N

N

Second-order sufficiency and quadratic growth for non
isolated minima

J. Frederic Bonnans, Alexander D. Ioffe

» To cite this version:

J. Frederic Bonnans, Alexander D. loffe. Second-order sufficiency and quadratic growth for non
isolated minima. [Research Report] RR-1853, INRIA. 1993. inria-00074819

HAL 1d: inria-00074819
https://inria.hal.science/inria-00074819
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00074819
https://hal.archives-ouvertes.fr

%l iNRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Second-order sufficiency
and quadratic growth
for non isolated minima

Joseph-Frédéric BONNANS
Alexander IOFFE

N° 1853
Février 1993

-——— PROGRAMME 5

Traitement du Signal,
Automatique et
Produgtique

apport
de recherche

1993




Y

Second-order sufficiency and quadratic growth for non isolated
minima

Conditions suffisantes du deuxiéme ordre et croissance
quadratique pour des minima non isolés

Joseph Frédéric Bonnans
INRIA, Domaine de Voluceau,
BP 105, 78153 Rocquencourt, France.

Alexander Ioffe!
Department of Mathematics
Technion Israel Institute of Technology
Haifa 3200 - Israel

February 23, 1993

Abstract. For standard nonlinear programming problems, the weak second-order suffi-
cient condition is equivalent to the quadratic growth condition as far as the set of minima
consists of isolated points and some qualification hypothesis holds. This kind of condition is
instrumental in the study of numerical algorithms and sensitivity analysis. The aim of the
paper is to study the relations between various types of sufficient conditions and quadratic
growth in case when the set of minima may have non isolated points.

Résumé. Pour le probleme standard de programmation nonlinéaire, la condition faible
suffisante du deuxieme ordre est équivalente a la croissance quadratique, pour des minimas
isolés et qualifiés; ce type de condition intervient de fagon essentielle dans I’étude des algo-
rithmes numériques et 1’analyse de sensibilité. Le but de ce papier est I’étude des relations
entre différents types de conditions suffisantes et la croissance quadratique quand I’ensemble
des minima a des minima non isolés.

Keywords:- Optimality conditions, Lagrangian, composite functions, transversality, proxi-
mal normals, critical cone.
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1 Introduction

The importance of second order sufficient conditions is largely determined by their role
in sensitivity analysis and numerical optimization. More attentive analysis of existing proofs
[2], [3], [4], [5], [10], [6] show, however, that, at least as far as sensitivity analysis is concerned,
what is needed is not a second order sufficient condition as such but rather an estimate of
the kind [13]

f(z) > c+ B dist*(S,z), (1.1)

(f is the cost function, ¢ the value of the problem and S the solution set) which usually follows
from the condition. The standard second order sufficient condition for an isolated minimum
(e.g. [1], [8] [11]) is equivalent to (1.1) provided the Mangasarian-Fromovitz constrained
qualification is valid [3]. But very little has been known so far about sufficient conditions and
(1.1) like estimates in situations when the set of solution has a more complicated structure
than just a finite collection of isolated points.

This article is an attempt to fill the gap. We establish several sufficient condition, based
on second order information, critical cones and proximal normals to the solution set at
different levels of generality and simplicity of formulations which imply a general “quadratic
growth condition” similar to (1.1). The formulation of the most general of them — we call
it the “general sufficient condition” in the paper — seems to be fairly awkward at the first
glance. It requires information which is not “intrinsic” in the sense that it cannot be ex-
pressed on terms of derivatives of the Lagrangian function and relies upon the existence of
a certain “projection” map to the solution set with some special properties. (Although the
proofs provide information on possible structure of the map, we cannot offer much practical
advice for its construction). What makes us introduce this condition as the basic sufficien-
cy statement is that it is equivalent to the general growth condition under an additional
“transversality” assumption which has a simple and natural formulation.

Transversality considerations are also instrumental in describing a (fairly general) struc-
ture of solution sets for which a sufficient condition very close to the standard second order
sufficient condition can be formulated. They also help to highlight the “bottleneck” at which
all the main difficulties caused by non-unicity of solutions are accumulated, namely the criti-
cal directions close to the contingent cone to the set of solutions. Much effort has been spent
in the article to investigate the behaviour of the problem near such directions. Still some
interesting questions remain unsolved.

A big portion of the paper is devoted to discussions on unconstrained optimization of
a simple composite function (maximum of a finite collection of smooth functions) and only
at the final section we reformulate all the main results for constrained optimization prob-
lems, using some simple reduction arguments. An advantage of such an approach (already
tested for necessary conditions [8] and sensitivity analysis [10]) is that it allows to get rid of
feasibility problems in the course of main arguments.
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2 The main results. Statements and discussions

2.1 Notation and terminology

So we begin by considering the function

f(z) = max fi(z).

1<i<m

The functions f; are assumed twice continuously differentiable from R? into R
throughout the paper. We use the following notation and terminology :

I(z) = {5 filz) = f(2)}
the set of active indices,
£00,2) = SN (a)

the Lagrangian of f,

m

Qz) = (A= (Aiyos dm) s X 2 0N = 0if i € I(z) PN =1, T AVSi(e) = 0)

(where as usual V f;(z) is the gradient of f; at z) the set of Lagrange multipliers for f at
z and

Qs(x) = A =iy Am) s A 20, M =0ifi ¢ I(z); fjxi =1, > MVSfi(2)]l <68}
=1

the set of Lagrange 6- multipliers.
We call a point z stationary if (z) # 0 and é-stationary if Qs(z) # 0. We set further
Cz) = {h: Vi(x)h <0, Vi € [(2)},
the cone of critical vectors of f at z.

In what follows we fix a compact set S of stationary points of f such that f(z) =
const = ¢y on S.

Definition 1 A mapping 7 from a neighborhood U of S onto S will be called a regular
projection to S if #(z) = z for ¢ € § and there is an € > 0 such that

gllz — w(z)|| < dist(S,z), zel.
Given a set C' C R? and z € C ; we denote by T¢(z) the contingent cone to C at z :

Te(z) = limsupt™'(C — z).
t—+40



Definition 2 Let C, D be sets and £ € CN D. We say that C and D are transversal at z if
Tc(ir) n TD(.’L’) = {O}

Definition 3 We say that a closed set C C R* is nice if for every z € C there is a neigh-
borhood U of z and a diffeomorphism F of U into R* such that CNU can be represented as
a union of a finite number of (relatively closed) sets C; which are transversal to each other
at z and such that the sets F(C;) are convex. We shall call the C; components of C at z.

2.2 The basic properties

We say that f satisfies the quadratic growth condition on S if
(QGC) there are a § > 0 and a neighborhood U of S such that
f(z) > co + Bdist*(S,z), VYreU. (2.1)
We say that f satisfies the general second order sufficient condition on S if
(GSO) for any § > 0 there are a neighborhood U of S and, regular projection 7 : U — S
and an a > 0 such that for £ € U\S, denoting h := z — n(x):

ax  [Lz (A 7m(z))h + ﬁn()\ () (R, h)] > allhll®. (2:2)

,\en (7r(x))
Finally, we say that f satisfies the transversallty condition on D C RY if

(TC) for any i € I(x) either i € I(y) for all y € D sufficiently close to z, or D and
{y: fily) = fi(z) = co} are transversal at z.

2.3 The theorems

Theorem 1 The following implications hold :
(GS0) = (QGC),

(QGC) & (TC) = (GSO).
Theorem 2 Assume that
(1) S is a nice compact set of stationary points of f and f is constant on S,
(ii) f satisfies (TC) on every component of S,
(iii) for any z € S and any h € C(z)\Ts(x)
lim inf max Loz(A,w)(h,h) > 0. (2.3)

u—x

Then (GSO) holds.
Theorem 3 If (QGC) holds, then
max, Lo\ z)(h,h) > Bdist*(Ts(z),h), Vhe C(z), Vres,

AEN(z)
B being the same as on the (QGC). In particular :
Jmax L.\, z)(h,h) >0, VzeS, VheC)\Ts(z). (2.4)



2.4 Comments and Corollaries

2.4.1 Strictly speaking, (GSO) is not a second order condition. It holds, for instance, for
piecewise linear functions (or, equivalently, for linear program) in which case we actually
have a stronger “linear growth condition” [10]. A “pure” second order condition we can
distill from Theorem 1 is the following.

Corollary 1 Assume that the following property holds :

(GSO, ) there are a,3 > 0, a neighborhood U of S and a regular projection @ : U — S
such that for h := z — w(z), we have

> 2
e Loz(A, w(z))(h, k) > alh]|

whenever x € U satisfies f(z) < co + Bdist?*(S, z).

Then (QGC) holds.

Proof We observe that the proof of Theorem 1 actually show that the implication (2.2)
= (2.1) always holds for any given z. Therefore if

f(z) < co + B.dist?(S, z)

(otherwise (2.1) is trivial), then, as every point of S is stationary and Q(y) C Qs(y),

max {£.0,7(@)h+ —;—Eu(/\,fr(:c))(h, h)}

A€Sls(x)
1

> — max
2 AeQ(n(z))

Loz(A,7(z))(h, h) 2 k],
which is (2.2). O

2.4.2 The main advantage of Theorems 2 and 3 over Theorem 1 is that they are intrinsic,
i.e. stated in terms of the original data only, while Theorem 1 requires a foreign object such
as a “regular projection”. Further intrinsic sufficient criteria which are weaker but easier to
verify than that of Theorem 2 can be found in §4.

Here we only observe that the standard second order sufficient condition is an easy
corollary of Theorem 2, for the conditions (i) and (ii) of the Theorem are automatically
satisfied if S is a finite set, and Ts(x) = {0} for any z € S. On the other hand if S is finite
and (QGC) is satisfied, then any z € S is a local minimum of the function f(z + k) — a|[k|?
for some a > 0 and applying the second order necessary condition we finally arrive at the
following local characterization of the (QGC) in this case.

Corollary 2 Let S be a finite set of stationary points of f. Then f satisfies (QGC) on S if
and only if

max L.o(A\z)(h,h) >0, Vz €S, VheC(z), hH0.



2.4.3 The proof of Theorem 2 on the next section actually shows that the conclusion of
the theorem remains valid if we replace (iii) by the following more precise version of the
condition :

(i1i’) condition (2.4) holds and there is an ¢ > 0 such that (2.3) is valid for all A €
C(z) N (Tg(z)\Ts(x)), where

Té(z) = {h: dist(Ts(z), h) < ellh|l}

We observe further that (2.4) is actually necessary for (QGC) to hold as follows from
Theorem 3. It is therefore natural to ask whether it is possible to get rid of (iii) or (iii’)
altogether and to replace it by (2.4) in Theorem 2. The following example shows that (iii)
cannot_be a necessary condition for (QGC) even in its modified (iii’) form.

Let X = R?, z = ({,7), and
f(z) = max{—€n +7°,&n — 2%, —€,2n — £,€ — 1};

S={zx=(£71):0<¢EL<1,p=00rn=¢/2} (see the picture).

It can be easily verified that f satisfies (QGC) on S. Indeed :
if n <0,0<¢<1,then f(z) > n? = dist’(S, x);
ifn <0, <0,n <€/2, then

f(z) 2 max(~£ (~n)(€ )} < max{€ nl(ln] - D)
SIE+ 7 — em) 2 1€ 407 2 { el

v



if0<n<&/2,0<&<1, then

2
f(x)>2n (% - n) > 2min {n2, (g - n) } > 2dist*(S, a)

etc. ...
We notice furthermore that Ts(z) = C(z) at any x € S, z # 0 whereas

Ts(0) = {h=(a,f):a>0, f=00rf=0a/2}
Cx) = {h=(a,8):a>0, np<a/2}

Ifz=(£0)€ S, >0, then I(z) = {1,2} and L.(z) = —\ € + X2 = 0 which implies
A1 = Ay = 1/2. Therefore for any h = (a, 8)
max ,sz(A,x)(h,h) = _132/2

AESYz)

Now taking h = (a, 8) € C(0)\Ts(0) which means that 8 # 0 (and 8 < a/2) we see that
1
.. < _1p32 .
hr%lonf /\rélna(ai) Lrz(A x)(h,h) < 2[3 <0

Hence (iii) or (iii’) are not satisfied, as was to be proved. ,
On the other hand condition (2.4) alone is not sufficient for (QGC), even if S is smooth.
Indeed, consider the cost

flz) = maX(Ilirg, —Xy, ~Z9,Ty — IE?, 1—x)).

Then the minimum value 0 is attained on S = [0,1] x {0}. It happens that the set of
critical directions is equal to the contigent set of S at all z in S, so that (2.4) is trivially
satisfied. However z(t) := (t,t) with ¢t > 0, t — 0 satisfies f(z(t)) = ¢ and dist(z(t), S) = ¢,
hence (QGC) does not hold. We note that Theorem 2 excludes this case as (TC) is not
satisfied.

2.4.4 The other question suggested by Theorem 2 is : are there simply verifiable criteria
for conditions (iii) or (iii’). We note that, thanks to Theorem 3, (iii) is satisfied if (2.4) hold
and lim §2(u) exists and is equal to £(z) (we take the limit, limsup, liminf of scts in the

sense of Painlevé-Kuratowski). However in general it only holds that liminf 2(u) C Q(z).

For simplicity denote
wz(h) := Jmax, Lzz(A, z)(h,h).

We shall show that, under the transversality condition, a discontinuity of z — ¢.(h)
cannot be caused by functions which are active at z and not necessarily at u € S close to
z, (at least if h satisfies the condition (iii’) for £ small enough), but rather by new linear
relations for gradient of functions active at z and around x which appear at z and are absent
at certain point near zx.



Proposition 1 Assume that z° > z in such a way that lz® —z||"}(z" — z) — h, I(z") are
all equal to a certain I, and (TC) holds at x. Then :

(1) \i =0 for all i € I(x)\I such that V fi(z) # 0.

(i) there is an € > 0 such that

wz(h) = Ig&xz) Eu(’\;x)(h’ h)

2=053¢1

provided h € C(z)\Ts(z), ||h — k) <e.

Proof (i)This is simple. For every i € I(z) we have
lim ;' (fi(z") - ful2)),

hmt H(fi(z™) — fi(u™)),
limt;'V fi(u™) (" — u*) = 0,

V fi(z)h

(VAN

as ||z™ — u™|| = p(¢").

On the other hand, if j ¢ J and Vf;(z) # 0, the equality V fj(z)h = 0 is impossible
due to (TC) for h € Ts(z). Thus Vf;(z)h < 0. Finally if A = (A,...,A") € Q(x), then
YAV fi(x)h=0. As A\, > 0 and V fi(z)h < 0 we must conclude that A; = 0.

(ii) Take i € I. If V fi,(z) # 0 it follows from point (i) that A, = 0, VA € Q(z), hence
the multiplier that attains the max of £.z(A, x)(h, h) satisfies A;, = 0.

It remains to analyse the case when V f; () = 0. Define

J = {20 € I(IB) -1; Vf,;o(.’l‘) = 0}

We claim that
fig(®)(h,h) L 0. (2.5)

Define A™ := ||z" — z|| 7} (z" — z). As fi,(z") < f(z") = fio(z) it follows that
02 fila) + la” - 2ll Vi @h" +5la" = 2l (@) 7, 17) + o™ — 217)
0

which proves (2.5).
Now observe that as V fi () = 0, we have

z) = LJO {Z;afez’ﬁ(l—z;a)ﬂj(m)}

PIFEES

with e; the ith basis vector in R™ and

Q) ={Ae )My, =0, io€J},



therefore

pz(h) = max {Z o fi (@) (h, h) + (1 — Za, max Cm(/\ z)(h,h)}. (2.6)

AEQO
ZJQ <1 (

Now by (TC) we know that h is a critical direction if € is small enough ; from the classical
necessary condition we know that ¢.(h) > 0, i.e.

e Uz); Loz(Nz)(hA) 20
A= Zaieio + (1 — Zai);\, ;\ € Q‘°(:z:)
J J

Hence by (2.5)

>
Jmax Loo(0,2)(hh) 2 0

and with (2.5), (2.6)
(p:r(h') = max ‘C:z:x:(’\ x)(h’ h')

AEQY(z)

as was to be proved. O
Thus, “new “active indices at = have no effect on the value of . (h).

We observe further that Q(z) is a polyhedral convex set, hence is the convex hull of (a
finite set of) its extreme points. For any A € Q(z) denote by supp()) the support of A, i.e.
the set of indices 7 for which A; > 0. It is an easy matter to verify that A is an extreme point
of Q(z) if and only if the vectors (8f;(z)8zxy,...,0fi(z)0z,, —1) € RI*!, with i € supp(A)
arc linearly independent (L.I.).

Now as A — L..(A,z)(h,h) is linear it follows that the maximum over Q(z) is attained
for some extremal element, i.e.

@ox (R) = Loz (N, 2)(h, h)

with \¥ being an extremal element of Q(z*). Taking if necessary a subsequence we may
assume that supp (A*) = 7 not depending on k. If {Vfi(z)}ies is linearly independent,
it follows that A* — X, where ) is the extremal element of Q(z) such that supp(A) =

I. Otherwise, A\* being bounded, we only know that any limit point A of {A\*} satisfies
supp()\) C 1.

From the above discussion it follows that, defining

J':={I c{1,...,m} ; support of an extremal point A\* of Q(z*);
{V fi(Z) }ser is linearly independent},

J?:={I C{1,...,m} ; support of an extremal point A\* of Q*(z*);
{V£i(z)} is not linearly independent},



we get

liminf ¢_x(h) > max max Loo(X, z)(h, h), min Lo(A,z)(h, k).
IeJ! I1eJ?
A € Q(z) A€ Qz)
| supp(A) =1 supp(A) C I )

We have the following corollary

Corollary 3 If J? is empty and (TC) holds, then Q(z) = lign Q(u) and (ii) holds.

Proof Assume that J:= {z; fi(z¥) = co} constant and define
Oz):= A € Qz); ) =0if i ¢ J).
By Proposition 1 we have

0 <pz(h)= Arél:%);) Loz(A z)(h, k).

Now, J? being empty it follows that Q(z) = lim Q(z*).0

3 Proofs of the Theorems

3.1 Proof of Theorem 1

3.1.1. (GSO) = (QGC) . Fix a § > 0 and choose a neighborhood U of S and a regular

projection w : U — S such that (2.2) holds. Take a 0 < 8 < a and a ¢ > 0 small enough

that

€002+ B) = £, 2) = L\ 2k — 3 Les0,2) (R, )] < (= B) A2

provided z € S, 3" A =1, A; > 0 and ||h|| < 0. With no loss of generality we may assume
that ||z — 7(z)|| < o for 2 € U. Then for any such z we have, setting h = x — 7(z) as in the
statement,

flz) —co

f(x(z) + h) = f(n(=)),
.\err;:?é‘ix)){c(A’ m(z) + k) = L(A, 7 (2))},
max {L. (A, 7(z))h + %Cu(/\, r(z))(h, h) = (a — B)||R|I*},

AEQs(m(r))
BRI > B.dist(S, )%

v

vV

v
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3.1.2. Analysis of (TC)

Lemma 1 Assume (TC) and set foru € S

B(u) = {v: I(v)\I(u) # 0}.
Then there is a v > 0 such that 2" € S, 2™ — x implies that

dist(B(z"),z") > vllz — z"||.

Proof Assuming the contrary, we find a sequence of z™ € S converging to an z € S and
such that
dist(B(z"),z") = o(llx — z™||).

Set h™ = lim|jz™ — z||"'(z™ — z), (which we may assume to exists). It is clear that
h € Ts(z). On the other hand, if i € I(x) is such that ¢ ¢ I(z") and i € I(z" + V") for
some v™ with v® = o ||z — z™||), then h belongs to the contingent cone to {y; fi(y) = fi(x)}
which together with h € Tg(z) must imply by virtue of (TC) that [|A| = 0. But A =1 by
definition. [J

3.1.3. (QGC) & (TC) = (GSO) . Assume the contrary. Then there are a § > 0 and
a sequence of z" converging to a certain x € S (as S is compact) such that for any u € S
with |lu — 2" < n dist(S, z™) we have

amax (Lz(A, wh+ sz‘()‘ u)(h, h)) < —||h||2 (3.1)

where h = z™ — u.
We consider two possible situations.

(A) dist(S,z2™) = o(Jlx — 2"||). Let u™ be a nearest to an element of S ; that is ||z" — u*| =
dist(S,z"™) ; set hy, = 2™ — u*. By Lemma 1, I(z") C I(u") for large n, hence by (QGC)

BIR™M? < fu”+h") — f(u™)

= max {fi(u" +h") - f;(u")}

i€l(un)
= Jex (Y A(i@" +h"> fiw™)) 2
= max (L0 unR" Lm(A u™)(h™, h™)} + o([[R™M1%).

Set
§=max{[|[L(\,z)[;z €S, A€ No()}

Then (note that Q. (z) is a standard simplex)

861 Qoo (2) C Qs(),

11



so that by (3.1), (3.2)

Al < ax (Lz(A,u")hA" + Cm(/\ u™)(R™, &™) + o(||R" %)

5 ACOEn) (3.3)
< -Tﬁllh"ll2 o(I™1I%) = o([In™|}®)

which may only happen if 8 = 0 contrary to (QGC).
(B) There is a > 0 such that
dist(S,z") > 6(jlz™ — z|}).

As I(u) is an upper semicontinuous map, we have I(z") C I(z) for large n. Therefore
(3.2) is valid if we replace u™ by z and take h™ = z" — x. On the other hand, as ||z — z"|| <
ndist(S, z") if n is large enough, (3.1) holds with u = z. Therefore (3.3) also holds with 4"
replaced by x and we arrive at the same contradiction as in the first case.

This completes the proof of Theorem 1.

3.2 Proof of Theorem 2

Suppose the theorem is wrong and (GSO) is not valid. Then, as in the proof of Theorem
1, we find a § > 0 and a sequence of " converging to an x € S such that for any u € S with
lu — || < ndist(S,z"), (3.1) holds.

Let u* € S be a nearest to ™, h™ =t/ (2™, z), t" = ||z — z||, and let h™ converge to an
h, |k|| = 1. We consider the same two possibilities as in 3.1.3 (but at the opposite order).

(A) ||z — z7|| = O(dist(S,z™)). Then h & Ts(z) and ||z — z"|| < ndist(S, z") for large z, so
(3.1) must hold with h replaced by z" — z and u replaced by z. Therefore

max [C.(\,z)h" + & Em(/\ 2)(h* b)) < f'l (3.4)

AEQs ()

and, consequently, for any 6 > 0 :

max L.(\ x)h <0.
A€Qs(x)

This may happen only if h € C(x). Thus h € C(z)\Ts(z) and inequality (2.3) is valid
for h and z, in particular
max_L(A z)(h,h) > 0.
AEQ(z)

On the other hand it follows from (3.4) that

n tﬂ
nopn < h
Jmax - Loz (A z)(h", h")

12



and therefore

max L;(A z)(h,h) <0.

Jmax, Lax( z)(h, h)
Hence we arrived at a contradiction.
(B) dist(S,z™) = ||[u™ — z"|| = o(||lz — z*||). Then h € Ts(z). In what follows we agree
(taking if necessary a subsequence) that I(u") is the same for all n, and denote this set by
J. Obviously J C I(z).

The proof is based on the following lemma.

Lemma 2 Assume that ||u” — z™|| = o(||z — 2™||). Then there is a sequence of w™ € S such
that
dist(S,z") = O(]|lz" — w™]),

and € := ||z™ —w™||7'(a™ —w™) have, among their limit points asn — oo, a vector e & Ts(x)
and such that Vf(z)e <0 for alli € I(z)\J. Moreover, given € > 0, the sequence of w"
can be chosen in such a way that ||h —e]| < e.

Assume for the moment that the lemma has been already proved. Find a sequence of w™
as in Lemma 2 and let e & Ts(z) be a corresponding limit point.

As ||z™ — w"|| is of the same order as dist(S,z"), we have ||z" — w"|| < n.dist(S,z") so
that (3.1) holds with = w™ and h = 2™ — w™, that is to say

Tn Tn
n n - n n n < —_ .
/\ergﬁﬁn)[ﬁx(/\aw )e™ + 2 Loz(A,w™)(e",e")] < n’ (3.5)

where 7" = ||z™ — w"||.

We observe further that ||w™ — u"|| is both o(}jjw™ — z||) and (o||u™ — z||), so by Lemma

1 I(w™) = I(u™) = J for large n.
It follows from (3.5) that
Vfi(z)e=1limVfi(z")e* =0 Vi€ J,
and, by Lemma 2, Vfi(z)e < 0if: € I(z)\J.Consequently, e € C(z)\Ts(z), and (iii) implies

that
0 < lim inf max L..(A,w")(e" e"),
n—oco AEQ(w™)

in contradiction with (3.5).

Thus it remains to prove Lemma 2.
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Proof of Lemma 2 By (i) there is a finite collection of closed convex sets Cy,. .., Ck (say,
containing zero) and a diffeomorphism @ of a neighbourhood V of zero onto a neighbourhood
U of z such that

SNnU =Q(CNV); where C = UC;.

Let y™ and v™ be defined by

Then v* — 0, y* — 0, v™ € C,
le® —w™l = O(ly" = wull), ll=” — =]l = O(l]v"|]) (3.6)
and the sets S; = Q(C;) are transversal at z.

We may assume that all v™ belong to the same C; say to C;, hence uv* € S; and,
consequently, h € Ts, (z), h & Ts (z), j = 2,..., k. It follows from Lemma 2 that Vfi(z)h <
0ifz € I(z)\J and Vf;(z) # 0. Therefore we can find a v > 0 such that |le — k|| < v implies
that e & Ts,(z), 7 = 2,...,k and Vfi(z)e < 0if : € I(z)\J, Vfi(z) # 0. We can always
assume that ¢ is smaller than the given 4. Take an M > 1 + 27! and let

- - ey

" -z
zn — (1 _an)vn (37)
w® = Q(z").

Then a® — 0, 2 € C; and w™ € S;. We further define e¢* as in the statement by means
of the w™. As always, we assume that e* — e. We have to show that e g Ts(z) and that
||k —e]| <e. We have

w” = Q((1 — a™)v") = Q(0) + Q'(0)(1 — a™)v™ + o(||v™|)
and, on the other hand,
w" = Qv" —a™") = Q(v") + Q'(v")(—a™v") + o(a”[v"]).
Multiplying the first equality by a", the second by (1 — a™) and adding, we have
W= etz (1 -+ [Q0) - @(M)]ar(1l — a™)o" + ofa” o™,

= a"z+ (1 —a™Ju" + o(a™||v"|),
= a"z+ (1 -a™u" +o]ju" — 27||),
or
w' —z"=a(x —z")+ (1 —a")(u" — ") + o(||ju" — z"||)- (3.8)
It follows from (3.7), (3.8) that

[ — 2"

M| <140, (3.9)
[ =2
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where 7™ — 0. In particular, |Jw® — z™|| = O(dist(Sy,z")) from which, using the fact that
Sy is diffeomorphic to a convex set, we conclude that e &€ T, (z).

Thanks to the choice of v, all we have to show is that ||h — e]| < . We have from (3.8)
™ —u”

setting gn = “_x;;—_un—“:

O P et O
Ja —wr e —w

where (|7*|| — 0 or (by (3.7))

i n
e"=———— (MR  +g™)+r
e —wr )
which together with (3.9) gives
n _ n < n
I3 h||_M_1+r,
that is (see the choice of M) :
—h| <
le— Al < 37 <
Q.E.D.
3.3 Proof of Theorem 3
We have (see e.g. [9], Corollary 5)
v N
bimint LEF IR =F@) e £ (0 2) (ks B) (3.10)
a—0 o? A€Q(z)

hi—h

for any £ € S and any h € C(z). Assume now that the (QGC) holds. Then
dist(S,z + oh) > o dist(Ts(z), h) + o(0)
according to the definition of Ts(z), hence

f(z +oh) > f(z) + Bo*dist*(Ts(x), h)* + o(c?)

which, together with (3.10) immediately implies the theorem.
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4 Further intrinsic sufficient conditions

The proof of Theorem 1 suggests that the orthogonal projection onto S has a special impor-
tance for (GSO). We shall obtain some simple intrinsic sufficient conditions using this idea.
Recall that a vector h is called a proximal normal to S at z € S if

t||k|| = dist(S, z + th)

for sufficiently small ¢ > 0. (Enough to require that there is at least one t > 0 with such
property). We shall denote by PN(S,z) the collection of proximal normals to S at z. It is
always a closed convex cone.

We also denote by C,(x) the e-critical cone for f at z :
Cule) = {h: Vida)h < ellhll, i € I(2)}.

Lemma 3 Lete > 0, 2" € S and h™ — 0 be such that for a certain § > 0

max [Cz(}, z")h" + —Lu(,\,x")(h",h")] < O(|[r"|[?).

XEQ6 :L‘")

Then h™ € C.(z") for all sufficiently large n.

Proof We already observed in 3.1.3 that Q. (z) C 6671Qs(z) for some £ > 0. It follows
from the assumption that

max L0 + 5Lan(3, 2", )] < (),

A€ (z™)

hence
n < n
T L0, < O(IR),
On the other hand, for any u € S any h and any ¢ € I(z), Vfi(z)h < \Jhax ),C,,.()‘,:c)h.

The conclusion follows. [J

Proposition 2 Suppose that there are € > 0, a > 0 such that

> 2
/\rgﬂax Loz(A,z)(h, k) > a||k||

foranyz € S and any h € Cc(x) N PN(S,z). Then GSO holds.

Proof Let 7 be an orthogonal projection onto S, i.e. ||z — w(z)|| = dist(S,z). We shall
show that (GSO) holds with such a 7. Assuming the contrary we shall conclude that for any
6 > 0 there are sequences of z* € S and h™ — 0 such that ||A"|| = dist(S,z" + h™) and (3.1)
holds with v = z", h = h™. By Lemma 3, A" € C.(z") if n is large enough and, by definition
h™ € PN(S,z™). So we get a contradiction as soon as a > n~!dist(S,z"). O
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Calculation of e-critical vectors may present certain difficulties compared with calculation
of “regular” critical vectors. The next proposition gives a sufficient criterium in terms of the
latter. For any = € S and h we set

fl(zs k) = max Vfiz)h,

which is the directional derivative of f at . Then h ¢ C(z) if and only if f'(z; k) > 0. For

such h we set
Lz;h) = {t€1(z),Vfi(x)h = f(z;h)};

M(z;h) AXi>0 Mi=04fi g Lz h); Y di=1, Lo(X2)h >0}
pl(z;h) = min{|| L. (A 2)]| : X € M(z;h)}.

I}

We also set

PNs(S,z) = {h:dist(PN(S,z),h) < 6||h|}
Proposition 3 Assume that there is an i > 0 such that
plz;h)y > p, VeeS, VhgC(x).
Suppose also that there are a > 0, 6 > 0 such that

max Lo (A z)(h, k) > a“h“2

ANEQU(z)

forallz € S, h € C(z) N PNys(S,z). Then (GSO) holds.

Proof We will apply Proposition 2 in order to get the result. So, let h be in C.(z) N
PN(S,z). It follows from A. loffe 7] that

dist(C(z),h) < i f/(z; h)

(due to homogeneity of f'(z;.)). Therefore

h € C.(z) = dist(C(z); h) < Z||h|. (4.1)
7
Choose 6, € (0,1/2) such that
1Cax(M, ) (R h) — Loo(A, z)(B, 1)) < /2 (4.2)

fzeS, A2>20,2 =1|k~|=1,]|h—h' <&. Let € > 0 be so small that

3 . (51 é
ﬁ < mln{m,m}. (43)
By (4.1) and (4.3) for any h € C.(z) N PN(S,z) there is a e € C(z) such that

£
[[h —ell < Ellhll < 6fe]| (4.4)
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This means that e € C(z) N PNs(S,z). Then by hypothesis

allel* < max Loz(A z)(e €)

and, as ||h —e|| < éi|e]| by (4.3), (4.2) implies that

max Lo 2)(hh) > max Lo(h,a)(ee) - 5 AP

> afle] = 1/2)||R]*).

Taking € small enough and using (4.3) we can minorize the right hand side by, say, %”h”:’.
We now just have to apply Proposition 2.0

It can be be observed that Propositions 1 and 2, though much simpler to formulate, are
weaker results then Theorems 1 and 2. To see this, we can consider the function

f(l‘) = ma‘x{ﬁn’_éa_n7€+n - 1}
(where z = (£,7) € R?), and
S={z:&n=0;0<¢n, €E+n<1}

It can be easily verified that the conditions of Theorems 1, 2 and even Corollary 1 are
satisfied on this case but not the conditions of Proposition 1 and 2.

5 Problems with constraints

5.1 General case

This section is essentially devoted to the reformulation of the main results for constrained
non-linear programs:

(P) minimize fo(z)

subject to fi(z) <0,7=1,...,k; fi(z)=0,:=k+1,...,m

The very fact that theorems on a maximum function as considered above can be applied
to (P) follows from the simple observation (cf. {10]) :

Proposition 4 Let S be a closed set of feasible elements of (P) such that fo(z) = const = ¢
on S. Set

f(z) = max{fo(z) — ¢, fi(2z),-- -, fe(z), | firr ()], -, | fm(2)]}- (5.1)

Then the following two properties are equivalent :

(a) there is a neighborhood U of S such that fo(z) > c for any x € U\S which is feasible
for (P);
(b) f(z) >0 for any z € U\S.
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Proof Theimplication (b) = (a)is obvious. Conversely, if (a) holds, then f(z) > fo(z) > 0
for any feasible z € U\S. On the other hand if z is not feasible then either f(z) > 0 for
some ¢ = f;,...,k, or |fo(z)| > 0 for some : = k+ 1,...,m ; in either case f(z) > 0. O

Thanks to this proposition we can easily reformulate the basic properties, i.e. the
quadratic growth condition and the second order sufficient condition, as well as all the
theorems for (P), using the specific form of the function f given by (5.1).

The reformulation procedure actually consists on (a) replacing |fi(z)| by max{fi(z), —fi(z)}
on (5.1) followed by application of all the formulae to the so obtained function and the sub-
sequent return to the original notation and (b) the observation that f(z) and fi(x) for
t=k+1,...,m are constant on S.

The results of the reformulation can be summerized as follows. Consider the set A(z) of
Lagrange multipliers of (P) at z:

AMz)={A=(No,. s m) X 20, e=0,....k Nfi(z) =0, e =1,...,k > NVSfi(z) =0},
the set of 6-multipliers:
As(z) = {A=(Roye- oy, Am) 1 A 20, 0=0,...,k Nifi(z) =0, i=1,...,k || D NVSfi(z)]| <6},
the subset of normalized multipliers and §-multipliers:
A¥(z) = {AeA(z); 3 IN <1}
A (z) = {Aedhs(z); D IN <1}
and the critical cone for (P) at «:
Kzy={h:Vfi(z)h<0,:=0,...,k, Vfi(z)h=0,i=k+1,...,m}.
Now let us say that

(QGCp) Problem (P) satisfies the quadratic growth condition on S if f(z) defined by (5.1)
satisfies (QGC) on S;

(GSOp) Problem (P) satisfies the general second order sufficient condition on § if there are
a neighborhood U of S and, regular projection 7 : U — S and an a > 0, such that (2.2) is
valid with Qs(7(z)) replaced by AY (x(z)).

(TCp) For any z € S and any 1 € Ip(z) := {t =1,...,k: fi(z) = 0} either : € I(z) for all
y € S sufficiently close to z, or S and {y : fi(y) = 0} are transversal at .

Then the theorems are reformulated as follows.

Theorem 1 (P) The following implications hold:
(GSOp) = (GQFCp),
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Theorem 2 (P) Assume that
(i) S is a nice compact set of stationary points of (P) and f is constant on S

(i) (P) satisfies (TCp) on every component of S

(iii) For anyz € S and any h € K(z)\T¢(z)
liminf max L .(A,z)(h,h) >0
s A€A(u)

u—r

Then (GSOp) holds.

Theorem 3 (P) If (QGC,) holds, then
max )ﬁxx(A,x)(h,h) > Bdist*(Ts(z), k), Vh e K(z) Vz €S,

AEAN(z
B being the same as on the (QGC,), in particular
max Lz (A z)(h,h), Vz €S, VheK(z)\Ts(z).

A€AN(z)

The corresponding replacement can be also made in all other results.

5.2 Constraint qualification

Further specification of definition and results can be obtained under the assumption that
the Mangasarian-Fromovitz constraint qualification holds at any z € S. As § is compact,
it follows that there is a constant > 0 such that the distance from the origin to the affine
manifold spanned by the gradients of the equality constraint functions is greater than 5 and
there is an h in X with the unit norm such that :

Vf(z)h=0, i=k+1,...,m; Vfi(z)h < -7, 1€ I(z),
and
inf{Xdo: A €AN(z); ST =1} =19
which means that the standardly normalized sets of Lagrange multipliers:
Al (z) = {) € A(z), Xo=1}

are uniformly bounded on S. This immediately implies
Proposition 5 If the (MF) constraind qualification condition is satisfied for any z € S than
on (GSOp) we can replace AN(z) by Al(z).

The change which occurs with the growth condition is more substantial.

Proposition 6 If the (MF) constant qualification condition is satisfied for all x € S then
(QGCp) is equivalent to the following

(QGCprr) there are a > 0 and a neighborhood U of S such that
fo(z) > c + Bdist?(S, )
for all feasible z € U.
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Proof It is clear that (QGCp) = (QGCpr). Conversely, assume that (QGCpmr) holds.
Let :
A={z: folz) <0, 1=1,...,k, fi(z)=0, i=k+1,...,m}

be the set of feasible elements. It follows from the Robinson regularity theorem [12] that for
any x € S, there are a y(z) > 0 and an L(z) > 0 such that

dist(A,n) < L(z). max{fy(z),-- - fol®); [fir1(@)]-- -, [fm(2)]} (5.2)

if |lu — z|| < v(z). As S is compact, we can chose v > 0 and L > 0 such that (5.2) is valid
with y(z) and L(z) replaced respectively by v and L. Assuming that (QGCp) does not hold
we shall find a sequence of {u"} such that dist(S,z") — 0 and

F@™) < Ldist(S,um)
n
given by (5.1). Then (5.2) implies that
. L, ,
dist(A,u™) < —dist®(S,u"),
n

hence there is 2" € A with ||a" — u"|| < £dist?(S,u"). Such an z" cannot belong to S and,
in fact, dist(S,z") ~ dist(S,u").

On the other hand, as all functions are Lipschitz continuous near S we have

f(z") = o(dist*(S,u™)) = o(dist*(S,z")).

Since z™ € A\S, we have
B.dist*(S,z™) < fo(z") — ¢ < o(dist?(S, z™))

a contradiction. O
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