CENTER FOR
PARALLEL OPTIMIZATION

PARALLEL CONSTRAINT DISTRIBUTION
IN CONVEX QUADRATIC PROGRAMMING

by

Michael C. Ferris

Computer Sciences Technical Report #1009

February 1991

Parallel Constraint Distribution in Convex
Quadratic Programming*

Michael C. Ferrist

February 1991

Abstract. We consider convex quadratic programs with large numbers of constraints. We distribute
these constraints among several parallel processors and modify the objective function for each of these
subproblems with Lagrange multiplier information from the other processors. New Lagrange multiplier
information is aggregated in a master processor and the whole process is repeated. Linear convergence is
established for strongly convex quadratic programs by formulating the algorithm in an appropriate dual
space. The algorithm corresponds to a step of an iterative matrix splitting algorithm for a symmetric linear
complementarity problem followed by a projection onto a subspace.

Key words. Parallel Optimization, Augmented Lagrangians, Quadratic Programs, Matrix Splitting,
Linear Convergence

Abbreviated title. Parallel Constraint Distribution

1 Introduction

We are concerned with the problem

minimize Tz + %’DTQCL'

subject to Az < ay, .. Az <a,

where ¢ € R®, Q € R™™, 4; ¢ R™>*? q; € R™ and Q is symmetric and positive definite.
Our principal aim is to distribute the p constraint blocks among p parallel processors together
with an appropriately modified ob jective function. We then solve each of these p subproblems
independently, aggregate Lagrange multiplier information from the processors and repeat.
The method we describe here is closely related to the one given in [2]. References to other

*This material is based on research supported by the Air Force Office of Scientific Research Grant ATOSR-
89-0410

fComputer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison, Wisconsin
53706

constraint distribution algorithms can be found in that paper. The key to our approach lies
in the precise form of the modified objective function to be optimized by each processor. The
modified objectives are made up of the original objective function plus augmented Lagrangian
terms involving the constraints handled by the other processors.

In this paper, we show that under the assumption of a strongly convex quadratic objective
and linear independence of each of the distributed constraint blocks, the parallel constraint
distribution (PCD) algorithm converges linearly from any starting point for a feasible prob-
lem. The key to the convergence proof is to show that in the dual space, an iteration of
the proposed parallel constraint distribution algorithm is equivalent to a step of an itera-
tive matrix splitting method for a symmetric linear complementarity problem followed by a
subspace projection.

A word about our notation now. For a vector z in the n-dimensional real space IR,
x4 will denote the vector in IR® with components (z4);: = max{z;,0}, 7 = 1,...,n. The
standard inner product of IR™ will be denoted either by (z,y) or z7y. The Euclidean or
2-norm (z7z)?, will be denoted by Ill. For an m x n real matrix A, signified by A € IR™*™,
AT will denote the transpose. The identity matrix of any order will be given by I. The
nonnegative orthant in IR® will be denoted by IR}. The notation P(z | C') will be used to
define the projection of the point z onto the closed convex set C.

2 Parallel constraint distribution for quadratic pro-
grams

For simplicity we consider a quadratic program with 3 blocks of inequality constraints. Rou-
tine extension to p blocks can be achieved by appropriate extension and permutation of
subscripts. Equality constraints can also be incorporated in an straightforward manner.
Consider then the problem

minimize Tz 4+ 127Qz 0

subject to Az <ay, [=1,2,3

where ¢ € R?, @ € R™", 4; € R™*" q; € IR™ and @ is symmetric and positive definite.
We now describe the algorithm in detail. At iteration ¢ we distribute the constraints of (1)
among 3 parallel processors (I = 1,2,3) as follows

. 2
(1(Axr = aa) +),]
subject to Al < a

minimize ¢’z + Jof Qi + [Z?c:l
) Rl ksl

(2)

where 7 is a positive number and #i, are estimates of the Lagrange multipliers from the
previous iteration. We note that the subproblems (2) of the algorithm split the constraints
of the original quadratic program (1) between them in the form of split explicit constraints as

2

well as augmented Lagrangian terms involving the other constraints. The principal objective
that has been achieved is that the explicit constraints of each of the subproblems are a
subset of the constraints of the original problem. The difference between this algorithm
and standard augmented Lagrangian methods (see [1, 9, 10]) is that the multiplier update
is carried out explicitly rather than with the traditional gradient updating scheme. Each
subproblem is then solved and a point (Zit!, }“) € Rrtm [= 1,2,3, which satisfies the
Karush-Kuhn-Tucker conditions [5] for subproblems (2) is obtained. We define

i = ((A7 — .)+t;i1)+,j¢z (3)
and let
» —z+1 + z.'_z 1 t1+1
i+ _ 4
31 3 ()
and . '
tft =it #1 (5)

This completes one iteration of the PCD algorithm. Clearly, steps (2), (3) and (5) should
be executed in parallel, while step (4) should be executed on a master processor. For com-
pleteness, we give the algorithm below:

PCD Algorithm
Initialization: Start with any s?, [=1,2,3.
Parallel iteration: In parallel, (I = 1,2,3), perform the following steps.
Having s compute:
1. t%; using (5)
2. (zi+1,5+1) using (2)
3. t”’l) using (3)

Synchronization: evaluate si*', [= 1,2,3 using (4). If converged, then stop, else return
to parallel iteration.

In the sequel we will show that s, [= 1,2,3 converge linearly to a set of optimal
multipliers for the dual of (1). Furthermore, we show that the solutions of the subproblems
zt each converge to the optimal solution of (1). In order to facilitate this we will rewrite
the iterates of the algorithm exclusively in the dual space. We shall use the following easily
established result frequently throughout the paper, so we state it as a lemma.

Lemma 1 Let b, d € R®. Then
b=dy < b—-d>0,b7(b—-d)=0,6>0

It follows from Lemma 1 that (zi*!,5*1) satisfy the following Karush-Kuhn-Tucker condi-
tions

c+ Q—H-l AT (7(Aka: —a) +t) + ATsH = ¢

' 1=1,23 (6)
_;H — (;+1 + (At — al))+

or equivalently
it = —Q7'(c + Z L ALGS + AT
"i+1 = (_H—l -+ ")’(Al(l?l - Cll))+ | = 1)29 37 J - 17273’ .7 ?é ! (7)
G = (n(421 — a) + 1),

-—z +1

We use the first equation of (7) to eliminate Z;*' from the second and third equations of (7).

This leads to the following system

st = <:§;'+1 (YAQTIATS + 7 AQ™! Thay ATETT +7(AQ e+ a,))>+ .
i = (t’“ (5 +vA; QAT 5! + y4;Q 7 Z ATt’“ +7(4;Q e+ aj))) ,

for {=1,2,3 and j = 1,2,3 with j # [. Let us define new variables in blocks as follows
uj = (81,51, 851)
U = (tis, 55, t32) (9)
U’:Z3 = (ti&té& 3?3)
(with a similar notation for the barred variables). We can then rewrite (8) as follows

gt = (@t — ((H + I)at™ — Juj + h))+

for [= 1,2,3, where

AIQ——IAZIF AlQ-IAg AlleAg AlQ”lc + ay
H =4 AzQ"lA{ AQQ‘lA%" A2Q“1Ag) h=71] AQ e+ a, (10)
A3Q—1A{ AgQ-IAg ,/4;_:,62“1145131 A3Q"IC + as

and J; is defined by

000 I 00 I 00
Ju=| 010 Jor=1 00 0 Jsi=1 0 10
00 I 0 0 I 000

where the blocks are partitioned as in the definition of H. If we let

o= (e, ag" (11)
&= (uf,up,ub)

and invoke Lemma 1, the following symmetric linear complementarity problem in the variable
7i+! ensues

Bzt 4 Czi+q > 0, <2i+1’32i+1 + O +q> =0, 7+ > (12)
Here
H+J 0 0
B= 0 H+J, 0 (13)
0 0 H+ J3
- 0 0
C=| 0 =J 0 (14)
0 0 —Js

and ¢ is given by
h
qg=|h (15)
h

We observe that due to the structure of B and C, (12) can be performed on 3 independent
processors (which corresponds to the 3 subproblems in (2)). However, there is no coupling
between the subproblems and this will produce poor convergence. We therefore modify the
matrix splitting algorithm in order to produce a simple coupling between processors.

We remark that the matrices B and C' constitute a splitting of a matrix M given by

H 0 0
M=| 0 H 0 (16)
0 0 H

Note that if our original quadratic program (1) is feasible, then it it solvable. Hence its
Wolfe dual is solvable and this dual is LCP(H,h), given by

Hu+h>0, (uy,Hu+h) =0, u>0
The matrix splitting step given by (12) is a splitting for LCP(M,q)

Mz+¢>0, (z,Mz+q)=0,22>0 (17)

5

where M is defined in (16) and ¢ in (15). In fact LCP(M,q) constitutes a replication of
the Wolfe dual LCP(H,h), 3 times. Thus the solvability of LCP(H,h) is equivalent to the
solvability of LCP(M,q). It is therefore clear that the solution set of LCP(M,q) is given by

Z7r=U"xU*xU"

where U* is the solution set of LCP(H,h). We now construct an algorithm which has two
steps. The first step is an iteration of the matrix splitting algorithm

Sitl _ (541 pgitl i
T = (z (Bz' + Cz' 4 q))+ (18)
as described in (12), where we require the splitting (B,C) to be regular, that is
M = B+ C, B - C is positive definite (19)

The second step is used to force the elements of z* to converge to a point in Z* where
u; = ug = uz and thus introduce a very simple coupling between the subproblems. Hence
we define a subspace L by

L:={z = (u1,u2,u3) | u1 = ug = uz }
and generate z't! by projecting the iterate given by the matrix splitting step onto L, that is
2 = P(* | L) (20)

This exactly corresponds to the master processor step described in (4).
We now proceed to analyze the algorithm. We will invoke the following merit function
to prove linear convergence in the dual space

f(2):= ="Mz + ¢~ (21)

Our main theorem will require the following result due to Tseng and Luo[11, Theorem 2.1]
which we state here for completeness.

Proposition 2 There exist scalars € > 0 and 7 > 0 such that

dist(z | 2*) < 7 ”z —(z—- Mz — q)+H

for all z > 0 with ”z——(z - Mz-q)+” <e.

We now give our main theorem. The proof of this theorem is modeled after the proof of
Theorem 3.1 given in [11].

Theorem 3 Suppose that M is symmelric and positive semidefinite and that f given by
(21) is bounded from below on IRY. Let {2} be the iterates generated by the matriz splitting
algorithm (18), (19), (20). Then {z'} converges at least linearly to an element of Z*(L.

Proof We first show that
) = £(2) < —vj2 | -2 v (22)

where v is the smallest eigenvalue of B — C. To see this, fix any 7. By definition of 7+ we
have that ‘ . .
<BZ’+1 +Cz +q,72T — z> <0,Vz>0 (23)

The definition of f leads to
(211 = f(&) = (M2 4,2 = &) 4 5 (= 2, M(z = 2))
However, z*! = P(z*! | L) means that
<2i+1 — 22— zi+1> <0,VzelL (24)
Since z**! — Mz* — g € L it follows that
<Zi+1 _ 2i+1,Mzi + q> <0
Also, M = B + C, so that
f(zz+1) - f(zz) _<__ <Mzz + q, Zz—{-l _ ZZ> + _é_(zz-{«l . zz7]‘4(zz+1 . zz)>

2

- =141 % il - 41 R
= <Bz +C2" +4q,2 z>+2”z z”M
Noting that zt! 4+ M (2! — 2¢) € L it follows from (24) that

<2i+1 _ zi+1,]\lzi+1> — <2i+1 _ zi+1,]\/fzi>

- -4

Hence
1 . 12 1 . 12 , . . , 1 , , 2
- Zz+1 . ZZ n I 2z+1 _ zz + <Zz+1 . Z-z+1’]\4(21+1 zz > “ i+l —z+1 ”
2 M 2 M 9 M
1 . 12 } . ,
= |zt AT 4 <Zz+1 . 2z+1,M(§z+1 > 4+ = .l i+l = +1”
2 M 2 M
1 . 2 1w . L2
— é_ ZH-I . zz = ”zz-{—l . 21+1 “

M

Substituting the expression in the inequality above, we get

. 12 . 12
f(zz—{—l) . f(zz) S <B§z+1 + Ozz + q, Zz+1 > ” +1 z“M _ ”22‘{—1 . zz“B
. . . 2 . 12
_ —i41) ~1+1 I . —z+1 N 15
- <Bz +02 +q,2 2 “ ’M o z “B_M/Z
. 2
< - H —t+1 ot
= Z Z\B-my2
< -zl -

where the second inequality follows from (23) with z = 2* and the fact that M is positive
semidefinite and the third inequality follows from M = B + C. Thus (22) holds.
Now we claim that

ZH—I _ zz

2t - (zz — Mz — q)+“ < Ky

Vi (25)

First, fix an iteration i. From the definition of z'*! we have

< Zi_zz'—i—lu + Zi_Mzi_q_ziH + Bzit! +Czi+qH
< 2| - 27 + || B -)
< @+B | -2

The first inequality in the above follows from the nonexpansiveness property of projections
and the second follows from M = B + C. Thus (25) holds with «; = 2 + || B||.
Since, by assumption, f is bounded below on IR%, (22) implies that

It then follows from (25) that ”z‘ — (2t = Mz — q)+” — 0 and so by Proposition 2 there

exists a scalar constant k2 > 0 and an index 2 such that

st+1 i

P2 -0

dist(2* | Z*) < k2 ”2”1 — 2| ,Vi >

Thus .
dist(2* | Z*) — 0

It is also well known that f is constant on Z* so we shall denote this constant value by f°.
We now show that f(z') — f* and estimate the speed of convergence. Fix any 7 > ¢

and let y* be defined as follows . o

y' = (ﬂll')’&zl,ﬂll)

where @} = P(u} | U*). Then y* € Z* and

2

”yi — 2 =3 — u}”z < 3dist(2' | Z2*)?
Tllus . . . I3 . . .
v — 2| < VBdist(z' | Z2*) < VBro |7 — 2| i = ks l F (26)
Now
fE) =2 =) - f)
. .) 1y . 12
. 1 41 % - 1
= <My +4q,2 —y>+2 z y”M

8

and zt' — My* — q € L, so (24) implies

<zi+1 _ Z-i+1’Myi + q> <0

Therefore

fZH) = f° < <Myi 4 g,z = yi> + % S yz“jw
< <(B + O + g7 — yi> _ <Bzi+1 4O 4 g7 = yi> n _é_ S yil fw
_ <C’(yi N yi> _ |z =y 213 n ?12_ Hzi+1 —y j\/{
< lelfy -7 - v (27)

the second inequality following from (23) with z = y* and the last inequality following from
the fact that

1

2
and both M and B — C are positive semidefinite. However, by (26)

2
M

-l v =

. . . . 2 1
Zz-}-l . yz 2+1 =i+1 H -

VA -z
M 9

B-C

Fitl _ yill < “21‘4»1 —

< (k3+1)

<y

2—1-}-1 - zz

which when substituted in (27) and again using (26) gives
. : 112
JE#) = £ < Ol malns + 1) 2 — 21

Let us define k4: = ||C|| k3(ks + 1). It now follows that

, 12
z+1_zz

< (@R V)(f(E) = F(=H), Vi 20

Z

f(zz'+1) . foo

IA

Rq

the last inequality following from (22). If we rearrange terms we find

2/‘64 2’54

1+ =) () =) < (=)Yz

Hence f(z') converges at least linearly to . By (22), {z'} also converges at least linearly
to some z*. Since dist(z* | Z*) — 0, z* is an element of Z*. Furthermore, since L is closed
if follows that z* € L. 0

We note that Theorem 3 can be extended to cover the case of inexact solution of (18),
namely

s+l _ (4l psitl i i
z —<z (B 4+ C=z +q{'h)>+
provided that the error satisfies

22—!—1 . zz

hz’

<(z-9

for some € > 0. The modification of the proof only requires changes to (22) and (27).
We now relate Theorem 3 to our PCD algorithm.

Corollary 4 (PCD Convergence for Quadratic Programs) Assume that A, has lin-
early independent rows and the feasible region of (1) is nonempty. The PCD algorithm
defined by (2), (8), (4) and (5) converges linearly, that is

:c} —z*0=1,2,3
and .
t;’l - S;ajal = 172737j ?é !
with z* a solution of (1).

Proof As was shown above, the algorithm defined by (2), (3), (4) and (5) is precisely of
the form given in (18) and (20) with B defined in (13) and C defined by (14). Hence, in
the dual space, the algorithm corresponds to an iterative matrix splitting algorithm followed
by a subspace projection. We now show that the conditions required for convergence of this
method as given in Theorem 3 are satisfied.

Note that M = B-C and therefore to show that M is positive semidefinite it is sufficient
to show (by (16)) that H as defined in (10) is positive semidefinite. This is clear since

A
H=~v| A, Q‘l[AT AT AT }
As

and () is positive definite (hence also Q71).
We now show B — C is positive definite. Note that

H+2J 0 0
B-C= 0 H+2J, 0
0 0 H +2J;

so we only show that H + 2J; is positive definite. Suppose that
(xh I, wB)T(H + 2171)(1'17 La, :173) =0

10

Then
AT AT AT](1'1,372,533) =0

and z3 = 23 = 0. Since A; has linearly independent rows it now follows that z; = 0, and so
H + 2J; is positive definite as required. Thus B — C' is positive definite and so (19) holds.

It remains to show that f bounded below on positive orthant. The fact that f is bounded
below is equivalent to a solution existing by [3]. Since M symmetric and positive semidefinite
any solution of

minimize f(2)

solves LCP(M,q) and conversely. As shown above, any solution of LCP(M,q) leads to a
solution of LCP(H,h) which is the dual of (1). The fact that this problem has a solution
is equivalent to (1) having a solution which by strong convexity is equivalent to (1) being
feasible, as assumed above.

Thus by invoking Theorem 3 we see that the dual iterates z' converge linearly to z*, a
solution of LCP(M,q). Furthermore, z* € L, so that z* = (u*,u*,u*). Thus from (9) it
follows that

t;l = S;aVl 7é J

and so from (7) it follows that

Zr = —Q e+ Thoy ATS))

1=1,2,3
57 = (87 + (A — @),
Hence zj = «* for [=1,2,3 and we have
z* = —Q7(c+ iz ALSE) /=193
§1 = (57 + (A} — @),
But this implies that Z* solves (1). 0

3 Computational Results

We have tested out the algorithm described above on some linear programming problems.
The standard form linear program

minimize ctx

subject to

11

has the dual problem

maximize by
subject to ATy < ¢

and these problems are in precisely the form of our preceding discussion except the objective
is not strongly convex. In order to strongly convexify the objective we have used the least
two-norm formulation {7, 6], where for ¢ € (0, €] for some € > 0, the solution of

minimize —bTy + -%yTy (20)
subject to ATy < ¢

is the least two-norm solution of (28). For the purpose of our computation, a value of
e = 107° was used.

We have split up the problems as follows: firstly the user has specified the number of
processors available and the problem has been split into that many blocks. If the number of
constraints in each block is not the same we have added combinations of constraints form
other blocks to make the number of constraints in each block equal with the aim of balancing
the load in each processor.

The PCD algorithm was implemented on the Sequent Symmetry S-81 shared memory
multiprocessor. The subproblems were solved on each processor using MINOS 5.3 a more
recent version of [8]. The explicit constraints in each subproblem remained fixed throughout
the computation but the blocks were not chosen to satisfy the linear independence assump-
tion.

We have used the following scheme to update the augmented Lagrangian parameter, 7.
Initially it is set at 10 and is increased by a factor of 4 only when the norm of the violation
of the constraints increases.

The algorithm was terminated whenever the difference in the primal objective value of
(28) and its dual objective value normalized by their sum differed by less than 10~°. The
constraint violation was also required to be less than this tolerance.

We give two tables below for comparison. Table 1 gives the best results that were ob-
tained using the algorithm described in [2] on the Sequent Symmetry S—81 for 5 small linear
programs reformulated as in (29). The first three are homemade test problems, while the
last two, AFIRO and ADLittle, are from the NETLIB collection [4]. In the tables, an empty
column entry signifies that we did not perform the computation. Note also that these results
include a heuristic for calculating a step length.

Table 2 gives the results for the algorithm outlined in this paper. We remark that
this algorithm performs uniformly better than the one described in [2]. Furthermore, its
implementation is somewhat simpler. Note the strong indication that these results give to
the fact that the number of iterations is independent of the number of processors used.

12

Problem | Variables | Constraints Blocks
316|918
Ex6 3) 2| 2
Ex9 5 11 415
Ex10 6 14 4 14 |4
AFIRO 27 51 131515 |14
ADLittle 56 138 12114 |14 | 15
Table 1: Old PCD Algorithm with variable A
Problem | Variables | Constraints Blocks
3161918
Ex6 3 5 212
Ex9 5 11 313
Ex10 6 14 31213
AFIRO 27 51 818|188
ADLittle 56 138 9191919

Table 2: New PCD Algorithm with projection step

13

4 Conclusions

We have presented a method for solving strongly convex quadratic programs with large
numbers of linear inequality constraints and have shown the method to be linearly convergent.
The method is easy to implement and preliminary computational results are encouraging.

Further extensions of this work are possible when the subspace L is modified appropri-
ately. These extensions will be addressed in a future paper.

References

[1] D.P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic
Press, New York, 1982.

[2] M.C. Ferris and O.L. Mangasarian. Parallel constraint distribution. Technical Re-

port 971, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin
53706, October 1990.

[3] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3:95-110, 1956.

[4] D.M. Gay. Electronic mail distribution of linear programming test problems. COAL
Newsletter, 13:10-12, 1985.

[5] O.L. Mangasarian. Nonlinear Programming. McGraw-Hill, New York, 1969.

[6] O.L. Mangasarian. Normal solutions of linear programs. Mathematical Programming
Study, 22:206-216, 1984.

[7] O.L. Mangasarian and R.R. Meyer. Nonlinear perturbation of linear programs. SIAM
Journal on Conirol and Optimization, 17(6):745-752, November 1979.

[8] B.A. Murtagh and M.A. Saunders. MINOS 5.0 user’s guide. Technical Report SOL
83.20, Stanford University, December 1983.

[9] R.T. Rockafellar. Augmented Lagrange multiplier functions and duality in nonconvex
programming. SIAM Journal on Control, 12:268-285, 1974.

[10] R.T. Rockafellar. Augmented Lagrangians and applications of the proximal point al-
gorithm in convex programming. Mathematics of Operations Research, 1(2):97-116,
1976.

[11] P. Tseng and Z.-Q. Luo. Error bound and convergence analysis of matrix splitting
algorithms for the affine variational inequality problem. Technical Report LIDS-P-1988,
MIT, Cambridge, Massachusetts, 1990.

14

