)

Proof: By the assumption, there exists a sequence {(&”,y”,67)} C S such that

lim,_.., eT&? = co. Hence, for p=1,2,..., we have
Xyl =0Pa; (1=1,...,n), (12)
¥ = (1 — 0)(Ma" 1 q) + 0%, (13)
(@.47) > 0. (14)
Since 6 lies in the interval (0,1] (p = 1,2,... ), we can take a subsequence of

{(x?, y*,07)} such that 07 converges to some 6* € [0, 1] along the subsequence. For
simplicity of notation, we assume that the sequence itself converges to some 0* € [0, 1].
We first deal with the case that 0 < #* < 1. From the relations (12), (13) and (14)

above, we have

O N

1
eTxr eTer (eTar)? (

v _ (1= 0)(Ma’ 4 q)+ 0

i=1,...,n),

eTqxp eTqxp
(27, y")
eTqxp

> 0.

Choosing an appropriate subsequence if necessary, we may assume without loss of
a’:p

elxr
limit in the above relations as p tends to infinity, we have

generality that converges to some € € R" such that e'¢ = 1. Hence, taking the

&772/»:0(@':1,...,71), n/:(l_e*)Mf and (6777/)20

/

for some n’. Thus, letting n = . i 7 and 6 = 0, we obtain (11).

Now we deal with the case that #* = 1. Assume that |[(1 — 67)&®|| converges to
zero. Then we see from (13) that y? converges to b. Hence, it follows from (12) that «?
converges to B~'a. This contradicts the assumption that the sequence {(@?, y*, 67)} is
unbounded. Therefore we only have to deal with the case where either for some « > 0,

lim (1 — 0")e'a” = & (15)

pP— 00
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or
lim (1 — 0")e’a" = (16)

pP— 00

On the other hand, it follows from (12), (13) and (14) that

(-0 (-0

= =1,...

(1 —6r)eTar (1 —0r)eTxr  ((1 — Or)elar)? (¢ eees ),

Yy M1 —0P)aP + (1 —07)q 4 07b
(1 —0ryeTar (1— 6r)eTar ;
((1 — ep)wpvyp)

> 0.
(1 —or)eTer —
(1 —67)x?

We may further assume without loss of generality that converges to some

(1 —0r)eTar
1

€. Thus, taking the limit as p tends to infinity above, we obtain (11) with 6 = — if
K

(15) occurs and 6 = 0 if (16) occurs. This completes the proof.

A matrix M € R is called an L.-matriz if for every nonzero £ > 0, there is an
index ¢ such that ¢ > 0 and [M£]; > 0, where [M£]; denotes the ith component of the
vector M &. The corresponding class L, contains the class of P-matrices since the latter
are characterized by the condition that for every nonzero £ € R", there is an index ¢ such
that &[ME]; > 0 (see [9]). If M is an L.-matrix, LCP[M, q] always has a solution for
any q (see [6]).

A matrix M € R™" is called copositive if &7 Ma > 0 for every > 0. The matrix
M is called copositive-plus if it is copositive and

x>0 and &’ M2 = 0 always imply 2/ (M + MT)z =0 .

The class of copositive-plus matrices contains the class of positive semi-definite matrices.
It is well-known that LCP[M , q] has a solution if and only if it is feasible, i.e., there is
an (&,y) such that y = M& + q and (&,y) > 0. It should be noted that the existence
of a solution depends on the constant vector ¢. But Lemma 4.4 does not involve the
constant vector q. This suggests that we cannot apply Lemma 4.4 directly to LCP[M , q]
to show the boundedness of S. We need to transform LCP[M , q] into an equivalent linear
complementarity problem, to which we will apply Lemma 4.4.

We assume below that the matrix M is either an L.-matrix or a copositive-plus one.

Theorem 4.5. Let a > 0 and b > 0. Suppose that M is an L.-matriz. Then the set
S={(e,y,0) : H(x,y,0) =0, (z,y) >0, 0<0 <1} is bounded.
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Proof: Assume, on the contrary, that S is unbounded. By Lemma 4.4, there exist a
nonnegative number ¢ and an (£,m) € R*" satisfying (11). It follows that

e’€=1, £>0 and §[ME] = —&6b; <0 (i =1,....n).
This contradicts the assumption that M is an L.-matrix. |y
Consider now the problem LCP[M  ¢| with a copositive-plus matrix. Let
M' =M + qq”.

The following lemma shows that LCP[M, q] is equivalent to LCP[M', q] whenever M

is copositive-plus.

Lemma 4.6. Suppose M is copositive-plus.

(i) If there is a nonzero & € R" such that
£>0, ME>0, £ ME=0 and "¢ <0,

LCP[M ,q] has no feasible solution.
(ii) If there is a nonzero & € R" such that

£>0, ME>0, £'ME=0 and g€ <0,

LCP[M , q] has no strictly positive feasible solution.
1) If (2 ts a solution of LCP|M then 1 —qTa > 1 and (2',y') = M s a
(iii) .Y .q q Y =TT
solution of LCP[M', q].
(iv) Suppose that (2',y’) is a solution of the LOP[M',q]. If 1 + qT&' > 0 then
_ @y
(wvy) - 1_|_qu,

is a solution of the LCP[M ,q]. If 1 + q'®' < 0 then LCP[M, q] has no feasible

solution.

Proof: (i) and (ii): Since M is copositive-plus, we see from the assumption that
(M + M7)€ = 0. Hence, by the second relation of (i) (or (ii)), we have €' M < 0. If,
on the contrary, LCP[M, ¢] has a feasible solution or, respectively, a strictly positive
feasible solution (&, vy), then

0<¢'y=¢Ma+q"€<0
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or, respectively,

0<&'y=€6"Ma+q¢7¢€<0.

This is a contradiction. Thus we have shown (i) and (ii).

(iii): Since M is copositive-plus, we have £ M > 0. On the other hand, we see
0=2"y =2"Mx + q"2. Hence ¢"z < 0, which implies 1 — g7x > 1. Obviously,
(@',y') >0and 2ly. =0 (¢ =1,...,n). We also see that

T
x q'x
M'z’ = M
Tt 1—qTa3+1—qTa3q+q
x 1
= M + qg=1v .

l1—qT2 1—-qTx

Thus we have shown that (&', y’) is a solution of the LCP[M', q].
(iv):  The first assertion of (iv) is easily verified. To see the second assertion of
(iv), assume that 1 + gT2’ < 0. Obviously g¢7&’ < —1. By the definition of M’

y =Mz +(1+q"2")q .

Hence
0= (Q?l)T’yl — (213/)TM§13/—|- (1 ‘|‘qu/)qu/-

Since M is copositive-plus, we also have (2')T M2’ > 0. Hence

/TM /
1—|—qu’: _7(;13)T /513 Z 0,
q x

which together with 1 4+ g7’ <0 implies 1 + ¢” 2’ = 0. Therefore,
x>0 y' =Mz >0, ()’ Mz’ =0 and qg'2' < 0.
By (i), we conclude that LCP[M, q] has no feasible solutions.

Let
S = {(x,y.0) € R % (0,1] : H'(x,y,0) = 0},

' Xy —ba
H(w’y’e):(y—(l—@)(yM’w—l—q)—Hb) '

where

Now we are ready to apply Lemma 4.4 to LCP[M', q|.

Theorem 4.7. Let a > 0 and b > 0. Suppose that

(i) M is copositive-plus, and
(ii) LCP[M, q] has a strictly positive feasible solution.
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Then S’ is bounded.

Proof: Assume, on the contrary, that S’ is unbounded. Then, by Lemma 4.4, we can
find a nonnegative 6 and (&,n) € R* such that

ef’é=1,¢&mn=0(G=1,...,n), n=M¢+6band ({,n)>0.
Hence, by the definition of M’,
0=¢n=¢ ME+(q78)" +6b'¢.

Each of the terms on the right-hand side is nonnegative, so they are all zeros. Since
0 <band 0 < €0, it follows that 7€ > 0. Hence § must be zero. Therefore we
obtain

£>0, ME>0, §'ME=0and ¢"§ =0.

By Lemma 4.6, we see that LCP[M, g] has no strictly positive feasible solutions. This
contradicts the assumption (ii).

It is known that LCP[M,gq] has a solution, which can be computed by Lemke’s
method, under the assumption (i) above and

(ii)’ LCP[M,q] has a feasible solution.

The assumption (ii) is weaker than (ii) in the theorem. The combination of assumptions
(i) and (ii)’ is not sufficient to ensure the boundedness of S’. When S’ is unbounded,
either LCP[M, ¢] has no feasible solutions or the solution set of LCP[M, q] is unbounded.

In the remainder of this section, we will investigate these two cases in detail.

We consider a sequence {(&?,y?,0”)} C S’. By the definition of S, each (&, y”, 67)
satisfies

y' = (1 —0"){Ma’ + (1 +q"")q} + 0%b, (17)
(z*,y") > 0,
Xyl =0%aq; (1=1,...,n). (18)

It follows from the relations above that

ela > #e’a
= (2")y’
= (1 —0°)(x") " MaP 4+ (1 —Hp)(l—l—qTa:p)qTa:p—l—Hpra:p.
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Each term on the last equality satisfies

(1 —07)(xP)" Ma? > 0, (since M is copositive-plus)
1—6r 1
(L= 0")(1+q"a")g"a? > ———> .
0°b" x? > 0.
Hence
_pr
0re’a + > (1 —60°)(x")" M?, (19)
oreta > (1 —0°)(1 + q' x")q" =", (20)
1—0r
ore’ a + > 0P b P (21)

Assume now that ||(«?, y?)|| tends to infinity as p tends to infinity. We see from (17)
that ||@?| tends to infinity with p, hence also b ®” tends to infinity with p. Thus, by

(21),
lim 07 =0 .

pP— 00

We know by this relation and (20) that the sequence {g’#”} is bounded and that every
limit point of the sequence lies in [—1,0].

Assuming —1 is a limit point of {q?®?}, we will show that LCP[M, q] has no feasible
solutions. For simplicity of notation, we further assume that {gq7®?} itself converges to
—1. Since lim,_., 87 = 0, it follows from (18) that for each ¢, at least one of ¥ and y”
converges to zero as p tends to infinity. Let

]Oz{i:]}Lrgoxfzo, I.={i:1<i¢<n, i & Ip}, (22)
Jo={y: limyi =0, Jy={j:1<5<n jéo}. (23)

Then IoyU Jo = {1,...,n} and I, N Jy = 0. Let I; and M; denote the j’th column of
the identity and the ¢’th column of M, respectively. Define the set

I M, . .

Az{Z ( N )m—Z ( i )5 6> 0 (i€ ly), njz()(]em}.
Jjedy tely i

By (17), we see that the vector

() - (1)

J7€Jo 1€ly
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is in A. Note that the vector converges to as p — oo, which belongs to A since

—1
A is closed. Therefore, there exist §; >0 (¢ € [;) and n; > 0 (j € J4) such that

S g5 (5)

Letting & = 0 (¢ € Iy), we obtain the vector & = (£1,...,&,)T such that
6207 Mgzov €TM€ZOELH(1 qT€:_1

Hence, by Lemma 4.6, LCP[M , g] has no feasible solutions.

Thus, we have shown that if —1 is a limit point of {g7?}, then LCP[M,q] has no
feasible solutions. This implies that if LCP[M , q] has a feasible solution then we can take
an ¢ > 0 such that for all sufficiently large p, 1 + q7@? > ¢. Therefore, for all sufficiently

(i;p?@p):((l—ep)wp Yy’ )

1 +qTar 1 4 qlar

large p, we may regard

as an approximate solution of LCP[M , q] because it satisfies

or

g? = Ma’ + (1 — 0")q + ———
(] a" + ( )q+1+q%p

Y

or
lim ——b=0
p—00 1 _I_ qup
(", 9") >0,

lim 2797 =0 (e =1,...,n).

pP— 00

More precisely, if we define the index sets Iy and Jy as in (22) and (23), we can similarly
prove that LCP[M , q] has a solution (&, y) satisfying #; =0 (¢ € Ip) and y; =0 (5 € Jo).

5. Concluding remarks

(A) The system (7) can be partitioned into two subsystems:
Xy=10a and (z,y) >0, (24)

and

y = (1—0)f(x) + 0b.
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It was shown in [20] that (24) is closely related to the logarithmic barrier function method.
Consider the problem:

Minimize &'y — 0 a;logzy;
=1
subject to (z,y) > 0.

It is easily seen that (@, y) is a global minimum solution of the problem if and only if it
satisfies (24). This implies that if (7) has a solution, then (&, y) is a solution of (7) if
and only if it is a global minimum solution of the problem:

Minimize &'y — 0 a;logzy;
=1

subject to Y
(z,y) > 0.

(B) The reader may be interested in extending the framework presented so far. Recall
that the system

H(z,y,0)=(1-0)G(x,y)+0F(x,y) =0 and (x,y,0) € RY" x [0,1]  (25)

with the parameter § decreasing from 1 to 0 serves as a continuous deformation from the
artificial system

Xy—a

y— b ):O and (z,y) € R,

Gz, y) = (

which has a known unique solution, into

Fla.y) = ( y_X;"(w) ) =0 and (z,y) € RY,

which is equivalent to CP[f]. As a natural extension, we may replace the mapping G

G(way)z( Xy~ a ) ,

y—g(x)

where g : R* — R". To ensure the uniqueness of the solution of the resulting artificial

above by

system

Xy—a
y—g(z)
and the boundedness of the set S of solutions (@, y,6) of (25) with § > 0, we need to
impose appropriate assumptions on the mapping g.

H(z,y,1)=G(z,y) = ( ) =0 and (z,y) € RY (26)

18



Such an extension is especially useful when we deal with the problem LCP[M g]
associated with a bimatrix game [23], where M and q are of the form

O

M:[BT

g] and ¢ =—-e=—(1,....1)\ ¢ R".

Let @ > 0, and
gl@)=x —e€.

Then we can easily verify that (26) has a unique solution and that the set S of all solutions

(z,y,0) of (25) is bounded.
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