PERSISTENTLY &-OPTIMAL STRATEGIES

bу

Lester E. Dubins*
University of California,
Berkeley

William D. Sudderth*
University of Minnesota

Technical Report No. 250

June 13, 1975

^{*} Research supported by National Science Foundation Grants NSF GP 43085 (for Dubins) and MPS75-06173 (for Sudderth).

Abstract

There are strategies available for nonnegative gambling problems which are not only ε -optimal but persist in being conditionally ε -optimal along every history.

<u>Key words</u>: gambling, optimal strategies, probability, finite additivity, dynamic programming, stochastic control, decision theory.

A.M.S. classification numbers: 6000, 60G99, 62C05.

1. Introduction.

Let (F, Γ, u) be a gambling problem where, as in [3], F is the set of fortunes or states, Γ is the gambling house, and u the utility function. The gambling problem is <u>nonnegative</u> if u is a nonnegative, possibly unbounded function.

Let $0 < \varepsilon < 1$, fef, and V(f) be the most a gambler with fortune f can achieve ([3], section 3.3). A strategy σ available at f in Γ is (multiplicatively) ε -optimal at f if $u(\sigma) \ge (1-\varepsilon)V(f)$. Let $p = (f_1, \ldots, f_n)$. Then σ is conditionally (multiplicatively) ε -optimal given p if the conditional strategy $\sigma[p]$ is multiplicatively ε -optimal at f_n . If σ is (multiplicatively) ε -optimal at f and is conditionally (multiplicatively) ε -optimal given p for every partial history p, then σ is said to be persistently (multiplicatively) ε -optimal at f. If u is bounded or, more generally, if u is nonnegative and V is everywhere finite, then persistently ε -optimal strategies are always available (Theorem 1 below). If, in addition, the gambling problem is sufficiently measurable, there exist measurable strategies which are persistently ε -optimal (Theorem 2).

The notion of persistently (or thoroughly) optimal strategies was introduced in [3, section 3.5]. It is related to the concept of stationarity. For suppose $\bar{\sigma}$ is a stationary family of ε -optimal strategies. Then, for every f, $\bar{\sigma}(f)$ is persistently ε -optimal since $\bar{\sigma}(f)[f_1,\ldots,f_n]=\bar{\sigma}(f_n)$.

Gambles in [3] were taken to be finitely additive probability measures defined on all subsets of F. Here a gamble γ can be regarded as a nonnegative functional with domain the collection h of nonnegative,

real-valued functions defined on F and satisfying

$$\gamma(u + v) = \gamma u + \gamma v$$
,
 $\gamma(a u) = a \gamma u$

for u, v ε h and a ≥ 0 . A gamble in the present sense is, when restricted to the collection of indicator functions, a gamble in the sense of [3]. Thus the gambling problems considered here are slightly more general than those of [3]. However, much of the theory remains unchanged and appropriate definitions and results from [3] will be used without further comment.

2. Preliminaries.

Let $H = F \times F \times ...$ be the set of histories. A mapping t from H to $\{1,2,...\} \cup \{\infty\}$ is called a stopping time if, whenever h and h' are in H, $t(h) = n < \infty$, and h' agrees with h in the first n coordinates, then t(h') = n. A stopping time which assumes only finite values is a stop rule. Let n be a positive integer and $h = (f_1, ..., f_n, ...)$ be a history. Recall that $p_n(h) = (f_1, ..., f_n)$. (See [3] for a detailed explanation of the notation and terminology.) If r is a stopping time, the conditional stopping time given $p_n(h)$ is defined by $t[p_n(h)](h') = t(p_n(h)h') - n$ for $h' \in H$. Notice that $t[p_n(h)]$ is a stopping time or identically zero according as $r(p_n(h)h')$ is greater than or equal to n.

Let (σ, t) be a policy and s be a stop rule. Make the convention that $u(\sigma[p_s(h)], t[p_s(h)])$ is $u(f_t(h))$ when $s(h) \ge t(h)$. Then the formula

(1)
$$u(\sigma, t) = \int u(\sigma[p_s], t[p_s]) d\sigma$$

is a special case of formula 3.7.1, [3]. The similar formula

(2)
$$u(\sigma) = \int u(\sigma[p_{s}])d\sigma$$

follows from Theorem 3.2.1, [3] and an argument by induction on the structure of p_s . The first lemma below generalizes (2) and gives a formula which, in a sense, separates the utility of a strategy into that earned before a given time r and that earned afterwards.

For simplicity, assume henceforth that u is nonnegative and all strategies have finite utility.

Lemma 1. Let σ be a strategy and r be a stopping time. Then

(3)
$$u(\sigma) = \lim_{t \to \infty} \sup_{\infty} u_r(\sigma, t)$$

where
$$u_r(\sigma,t) = \int u(f_t)d\sigma + \int u(\sigma[p_r])d\sigma$$

 $t \le r$

and the lim sup is taken over the directed set of stop rules.

Proof: By definition ([3], section 3.2)

(4)
$$u(\sigma) = \lim_{t \to \infty} \sup_{\infty} u(\sigma,t)$$
.

For t a stop rule, apply (1) with $s = t \wedge r$ to get

(5)
$$u(\sigma,t) = \int u(\sigma[p_{tAr}], \quad t[p_{tAr}])d\sigma$$

$$= \int u(f_t)d\sigma + \int u(\sigma[p_r], \quad t[p_r])d\sigma .$$

$$[t \le r]$$

Let $\epsilon > 0$.

Claim: There is a stop rule to such that, for every stop rule t,

$$\int_{[t>r,t_0\leq r]} u(\sigma[p_r], t[p_r])d\sigma < \varepsilon .$$

Suppose the claim is false. Then, for every stop rule t, there is a stop rule s such that

$$\int_{[s>r,t\leq r]} u(\sigma[p_r], s[p_r]) d\sigma \geq \varepsilon.$$

Define $t_1 = t$ if t > r or $s \le t$, = s if $t \le r$ and s > t.

Then t_1 is a stop rule, $t_1 \ge t$ and

Similarly, there exist stop rules t_2, t_3, \dots such that $t_n \le t_{n+1}$ and

Thus, for $n = 1, 2, ..., t_n \ge t$ and

$$u(\sigma,t_n) \ge \int_{[t_n>r]} u(\sigma[p_r], t_n[p_r]) d\sigma \ge n \varepsilon$$
.

Hence, $u(\sigma) = \infty$, a contradiction which establishes the claim.

Next, define a stop rule t' thus: If $t_0(h) \le r(h)$, set $t'(h) = t_0(h)$. If $t_0(h) > r(h)$, choose a stop rule t_h such that $t_h \ge t_0[p_r(h)]$ and, for every stop rule $s \ge t_h$,

(6)
$$u(\sigma[p_r(h)],s) \leq u(\sigma[p_r(h)] + \epsilon$$
.

Then set $t'(h) = r(h) + t_h(f_{r(h)+1}, f_{r(h)+2},...)$ so that $t'[p_r(h)] = t_h$. Notice that $t' \ge t_0$.

Suppose t is a stop rule and $t \ge t^{\dagger}$. Then

$$u(\sigma,t) = \int u(f_t)d\sigma + \int u(\sigma[p_r], t[p_r])d\sigma + \int u(\sigma[p_r], t[p_r])d\sigma$$

$$[t \le r] \qquad [t > r, t_0 \le r]$$

$$(by (5))$$

$$\le \int u(f_t)d\sigma + \int u(\sigma[p_r])d\sigma + 2 \varepsilon$$

$$[t \le r] \qquad [t_0 > r]$$

$$(by (6) and the Claim)$$

$$\leq \int u(f_t)d\sigma + \int u(\sigma[p_r])d\sigma + 2 \varepsilon$$

$$[t \geq r] \qquad [t > r]$$

$$= u_r(\sigma, t) + 2 \varepsilon .$$

Hence, $u(\sigma) \leq \lim_{t \to \infty} \sup_{r} u_r(\sigma,t)$.

To prove the opposite inequality, again let $\varepsilon > 0$ and s be a stop rule. Define a stop rule t as follows: If $s(h) \le r(h)$, let t(h) = s(h). If s(h) > r(h), choose t_h to be a stop rule at least as large as $s[p_r(h)]$ and such that

(7)
$$u(\sigma[p_r(h)], t_h) \ge u(\sigma[p_r(h)] - \varepsilon$$
.

Set $t(h) = r(h) + t_h(f_{r(h)+1}, f_{r(h)+2}, ...)$ so that $t[p_r(h)] = t_h$. Then $t \ge s$ and

$$u(\sigma,t) \ge u_r(\sigma,t) - \varepsilon$$
 (by (5) and (7))
= $u_r(\sigma,s) - \varepsilon$.

Hence, $u(\sigma) \ge \lim_{t \to \infty} \sup_{r} u_r(\sigma,t)$.

Let r be a stopping time. The strategies σ and σ' agree up to time r- if $\sigma_0 = \sigma_0'$ and, for every $h \in H$ and 0 < n < r(h), $\sigma_n(p_n(h)) = \sigma_n'(p_n(h))$. Here is a formulation of the nearly obvious fact that if σ and σ' agree up to some time and if, given the past up to that time, σ' does conditionally nearly as well as σ , then unconditionally σ' does nearly as well as σ .

Lemma 2. If r is a stopping time, σ and σ' are strategies which agree up to time r- and $\varepsilon > 0$, then each of the following conditions

implies its successor:

- (i) σ' is available in Γ and $u(\sigma[p_r(h)]) \ge (1-\epsilon)V(f_r(h))$ whenever $r(h) < \infty$;
- (ii) $u(\sigma[p_r(h)] \ge (1-\epsilon)u(\sigma'[p_r(h)])$ whenever $r(h) < \infty$;
- (iii) $u(\sigma) \ge (1-\epsilon)u(\sigma')$.

<u>Proof:</u> To see that (i) implies (ii), observe that $u(\sigma'[p_r(h)]) \leq V(f_r(h)) \text{ when } r(h) < \infty. \text{ Use Lemma 1 for an easy proof that (ii) implies (iii).} \square$

The next lemma states that a good strategy earns relatively little income after it becomes conditionally bad. Moreover, any strategy which agrees with a good strategy until it becomes conditionally bad is itself a fairly good strategy. A related fact (Lemma 3.1 in [6]) is that a sufficiently good strategy is unlikely to ever become conditionally bad. First some notation: If σ is a strategy and $0 < \alpha < 1$, let $r(\sigma,\alpha)$ be the first time (if any) when σ is not conditionally α -optimal. That is,

(8)
$$r(\sigma,\alpha)(h) = \inf\{n: u(\sigma[p_n(h)]) < (1-\alpha)V(f_n)\}.$$

The infimum of the empty set is taken to be infinite.

Lemma 3. Let α and β be numbers in (0,1). Suppose σ is available at f in Γ and $u(\sigma) \geq (1-\beta)V(f)$. If $r = r(\sigma,\alpha)$, then, for every stop rule t,

(9)
$$\int_{f} V(f_r) d\sigma \leq \beta \alpha^{-1} V(f) .$$

Furthermore, if σ' is available at f in Γ and if σ' and σ agree up to time r-, then

(10)
$$u(\sigma') \ge (1-\epsilon)V(f)$$

where $\varepsilon = \beta(1 + \alpha^{-1})$.

Proof: Let t be a stop rule and set $v_t = \int_{[t>r]} V(f_r) d\sigma$. Then

$$(1-\beta)V(f) \leq u(\sigma)$$

$$= \int u(\sigma[p_t])d\sigma \quad (by (2))$$

$$= \int u(\sigma[p_t])d\sigma + \int u(\sigma[p_t])d\sigma$$

$$[t \leq r] \quad [t > r]$$

$$\leq \int V(f_t)d\sigma + (1-\alpha)\int V(f_t)d\sigma$$

$$[t \leq r] \quad [t > r]$$

$$= \int V(f_{tAr})d\sigma - \alpha v_t$$

$$\leq V(f) - \alpha v_t \quad (Corollary 3.3.4, [3]) .$$

Inequality (9) is now clear.

Now let s be a stop rule and $\varepsilon^{\,t}>0$. By Lemma 1 there is a stop rule t such that $t\geq s$ and

(11)
$$(1-\beta)V(f) - \varepsilon' \leq \int_{[t\leq r]} u(f_t)d\sigma + \int_{[t\geq r]} u(\sigma[p_r])d\sigma$$

$$\leq \int_{[t\leq r]} u(f_t)d\sigma + v_t .$$

Hence,

$$\int_{[t \le r]} u(f_t) d\sigma' + \int_{[t \ge r]} u(\sigma'[p_r]) d\sigma' \ge \int_{[t \le r]} u(f_t) d\sigma'$$

$$= \int_{[t \le r]} u(f_t) d\sigma$$

(since σ and σ' agree up to r-)

$$\geq (1-\beta)V(f) - v_t - \epsilon'$$

$$(by (11))$$

$$\geq (1-\epsilon)V(f) - \epsilon'.$$

$$(by (9))$$

Inequality (10) now follows from another application of Lemma 1.

3. The existence proof.

Let (F, Γ, u) be a nonnegative gambling problem. A <u>family of</u> <u>strategies</u> is a mapping from F to the set of strategies. Let $\bar{\rho}$ be a family of strategies and $0 \le \alpha \le 1$. Define another family of strategies $\bar{\sigma} = \psi(\bar{\rho}, \alpha)$ as follows: For every $f' \in F$, let

(12)
$$r(f') = r(\bar{\rho}(f'), \alpha)$$
 (see formula (8)).

Fix $f \in F$. Set s(1) = r(f) and, for n = 1,2,..., let s(n+1) be the composition of s(n) with the family $r(\cdot)$ (p. 22, [3]); that is, for $h = (f_1, f_2,...) \in H$, let

(13)
$$s(n+1)(h) = s(n)(h) + r(f_{s(n)(h)})(f_{s(n)(h)+1}, f_{s(n)(h)+2}, ...)$$

$$if \quad s(n)(h) < \infty ,$$

$$= \infty \qquad if \quad s(n)(h) = \infty .$$

Define $\bar{\sigma}(f)$ to be that strategy which agrees with $\bar{\rho}(f)$ up to time r(f)- and is such that, for $n \ge 1$ and $h \in H$, $\sigma[p_{s(n)}(h)]$ agrees with $\bar{\rho}(f_{s(n)}(h))$ up to time $r(f_{s(n)}(h))$ -. The family $\bar{\sigma} = \psi(\bar{\rho}, \alpha)$ is now defined.

Let $0 < \beta < 1$. Let $S(\beta)$ be the collection of families of strategies $\bar{\rho}$ such that, for every f, $\bar{\rho}(f)$ is available at f in Γ and $u(\bar{\rho}(f)) \geq (1-\beta)V(f)$. Define $P(\alpha, \beta)$ to be the set of families of strategies $\bar{\sigma}$ such that $\bar{\sigma} = \psi(\bar{\rho}, \alpha)$ for some $\bar{\rho}$ in $S(\beta)$. Intuitively, to construct an element of $P(\alpha, \beta)$, start with a family $\bar{\rho}$ of β -optimal strategies; use the strategy which $\bar{\rho}$ specifies at the initial fortune until it becomes conditionally less than α -optimal; then switch

to the strategy specified by $\bar{\rho}$ at the current fortune and use it until it becomes conditionally less than α -optimal and so forth.

Notice that if V is everywhere finite then $S(\beta)$ and $P(\alpha, \beta)$ are not empty.

Theorem 1. Let (F, Γ, u) be a nonnegative gambling problem with V everywhere finite. For every $f \in F$ and $0 \le \varepsilon \le 1$, there is available at f in Γ a strategy σ which is persistently (multiplicatively) ε -optimal. Indeed if

(14)
$$0 < \alpha < 1, 0 < \beta < 1, (1-\beta(1+\alpha^{-1}))(1-\alpha) \ge 1 - \epsilon$$

and $\bar{\sigma} \in P(\alpha, \beta)$, then $\bar{\sigma}(f)$ is persistently (multiplicatively) ε -optimal at f.

Proof: Choose α , β to satisfy (14). Let $\bar{\rho} \in S(\beta)$ and $\bar{\sigma} = \psi(\bar{\rho}, \alpha) \in P(\alpha, \beta)$. Set $\sigma = \bar{\sigma}(f)$. Let r(f) and s(n) be as in the definition of $\bar{\sigma}$. Set $\varepsilon' = \beta(1 + \alpha^{-1})$. Since $u(\bar{\rho}(f)) \geq (1-\beta)V(f)$ and σ agrees with $\bar{\rho}(f)$ up to time r(f)-, Lemma 3 applies to show $u(\sigma) \geq (1 - \varepsilon')V(f) \geq (1-\varepsilon)V(f)$. Similarly, for each positive integer m and m and m it follows from Lemma 3 that, whenever $s(m)(h) < \infty$,

(15)
$$u(\sigma[p_{s(m)}(h)]) \ge (1 - \varepsilon')V(f_{s(m)}(h))$$
$$\ge (1 - \varepsilon)V(f_{s(m)}(h)).$$

Consider next a partial history $p=(f_1,\ldots,f_n)$ which, for every $k=1,2,\ldots$, is not of the form $p_{s(k)}(h)$. Let m be the least positive integer such that n < s(m)(ph') for some h' (and, hence, every h'). If $m \geq 2$, let $k=s(m-1)(f_1,\ldots,f_n,\ldots)$ so that $f_k=f_{s(m-1)}(f_1,\ldots,f_n,\ldots)$. If m=1, let k=0 and $f_k=f$. Set $\sigma'=\bar{\rho}(f_k)[(f_{k+1},\ldots,f_n)]$ and

 $r_0 = r(f_k)[(f_{k+1},...,f_n)]$. Use the definitions of $r(f_k)$ and s(m) (formulas (12) and (13)) to see that

(16)
$$u(\sigma') \ge (1 - \alpha)V(f_n)$$
.

Check that $\sigma[p]$ and σ' agree up to time r_0 . Also, for $h' \in H$,

$$u(\sigma[p][p_{r_{0}}(h')]) = u(\sigma[p_{s(m)}(ph')])$$

$$\geq (1 - \varepsilon')V(f_{s(m)}(ph')) \qquad (by (15))$$

$$= (1 - \varepsilon')V(f_{r_{0}}(h')) ,$$

whenever $r_0(h') < \infty$. Apply Lemma 2 to the strategies $\sigma[p]$ and σ' to conclude

(17)
$$u(\sigma[p]) \ge (1 - \varepsilon')u(\sigma').$$

By (16) and (17),

$$u(\sigma[p]) \ge (1 - \epsilon')(1 - \alpha)V(f_n)$$

$$\ge (1 - \epsilon)V(f_n).$$

The proof of the theorem is now complete. \Box

Even if optimal strategies are available at every fortune, persistently O-optimal strategies need not be as can be seen from the following example.

Example. Let
$$F = \{0, 1, ...\}$$
; $u(1) = 1$, $u(n) = 0$ if $n \neq 1$; $\Gamma(n) = \{\delta(n)\}$ for $n \leq 1$, $\Gamma(n) = \{\delta(n), (1-n^{-1})\delta(1) + n^{-1}\delta(0), \gamma\}$ for $n \geq 2$ where γ is a diffuse gamble on F .

Corollary 1. Let (F, Γ, u) be a gambling problem with u bounded. For each $f \in F$ and $\varepsilon > 0$, there is a strategy σ available at f in Γ such that $u(\sigma) \geq V(f) - \varepsilon$ and $u(\sigma[p]) \geq V(f_n) - \varepsilon$ for every $p = (f_1, \ldots, f_n)$.

<u>Proof:</u> There is no real loss of generality in assuming u is nonnegative. Since V is bounded, the conclusion follows easily from the theorem. \square

An example of Blackwell in [1] can easily be modified to show that for unbounded, even nonnegative u, there need not exist strategies which are persistently (additively) e-optimal, that is, strategies which satisfy the conclusion of Corollary 1.

4. Measurable gambling problems.

Let X be a separable metric space. Call X <u>analytic</u> if there is a continuous function from the set of irrationals in the unit interval onto X. (See Kuratowski [4] or Blackwell, Freedman, and Orkin [2] for a discussion of analytic sets.) Let $\mathfrak{B}(X)$ denote the sigma-field of Borel subsets of X. A nonnegative, real-valued function g defined on X is <u>semi-analytic</u> if $\{x:g(x)>a\}$ is analytic for all nonnegative a. (See [2] and [4].) Denote by $\mathfrak{P}(X)$ the set of countably additive probability measures defined on $\mathfrak{B}(X)$. Equip $\mathfrak{P}(X)$ with the weak-star topology. Then $\mathfrak{P}(X)$ is an analytic set if X is. (Lemma (25) in [2]). A function g from an analytic set X into an analytic set Y is <u>universally measurable</u> or <u>measurable</u> for short if, for every S $\mathfrak{E}(Y)$ and $\mathfrak{P} \in \mathfrak{P}(X)$, $\mathfrak{g}^{-1}(S)$ is in the completion of $\mathfrak{B}(X)$ under \mathfrak{P} .

A gambling problem (F, Γ, u) is <u>nonnegative analytic</u> if F is an analytic set, u is semi-analytic, and the set $\{(f,\gamma):\gamma\in\Gamma(f)\}$ is an analytic subset of $F\times P(F)$. (Here each gamble γ is identified with its restriction to B(F) and is assumed to be countably additive on B(F).) This definition of analytic gambling problems was inspired by Blackwell, Freedman, and Orkin [2]. Analytic gambling problems include the Borel measurable gambling problems defined by Strauch [5].

A strategy σ is <u>measurable</u> if, for $n=1,2,\ldots$, the mappings $(f_1,\ldots,f_n)\to\sigma_n(f_1,\ldots,f_n)$ are measurable from F^n to P(F). A measurable strategy σ determines a probability measure $p(\sigma)$ on the Borel subsets of the product space $H=F\times F\times \ldots$ as follows: the $p(\sigma)$ -marginal distribution of f_1 is σ_0 and, for every (f_1,\ldots,f_n)

the $p(\sigma)$ -distribution of f_{n+1} given (f_1,\ldots,f_n) is $\sigma_n(f_1,\ldots,f_n)$. For simplicity, denote $p(\sigma)$ by σ below. A <u>measurable family of strategies</u> is a mapping $\bar{\sigma}$ which assigns to each $f \in F$ a measurable strategy $\bar{\sigma}(f)$ in such a way that, for every $n=0,1,\ldots$, the function $(f,f_1,\ldots,f_n) \to \bar{\sigma}(f)_n(f_1,\ldots,f_n)$ is measurable from F^{n+1} to P(F). The family is <u>available</u> if $\bar{\sigma}(f)$ is available at f for every f.

Lemma 4. If $\bar{\sigma}$ is a measurable family of strategies and u is a bounded Borel function from F to the reals, then the mapping $\phi: f \to u(\bar{\sigma}(f))$ is measurable from F to the reals and the mappings $\phi_n: (f, h) \to u(\bar{\sigma}(f)[p_n(h)])$ are measurable from $F \times H$ to the reals for $n = 1, 2, \ldots$.

<u>Proof:</u> If g is a nonnegative Borel function from H to the real line and if g depends only on a finite number of coordinates, then, by Corollary (41a) of [2], the mapping

$$\phi_g: f \to \int g d \bar{\sigma}(f)$$

is measurable. The collection G of functions g such that ϕ_g is measurable includes, in particular, the indicator functions of Borel cylinder sets. Since G is closed under linear combinations and increasing limits of nonnegative functions, conclude that G contains all nonnegative Borel functions on G. By Theorem 3.2 of G, G, G is measurable. The proof that the G are measurable is similar. Theorem 2. Let G, G, G, G be a nonnegative analytic gambling problem and assume G is a bounded, Borel measurable family of (multiplicatively)

 β -optimal strategies available. Then, for every $\in \varepsilon$ (0,1), there is available a measurable family of strategies which are persistently (multiplicatively) ε -optimal.

<u>Proof:</u> First notice that V is measurable. To see this, let $\bar{\sigma}_n$ be a measurable family of n^{-1} -optimal strategies for $n=1,2,\ldots$. Then $V(f)=\sup u(\bar{\sigma}_n(f))$ and, by Lemma 4, V is measurable.

To prove the assertion of the theorem, it suffices, by Theorem 1, to show that, given α , $\beta \in (0, 1)$, there is a measurable family $\bar{\sigma}$ in $P(\alpha, \beta)$. By assumption, there is a measurable family $\bar{\rho} \in S(\beta)$. Let $\bar{\sigma} = \psi(\bar{\rho}, \alpha)$. By definition, $\bar{\sigma} \in P(\alpha, \beta)$. In checking that $\bar{\sigma}$ is measurable, the only real difficulty lies in showing that the map $(f,h) \to r(f)(h)$ is measurable from $F \times H$ to the real line. (See formulas (12) and (8).) This in turn follows easily from the measurability of V together with Lemma 4. \square

Perhaps, the conclusion of Theorem 2 holds for every nonnegative analytic gambling problem which has V everywhere finite. However, up to the present only two special cases have been treated. It was shown in [4] that good measurable strategies are available for leavable, Borel measurable problems with a bounded utility function. In fact, good measurable families of strategies are always available for leavable, nonnegative analytic problems and so Theorem 2 applies. The same is true for nonleavable problems in which u is the indicator of a single fortune (see [7] for the Borel case). Of course, if F is countable, every strategy is measurable and Theorem 1 yields the existence of persistently good measurable strategies.

References

- 1. Blackwell, David (1967). Positive dynamic programming.

 Proc. Fifth Berkeley Symp on Math., Stat., and Prob. I.

 415 418.
- 2. Blackwell, D., Freedman, D., and Orkin, M. (1974). The optimal reward operator in dynamic programming. Ann. Prob. 2
 926 941.
- 3. Dubins, Lester E. and Savage, Leonard J. (1965). How to Gamble If
 You Must. M^CGraw-Hill, New York
- 4. Kwatowski, K. (1966, 1968). <u>Topology 1</u> and <u>Topology 2</u>. Academic Press, New York.
- 5. Strauch, Ralph E. (1967). Measurable gambling houses. <u>Trans. A.M.S.</u>

 126 64 72.
- 6. Sudderth, W. D. (1969). On the existence of good stationary strategies.

 Trans. A.M.S. 135 399 414.
- 7. (1969). On measurable, nonleavable gambling houses with a goal. Ann. Math. Statist. 40 66 71.
- 8. (1971). On measurable gambling problems.
 Ann. Math. Statist. 42 260 269.