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1 Introduction

This paper describes and analyzes several primal-dual interior-point algorithms for linear programming. In
some sense these methods follow the central path (defined below), but certain of our algorithms allow a very
loose approximation to the path. All methods discussed have polynomial worst-case complexity. We also
provide heuristic arguments that the algorithms will typically require far fewer iterations than guaranteed by
the worst-case bounds. Our reasoning considers a single iteration and is based on a nonrigorous probabilistic
assumption on the data at that iteration. We hope that such analyses can be made more rigorous in the
future.

We consider linear programming problems in the following standard form:

(P) minimize Tz

subject to Az =1b, z >0,

where ¢ € R®, A € R™*" and b € R™ are given data, and z € R™ is the decision vector. The dual to P
can be written as
(D) maximize b7y
subject to ATy+s=c¢, s >0,

with variables y € R™ and s € R*. The components of s are called dual slacks. Denote by F the set of
all pairs (z,s) such that z is feasible in (P) and s (with some y) in (D). We also denote by F' 0 the set of
all pairs (z,5) > 0 in F. Assume that F° # ¢. Note that the duality gap associated with (z,s) € F is
zTs = cTe — bTy for any y with ATy +s=rc.

Megiddo [13], Sonnevend [25], and Bayer and Lagarias [2] analyzed the central path which is expressed

C= {(:c,s) eFl: Xs= z—:;fe}
in primal-dual form, where e denotes the vector of ones and X = diag(z) denotes the diagonal matrix with
diagonal entries equal to the elements of z. Renegar [22], Gonzaga [6], Vaidya [29], Kojima, Mizuno and
Yoshise [9, 10], and Monteiro and Adler [19, 20] proposed algorithms that generate a sequence of points in
a neighborhood of the central path C and move in a direction that tries to find a new central point. These
are called central path-following methods. The original primal-dual path-following algorithm presented by

Kojima, Mizuno and Yoshise [9] uses the neighborhood
zTs
{(1’,5) (S .7:0 :XS Z 05—n——e} .

Given a pair (29, %) with (20)Ts% < 2!, their algorithm required O(nt) iterations to reach a pair (z*, s%)
with (2¥)Ts* < 2= — briefly, to attain precision ¢. (This implies that an exact solution to a problem
(P) with integer data with input length L can be obtained in O(nL) iterations. We will use the precision

terminology since we regard (P) as having real data.) Then Kojima, Mizuno, and Yoshise [10] and Monteiro



and Adler [19, 20] modified the algorithm by using the neighborhood

zTs
2o = {219 € 70 X5 — el < B where =22
for some B € (0,1) so that it requires at most O(n°-%t) iterations to attain precision t. Here || - || without

subscript designates the £ norm.

In this paper we will first analyze an adaptive-step path-following algorithm that generates a sequence
of iterates in AV5(1/4). Actually, the algorithm has a predictor-corrector form, so that it also generates
intermediate iterates in N3(1/2). Such a primal-dual predictor-corrector algorithm was first proposed in
Sonnevend, Stoer, and Zhao [26]. They take a number of corrector steps after each predictor step to get
a point sufficiently close to the central path, while our algorithm requires just one corrector step after
each predictor step. (Later papers of Sonnevend, Stoer, and Zhao [27] and Zhao and Stoer [34] provide a
more complete analysis of their method and allow less exact centering.) Like that of [26], our algorithm
has worst-case complexity O(n®5t) iterations to attain precision ¢, since it reduces the duality gap by a
factor of (1 — Q(n=05)) at each iteration. However we anticipate that the algorithm will perform better in
practice. To justify this, we analyze a single iteration. We show that, under a plausible but nonrigorous
probabilistic assumption, the decrease in the duality gap will be (1—(n~0%2%)) with probability approaching
one as n — oco. Thus we might argue heuristically that the algorithm will typically require only 0(n025t)
iterations. In contrast, Sonnevend, Stoer, and Zhao [26, 27], who were also trying to improve the worst-case
bound of O(n®5t) iterations, prove a rigorous bound of O(n®?%t) iterations for some special classes of linear
programming problems.

Next we consider adaptive-step algorithms generating sequences of iterates in either

T
NeaB) = {(216) € 701X = pelloo < it where = .

n
or
Nz(0) = {(e9) € 50 X0 = el < B where i = =l
for any 8 € (0,1). Here, for any z € R",
2115 = 112" [leo
and
21 = 12" lleo
where (z7); := min{z;,0} and (zt); := max{z;,0} and || - ||o is the usual £ norm. Note that lzllo =
max{||z||%, l|z]|= } and that neither || - || nor || -||% is a norm, although they obey the triangle inequality.

The neighborhood used by Kojima, Mizuno, and Yoshise [9] is A5 (1/2) and our algorithms have the same
worst-case complexity as theirs. Indeed, our algorithms reduce the duality gap by a factor of (1 — Q(n—1Y)
at each iteration, and thus require O(nt) iterations to attain precision t. However, if we analyze a single
iteration using the same nonrigorous probabilistic assumption, the decrease of the duality gap will be

(1 - Q(1/logn)) with probability approaching one as n — co.



We easily see that
C C Na(B) C Noo(B) C N5(B) C F° for each B €(0,1).

Our results indicate that when we use a wider neighborhood of the central path, the worst-case number of
iterations grows, while the typical behavior might be expected to improve.

Our adaptive-step algorithms for the neighborhoods N (f) and NZz(B) generate sequences of points
lying in the boundaries of these sets. Since our results hold for arbitrary 8 € (0, 1), our algorithms can

generate sequences of points in a wide area of the feasible region. In particular,
Ne@) =7,

so when f is close to 1, the neighborhood Nz (f8) spreads almost all over the feasible region F and the
points generated by the algorithm based on NZ(B) are close to the boundary rather than the central
path. Moreover the search direction of our algorithm approaches that of the original primal-dual affine
scaling algorithm (Monteiro, Adler, and Resende [18]) if 3 goes to 1. Finally, our algorithm approaches the
conditions required for fast local convergence given by Zhang, Tapia, and Dennis [33] for B close to 1.

We also describe a potential reduction algorithm. Although the search direction of the potential reduction
algorithm is the same as that of the path-following algorithm, the step size is determined as the minimum
point of the potential function in the neighborhood NZ(B). The primal-dual potential function introduced
by Todd and Ye [28] is

n
¥(z,5) = plog(aTs) = 3 _log(z;s;), (1)
j=1

where p > n. Using this, Ye [32], Freund [5], Anstreicher and Bosch [1], and Kojima, Mizuno and Yoshise
[8] have developed O(n®t)-iteration potential reduction algorithms with the choice of p = n + O(no%).
However, practical experiments indicate that a larger p is much better (McShane et al. [12] and Lustig et
al. [11]). We show that if we set p = n + ©(n?), the potential reduction algorithm has the same properties
as our adaptive-step method based on Ng(8).

Section 2 describes the basic step on which our algorithms are built and gives some worst-case bounds on
the second-order term that arises. In section 3, we describe our first algorithm, an adaptive-step predictor-
corrector method based on N2(f), and analyze its worst-case behavior. Section 4 introduces two adaptive-
step algorithms, based on N (8) and N3 (8) respectively, and establishes their polynomial-time complexity.
In section 5 we describe our potential reduction algorithm in N g (). Section 6 is concerned with a proba-
bilistic analysis of the second-order term, under a strong probabilistic assumption on the data at a particular
iteration. If certain inequalities which we prove to hold with high probability under our assumption do in-
deed hold, we show that the decrease in the duality gap or potential function will be far larger than predicted
by the worst case analysis. The final section contains concluding comments.

This paper is based on the two reports [16, 17].



2 Preliminaries

Suppose we have a pair (z,s) € N, where C C N C F°. Let v be a constant in [0,1]. Let u denote z7s/n.
Then we can generate a search direction d = (dz, d,) using the primal-dual scaling method of Kojima et al.

[9] by solving:

Sd, + Xd, = ~ype~—Xs,
Ad; = 0, (2)
ATd, +d, = 0.

Here X = diag(z), S = diag(s), and e denotes the vector of ones in R”. It is well-known that d is the Newton
step from (z, ) to find the point on C with duality gap nyu (see, e.g., [19]). Note that d7d, = —dT ATdy =0
from (2). To show the dependence of d on the current pair and parameter v, we write d = d(z, s, 7).

Having obtained the search direction d, we let

z(0) = =z+0d,,

s(0) = s+0d;. )

Note that Az(6) = b for all 8, while if (y, s) is feasible in (D), dy is given by (2), and y(0) := y + 0dy, then
ATy(0) + s(0) = c. In our adaptive-step algorithms, we will frequently let our next iterate be (z*,s%) =

(2(0), 5(0)), where 0 is as large as possible so that (z(6), s(0)) remains in the neighborhood A for ¢ € [0, 0].
Let p(0) = z(0)Ts5(0)/n and X(0) = diag(z(0)). In order to get bounds on @, we first note that

uo) = (1-0pu+oyu, (4)
X(0)s(0) — p(0)e = (1—0)(Xs— pe) +0°Dzdy, (5)

where D, = diag(d;). Thus Dyd, is the second-order term in Newton’s method to compute a new point of
C. Hence we can usually choose § larger (and get a larger decrease in the duality gap) if Dyd, is smaller.
In this section we obtain several bounds on the size of D,d;.

First, it is helpful to reexpress Dd,. Let

p o= X580,
q = X°55-0%d,, (6)
ro= (XS8) %3 (yue — Xs),

and

U:={z: AX"557%%2 = 0}.
Then the system (2) can be rewritten as

pteg=r,
X (7)
peU, ¢eU~,
where UL denotes the orthogonal complement of U. Thus p is the projection of r on U and q its projection
on UL, so that pTq = 0. Also
D.d, = Pq (8)



where P = diag(p).

Lemma 1 With the notation above,

a)
1Pall < Y21
b)
._ﬂf4”_2 <pigi < fij for each j;
)
1Pl < ”1“2 < ””’2’&,
1Pl < M and
1Pl < I < nlrlEe

4 4

(9)

Proof. a) is proved in Mizuno [15]. See also [10, 20]. The right hand inequality in (b) follows from

pj +gq; = r;j for each j. For the left hand inequality,
pig; 2 Z Pigi

pigi<0

— 3 pigi (since pTg=0)
pigi20

1

5
h 4
pigi20

~{Ir(I*/4.

v

v

(¢) is an immediate consequence of (b). D

The bounds in lemma 1 cannot improved by much in the worst case: consider the case where

r = e = (1,1,-»-,1)T,
p = (1/2,1/2,-~~,1/2,(1+ﬁ)/2)T, and
g = (1/2,1/2,---,1/2,(1—-\/ﬁ)/Q)T.

To use lemma 1 we also need to bound r. The following result is useful:

Lemma 2 Let r be as above.
a) Ify =0, then ||r||?> = np.

b) IfA € (0,1), y=1 and (z,5) € No(), then ||r||> < F7u/(1 - B).



¢) IFA€(0,1), 7€ (0,1), < 21— B) and (z,5) € N (B), then ||r||* < np. Moreover, if (z,5) € Noo(8)
then VT=ByE > (V/VI=B—-VI=B)yE 21 2 (7/VI+B-VI+ BIVE > —/T+B\/A, so
lIrll2, < 1+ B)u-

Proof. a)Ify=0,r=—(XS5)"%%Xs, so ||r||? = 2Ts = np.
b) Now r = (XS)~%5(ue — Xs), so ||r|| < Wﬁﬂ’ which yields the desired result.
¢) In this case

T
e = 3 Grm e
ZjSj

|
N
P
1) i? 2
& | &
[
v
)
=
+
8
.
‘gla
~—

S M —2nyp +np (since zjs; > (1—PB)p)

< np (since 7 <2(1-4)).

Now suppose (z,s) € Noo(B), so that z;s; € [(1 = B)p, (1+ B)u] for each j. Thus, for each j,
1- > 1+
,-——1 ——— - V1-bf/pzri= f‘ - V1+ Vi,
which yields the final result. O
The algorithm of Section 3 uses parts (a) and (b) of this lemma, while those of Section 4 and b use part
(c). Note that the proof of (c) shows that, if (z,s) € Neo(B) and v < 1 — 3, then r; < 0 for each j, so that

at least one of (d;); and (d,); is nonpositive for each j.

Tjsj 2

1+

3 A predictor-corrector algorithm

In this section we describe and analyze an algorithm that takes a single “corrector” step to the central path
after each “predictor” step to decrease p. Although it is possible to use more general values of 8, we will
work with (nearly-centered) pairs in A5(1/2) (intermediate iterates after a predictor step) and (very nearly
centered) pairs in NV5(1/4) (after the corrector step).

Assume we have an initial pair (z9,s%) € N»(1/4) with (%) s® < 2. Many papers (e.g. [9, 10, 19, 20D
describe how to modify (P) and (D) so that such an initial pair can be found.

Algorithm 1 Given (29,5°) € No(1/4) with (z°)Ts° < 2!, set k= 0.
While (z*)Ts* > 2=t do
begin

set (z,8) = (a*, s*);



(predictor step)
compute d = d(z, s,0) from (2);

compute the largest § so that

(2(9),5(6)) € Na(1/2) for 6 €[0,0];

set (z',8') = (2(0), s(9));

(corrector step)

compute d' = d(a’,s',1) from (2);
set (zF+1 k) = (' + dl, s’ + d);
k=k+1;

end.

This algorithm is very similar in spirit to algorithm 1 of Sonnevend, Stoer, and Zhao [26] - they take
a fixed number of corrector steps after each predictor step to attain (to machine precision, say) a pair on
the central path. The predictor step, with v = 0, is exactly along the search direction of the primal-dual
affine scaling algorithm of Monteiro, Adler and Resende [18]. The choice of the parameter # makes this an
adaptive-step algorithm. Similar stepsize selection rules are discussed in Mizuno et al. [14], Sonnevend et
al. [26] and Ye [31] and were alluded to in Section 6 of [19]. We can compute 6 by solving a quartic equation
in one variable.

To analyze this method, we start by showing
Lemma 3 For each k, (2, s*) € No(1/4).

Proof. The claim holds for k£ = 0 by hypothesis. For k > 0, let (z’,s") be the result of the predictor step
at the kth iteration and let & = d(z',s',1), as in the description of the algorithm. Let 2’(¢) and s'(8) be
defined as in (3) and p/, ¢’ and ' as in (6) using ', s’ and d'. Let p'(0) := z'(0)Ts'(8)/n for all 6 € [0,1]
with g/ == p/(0) = (2/)Ts'/n and pk+! = p/(1) = (2F+1)T sk /n.
From (4),
w'(0) =y forall 0, (10)

and in particular p**! = /. From (5),
p p

I

X'(6)s'(6) — p'(0)e (1—0)(X's' — p'e) + 6°D.d,

= (1-6)(X's —pe)+6°P'¢, (11)
where X'(0) = diag(z'(0)), etc. But by lemma 1(a) and lemma 2(b) with g = 1/2,
V3 o VB (/2R

1Pl < Yo < 2R < g




It follows that

'g)s! ' Ko opl 1,
1O (0) - well < (1 - 0)5 +022 < Ly (12
Thus X'(6)s'(0) > %—I—e > 0 for all # € [0,1], and this implies that z’(d) > 0, s'(d) > 0 for all such 8 by
continuity. In particular, z¥+1 > 0, s¥+1 > 0, and (13) gives (z**!,s¥*1) € N5(1/4) as desired on setting
g=10

Now let (z,s) = (¢%,5*), d = d(z,5,0), p = p*¥ = 2Ts/n, and p, ¢ and r be as in (6); these quantities
all refer to the predictor step at iteration k. By (4),

W =(1—=0)p, or

pEHt = (1 0)pk. (13)

Hence the improvement in the duality gap at the kth iteration depends on the size of 4.

Lemma 4 With the notation above, the stepsize in the predictor step satisfies

1 7 0.5
6> 6, = min< -, (————-«) .
= {2 B[Pl }

Proof. By (5) applied to the predictor step,

1X(0)s(6) — p(@)ell

11 = 6)(Xs — pre) + 0Pl
(1= 0)[1Xs — pel] + 0711 Pl
(1 - 0u+ 0Pl

IN

IA

using lemma 3. For 8 < 6y, 62||Pq|| < /8, so

1X(0)s(0) = n(O)ell < (1~ O+ 13

1 1
< f0-0m (14 55
< %(1—9)/1
= ul0),

using also 6; < 1/2. Hence, as in the proof of lemma 3, (z(6), 5(¢)) € N2(1/2) for 6 < 6, whence 6 >0, as
desired. O

We can now show
Theorem 1 Algorithm 1 terminates in O(n®-5t) iterations.
Proof. Using lemma 1(a) and lemma 2(a), we have

I1Pall < Y21 = Lo,

4



so that §; > 8-0-255-05 4t each iteration. Then (13) and lemma 4 imply that
P < (1 — 80255 05)

for each k. This yields the desired result. O

Note that, if ||Pg|| and ||[P'¢|| are typically much smaller than the bound given by lemma 1, then the
improvement will be far greater. From (10) and (11), each iterate will be much better centered than is
guaranteed by lemma 3, and the predictor step will be much larger than O(n=°%) by lemma 4. We will

provide heuristic arguments for this improvement in section 6. For now we merely note

Corollary 1 If at a particular iteration we have ||Pq|| < n®3u, then the duality gap at that ileration will
decrease at least by a factor of (1 —8-%%n=025). Algorithm I requires only O(n®25t) iterations of this type.

Proof. This follows immediately from lemma 4 and (13). O

As stated in the introduction, Sonnevend, Stoer and Zhao [26, 27] establish a rigorous bound of O(n%-2%t)
iterations for their “strongly-centered” method applied to certain special classes of linear programming
problems.

Most path-following algorithms (like those of the next section) take only predictor steps. Then, in order
to achieve a worst-case complexity of O(n®5t) iterations, they are forced to set y = 1 — ©(n=%), which
limits their possible speed of convergence. We set v = 0 to allow greater improvement, but then, in order
to have a reasonable step, must enlarge the neighborhood of the central path for the result of the predictor
step. A corrector step is then necessary. It seems that £5-neighborhoods are required in such algorithms.
Lemma 1(c) shows that ||Pg|je can only be bounded by a multiple of ||7{|?, not [|I7]|%,, unless an extra factor
of n is introduced. But ||r|] may be large compared to ||7||co, Which is related to g with (z,s) € Noo(B).-

Hence corrector steps may not behave well with the £,, norm.

4 Algorithms in wider neighborhoods

Let A be a neighborhood of € with C ¢ A C F°. In this section we consider algorithms of the following
form based on v € (0,1) and NV:

Algorithm 2 Given (2°,5°) € N with (2°)Ts® < 2!, set k= 0;
While (z¥)Ts¥ > 271 do
begin
set (z,5) = (2%, s*);
compule d = d(z, s,7) from (2);

compute the largest § so that
(z(6),5(8)) € N for 0 €0,6];



set (z4+1 s5+1) = (2(8), s(9));
k=k+1;
end.

For v close to 0, the search direction approximates that of Monteiro, Adler and Resende’s primal-dual
affine scaling method [18]. Again the selection of § makes this an adaptive-step method. We will analyze
this algorithm for N = Nwo(f) and N5(8), where 8 € (0,1). In either case, computing 6 involves the
solution of at most 2n single-variable quadratic equations.

Note that, if y* := (2F)Ts* /n, (4) implies

pEtt = (1 - 6(1 - 7))w*, (19)
so we wish to bound @ from below.

Lemma 5 Let g€ (0,1), v € (0,1), and N = Neo(B) or N5 (B). Letz, s, d and § be as in the kth iteration
of Algorithm 2, and define p, ¢ and r by (6). Then

7

v

= mil ___ﬂ'yuk ) =
Oy 3= “{1’annw} f N = Neol ),

D

o Byu* } N A
> 05 = mln{l, nZIE if N=NZ(8).

Proof. Suppose first A’ = A'=(8). Then, for each 0 € [0,05], (4) and (5) imply
X(0)s(6) — p(0)e (1-6)(Xs — pe) +6°Pq,

~ (1= 0)||Xs — pellz, + 0% Pqllz)

— (1~ 0)Bu* +0Byu*) e

—Bu(B)e.

Hence, as in the proof of lemma 3, (z(8), s(9)) € Nz (B) for 8 € [0,607], whence § > 7. f N = Noo(B), 2

similar proof gives

(VAR AVARRS |

i

Bu(0)e > X(0)5(6) — u(0)e > —Bu(b)e
for 6 € [0, 65], which again implies § > 0. O

We can now prove

Theorem 2 Let B € (0,1) and v € (0,1) be constants with v < 2(1 — B). Then Algorithm 2, with
N = No(B) or N5(8), will terminate in O(nt) iterations.

Proof. In either case, each iterate lies in N3(8), whence ||Pqllz, < [|Pglle < H%E < 1‘-};—5, using lemma
1(c) and lemma 2(c). Hence 65 > 03 > 5%1. Then lemma 5 and (14) give

pErt < (1 - W) uF, (15)

10



which yields the result. 0O
As in Section 3, we note that, if || Pg||e or ||Pg||Z, is typically much smaller than is guaranteed by lemma

1(c), then much greater improvements can be made at that iteration. In fact, we have

Corollary 2 Let # and v be as in theorem 2. Suppose at some ileration we have ||Pqlloc < log(n)p* if
N = No(B) and ||Pgllz, < log(n)pf if N = NZ(B). Then the duality gap at that ileration will decrease at

least by a factor (1 — By(1 — )/ log(n)) using Algorithm 2 with either Noo(B) or NZ(B). The algorithm
requires only O(log(n)t) iterations of this type.

Proof. This follows immediately from lemma 5 and (14). D

It is possible to use ' = N3(f) in algorithm 2, and also achieve an O(nt) bound on the number of
iterations. However, as we shall see in Section 6, the improvement of a typical value for || Pq|| compared to
its worst-case bound may be only O(n~%%), so we are unlikely to be able to improve on algorithm 1 in this

case.

5 A potential reduction algorithm

Algorithms 1 and 2 both used the longest step size that would keep the iterate in a certain neighborhood
of the central path, and proved convergence using the reduction of the duality gap. Here we describe a
variation of Algorithm 2 that uses a primal-dual potential function to choose the step size and to prove
convergence. We shall see that we get parallel results to those of section 4.

The primal-dual potential function (1) can be written as

Zj8;

z,8) = ‘—-TI»OZ'TS““ niogn.
Y(z,5) = (p — ) log(es) j;log(ﬂs/n% log

By the arithmetic-geometric mean inequality, the sum on the right hand side is nonpositive, so
$(z,5) > (p — n)log(”'s) + nlogn.

Hence, if we reduce v to —(p — n)t + nlogn, we shall have zTs < 271 as desired.
Assume we have (29, 5%) € F° such that (z°,5°) € N and ¥(z°,s°) < (p—n)t + nlogn. We will give an
algorithm that decreases 9 by a fixed amount depending on n each iteration. This then bounds the number

of iterations required.

Algorithm 3 As algorithm 2 except that § is chosen so that (z(6),s(0)) € N and
(e (0),s(0)) < p(z(0),s(0)) for each 0 with (z(0),s(6)) € N.

Theorem 3 Let 8 and v be as in theorem 2. Let N = N3 (B) and

'-n+< 3 lo 1 >n2
p= Ari-y) 81=g)""

Then Algorithm 3 will terminate in O(nt) iterations.

11



Proof. We show that § = 05 defined in lemma 5 achieves a suitable reduction in 1. Let z, s, 4 be as in

the kth iteration. Then we have:

P(z(0), 5(0)) — ¥(z, 5)
< P(z(65),5(05)) — (=, s) (by lemma 5 and the definition of § )

1:(02 8(92 Zl Zj\Vs )iV ) (02 )si (03 ) + Zl

= (p—n)log —=r5—=" m(g )Ts(ﬂ )

(r - n)log“( 2) Zl ‘81(92(2)31?2 z;lg

< (p—mn)log(l—(1-7)b7) - }jlog(l -8
(from (4) and (2(93),5(07)) € N5(B) )
< - (?mﬂj? - n) log T%—ﬂ (16)

As in the proof of theorem 2, 05 > 4'27, whence ¥(z(f),s(8)) — ¢¥(z,s) < —1lnlog 1. Since we need a
decrease in 9 of O(n%t) (p — n is of order n?), O(nt) iterations suffice. O

As in section 4, we complement this worst-case result with

Corollary 3 Let 8 and v be as in theorem 2. Suppose at some iteration we have ||Pg|l5, < log(n)u*. Then
¥ will decrease at least (
iterations of this type.

m - n) log 1:15 at that iteration. The algorithm requires at most O(log(n)t)

Proof. Follows from lemma 5 and (16). O

6 Anticipated improved behavior

In section 3 to 5 we have introduced three algorithms, with worst-case complexities O(n°5t) or O(nt)
iterations to attain precision ¢t (Theorem 1 to 3). We have also stated corollaries indicating that better
behavior will be obtained at any iteration where Pgq is substantially smaller than what is guaranteed by a
worst-case analysis. In this section we provide heuristic arguments why we might expect 1Pqll, IPgl]leo oF
[|Pgllz to be of the sizes stated in these corollaries.

Recall that p and ¢ are the projections of r € R™ onto the subspaces U and U L respectively. In this

section we suppose r is fixed, but assume that

U is a random subspace of R of dimension d := n — m, drawn from the unique distribution

on such subspaces that is invariant under orthogonal transformations.
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Given that U is the null space of AX%55-9-5 =: A, this assumption would hold, for example, if each entry of
the matrix A were independently drawn from a standard normal distribution. Note that such assumptions,
made at different iterations and hence values of X and S, are not consistent with one another. Further,
for several interior-point algorithms the asymptotic behavior of (z*, s*) is known, and this behavior is also
inconsistent with our assumption. We will comment further on our approach in the concluding section. For
now, we examine the consequences on Pgq of our assumption. Note that, to compensate for the deficiencies
of our assumption, the results we obtain hold with probability approaching one as n — co.

We now have

Theorem 4 With the assumption above, if p = ||r|lo/||7|], then

2 0.5
”7:1“ (2,02 -+ E?—) ) —1 as n—oo.
n

Pr (HPqH <

Theorem 5 With the assumption above,
Pr (|| Pgllx < (log(n)/n)lIrll*) — 1 as n— oo

Before we show how these results are proved, we indicate how they relate to the bounds on Pq that form
the hypotheses of corollaries 1 to 3.

In corollary 1, we are analyzing the predictor step, so r = —(XS5)%%¢ and (z,s) € N2(1/4). Hence
Ir||? = 275 = np and ||r||2, = | Xslleo < s+ || Xs — pe]l < 3p. Thus p? < 5/(4n) and by theorem 4, with
probability approaching 1

2 (o5 65\ _3lIFl® s
IPgll < o0 (2 + 22 ) = 0% <n®p

which is the hypothesis of corollary 1.
For corollary 2, we consider first the case where N'= N5 (8). Then by theorem 5 and lemma 2(c), with
probability approaching 1

1Pqllz < (log(n)/m)lIr||* < log(n)u?,

which gives the hypothesis of corollary 2 in this case. The same argument applies for corollary 3. Now
suppose N' = N (). Then with high probability

[1Pqllz < log(n)p*

as above. Also, by lemma 1(¢) and lemma 2(c),

2 k k
AR

Hence ||Pqlloo < log(n)p* with probability approaching 1, which gives the hypothesis for corollary 2 with

13



Now we indicate the proofs of theorems 4 and 5. The proof of the former is long and technical and hence
we omit it here. See Mizuno, Todd and Ye [16]. (A slightly weaker version of the theorem is proved at the
end of the section.) However, we will give the first part of the proof, because it is also used in establishing
theorem 5.

Because p and ¢ are homogeneous of degree 1 in ||r||, we assume henceforth without loss of generality
that » is scaled so that

g = r/2 satisfies |lg|| = L.

Let F' = (g, H) be an orthogonal n x n matrix. If we express the vector p in terms of the basis consisting

of the columns of F', we get

Lemma 6 We can write

p=(1+()g+nHv, (17)
where
l‘;-i has a beta distribution with parametersg- and Z;

n=+/1-(2; and
v

is uniformly distributed on the unit sphere in R*~1.

Proof. Since p and ¢ are orthogonal with p+ ¢ = 7, p lies on the sphere of center r/2 = ¢ and radius
llg]l = 1. Thus p can be written in the form (17), with n = /T—=¢2 and ||v]| = 1. We need to establish that
¢ and v have the given distributions,

Note that ||p]|2 = (14¢)? +7? = 2(1+ (). However, we can obtain the distribution of [|p||? directly. The
invariance under orthogonal transformations implies that we can alternatively take U as a fixed d-subspace,
say {x € R® : 441 = --- = £, = 0}, and r uniformly distributed on a sphere of radius 2. Then r can be

generated as

MY Al

where A ~ N(0,1) in R® (i.e., the components of A are independent normal random variables with mean 0

p= (.23‘.1 20 2\ 0. o)T
A e

and ||p||? = 4(A2+ - -+ A2)/(A2 4 - - -+ AZ). This has the distribution of four times a beta random variable

and variance 1). But then

with parameter g and Zt (see, e.g., Wilks [30]), which confirms the distribution of ¢.

Now let W be an orthogonal matrix with Wg = g. W can be thought of as rotating the sphere with
center g around its diameter from 0 to 2g = r. We can view the random d-subspace U as the null space of
an m x n random matrix A with independent standard normal entries. The fact that p is the projection
of r onto U is then equivalent to Ap = 0, r — p = ATv for some v. But then (AWT)Wp = 0 and
r—Wp=Wr—Wp=(AWT)Tv, so that Wp is the projection of r onto U’ = {z : (AWT)z = 0}. If A has

independent standard normal entries, so does AWT  so U’ is also a random d-subspace. Thus Wp has the
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same distribution as p. But writing W as HW'HT + ggT, where W' is an arbitrary orthogonal matrix of
order n — 1, we see that v has the same distribution as W'v. Since ||v|| = 1, v is uniformly distributed on
the unit sphere R*~1. O

Since p+ ¢ = r = 2g, (17) implies

g = (1-¢)g—nHv, sothat
Pq = n’¢’ —2nGHv—n’*(Hv)? (18)
= —(Hv)’ + (ng — CHv)?
> —[Hvlle, (19)

where G := diag(yg), and ¢%, (Hv)?, and (ng - (H v)? denote the vectors whose components are the squares
of those of g, Hv, and ng — { Hv respectively.

The proof of theorem 4 proceeds by using (18) to evaluate ||Pg||?, and then analyzing all the terms
in the resulting expression. See [16] for details. The proof of theorem 5 follows from (19) (which gives
1Pqllz < ||Hv||%) and the following result:

Lemma 7 Let F = [g, H] be an orthogonal matriz. If v is uniformly distributed on the unit sphere in R*~1,

Pr (!}Hvlloog\/?)b—fl—?z) -»1 as n — oo.

Proof. Since v is uniformly distributed on the unit sphere in R™=1 it can be generated as follows:
v = A/||\|l, where A ~ N(0,I) (the standard normal distribution in R*~'). Hence we wish to obtain an
upper bound on ||H A|eo and a lower bound on ||A]], both of which hold with high probability. Now [JAl)? is

a x2 random variable with n — 1 degrees freedom, so

E(IAI1*)
Var(|[Al|*)

n-—1,

2(n—1).

I

From Chebychev’s inequality, we have
Pr(M|>(1—e)vn—1)—1 as n— o0 (20)

for any € > 0.
Let Ao be a standard normal variable, and let X' = (Xo, A), also N(0,I) but in R*. Then [|X||e
max{v; : j = 0,1,2,---,n — 1} where v; = |};| has the positive normal distribution. Then 1 — N4 (z)

I

2(1 — N(z)) where N is the distribution function of v, and N is the normal distribution function. It now

follows from results in extreme value theory (Resnick [23], pp. 42 and 71) that

Pr (Wl < V/Zlog(2n)) — 1 as n — o<,
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Since FX is also N(0,I),
Pr <||FA'||oo < 21og(2n)) —1asn — oo.

Now we have
IH Moo < IHFX oo + 1 X0gllco-

Since |jg]| = 1,
Pr (H)\gg[]oo < e\/logn) —lasn— oo

for any € > 0. From the above relations and (20), we get the result of the lemma. O
We conclude this section by showing how (18) and lemma 7 imply a slightly weaker form of theorem 4.
Indeed, (18) yields

1Pall < llgll + 2ICnlllglloo || H vl + n*l(Hv)? ]
< llglleollgll + 2llglloo + [[Holloo || Hvll
= 3p+ [ Hvlloo.

By lemma 7, this is at most 3p+ /3 log(n)/n with probability approaching 1 as n — co. This bound would
lead one to hope that || Pg|| would be at most (nlog(n))°-5u at a typical predictor step. Algorithm 1 would
require at most O((n log(n))?-25t) iterations of this type.

7 Concluding remarks

This paper has described a number of adaptive-step primal-dual algorithms for linear programming. They
all have complexities of O(n%5t) or O(nt) iterations to attain precision t. We have also provided heuristic
arguments for our expectation that, in practice, these algorithms will only require 0(n%%t) or O(log(n)t)
iterations. In this section we will briefly comment on this approach.

There are two main viewpoints in the probabilistic analysis of algorithms. First one can develop ran-
domized algorithms, and show that, on a worst-case instance of a problem, the average running time of
the algorithm has a certain bound, or the running time satisfies a certain bound with high probability,
or the running time always satisfies a certain bound and the algorithm gives a correct answer with high
probability. As examples in linear programming, we cite the recent paper of Seidel [24], who gives a simple
randomized algorithm whose expected running time for (P) is O(m!n), and the references therein. Second
one can consider the expected running time of a deterministic algorithm when applied to problem instances
generated according to some probability distribution (or class of such distributions). See Borgwardt [3] and
the references cited there for examples of such results in linear programming. This viewpoint is rather less
compelling, since one can always argue that the distribution chosen for problem instances is inappropriate.

Our approach is distinct from the two just described. As we have noted, the assumptions we have
made at each iteration are inconsistent with one another. Nevertheless, we feel that such an approach adds

insight in the case where a more rigorous analysis seems intractable. Similar analyses have been made
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for the simplex method (Dantzig [4]), for (a variant of) Karmarkar’s method (Nemirovsky [21]), and for a
primal-dual method (Gonzaga and Todd [7]).

Our results can be contrasted with those of Sonnevend, Stoer and Zhao [26, 27]. As we have noted,
our predictor-corrector method is very similar to their algorithm, which also has a worst-case complexity
of O(n®5t) iterations to attain precision t. While we make a nonrigorous probabilistic analysis to conclude
that O(n®25¢) iterations may typically suffice, they perform a sophisticated analysis relating the number
of iterations to a curvature integral, and then conclude that for certain subclasses of problems 0(n%%%t)
iterations suffice.

Finally, let us describe a possible program to make our analysis rigorous. Suppose we assume that our
original problem (P) is generated probabilistically as follows: the entries of A are independent standard
normal random variables, b = Ae and ¢ = ATy + e for some y. Then (z, s) = (e, e) is an initial point on the
central path C. Moreover, for all of our algorithms, r is a multiple of ¢ and U is a random subspace with
the orthogonal transformation-invariant distribution. Hence our analysis holds at the initial iteration. We
now apply an algorithm similar to that of Sonnevend et al., so that each iterate lies in C and hence r = e at
each iteration. However, the null space U of AX%%S~%% will have a different induced distribution at later
iterations. We could hope that, before (z, s) gets too close to an optimal pair, this induced distribution is
somewhat close to that we have assumed in section 6, so that its Radon-Nikodym derivative with respect to
our distribution is suitably bounded. In this case, the probability that ||Pql| exceeds n®5u, which is small
under the distribution we have assumed, will also be small under the distribution induced by the initial
probabilistic generation of (P). Hence, for most iterations, the improvement in the duality gap would be as
in corollary 1. A great many difficulties need to be resolved before such an approach could succeed. We
would probably need bounds on how fast the probabilities in theorems 4 and 5 approach 1, and clearly as
(z, s) approaches the optimum the induced distribution differs drastically from what we have assumed. But
note that Sonnevend et al. have shown that asymptotically the required faster rate is achieved.

In the meantime, we hope that our nonrigorous analysis has lent some insight into the practical behavior
of primal-dual algorithms. Our algorithms using N' = N3(B) for 8 close to 1 (and p = n + O(n?) for
the potential reduction algorithm) are quite close to implemented primal-dual methods, and the result of
our nonrigorous analysis, that O(log(n)t) iterations typically suffice, is borne out by the large-scale tests

performed by Lustig et al. [11] with such an algorithm.
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