
ar
X

iv
:1

10
9.

38
93

v3
 [

cs
.D

S]
 5

 A
pr

 2
01

2

Concave Generalized Flows with Applications to Market Equilibria

László A. Végh∗

College of Computing, Georgia Institute of Technology

E-mail: veghal@cs.elte.hu

September 17, 2018

Abstract

We consider a nonlinear extension of the generalized network flow model, with the flow
leaving an arc being an increasing concave function of the flow entering it, as proposed by
Truemper [39] and Shigeno [35]. We give a polynomial time combinatorial algorithm for solving
corresponding flow maximization problems, finding an ε-approximate solution in O(m(m +
logn) log(MUm/ε)) arithmetic operations and value oracle queries, where M and U are upper
bounds on simple parameters. This also gives a new algorithm for linear generalized flows, an
efficient, purely scaling variant of the Fat-Path algorithm by Goldberg, Plotkin and Tardos [12],
not using any cycle cancellations.

We show that this general convex programming model serves as a common framework for
several market equilibrium problems, including the linear Fisher market model and its various
extensions. Our result immediately extends these market models to more general settings. We
also obtain a combinatorial algorithm for nonsymmetric Arrow-Debreu Nash bargaining, settling
an open question by Vazirani [41].

1 Introduction

A classical extension of network flows is the generalized network flow model, with a gain factor
γe > 0 associated with each arc e so that if α units of flow enter arc e, then γeα units leave it. Since
first studied in the sixties by Dantzig [5] and Jewell [21], the problem has found many applications
including financial analysis, transportation, management sciences, see [2, Chapter 15].

In this paper, we consider a nonlinear extension, concave generalized flows, studied by Truemper
[39] in 1978, and by Shigeno [35] in 2006. For each arc e we are given a concave, monotone
increasing function Γe such that if α units enter e then Γe(α) units leave it. We give a combinatorial
algorithm for corresponding flow maximization problems, with running time polynomial in the
network data and some simple parameters. We also exhibit new applications, showing that it is a
general framework containing multiple convex programs for market equilibrium settings, for which
combinatorial algorithms have been developed in the last decade. As an application, we also get
a combinatorial algorithm for nonsymmetric Arrow-Debreu Nash bargaining, resolving an open
question by Vazirani [41]. We can also extend existing results to more general settings.

Generalized flows are linear programs and thus can be solved efficiently by general linear pro-
gramming techniques, the currently most efficient such algorithm being the interior-point method
by Kapoor and Vaidya [23]. Combinatorial approaches have been used since the sixties (e.g.
[21, 27, 38]), yet the first polynomial-time combinatorial algorithms were given only in 1991 by

∗Supported by NSF Grant CCF-0914732.

1

http://arxiv.org/abs/1109.3893v3

Goldberg, Plotkin and Tardos [12]. This inspired a line of research to develop further polynomial-
time combinatorial algorithms, e.g. [4, 14, 16, 37, 9, 15, 17, 43, 32, 33]; for a survey on combinatorial
generalized flow algorithms, see [34]. Despite the vast literature, no strongly polynomial algorithm
is known so far. Our algorithm for this special case derives from the Fat-Path algorithm in [12],
with the remarkable difference that no cycle cancellations are needed.

Nonlinear extensions of generalized flows have also been studied, e.g. in [1, 3], minimizing a
separable convex cost function for generalized flows. However, these frameworks do not contain our
problem, which involves nonlinear convex constraints.

Concave generalized flows being nonlinear convex programs, they can also be solved by the
ellipsoid method, yet no practically efficient methods are known for this problem. Hence finding
a combinatorial algorithm is also a matter of running time efficiency. Shigeno [35] gave the first
combinatorial algorithm that runs in polynomial time for some restricted classes of functions Γe,
including piecewise linear. It is also an extension of the Fat-Path algorithm in [12]. In spite of this
development, it has remained an open problem to find a combinatorial polynomial-time algorithm
for arbitrary concave increasing gain functions.

Our result settles this question by allowing arbitrary increasing concave gain functions provided
via value oracle access. The running time bounds for this general problem are reasonably close to
the most efficient linear generalized flow algorithms. Concave gain functions extend the applicability
range of the classical generalized flow model, as they can describe e.g. deminishing marginal utilities.
From the application point of view, another contribution of the paper is extending generalized flow
techniques to the domain of market equilibrium computations, where this model turns out to be a
concise unifying framework.

The concave optimization problem might have irrational optimal solutions: in general, we give a
fully polynomial-time approximation scheme, with running time dependent on log(1ε) for finding an
ε-approximate solution. In the market equilibrium applications we have rational convex programs
(as in [41]): the existence of a rational optimal solution is guaranteed. We show a general technique
to transform a sufficiently good approximation delivered by our algorithm to an exact optimal
solution under certain circumstances. We demonstrate how this technique can be applied on the
example of nonsymmetric Arrow-Debreu Nash bargaining, where the existence of a combinatorial
algorithm was open [41].

In Section 2, we give the precise definition of the problems considered. Thereby we introduce
a new, equivalent variant of the problem, called the symmetric formulation, providing a more
flexible algorithmic framework. Section 3 shows the applications for market equilibrium problems.
Section 4 explores the background of minimum-cost circulation and generalized flow algorithms,
and exhibits the main algorithmic ideas. We first present our symmetric generalized flow algorithm
in Section 5 for the special case of linear gains. Based on this, Section 6 gives the algorithm for
arbitrary concave gain functions. Section 7 adapts these algorithms for the more standard sink
formulation of the problems. Section 8 considers the case when the existence of a rational optimal
solution is guaranteed, and shows how the approximate solution provided by our algorithm can be
turned to an optimal solution. The final Section 9 discusses possible further directions.

2 Problem definitions

We define two closely related variants of the linear and the concave generalized flow problem. Let
G = (V,E) be a directed graph. Let n = |V |, m = |E|, and for each node i ∈ V , let di be the total
number of incoming and outgoing arcs incident to i.

We are given lower and upper arc capacities ℓ, u : E → R and gain factors γ : E → R
+ on

2

the arcs, and node demands b : V → R. By a pseudoflow we mean a function f : E → R with
ℓ ≤ f ≤ u. Given the pseudoflow f , let

ei :=
∑

j:ji∈E

γjifji −
∑

j:ij∈E

fij − bi. (1)

In the first variant of the problem, called the sink formulation, there is a distinguished sink
node t ∈ V . The objective is to maximize et for pseudoflows satisfying ei ≥ 0 for all i ∈ V − t.

This differs from the way the problem is usually defined in the literature with the more restrictive
ei = 0 for i ∈ V − t, and assuming ℓ ≡ 0, b ≡ 0. However, this problem can easily be reduced to
solving the sink formulation, see e.g. [34].

The following extension has been proposed by Truemper [39] and Shigeno [35]. On each arc
ij ∈ E, we are given lower and upper arc capacities ℓ, u : E → R and a monotone increasing
concave function Γij : [ℓij , uij] → R ∪ {−∞}; we are also given node demands b : V → R. As for
generalized flows, a pseudoflow is a function f : E → R with ℓ ≤ f ≤ u. For a pseudoflow f , let

ei :=
∑

j:ji∈E

Γji(fji)−
∑

j:ij∈E

fij − bi.

In the concave sink formulation, we say that the pseudoflow f is feasible, if ei ≥ 0 for all i ∈ V − t
and et > −∞. The objective is to maximize et for feasible pseudoflows.

Shigeno [35] defines this problem with ei = 0 if i ∈ V − t, and b ≡ 0 and without explicit
capacity constraints. She also discusses the version with ei ≥ 0, and gives a reduction from the
original version to this one. Whereas capacity constraints can be simulated by the functions Γe,
we impose them explicitly as they will be included in the running time bounds. The formulation
with ei ≥ 0 seems more natural as it gives a convex optimization problem, which is not the case
for ei = 0.

In the sink formulation, the node t plays a distinguished role. It turns out to be more convenient
to handle all nodes equally. For this reason, we introduce another, seemingly more general version,
called the symmetric formulation of both problems. Ideally, we would like to find a pseudoflow
satisfying ei ≥ 0 for every i ∈ V . The formulation will be a relaxation of this feasibility problem,
allowing violation of the constraints, penalized by possibly different rates at different nodes.

For each node i ∈ V we are given a penalty factor Mi > 0 and an auxiliary variable κi ≥ 0. The
objective is to minimize κf =

∑

i∈V Miκi for a pseudoflow f subject to ei + κi ≥ 0 for each i ∈ V .
The objective κf is called the excess discrepancy. κf = 0 means ei ≥ 0 for each i ∈ V . These

conditions might be violated, but we have to pay penalty Mi per unit violation at i.
The sink version fits into this framework with Mi = ∞ for i 6= t and Mt = 1. However, it

can be shown that setting finite, polynomially bounded Mi values, the symmetric version returns
an optimal (or sufficiently close approximate) solution to the sink version, both for linear and for
concave gain functions. Besides the sink version, another natural setting is when Mi = 1 for all
i ∈ V , that is, maintaining ei ≥ 0 has the same importance for all nodes.

While the symmetric formulation could seem more general than the sink version, it can indeed
be reduced to it. For an instance of the symmetric version with graph G = (V,E), let us add a
new sink node t with an arc from t to every node i ∈ V with gain factor 1/Mi. Solving the sink
version for this extended instance gives an optimal solution to the original problem. The reason
for introducing the symmetric formulation is its pertinence to our algorithmic purposes.

3

2.1 Complexity model

The complexity setting will be different for generalized flows and concave generalized flows. For
generalized flows, we aim to find an optimal solution, while in the concave case, only an approximate
one. For generalized flows, the gain functions are given explicitly as linear functions, while in the
concave case, the description of the functions might be infinite. To handle this difficulty, following
the approach of Hochbaum and Shantikumar [18], we assume oracle access to the Γij ’s: our running
time estimation will give a bound on the number of necessary oracle calls. Two kinds of oracles
are needed: (i) value oracle, returning Γij(α) for any α ∈ [ℓij , uij]; and (ii) inverse value oracle,
returning a value β with α = Γij(β) for any α ∈ [Γij(ℓij),Γij(uij)].

We assume that both oracles return the exact (possibly irrational) solution, and any oracle
query is done in O(1) time. Also, we assume any basic arithmetic operation is performed in O(1)
time, regardless to size and representation of the possibly irrational numbers. We expect that our
results naturally extend to the setting with only approximate oracles and computational capacities
in a straightforward manner. Notice that in an approximate sense, an inverse value oracle can be
simulated by a value oracle.

By an ε-approximate solution to the symmetric concave generalized flow problem we mean
a feasible solution with the excess discrepancy larger than the optimum by at most ε. An ε-
approximate solution to the sink version means a solution with the objective value et at most ε less
than the optimum, and the total violation of the inequalities ei ≥ 0 for i ∈ V − t is also at most ε.

In both cases, we assume that all Mi values are positive integers, and let M denote their
maximum.

For generalized flows, we assume all ℓ, u and b are given as integers and γ as rational numbers; let
B be the largest integer used in their descriptions. The running time bound will be O(m2(m logB+
logM) log n) for the symmetric formulation and O(m2(m+n log n) logB) for the sink formulation.
This is the same as the complexity bound of the highest gain augmenting path algorithm by
Goldfarb, Jin and Orlin [16]. The best current running time bounds are O(m1.5n2 logB) using an
interior point approach by Kapoor an Vaidya [23], and Õ(m2n logB) by Radzik [32], that is an
enhanced version of [16].

For the concave setting, we allow irrational capacities as well; in the complexity estimation, we
will have U as an upper bound on the absolute values on the bi’s, the capacities ℓij, uij and the
Γij(ℓij), Γij(uij) values. For each arc ij, let us define rij = |Γij(ℓij)| whenever Γij(ℓij) > −∞ and
rij = 0 otherwise. Let

U = max {max{|bi| : i ∈ V },max{|ℓij |, |uij |, |Γij(uij)|, rij : ij ∈ E}} .

For the sink version, we need to introduce one further complexity parameter U∗ due to difficulties
arising if Γij(ℓij) = −∞ for certain arcs. Let U∗ satisfy U ≤ U∗, and that et ≤ U∗ for any pseudoflow
(it is easy to see that U∗ = dtU always satisfies this property). We also require that whenever there
exists a feasible solution to the problem (that is, ei ≥ 0 for each i ∈ V − t and et > −∞), there
exists one with et ≥ −U

∗. If Γjt(ℓjt) > −∞ for each arc jt ∈ E, then U∗ = dtU also satisfies this
property. However, we allow −∞ values as in the market applications we also have logarithmic
gain functions. A bound on U∗ can be given as in Section 8.

The main result is as follows:

Theorem 2.1. For the symmetric formulation of the concave generalized flow problem, there exists
a combinatorial algorithm that finds an ε-approximate solution in O(m(m+n log n) log(MUm/ε)).
For the sink formulation, there exists a combinatorial algorithm that finds an ε-approximate solution

4

in O(m(m + n log n) log(U∗m/ε)). In both cases, the running time bound is on the number of
arithmetic operations and oracle queries.

The starting point of our investigation is the Fat-Path algorithm [12]. The first main contri-
bution is the introduction of the symmetric formulation. This is a more flexible framework, and
thus we will be able to entirely avoid cycle cancellation and use excess transportation phases only.
Our (linear) generalized flow algorithm is the first generalized flow algorithm that uses a pure scal-
ing technique, without any cycle cancellation. The key new idea here is the way ‘∆-positive’ and
‘∆-negative’ nodes are defined, maintaining a ‘security reserve’ in each node that compensates for
adjustments when moving from the ∆-scaling phase to the ∆/2-phase.

We extend the linear algorithm to the concave setting using a local linear approximation of
the gain functions, following Shigeno [35]. This approximation is motivated by the technique of
Minoux [25] and Hochbaum and Shantikumar [18] for minimum cost flows with separable convex
objectives.

3 Applications to market equilibrium and Nash-bargaining prob-

lems

Intensive research has been pursued in the last decade to develop polynomial-time combinatorial
algorithms for certain market equilibrium problems. The starting point is the algorithm for com-
puting market clearing prices in Fisher’s model with linear utilities by Devanur et al. [6], followed
by a study of several variations and extensions of this model. For a survey, see [26, Chapter 5] or
[41].

In the linear Fisher market model, we are given a set B of buyers and a set G of goods. Buyer
i has a budget mi, and there is one divisible unit of each good to be sold. For each buyer i ∈ B
and good j ∈ G, Uij ≥ 0 is the utility accrued by buyer i for one unit of good j. Let n = |B|+ |G|
and m be the number of pairs ij with Uij > 0. Let Umax = max{Uij : i ∈ B, j ∈ G} and
R = max{mi : i ∈ B}. An equilibrium solution consist of prices pi on the goods and an allocation
xij , so that (i) all goods are sold, (ii) all money of the buyers is spent, and (iii) each buyers i buys
a best bundle of goods, that is, goods j maximizing Uij/pj .

The equilibrium solutions for linear Fisher markets were described via a convex program by
Eisenberg and Gale [8] in 1959; the combinatorial algorithms for this problem and other models
rely on the KKT-conditions for the corresponding convex programs. Exact optimal solutions can
be found, since these problems admit rational optimal solutions.

max
∑

i∈B

mi log zi

zi ≤
∑

j∈G

Uijxij ∀i ∈ B (EG)

∑

i∈B

xij ≤ 1 ∀j ∈ G

z, x ≥ 0

We show that the Eisenberg-Gale convex program, along with all extensions studied so far, falls
into the broader class of convex generalized flows. Moreover, in all these extension we may replace
linear or piecewise linear concave functions by arbitrary concave ones, still solvable approximately
by our algorithm.

5

For the Eisenberg-Gale program, let us define the graph (V,E) with V = B ∪ G ∪ {t}. Let
ji ∈ E whenever j ∈ G, i ∈ B, Uij > 0, and set Γji(α) = Uijα as a linear gain function. Also,
let it ∈ E for every i ∈ B with Γit(α) = mi logα. Finally, set bj = −1 for j ∈ G, and bi = 0
for i ∈ B. The above program describes exactly the sink version of this concave generalized flow
instance with fji = xij for i ∈ B, j ∈ G and fit = zi. (To formally fit into the model, we may add
upper capacities uji = 1 and uit =

∑

j∈GUji without changing the set of feasible solutions.) Hence
our general algorithm gives an ε-approximation for this problem. In Section 8, we show that for
sufficiently small ε we can transform it to an exact optimal solution.

The flexibility of the concave generalized flow model enables various extensions. For example,
we can replace each linear function Ujiα by an arbitrary concave increasing function, obtaining the
perfect price discrimination model of Goel and Vazirani [11]. They studied piecewise linear utility
functions; our model enables arbitrary functions (although a rational optimal solution does not
necessarily exist anymore).

In the Arrow-Debreu Nash bargaining (ADNB) defined by Vazirani [41], traders arrive to the
market with initial endowments of goods, giving utility ci for player i. They want to redistribute the
goods to obtain higher utilities using Nash bargaining. The disagreement point is when everyone
keeps the initial endowment, guaranteeing her ci ≥ 0 utility. In an optimal Nash bargaining
solution we maximize

∑

i∈B log(zi− ci) over the constraint set in (EG). Unlike for the linear Fisher
model, equilibrium prices may not exist, corresponding to a disagreement solution. A sophisticated
two phase algorithm is given in [41], first for deciding feasibility, then for finding the equilibrium
solution.

The convex program for nonsymmetric ADNB can be obtained from the Eisenberg-Gale program
by modifying the first set of inequalities to zi ≤

∑

j∈GUijxij − ci. In the formulation as a concave
generalized flow, this corresponds to modifying the bi = 0 values for i ∈ B to bi = ci. Hence this
problem also fits into our framework. From this general perspective, it does not seem more difficult
than the linear Fisher model.

Nonsymmetric Nash-bargaining was defined by Kalai [22]. For ADNB, it corresponds to maxi-
mizing

∑

i∈B mi log(zi − ci) over the constraint set in (EG), for some positive coefficients mi. The
algorithm in [41] heavily relies on the assumption mi = 1, and does not extend to this more general
setting, called nonsymmetric ADNB. Finding a combinatorial algorithm for this latter problem
was left open in [41]. Another open question in [41] is to devise a combinatorial algorithm for
(nonsymmetric) ADNB with piecewise linear, concave utility functions. Our result generalizes even
further, for arbitrary concave utility functions, since the linear functions Uijα can be replaced by
arbitrary concave functions.

Let C = max ci. In Section 8, we show how our algorithm can be used to find an exact solution
to the nonsymmetric ADNB problem in time O(m(m + n log n)(n log(nUmaxR) + logC)). The
running time bound in [41] for symmetric ADNB (R = 1) is O(n8 logUmax + n4 logC).

Let us also remark that an alternative convex program for the linear Fisher market, given
by Shmyrev [36], shows that it also fits into the framework of minimum-cost circulations with
a separable convex cost function, and thus can be solved by the algorithms of Hochbaum and
Shantikumar [18] or Karzanov and McCormick [24]. Recently, [42] gave a strongly polynomial
algorithm for a class of these problems, which includes Fisher’s market with linear and spending
constraint utilities. However, this does not seem to capture perfect price discrimination or ADNB,
where no alternative formulations analogous to [36] are known.

As further applications of the concave generalized flow model, we can take single-source multiple-
sink markets by Jain and Vazirani [20], or concave cost matchings studied by Jain [19].

A distinct characteristic of the Eisenberg-Gale program and its extensions is that they are

6

rational convex programs. We may loose this property when changing to general concave spending
constraint utilities. However, for the case when the existence of a rational solution is guaranteed,
one would prefer finding an exact optimal solution. Section 8 addresses the question of rationality.
Theorem 8.1 shows that under certain technical conditions, our approximation algorithm can be
turned into a polynomial time algorithm for finding an exact optimal solution. We shall verify
these conditions for nonsymmetric ADNB.

4 Background and overview

The minimum-cost circulation problem1 is fundamental to all problems and algorithms discussed
in the paper. We give an overview in Section 4.1. We present the two main algorithmic paradigms,
cycle cancelling and successive shortest paths along with their efficient variants. As already revealed
by early studies of the problem (e.g. [28, 38]), there is a deep connection between generalized flows
and classical minimum-cost circulations: the dual structures are quite similar, and the generalized
flow algorithms stem from the classical algorithms for minimum-cost circulations. In Section 4.2,
we continue with an overview of generalized flow algorithms, exhibiting some important ideas and
their relation to minimum-cost circulations. We also exhibit here the main ideas of our algorithm
for the linear case. Section 4.3 considers a different convex extension of minimum-cost circulations,
when the linear cost function is replaced by a separable convex one. We show how the two main
paradigms extend to this case, using different approximation strategies of the nonlinear functions.
Finally in Section 4.4 we consider the concave generalized flow problem, discuss the algorithm by
Shigeno [35] and its relation to algorithmic ideas of the previous problems. We emphasize some
difficulties and outline the ideas of our solution.

4.1 Minimum-cost flows: cycle cancelling and successive shortest paths

In the minimum-cost circulation problem, given is a directed graph G = (V,E) with lower and
upper arc capacities ℓ, u : E → R∪{∞}, costs c : E → R on the arcs and node demands b : V → R

with
∑

i∈V bi = 0. Let

ei =
∑

j:ji∈E

fji −
∑

j:ij∈E

fij − bi.

f : E → R with ℓ ≤ f ≤ u is called a feasible circulation, if ei = 0 for all i ∈ V . The objective is
to minimize cT f for feasible circulations.

Linear programming duality provides the following characterization of optimality. For a feasible
circulation f , let us define the residual graph Gf = (V,Ef) with ij ∈ Ef if ij ∈ E and fij < uij, or
if ji ∈ E and ℓji < fji. The first type of arcs are called forward arcs and are assigned the original
cost cij, while the latter arcs are backward arcs assigned cost −cji. For notational convenience, we
will use fij = −fji on backward arcs. Then f is optimal if and only if Ef contains no negative
cost cycles. This is further equivalent to the existence of a feasible potential π : V → R with
πj − πi ≤ cij for all arcs ij ∈ Ef .

Two main frameworks for minimum-cost flow algorithms are as follows. In the cycle cancelling
framework (see e.g. [2, Chapter 9.6]), we maintain a feasible circulation in each phase, with strictly
increasing objective values. If the current solution is not optimal, the above conditions guarantee
a negative cost cycle in the residual graph; such a cycle can be found efficiently. Sending some flow
around this cycle decreases the objective and maintains feasibility, providing the next solution.

1We shall use the term ‘circulation’ to distinguish from other flow problems in the paper.

7

In the successive shortest path framework (see e.g. [2, Chapter 9.7]), we waive feasibility by
allowing ei > 0 or ei < 0; we call such nodes positive and negative, respectively. However, we
maintain dual optimality in the sense that the residual graph of the current pseudoflow contains
no negative cost cycles in any iteration (or equivalently, admits a feasible potential). If there exists
some positive and negative nodes, we send some flow from a positive node to a negative one using a
minimum-cost path in the residual graph. This maintains dual optimality, and decreases the total
ei value of positive nodes.

For rational input data, both these algorithms are finite, but may take an exponential number
of steps (and might not even terminate for irrational input data). Nevertheless, using (explicit
or implicit) scaling techniques, both can be implemented to run in polynomial time, and even in
strongly polynomial time.

A strongly polynomial version of the cycle cancellation algorithm is due to Goldberg and Tarjan
[13]. In each step, a minimum mean cycle is chosen. In dual terms, we relax primal-dual optimality
conditions to πj−πi ≤ cij +ε for ij ∈ Ef , with ε being equal to the negative of the minimum mean
cycle value, decreasing exponentially over time.

Polynomial implementations of the successive shortest path algorithm can be obtained by ca-
pacity scaling; the most efficient, strongly polynomial such algorithm is due to Orlin [29]. We
describe here a basic capacity scaling framework by Edmonds and Karp [7]. Instead of the residual
graph Ef , we consider the ∆-residual graph E∆

f consisting of arcs with residual capacity at least
∆ (the residual capacity is uij − fij on a forward arc ij and fji − ℓji on a backward arc). The
algorithm consists of ∆-scaling phases, with ∆ decreasing by a factor of 2 between two phases. In
a ∆-phase, we iteratively send ∆ units of flow from a positive node s with es ≥ ∆ to a negative
node t with et ≤ −∆ on a minimum-cost path in E∆

f . The ∆-phase finishes when this is no longer
possible, which means the total positive excess is at most n∆.

In the ∆-phase, πj − πi ≤ cij is maintained on arcs of the ∆-residual graph. When moving
to the ∆/2 phase, this might not hold anymore, since the ∆/2-residual graph contains more arcs,
namely the ones with residual capacity between ∆/2 and ∆. At the beginning of the next phase,
we saturate all these arcs, thereby increasing the positive excess to at most (2n + m)∆/2. This
guarantees that the next phase will consist of at most (2n +m) path augmentations.

4.2 Linear generalized flows – cycle cancelling and excess transportation

In what follows, we consider the sink version of the generalized flow problem, with sink t ∈ V . For
a pseudoflow f : E → R, let us define the residual network Gf = (V,Ef) as for circulations, with
gain factor γij = 1/γji on backward arcs. Consider a cycle C in Ef . We can modify f by sending
some flow around C from some i ∈ V (C). This leaves ej unchanged if j 6= i, and increases ei by
(γ(C)− 1)α, where γ(C) = Πe∈Cγe. If γ(C) > 1 then we call C a flow-generating cycle, while for
γ(C) < 1, a flow-absorbing cycle, since we can generate or eliminate excess at an arbitrary node
i ∈ C, respectively. The amount of flow that can be generated is of course bounded by the capacity
constraints.

To augment the excess of the sink t, we have to send the excess generated at a flow-generating
cycle C to t. Hence we call a pair (C,P) a generalized augmenting path (GAP), if (a) C is a
flow-generating cycle, i ∈ V (C), and P is a path in Ef from i to t; or (b) C = ∅, and P is a path
in Ef from some node i with ei > 0 to t. Clearly, an optimal solution f may admit no GAPs. This
is indeed an equivalence: f is optimal if and only if no GAP exists.

The gain factors γe play a role analogous to the costs ce for minimum-cost circulations. Indeed,
C is a flow generating cycle if and only if it is a negative cost cycle for the cost function ce =
− log γe. The dual structure for generalized flows is also analogous to potentials. Let us call

8

µ : V → R>0 ∪ {∞} with with µt = 1 a label function. Relabeling the pseudoflow f by µ means
dividing the flow on each arc ij going out from i by µi. We get a problem equivalent to the original
by replacing each arc gain by γµij = γijµi/µj . The labeling is called conservative if γµij ≤ 1 for all
ij ∈ Ef , that is, no arc may increase the relabeled flow.

Assume we have a conservative labeling µ so that ei = 0 whenever i ∈ V − t, µi < ∞. Let
V ′ ⊆ V denote the set of nodes from which there exists a directed path to t. It follows that
(i) µi < ∞ for all i ∈ V ′, and (ii) V ′ contains no flow-generating cycles. Consequently, given a
conservative labeling, no GAP can exist, and the converse can also be shown to hold. Note that
on V ′, πi = − log µi is a feasible potential for ce = − log γe if and only if µ is conservative.

Based on this correspondence, minimum-cost circulation algorithms can be directly applied for
generalized flows as a subroutine for eliminating all flow-generating cycles. This can be indeed
implemented in strongly polynomial time, see [31, 34]. The novel difficulty for generalized flows
is how to transport the generated excess from various nodes of the graph to the sink t. In the
algorithm of Onaga [28], flow is transported iteratively on highest gain augmenting paths, that is,
from i ∈ V with ei > 0 on an i − t path P that maximizes γ(P) = Πe∈P γe. It can be shown that
using such paths does not create any new flow generating cycles. Thus after having eliminated
all type (a) GAPs, we only have to take care of type (b). Unfortunately, this algorithm may run
in exponential time (or may not even terminate for irrational inputs). This is due to the analogy
between Onaga’s algorithm and the successive shortest path algorithm – observe that a highest
gain path is a minimum-cost path for − log γe.

The first algorithms to overcome this difficulty and thus establish polynomial running time
bounds were the two given by Goldberg, Plotkin and Tardos [12]. One of them, Fat-Path, uses
a method analogous to capacity scaling. A path P in Ef from a node i to t is called ∆-fat, if
assuming unlimited excess at i, it is possible to send enough flow along P from i to t so that et
increases by ∆.

The algorithm consists of ∆-phases, with ∆ decreasing by a factor of 2 for the next phase. In
the ∆-phase, we first cancel all flow generating cycles. Then, from nodes i with ei > 0, we transport
flow on highest gain ones among the ∆-fat paths. This might create new flow-generating cycles to
be cancelled in the next phase. Nevertheless, it can be shown that at the beginning of a ∆-phase,
e∗t − et ≤ 2(n+m)∆ for the optimum value e∗t and thus the number of path augmentations in each
∆-phase can be bounded by 2(n+m). Arriving at a sufficiently small value of ∆, it is possible to
obtain an optimal solution by a single maximum flow computation.

The basic framework of [28] and of Fat-Path, namely using different subroutines for eliminating
flow-generating cycles and for transporting excess to the sink has been adopted by most subsequent
algorithms, e.g. [14, 16, 37, 9, 32]. Among them, [16] is an almost purely scaling polynomial time
algorithm, but it still needs the an initial cycle-cancelling as in [28].

In contrast, our algorithm does not need any cycle-cancelling, and adapts Fat-Path to a pure
successive shortest paths framework. The successive shortest paths algorithms for minimum-cost
circulations start with an infeasible pseudoflow, having both positive and negative nodes. To use an
analogous method for generalized flows, we have to give up the standard framework of algorithms
where ei ≥ 0 is always maintained for all i ∈ V − t. This is the reason why we use the more flexible
symmetric model: we start with possibly several nodes having ei < 0, and our aim is to eliminate
them. An important property of the algorithm is that we always have to maintain µi = 1/Mi for
ei < 0; for this reason we shall avoid creating new negative nodes.

Similarly to Fat-Path, we use a scaling algorithm. In the ∆-phase, we consider the residual
graph restricted to ∆-fat arcs, arcs that may participate in a highest gain ∆-fat-path, and maintain
a conservative labeling µ with γµij ≤ 1 on the ∆-fat arcs. When moving to the ∆/2-phase, this

9

condition may get violated due to ∆/2-fat arcs that were not ∆-fat. Analogously to the Edmonds-
Karp algorithm, we modify the flow by saturating each violated arc and thereby restitute dual
feasibility. However, these changes may create new negative nodes and thus violate the condition
µi = 1/Mi for ei < 0 we must maintain.

We resolve this difficulty by maintaing a ‘security reserve’ of di∆µi in each node i (di is the
number of incident arcs). This gives an upper bound on the total change caused by restoring
feasibility of incident arcs in all subsequent phases. We call a node ∆-positive if ei > di∆µi,
∆-negative if ei < di∆µi and ∆-neutral if ei = di∆µi. ∆-negative nodes may become negative
(ei < 0) at a later phase, and therefore we maintain the stronger condition µi = 1/Mi for them.
We send flow from ∆-positive nodes to ∆-negative and ∆-neutral ones. Thereby we treat some
nodes with ei > 0 as sinks and increase their excess further; however, as ∆ decreases, such nodes
may gradually become sources.

For the sink version, described in Section 7, we perform this algorithm with Mi = Bn + 1 if
i 6= t and Mt = 1. We shall show that this returns an optimal solution. We remark that the highest
gain path algorithm [16] can also be modified to a purely scaling algorithm using the symmetric
formulation, that enables to start from an arbitrary non-feasible solution and thereby eliminate the
initial cycle-cancelling phase.

4.3 Minimum-cost circulations with separable convex costs

A natural and well-studied nonlinear extension of minimum-cost circulations is replacing each arc
cost ce by a convex function Ce. We are given a directed graph G = (V,E) with lower and upper
arc capacities ℓ, u : E → R, convex cost functions Ce : [ℓe, ue]→ R on the arcs, and node demands
b : V → R with

∑

i∈V bi = 0. Our aim is to minimize
∑

e∈E Ce(fe) for feasible circulations f . This
is a widely applicable framework, see [2, Chapter 14].

This is a convex optimization problem, and optimality can be described by the KKT conditions.
Let C+

e (α) denote the left derivative of Ce. As before, for a feasible circulation f define the
auxiliary graph Gf = (V,Ef). Let Cij denote the original function if ij is a forward arc and let
Cji(α) = Cij(−α) on backward arcs. f is optimal if and only if there exists no cycle C in Ef with
∑

e∈C C+
e (fe) < 0. In dual terms, f is optimal if and only if there exists a potential π : V → R

with πj − πi ≤ C+
ij (fij) for all ij ∈ Ef .

Both the minimum mean cycle cancellation and the capacity scaling algorithms can be naturally
extended to this problem with polynomial (but not strongly polynomial) running time bounds.
However, these two approaches relax the optimality conditions in fundamentally different ways.
The results [24] and [18] address much more general problems: minimizing convex objectives over
polyhedra given by matrices with bounded subdeterminants.

Cycle cancellation was adapted by Karzanov and McCormick [24]. The algorithm subsequently
cancels cycles in Ef with minimum mean value respect to the C+

e (fe) values. The only difference is
that the flow augmentation around such a cycle might be less than what residual capacities would
enable, in order to maintain

πj − πi ≤ C+
ij (fij) + ε ∀ij ∈ Ef (2)

for the current potential π and scaling parameter ε.
For capacity scaling, Hochbaum and Shanthikumar [18] developed the following framework

based on previous work of Minoux [25] (see also [2, Chapter 14.5]). The algorithm consists of
∆-phases. In the ∆-phase, each Ce is linearized with granularity ∆.

Let E∆
f denote the ∆-residual network. We will maintain ∆-optimality, that is, there exists a

10

potential π such that

πj − πi ≤
Cij(fij +∆)− Cij(fij)

∆
∀ij ∈ E∆

f . (3)

Let θ∆(ij) denote the quantity on the right hand side. If we increase flow on some arc ij by ∆ on
some ij for which equality holds, the resulting pseudoflow will remain ∆-optimal. We will always
send ∆ units of flows from a node s with es > 0 to a node t with et < 0 on a minimum-cost path
in E∆

f with respect to θ∆(ij). By the above observation, this maintains ∆-optimality.
When moving to the next scaling phase replacing ∆ by ∆/2, we change to a better linear

approximation of the Ce’s. Therefore, (3) may get violated not only because E
∆/2
f contains more

arcs than E∆
f does, but also on arcs already included in E∆

f . Yet it turns out that modifying
each fij value by at most ∆/2, (3) can be re-established. This creates new (positive and negative)
excesses of total at most m∆.

Recently, [42] gave a strongly polynomial capacity scaling algorithm for a class of objective
functions, including convex quadratic objectives, and Fisher’s market with linear and with spending
constraint utilities (based on Shmyrev’s formulation). Let us also remark that the results [24] and
[18] actually address much more general problems: minimizing convex objectives over polyhedra
given by matrices with bounded subdeterminants. The framework of [18] needs weaker assumptions
on the objective function and on the oracle.

4.4 Concave generalized flows

As we have seen, both the cycle cancelling and capacity scaling approaches for minimum-cost circu-
lations naturally extend to separable concave cost functions. Similarly, our algorithm in Section 6
for concave gain functions is a natural extension of the generalized flow algorithm in Section 5.

Nevertheless, we were not able to extend any previous generalized flow algorithm for concave
gains. Shigeno’s [35] approach was to extend the Fat-Path algorithm of [12]. However, [35] obtains
polynomial running time bounds only for restricted classes of gain functions. The algorithm consists
of two procedures applied alternately similar to Fat-Path: a cycle cancellation phase to generate
excess on cycles with positive gains, and a path augmentation phase to transport new excess to
the sink in chunks of ∆. For both phases, previous methods naturally extend: cycle cancelling is
performed analogously to [24], whereas path augmentation to [18]. Unfortunately, fitting the two
different methods together is problematic and does not yield polynomial running time.

The main reason is that the two approaches rely on fundamentally different kinds of approxima-
tion of the nonlinear gain functions. While for generalized flows, a cycle cancelling phase completely
eliminates flow generating cycles, here we can only get an approximate solution allowing some small
positive gain on cycles at termination. In terms of residual arcs, we terminate with a condition
analogous to (2) for concave cost flows. However, the path augmentation phase needs a lineariza-
tion of the gain functions analogous to (3). Notice that for ε = 0, (2) implies (3) for arbitrary ∆.
Yet if some small error ε > 0 is allowed, then no general guarantee can be given so that (3) hold
for a certain value ∆.

For this reason, our goal was to avoid using the two different frameworks simultaneously. It
turns out that our scaling based linear generalized flow algorithm (outlined in Section 4.2) smoothly
extends to this general setting. We use the local linearization θµ∆(ij) of Γij used by Shigeno, an
analogue of (3). In the ∆-phase, we consider the graph of ∆-fat arcs, and maintain θµ∆(ij) ≤ 1 on
them.

When moving from a ∆-phase to a ∆/2-phase in the linear algorithm, the only reason for
infeasibility is due to ∆/2-fat arcs that were not ∆-fat. In contrast, feasibility can be violated on
∆-fat arcs as well, as θµ∆(ij) ≤ 1 < θµ∆/2(ij) may happen due to the finer linear approximation of

11

the gain functions in the ∆/2-phase. Fortunately, feasibility can be restored in this case as well,
by changing the flow on each arc by a small amount.

5 Linear generalized flow algorithm

In this section, we investigate the symmetric formulation of the generalized flow problem. In
describing the optimality conditions, we also allow infiniteMi values to incorporate the sink version.
However, in the algorithmic parts, we restrict ourselves to finite Mi values.

We describe optimality conditions in Section 5.1. Notion and results here are well-known in
the generalized flow literature, thus we do not include references. Section 5.2 introduces ∆-fat arcs
and ∆-conservative labelings, the feasibility framework in the ∆-phase. Section 5.3 describes the
subroutine Tighten-label, an adaptation of Dijkstra’s algorithm that finds highest gain ∆-fat
paths. The main algorithm is exhibited in Section 5.4. Analysis and running time bounds are
given in Section 5.5. The final step of the algorithm is deferred to Section 5.6, where we show that
when the total relabeled excess is sufficiently small, an optimal solution can be found by a single
maximum flow computation.

5.1 Optimality conditions

Let G = (V,E) be a network with lower and upper capacities ℓ, u and node demands b. In the
sequel, we assume all lower capacities are 0. Every problem instance of symmetric generalized flows
can be simply transformed to an equivalent one in this form in the following way. For each arc
ij ∈ E, increase the node demand bi by ℓij and decrease bj by −γijℓij. Modify the lower capacity
of ij to 0 and the upper to uij − ℓij .

For a pseudoflow f , we define the residual network Gf = (V,Ef) as follows. Let ij ∈ Ef , if
ij ∈ E and fij < uij or if ji ∈ E and fji > 0. The first type of arcs are called forward arcs, while
the second type are the backward arcs. For a forward arc ij, let γij be the same as in the original
graph. For a backward arc ji, let γji = 1/γij . Also, we define fji = −γijfij for every backward
arc ji ∈ Ef . For backward arcs, the capacities are ℓji = −γjiuji and uji = 0. By increasing
(decreasing) fji by α, we mean decreasing (increasing) fij by α/γij .

Let P = i0 . . . ik be a walk in the auxiliary graph Ef . By sending α units of flow along P , we
mean increasing each fihih+1

by αΠ0≤t<hγitit+1 . We assume α is chosen small enough so that no
capacity gets violated. Note that this decreases ei0 by α, increases eik by αΠ0≤t<kγitit+1 , and leaves
the other ei values unchanged.

Let C = i0 . . . ik−1i0 be a cycle in Ef . Sending α units of flow on C from i0 modifies only ei0 ,
increasing by (γ(C)− 1)α for γ(C) = Πe∈Cγe. C is called a flow generating cycle if γ(C) > 1. On
such a cycle for any choice of i0 ∈ V (C), we can create an excess of (γ(C)− 1)α by sending α units
around (assuming that α is sufficiently small so that no capacity constraints are violated).

The pair (C,P) is called a generalized augmenting path (GAP) in the following cases:

(a) C is a flow generating cycle, i0 ∈ V (C), t ∈ V is a node with et < 0, and P is a path in Ef

from i0 to t (i0 = t, P = ∅ is possible);

(b) C = ∅, and P is a path between two nodes s and t with es > 0, et < 0;

(c) C = ∅, and P is a path between s and t with es ≤ 0, et < 0 and γ(P) = Πe∈Cγe > Ms/Mt.

Lemma 5.1. If f is an optimal solution, then no GAP exists.

12

Proof. In case (a), we can send some α > 0 units of flow around C from i0, and then send the
generated (γ(C) − 1)α excess from i0 to t along P . For sufficiently small positive value of α, this
is possible without violating the capacity constraints and it decreases the excess discrepancy. In
case (b), we can decrease the excess discrepancy at t while only decreasing a positive excess at s.
In case (c), although Msκs increases, Mtκt decreases by a larger amount.

The dual description of an optimal solution is in terms of relabelings with a label function
µ : V → R>0 ∪ {∞}. For each node i ∈ V , let us rescale the flow on all arcs ij ∈ E by µi: let
fµ
ij = fij/µi. We get a problem equivalent to the original one with relabeled gains γµij = γijµi/µj .
Accordingly, the relabeled demands, excesses, and capacities are bµi = bi/µi, eµi = ei/µi, and
uµij = uij/µi. A relabeling is conservative, if for any residual arc ij ∈ Ef , γ

µ
ij ≤ 1, that is, no arc

may increase the relabeled flow. Furthermore, for each i ∈ V , µi ≥ 1/Mi is required and equality
must hold whenever ei < 0.

We use the conventions∞·0 = 0 and∞/∞ = 0. Accordingly, if µi =∞, we define bµi = eµi = 0,
and γµji = 0 for all arcs ji ∈ Ef . If ij ∈ Ef , µi =∞ and µj <∞, then γµij =∞. Consequently, if µ
is conservative, then µi <∞ for any i ∈ V for which there exists a path in Ef from i to any node
t ∈ V with et < 0. Also, if µ is conservative, there exists no flow generating cycle on the node set
{i : µi <∞}. This is since for a cycle C, γ(C) = Πij∈Cγij = Πij∈Cγ

µ
ij .

Theorem 5.2. For a pseudoflow f , the following are equivalent.

(i) f is an optimal solution to the symmetric generalized flow problem.

(ii) Ef contains no generalized augmenting paths.

(iii) There exists a conservative relabeling µ with ei = 0 whenever 1/Mi < µi <∞.

Proof. The equivalence of (i) and (iii) is by linear programming duality, with µi being the reciprocal
of the dual variable corresponding to the inequality ei + κi ≥ 0. (i) implies (ii) by Lemma 5.1.

It is left to show that (ii) implies (iii). If the excess discrepancy is 0 (that is, ei ≥ 0 for all
i ∈ V), then µ ≡ ∞ is conservative. Otherwise, let N = {t : et < 0}. If Ef contains no directed
path from i ∈ V to N , then let µi =∞. For the other nodes i ∈ V , let µi be the smallest possible
value of 1/(γ(P)Mt) for γ(P) = Πe∈Pγe, where P is a walk in Ef starting from i and ending in a
node t ∈ N . By (ii), this is well-defined, since all cycles can be removed from a walk P without
decreasing γ(P).

µ clearly satisfies γijµi/µj ≤ 1. We shall prove µi ≥ 1/Mi for each i ∈ V and µt = 1/Mt for each
t ∈ N . If ei > 0, then no such path P may exists as it would give a type (b) GAP. Consequently,
ei = ∞. If ei ≤ 0, then µi ≥ 1/Mi as otherwise the optimal P defining µi would be a type (c)
GAP. Finally, if t ∈ N , then µt ≤ 1/Mt as the gain of the path P = ∅ is defined as 1.

5.2 ∆-conservative labels

The residual capacity of arc ij ∈ Ef is uij − fij (for a backward arc ij, this is γjifji). In contrast,
we define the fatness of ij ∈ Ef by sf (ij) = γij(uij − fij) (on backward arcs, sf (ij) = fji). The
fatness expresses the maximum possible flow increase in j if we saturate ij. This notion enables
us to identify arcs that can participite in fat paths during the algorithm. In accordance with the
other variables, the relabeled fatness is defined as sµf (ij) = sf (ij)/µj .

For the scaling parameter ∆ > 0, we define the following relaxation of conservativity. Let
µ : V → R>0 ∪ {∞} be a label function. Recall that di is the total number of arcs incident to i. A
node i ∈ V is called ∆-negative if eµi < di∆, ∆-neutral if eµi = di∆ and ∆-positive if eµi > di∆.

13

The ∆-fat graph Eµ
f (∆) is the set of residual arcs of relabeled fatness at least ∆:

Eµ
f (∆) = {ij : ij ∈ Ef : sµf (ij) ≥ ∆}.

Arcs in Eµ
f (∆) will be called ∆-fat arcs. The labeling µ is called ∆-conservative, if γµij ≤ 1 holds

for every ij ∈ Eµ
f (∆), and µi ≥ 1/Mi for all i ∈ V . Further, for every ∆-negative node i, we require

µi = 1/Mi.
Observe that no nodes with µi =∞may be present in a ∆-conservative labeling. If ∆ ≤ ∆′, then

a ∆-conservative labeling is also ∆′-conservative, and 0-conservativity is identical to conservativity.
Let Exµ(f) =

∑

i∈V max{eµi , 0} and Exµ∆(f) =
∑

i∈V max{eµi − di∆, 0} denote the total relabeled
excess and total modified relabeled excess for ∆, respecitively. Note that Exµ(f) ≤ Exµ∆(f)+2m∆.

Lemma 5.3. Let f be a pseudoflow with a ∆-conservative labeling µ. Let 0 ≤ ∆′ < ∆. Then there
exists a flow f̄ such that f̄ and µ are ∆′-conservative and Exµ∆′(f̄) ≤ Exµ∆(f) + 3m(∆ −∆′)

Proof. We shall construct f̄ by modifying f on each arc independently. For ∆-fat arcs, ∆-
conservativity guarantees γµij ≤ 1. Consider an arc ij ∈ Eµ

f (∆
′)− Eµ

f (∆), that is,

∆′ ≤ γµij(u
µ
ij − fµ

ij) < ∆

and assume γµij > 1. Let us set f̄ij = min{uij , fij +
(∆−∆′)µj

γij
}. Then ij cannot be ∆′-fat, since

either ij /∈ Ef , or γ
µ
ij(u

µ
ij − f̄µ

ij) < ∆′.

fµ
ji − f̄µ

ji = γµij(f̄
µ
ij − fµ

ij) ≤ ∆−∆′. Also, f̄µ
ij − fµ

ij ≤ ∆ −∆′ holds because of γµij > 1. We also

have to consider the possibility that ji is ∆′-fat for f̄ . In this case, conservativity is guaranteed
since γµji = 1/γµij < 1.

To complete the proof of ∆′-conservativity, we show that f̄ has no ∆′-negative nodes with
µi > 1/Mi. As we have seen, both fij and γijfij change by at most ∆−∆′. Consequently for every
i ∈ V , the total possible change of the relabeled flow on arcs incident to i is di(∆ −∆′). A node
is nonnegative for ∆ if eµi ≥ di∆ and for ∆′ if eµi ≥ di∆

′. Therefore, a nonnegative node cannot
become ∆′-negative, proving the claim.

Further, Exµ∆′(f) ≤ Exµ∆(f) +
∑

i∈V di(∆−∆′), and on each arc, at most ∆−∆′ units of new
excess is created. This gives Exµ∆′(f̄) ≤ Exµ∆(f) + 3m(∆ −∆′).

The proof also gives a straightforward algorithm for finding such an f̄ . Let Adjust(∆,∆′)
denote this subroutine. In particular, Adjust(∆, 0) finds an f̄ for which µ is a conservative
labeling. Further, if there are no ∆-negative nodes for f and µ, then f̄ is a 0-discrepancy optimal
solution.

5.3 ∆-canonical labels

An edge ij is called tight if γµij = 1, an a directed path is tight if it consists of tight arcs. Given
a pseudoflow f , a conservative labeling µ is called canonical, if for each i ∈ V with µi < ∞, there
exists a tight path in Ef from i to a negative node. Analogously, for ∆ > 0, a labeling is called
∆-canonical, if it is ∆-conservative, and for each i ∈ V there exists a tight path in Eµ

f (∆) from
i to some ∆-negative or ∆-neutral node. Such a path is a highest gain ∆-fat path as in [12].
(Note that µi < ∞ for every i ∈ V for ∆-canonical labelings, and also that paths are allowed to
end in ∆-neutral nodes, in contrast to canonical labelings.) By 0-conservative labeling we mean a
conservative one.

14

Given a ∆-conservative relabeling µ which is not canonical, Tighten-Label(f, µ,∆) replaces
µ by a ∆-canonical labeling µ′ with µ′

i ≥ µi for each i ∈ V .
We first describe Tighten-Label(f, µ, 0), when it is essentially a multiplicative interpretation

if Dijkstra’s algorithm. Let V ′ ⊆ V be the set of nodes i with a directed path in Ef from i to a
negative node. For nodes in V \ V ′, let us set µi =∞. Let S ⊆ V ′ be the set of nodes i for which
there exists a (possibly empty) tight path for the current µ to a negative node. In each step of
the algorithm, S will be extended by at least one element, and we terminate if S = V ′, when the
current relabeling is canonical.

If V ′ \ S 6= ∅, let us multiply µi for each i ∈ V ′ \ S by α defined as

α = min

{

1

γµij
: ij ∈ Ef , i ∈ V ′ \ S, j ∈ S

}

.

By the definition of S, α > 1, and after multiplying by α, at least one arc ij ∈ Ef with i ∈ V ′ \ S,
j ∈ S will become tight. Tight arcs inside S also remain tight, hence S is extended by at most one
node. Also, the choice of α guarantees that µ remains conservative.

Let us now describe Tighten-Label(f, µ,∆) for ∆ > 0. The main difference is that increasing
µi may turn a ∆-positive node into ∆-neutral. We have to stop increasing µi at this point and add
i to S. (This is in accordance with the goal that we allow tight paths to ∆-neutral nodes as well.)
In each phase of the algorithm, let S ⊆ V denote the subset of nodes that have a (possibly empty)
tight path in Eµ

f (∆) to a ∆-negative or ∆-neutral node. S is initialized as the set of ∆-negative
and ∆-neutral nodes, and is extended by at least one element per phase. The algorithm terminates
once S = V .

In every phase, we multiply µi for every i ∈ V \ S by the same factor α > 1. Consider an arc
ij ∈ Ef (∆) with i ∈ V −S, j ∈ S. This must satisfy γµij < 1. Increasing µi increases γ

µ
ij. Note that

the fatness sµf (ij) = sf (ij)/µj is not changed as it is not dependent of µi. By definition, all nodes

in V − S are ∆-positive. When increasing µi, e
µ
i decreases and therefore i may become ∆-neutral.

At this point, we have to stop to avoid creating new ∆-negative nodes. Let us define

α = min

{

min

{

1

γµij
: ij ∈ Eµ

f (∆)

}

,min

{

eµi
di∆

: i ∈ V − S

}

}

. (4)

Clearly, α > 1, and after multiplying each µi by α for i ∈ S, either we obtain a new ∆-neutral node
in V − S, or at least one arc ij ∈ Ef with i ∈ V \ S, j ∈ S will become tight. Tight arcs inside
S also remain tight, and their capacities is unchanged, hence S is extended by at most one node.
Also, the choice of α guarantees that µ remains ∆-conservative. Note that arcs with j ∈ V \S may
disappear from Eµ

F (∆) as their fatness decreases.

5.4 Description of the algorithm

The algorithm is shown on Figure 1. We start with µi = 1/Mi for every node i ∈ V , f ≡ 0 and
∆ = MB2 + 1. Once (2n + 6m)∆ < 1/Bm, then an optimal solution can be found by a single
maximum flow computation, as shown in Section 5.6. In this case we terminate.

The algorithm consists of ∆-scaling phases. During the ∆-phase, we maintain a pseudoflow f
along with a ∆-conservative labeling µ. The µi values can only increase. Let N0 denote the set
of ∆-negative and ∆-neutral nodes, and D the set of nodes i with eµi ≥ (di + 1)∆. The ∆-phase
consists of a sequence of iterations until D becomes empty. In every iteration of the algorithm, we
update µ to a ∆-canonical labeling by calling Tighten-Label(f, µ,∆). If D 6= ∅ still holds, we

15

Algorithm Symmetric Fat-Path

for i ∈ V do µi ←
1
Mi

;

for ij ∈ E do fij ← 0;
∆←MB2 + 1;
while (2n+ 6m)∆ ≥ 1/Bm do

do

Tighten-Label(f, µ,∆);
D ← {i ∈ V : ei > (di + 1)∆};
N0 ← {i ∈ V : ei ≤ di∆};
pick s ∈ D, t ∈ N connected by a tight path P ;
send ∆ units of flow along P ;

while D 6= ∅;
Adjust(∆, ∆2);

∆← ∆
2 ;

Adjust(∆, 0);
Tighten-Label(f, µ, 0);
compute a maximum flow from nodes {s ∈ V : es > 0}

to nodes {t ∈ V : et < 0} using tight arcs for µ;
return optimal primal solution f and optimal dual solution µ

Figure 1: The algorithm for symmetric linear generalized flows

pick an arbitrary s ∈ D, and send ∆ units of flow from s to some ∆-negative or ∆-neutral t ∈ N0

on a tight path P . At the end of the ∆-phase, we modify f by Adjust(∆,∆/2), and proceed to
the ∆/2-phase.

5.5 Analysis

Claim 5.4. The initial µ is ∆-conservative, and ∆-conservativity is maintained during the entire
∆-phase.

Proof. At the beginning sµf (ij) = γijuij/µj ≤ MB2 < ∆ for every ij ∈ E, and Ef contains

no backward arcs. Consequently, Eµ
f (∆) = ∅ and ∆-conservativity trivially holds. Also, µi =

1/Mi holds for every node i. Tighten-Label(f, µ,∆) clearly maintains ∆-conservativity. This
is also maintained when sending flow, as we only use tight arcs. At the end of the ∆-phase,
Adjust(∆,∆/2) transforms f to a ∆/2-conservative pseudoflow.

Claim 5.5. At the beginning of every ∆-phase, Exµ∆(f) ≤ (2n + 3m)∆.

Proof. This holds by definition in the first phase. In the first phase, Exµ∆(f) ≤ M(
∑

i∈V bi) =
MB < (2n+3m)∆. Once we finish all iterations in the ∆-phase, D = ∅ implies Exµ∆(f) ≤ n∆. In
Adjust(∆,∆/2), we increase the excess by at most 3m∆/2 (Lemma 5.3.) Hence at the beginning
of the ∆/2-phase, Exµ

∆/2
(f) ≤ (2n + 3m)∆/2, proving the claim.

Lemma 5.6. A ∆-phase consists of at most 2n+ 3m iterations.

16

Proof. Consider the potential function Ψ =
∑

i∈V ⌊max{eµi − (di + 1)∆, 0}/∆⌋. By Claim 5.5,
Ψ ≤ 2n + 3m holds at the beginning. In the relabeling steps, Ψ may only decrease, and in every
path augmentation, it decreases by exactly 1.

Theorem 5.7. The algorithm runs in O(m(m+ n log n)(m logB + logM)) time.

Proof. ∆ always decreases by a factor of 2, its initial value is MB2 and we terminate if Exµ∆(f) <
1/Bm. Hence the number of phases can be bounded by O(m logB + logM). The number of itera-
tions is O(m) by Lemma 5.6. The running time of an iteration is dominated by the Tighten-Label

step, that can be done in O(m+n log n) time following Fredman and Tarjan’s [10] implementation
of Dijkstra’s algorithm.

5.6 Moving to an optimal solution

If (2n+6m)∆ < 1/Bm at a certain iteration of the algorithm, then by Claim 5.5, Exµ(f)+3m∆ <
1/Bm holds. Next, we transform f to f̄ by Adjust(∆, 0), so that µ is a conservative labeling for
f̄ . By Lemma 5.3, Exµ(f̄) < 1/Bm follows. Then Tighten-Label(f̄ , µ,∆) transforms µ into a
canonical labeling. By the following lemma, a single maximum flow computation yields an optimal
solution. This is the standard technique how most algorithms in the literature terminate.

Lemma 5.8. Let µ be a canonical labeling for f , and let G̃f = (V, Ẽf) be the subgraph of Gf

consisting of tight arcs in Ef . If Exµ(f) < 1/Bm, then a single maximum flow computation on G̃
from source set P = {s ∈ V : es > 0, µs <∞} to sink set N = {t ∈ V : et < 0} terminates with an
optimal solution.

Proof. Consider the flow f ′ resulting after the maximum flow computation. Since flow was sent
only on tight arcs, µ is also conservative for f ′. If there are no more nodes s with eµs > 0, then by
Theorem 5.2, f ′ is optimal. Assume now P ′, the set of such nodes for f ′ is nonempty.

Let S ⊆ V be the set of nodes reachable from P ′ using tight residual arcs in Ef ′ . By optimality,
S contains no node with negative excess. If an arc ij ∈ E leaves S then either ij is saturated, that
is, f ′

ij = uij , or γij < 1 and f ′
ij = 0. Similarly, if ij ∈ E enters S, then f ′

ij = 0 must hold. Also, on
all arcs ij with i, j ∈ S, f ′

ij > 0 either γµij = 1 or f ′
ij = uij. Let F1 denote the set of such arcs with

f ′
ij < uij (and γµij = 1), and F2 the set of those with f ′

ij = uij. Therefore,

0 ≤ Exµ(f ′) =
∑

i∈S

eµi (f
′) =

∑

i∈S





∑

j:ji∈E

γµjif
′
ji
µ
−

∑

j:ij∈E

f ′
ij
µ
− bµi





=
∑

ij∈F1

(γµjif
′
ji
µ
− f ′

ji
µ
) +

∑

ij∈F2

uµij(γ
µ
ij − 1)−

∑

ij∈Ef∩δ(S)

uµij −
∑

i∈S

bµi

=
∑

ij∈F2

uij

(

γij
µj
−

1

µi

)

−
∑

ij∈Ef∩δ(S)

uij
µi
−

∑

i∈S

bi
µi

(5)

Let B∗ ≤ Bm denote the common denominator of all γij ’s. We claim that every term in the above
expression is an integer multiple of 1/B∗. Indeed, using that µ is a canonical labeling for f , there
exists a tight path from each node i to a negative node t. 1/µi is then the product of the integer
Mt and the gain factors on such a tight path and is hence an integer multiple of 1/B∗. Similarly,
every γij/µj is also an integer multiple of 1/B∗. Since the uij’s and bi’s are integers, this verifies
the claim. Consequently, 0 ≤ Exµ(f ′) ≤ Exµ(f) ≤ 1/Bm ≤ 1/B∗. This implies Exµ(f ′) = 0,
completing the proof.

17

6 Concave generalized flows algorithm

We describe the algorithm in the same structure as for the linear case: Section 6.1 presents the
optimality conditions; ∆-conservative and ∆-canonical labels are discussed in Sections 6.2 and 6.3,
respectively. Section 6.4 presents the algorithm, and Section 6.5 its analysis.

6.1 Optimality conditions

The characterization of optimality was given in [35]; we have to modify the results slightly as we
use the symmetric formulation. Let us call an arc ij ∈ E immense, if Γij(ℓij) = −∞, and other
arcs regular. First, let us transform the problem to an equivalent instance with (i) ℓ = 0 for every
arc and Γij(0) = 0 for every regular; and (ii) every gain function Γij is strictly monotone increasing
on [0, uij].

For (i), on each arc ij ∈ E, let us replace uij by uij − ℓij and ℓij by 0. If ij is a regular arc,
we modify the gain function to Γij(α+ ℓij)− Γij(ℓij), and if ij is an immense arc, to Γij(α+ ℓij).
Accordingly for every i ∈ V , let us increase bi by

∑

j:ij∈E ℓij, and decrease it by the sum of Γji(ℓji)’s
on regular arcs.

For (ii), let us define ũij = inf{p : 0 ≤ p ≤ uij ,Γij(p) = Γij(uij)}. By concavity, Γ(ũij) =
Γij(uij), and Γij(uij) is strictly monotone increasing on the interval [0, ũij]. Let us replace uij by
ũij ≤ uij.

For a pseudoflow f : E → R, we define the residual network Gf = (V,Ef) identical as for
the generalized flow setting: ij ∈ Ef if ij ∈ E and fij < uij or ji ∈ E and fji > 0. For
notational convenience, we define fji = −Γij(fij) on backward arcs. We also define the function
Γji(α) : [−Γij(uij),−Γij(0)]→ [−uij , 0] by

Γji(α) = −Γ
−1
ij (−α).

Hence Γji(fji) = −fij.

The concavity of Γij implies that for each 0 ≤ α < uij , there exists the right derivative, denoted
by Γ+

ij(α), and for 0 < α ≤ uij, there exists the left derivative Γ−
ij(α). If 0 < ∆ < ∆′, then

Γij(α+∆′)− Γij(α)

∆′
≤

Γij(α+∆)− Γij(α)

∆
≤ Γ+

ij(α), (6a)

Γij(α)− Γij(α −∆′)

∆′
≥

Γij(α) − Γij(α−∆)

∆
≥ Γ−

ij(α) (6b)

for 0 ≤ α ≤ uij and for ∆′ ≤ α ≤ uij, respectively. Furthermore, if 0 < α < α′ < uij, then
Γ+
ij(α

′) ≤ Γ−
ij(α

′) ≤ Γ+
ij(α) ≤ Γ−

ij(α). The following claim is easy verify.

Claim 6.1. For any ij ∈ E with 0 < fij < uij, Γ
+
ij(fij) = 1/Γ−

ji(fji), Γ
−
ij(fij) = 1/Γ+

ji(fji). �

Let P = i0 . . . ik be a walk in the auxiliary graph Ef . By sending α units of flow along P , we
mean the following. First we increase fi0i1 by α and set β = Γi0i1(fi0i1 + α)− Γi0i1(fi0i1) to be the
flow arriving at i1. In step h = 1, . . . , k − 1, we increase the flow on ihih+1 by β and set the new
value of β as Γihih+1

(fihih+1
+ β) − Γihih+1

(fihih+1
). We assume α is chosen small enough so that

no capacity gets violated. Let fα,P denote the modified flow.
If C = i0 . . . ik−1 is a cycle if Ef , then by sending α units of flow around C from i0 we mean

sending α units on the walk i0 . . . ik−1i0. This modifies ei only in node i0: if the flow increase from
ik−1i0 is bigger than α, then ei0 increases, and if it is smaller then it decreases. The next lemma
characterizes when ei0 can increase. For an arbitrary walk P in Ef , let Γ

+
f (P) = Πe∈PΓ

+
e (fe).

18

Lemma 6.2. Let C be a cycle in Ef with i ∈ V (C). If Γ+
f (C) > 1 then ei can be increased by

sending some flow around C. If Γ+
f (C) ≤ 1, then it is not possible to increase ei by sending any

amount of flow around C.

Since this property is independent from the choice of i, we simply say that C is a flow generating
cycle if Γ+

f (C) > 1. The lemma is an immediate consequence of the following claim.

Claim 6.3. Let P = i0i1 . . . ik be a walk in Ef . For any value of α > 0, the flow increase in ik
for fα,P is at most Γ+

f (P)α. On the other hand, for any ε > 0 there exists a δ > 0 so that for any

0 < α ≤ δ, fα,P increases eik by at least (Γ+
f (P)− ε)α.

Proof. The first part is trivial by concavity. We prove the second part by induction on the subpaths
Ph = i0 . . . ih for h = 0, . . . , k. There is nothing to prove for h = 0; assume we have already proved
it for Ph−1. We want to find a δ > 0 for some an ε > 0 satisfying the claim for Ph. First, it is
possible to pick a small enough ε∗ > 0 such that

Γ+
f (Ph)− ε < (Γ+

ih−1ih
(fih−1ih)− ε∗)(Γ+

f (Ph−1)− ε∗). (7)

By the definition of Γ+
ih−1ih

, there exists a δ∗ > 0 such that for any 0 < β ≤ δ∗,

(Γ+
ih−1ih

(fih−1ih)− ε∗)β ≤ Γih−1ih(fih−1ih + β)− Γih−1ih(fih−1ih). (8)

By induction for Ph−1 and ε∗, we can choose a small enough δ > 0 with the following properties: If
0 < α < δ, then Γ+

f (Ph−1)α ≤ δ∗, and the increase of eh−1 for fα,Ph−1 is at least β = (Γ+
f (Ph−1)−

ε∗)α. Then (7) and (8) show that for 0 < α ≤ δ, fα,P increases eih by at least (Γ+
f (P)− ε)α.

The definition of GAPs is analogous to the linear case, with the only difference that Γ+
f (P) >

Ms/Mt instead of γ(P) > Ms/Mt in case (c). The following lemma can be proved similarly as
Lemma 5.1.

Lemma 6.4. If f is an optimal solution, then no GAP may exist. �

Relabelings are also defined analogously as for generalized flows. Given µ : V → R>0∪{∞}, let
us define fµ

ij = fij/µi for each arc ij ∈ E. We get problems equivalent to the original with relabeled
functions Γµ

ij(α) = Γij(µiα)/µj . Accordingly, the relabeled demands, excesses, and capacities are
bµi = bi/µi, eµi = ei/µi, and uµij = uij/µi. A relabeling is conservative, if for any residual arc

ij ∈ Ef , Γ
µ+
ij (fµ

ij) ≤ 1, that is, no edge may increase the relabeled flow. Furthermore we require
µi ≥ 1/Mi for every i ∈ V and equality whenever ei < 0.

We use the same convention for infinite µi values as for generalized flows. If µi =∞, we define
bµi = eµi = 0, uµij = 0 for ij ∈ E, and furthermore Γµ+

ji (fµ
ji) = 0 for all arcs ji ∈ Ef . Finally, for

ij ∈ Ef with µi =∞, µj <∞, let Γµ+
ij (fµ

ij) =∞.
If µ is conservative, then if for a node i ∈ V there exists a path from i to a node t ∈ V with

et < 0, then µi <∞. The following claim is also easy to verify.

Claim 6.5. Γµ+
ij (α) = µi

µj
Γ+
ij(α), and Γµ−

ij (α) = µi

µj
Γ−
ij(α). �

This claim implies that for an s − t walk P , Γµ+
f (P) = µs

µt
Γ+
f (P), and thus for a cycle C,

Γµ+
f (C) = Γ+

f (C).

Theorem 6.6 ([35]). For a pseudoflow f , the following are equivalent.

19

(i) f is an optimal solution to the symmetric version.

(ii) Ef contains no generalized augmenting paths.

(iii) There exists a conservative labeling µ with ei = 0 whenever 1/Mi < µi <∞.

Proof. The equivalence of (i) and (iii) follows by the Karush-Kuhn-Tucker conditions, with µi being
the reciprocal of the Lagrange multiplier corresponding to ei+κi ≥ 0. (i) implies (ii) by Lemma 6.4.
The proof of (ii)⇒(iii) is the same as in Theorem 5.2, with γ(P) replaced by Γ+

f (P).

6.2 ∆-conservative labelings

We define the notion of ∆-conservative labeling analogously as in Section 5.3 for the linear case.et us
define the fatness of ij ∈ Ef by sf (ij) = Γij(uij)−Γij(fij) (if ij is a backward arc, this is equivalent
to sf (ij) = fji.) The fatness expresses the maximum possible flow increase in j if we saturate ij.
This notion enables us to identify arcs that can participite in fat paths during the algorithm. In
accordance with the other variables, the relabeled fatness is defined as sµf (ij) = sf (ij)/µj .

Consider a scaling parameter ∆ > 0. The ∆-fat graph Eµ
f (∆) is the set of residual arcs of

relabeled fatness at least ∆:

Eµ
f (∆) = {ij : ij ∈ Ef : sµf (ij) ≥ ∆}.

Arcs in Eµ
f (∆) will be called ∆-fat arcs. As in [35], we use the following linearization on ∆-fat arcs

in chunks of ∆.

θµ∆(ij) :=
∆µi

Γ−1
ij (Γij(fij) + ∆µj)− fij

ij ∈ Eµ
f (∆). (9)

This is well-defined since Γij(fij) + ∆µj ≤ Γij(uij) for ∆-fat arcs. (9) can be written equivalently
as

θµ∆(ij) =
∆

Γµ
ij
−1

(Γµ
ij(f

µ
ij) + ∆)− fµ

ij

ij ∈ Eµ
f (∆). (10)

Also, if ji is a ∆-fat arc, than using Γji(fji) = −fij and Γ−1
ji = −Γij(−α), we get

θµ∆(ji) =
∆µj

Γij(fij)− Γij (fij −∆µi)
. (11)

Consider a label function µ : V → R>0 ∪ {∞}. A node i ∈ V is called ∆-negative if eµi < di∆,
∆-neutral if eµi = di∆ and ∆-positive if eµi > di∆. The labeling µ ∆-conservative, if θµ∆(ij) ≤ 1
holds for every ij ∈ Eµ

f (∆). Furthermore, we require µi ≥ 1/Mi for all i ∈ V , with equality for
every ∆-negative node i.

Using the convexity of Γ−1, it can be shown that if µ is a ∆-conservative labeling then it is ∆′-
conservative for all ∆′ ≥ ∆. Let Exµ(f) =

∑

i∈V max{eµi , 0} and Exµ∆(f) =
∑

i∈V max{eµi −di∆, 0}
denote the total relabeled excess of positive and ∆-positive nodes, respecitively.

The key importance of ∆-conservativity is that it is maintained when sending ∆ units of flow
on arcs with θµ∆(ij) = 1. This is formulated in the next simple lemma.

Lemma 6.7. Assume µ is ∆-conservative, and let ij ∈ Eµ
f (∆) be an arc with θµ∆(ij) = 1. If we

increase fµ
ij by ∆, then Γ(fµ

ij) also increases by ∆, and ∆-conservativity is maintained.

20

Proof. θµ∆(ij) = 1 is equivalent to Γµ
ij(f

µ
ij) + ∆) = Γµ

j (f
µ
ij) + ∆, showing the first part. Let f̄ij =

fij+∆µi be the modified flow. For the second part, θµ∆(ij) ≤ 1 for f̄ij easily follows from convexity.
Further, observe (11) shows that we get θµ∆(ji) = 1 for f̄ij. This gives ∆-conservativity for the
modified flow as all other arcs are left unchanged.

In contrast to Lemma 5.3, the following claim only enables to transform a ∆-conservative
labeling can be transformed to a ∆/2-conservative one. The reason is that besides the set of
∆/2-fat arcs being larger than the ∆-fat arcs, we may have ∆-fat arcs with θµ∆(ij) ≤ 1 < θµ∆/2(ij).

Lemma 6.8. Let f be a pseudoflow with a ∆-conservative labeling µ. Then there exists a flow f̄
such that µ is ∆/2-conservative for f̄ and Exµ∆/2(f̄) ≤ Exµ∆(f) +

3
2m∆.

Proof. Consider a ∆/2-fat arc ij with θµ∆/2(ij) > 1 for f , that is,

Γ−1
ij

(

Γij(fij) +
∆

2
µj

)

− fij <
∆

2
µi. (12)

There are two possible scenarios: (a) ij was not ∆-fat, that is,

∆

2
µj ≤ Γij(uij)− Γij(fij) ≤ ∆µj, (13)

or (b) ij was also a ∆-fat arc. Then by ∆-conservativity,

Γ−1
ij (Γij(fij) + ∆µj)− fij ≥ ∆µi. (14)

In both cases, let us define

f̄ij = Γ−1
ij

(

Γij(fij) +
∆

2
µj

)

.

∆/2-fatness of ij guarantees that this is well-defined. In case (a), we claim that ij is not ∆/2-fat
for f̄ . Indeed,

Γij(uij)− Γij(f̄ij) = Γij(uij)−

(

Γij(fij) +
∆

2
µj

)

<
∆

2
µj.

The last inequality follows by the second part of (13). In case (b), we claim that if ij is a ∆/2-fat
arc for f̄ then θµ∆/2(ij) ≤ 1 must hold for f̄ . Indeed, if we subtract (12) from (14), we get

Γ−1
ij (Γij(fij) + ∆µj)− Γ−1

ij

(

Γij(fij) +
∆

2
µj

)

>
∆

2
µi,

and by substituting f̄ij, it follows that

Γ−1
ij

(

Γij(f̄ij) +
∆

2
µj

)

− f̄ij >
∆

2
µi,

that is, θµ∆/2(ij) < 1 for f̄ .

We next show that if ji is also a ∆/2-fat arc for f̄ , then θµ∆/2(ji) ≤ 1 holds for f̄ . Indeed, using

(11), θµ∆/2(ji) ≤ 1 for f̄ is equivalent to

Γij(f̄ij)− Γij

(

f̄ij −
∆

2
µi

)

≥
∆

2
µj.

21

Equivalently,

Γij(fij) +
∆

2
µj − Γij

(

f̄ij −
∆

2
µi

)

≥
∆

2
µj.

Subtracting ∆
2 µj, rearranging and applying the monotone increasing function Γ−1

ij , we get fij ≥

f̄ij −
∆
2 µi, that follows from (12) by substituting f̄ij.

We define f̄ij the above way whenever ij is a ∆/2-fat arc with θµ(ij) > 1. (As a simple
consequence of concavity, this cannot be the case for both ij and ji.) If this does not hold for
neither ij nor ji, then let f̄ij = fij. The next claim compares fij and Γ(fij) to f̄ij and Γ(fij).

Claim 6.9. |f̄µ
ij − fµ

ij| ≤
∆
2 and |Γµ

ij(f̄
µ
ij)− Γµ

ij(f
µ
ij)| ≤

∆
2 .

Proof. There is nothing to prove if f̄ij = fij. Assume fij was increased as above (the statement is
equivalent for ij and ji). The first part is identical to (12). By the definition of f̄ij ,

Γij(f̄ij)− Γij(fij) = Γij(fij) +
∆

2
µj − Γij(fij) =

∆

2
µj,

giving the second part.

For ∆/2-conservativity, we also need to show that f̄ has no ∆/2-negative nodes with µi > 1/Mi.
By the above claim, the total possible change of relabeled flow on arcs incident to i is di∆/2. A
node is nonnegative for ∆ if eµi ≥ di∆ and for ∆/2 if eµi ≥ di∆/2. Consequently, a nonnegative
node cannot become ∆/2-negative.

Finally, Exµ∆/2(f) ≤ Exµ∆(f) +
∑

i∈V di∆/2, and each arc is responsible for creating at most

∆/2 units of new excess. This gives Exµ∆/2(f̄) ≤ Exµ∆(f) +
m
2 ∆, as required.

The subroutineAdjust(∆) performs the simple modifications described in the proof (in contrast
to the linear case, this function has only one parameter).

6.3 ∆-canonical labelings

Given a pseudoflow f and a ∆-conservative labeling µ, the arc ij ∈ Eµ
f (∆) is called tight if θµ∆(ij) =

1. A directed path in Eµ
f (∆) is called tight if it consists of tight arcs. µ is a ∆-canonical labeling,

if from each node i there exists a tight path to a ∆-negative or to a ∆-neutral node. Such a path
is approximately a highest gain ∆-fat augmenting path. The subroutine Tighten-Label(f, µ,∆)
returns a ∆-canonical label µ′ ≥ µ for a ∆-conservative label µ. This is almost identical to the
algorithm described in Section 5.3. The only difference is in the definition of the multiplier α, which
is given by (4) for the linear case. Instead, we define

α = min

{

min

{

1

θµ∆(ij)
: ij ∈ Eµ

f (∆)

}

,min

{

eµi
di∆

: i ∈ V − S

}}

.

In an iteration, we multiply every µi by α for i ∈ V − S, where S is the set of nodes from which
there exists a tight path to a ∆-negative or a ∆-neutral node. We claim that as in the linear case,
this maintains ∆-conservativity, and extends S by at least one node. This is a simple consequence
of the fact that multiplying µi by α multiplies θµ(ij) by α for every incident arc ij.

To verify that µ remains ∆-conservative, we also have to check θµ∆(ij) ≤ 1 on all arcs ij ∈ E∆
f (µ),

j ∈ V − S. This follows by the convexity of Γ−1
ij .

22

Algorithm Symmetric Concave Fat-Path

for i ∈ V do µi ←
1
Mi

;

for ij ∈ E do fij ← uij;
∆←MU + 1;
while (2n+ 3m)∆ ≥ ε do

do

Tighten-Label(f, µ,∆);
D ← {i ∈ V : ei > (di + 1)∆};
N0 ← {i ∈ V : ei ≤ di∆};
pick s ∈ D, t ∈ N connected by a tight path P ;
send ∆ units of flow along P ;

while D 6= ∅;
Adjust(∆);

∆← ∆
2 ;

return ε-approximate optimal solution f .

Figure 2: The algorithm for symmetric concave generalized flows

6.4 The main algorithm

Let us initialize µi = 1/Mi for every i ∈ V , and fij = uij for every ij ∈ E. (We set the upper
bounds rather than the lower bounds 0 because Γij(0) = −∞ is allowed.) Let us pick the initial
value ∆ = MU + 1.

The algorithm consists of ∆-phases, and terminates with an ε-approximate solution if (2n +
3m)∆ < ε. During the ∆-phase, we maintain a pseudoflow f and a ∆-conservative labeling µ. The
µi values may only increase. Let D denote the set of nodes i with eµi > (di + 1)∆. The ∆-phase
consists of iterations, and terminates whenever D becomes empty. In each iteration, we update µ
to a canonical labeling by calling Tighten-Label(f, µ,∆). If D 6= ∅ still holds, send ∆ units of
relabeled flow on a tight path from some s ∈ D to a ∆-neutral or ∆-negative node t.

6.5 Analysis

Claim 6.10. The initial µ is ∆-conservative, and ∆-conservativity is maintained during the entire
∆-phase. �

Proof. Initially, f ≡ u and hence Ef is the set of backward arcs. For an arc ij ∈ E, sµ∆(ji) =
uij/µi ≤ MU < ∆, and hence Eµ

f (∆) = ∅. Also, µi = 1/Mi holds for every node i. Tighten-

Label(f, µ,∆) clearly maintains ∆-conservativity. We use only tight arcs to send flow, and
Lemma 6.7 guarantees that this preserves ∆-conservativity. At the end of the ∆-phase, Adjust(∆)
transforms f to a ∆/2-conservative pseudoflow.

Claim 6.11. The ∆-phase starts with Exµ∆(f) ≤ (2n+ 3m)∆.

Proof. For the initial solution, Exµ∆(f) ≤ M(
∑

i∈V |bi| +mU) ≤ (m + n)MU . The claim follows,
since ∆ = MU +1. Once we finish all iterations in the ∆-phase, D = ∅ implies Exµ∆(f) ≤ n∆. By

23

Lemma 6.8, Adjust(∆) transfroms f to a ∆/2-conservative solution by increasing the excess by
at most 3

2m∆. Hence the ∆/2 phase starts with Exµ∆(f) ≤ (2n + 3m)∆/2, proving the claim.

Lemma 6.12. A ∆-phase consists of at most 2n+ 3m iterations.

Proof. Consider the potential function Ψ =
∑

i∈V ⌊max{eµi − (di + 1)∆, 0}/∆⌋. By Claim 6.11,
Ψ ≤ 2n + 3m holds at the beginning. In the relabeling steps, Ψ may only decrease, and in every
path augmentation, it decreases by exactly 1.

Recall that κf =
∑

i∈V Miκi =
∑

i∈V Mimin{−ei, 0} denotes the excess discrepancy. For
a ∆-conservative µ, Miκi = eµi = holds for every node i with ei < 0, because of µi = 1/Mi.
Consequently, κf is the total relabeled deficiency of the negative nodes. The next theorem shows
that if ∆ < ε/(2n + 3m), then we have an ε-optimal solution at the end of the ∆-phase.

Theorem 6.13. At the end of phase ∆, the actual f is (2n + 3m)∆-optimal.

Proof. Let us keep running the algorithm forever unless it finds a 0-discrepancy solution at some
phase. First, consider the case when for some ∆′ = ∆/2k, we terminate with a 0-discrepancy
solution. In all phases between ∆ and ∆′ , the total decrease of excess discrepancy is bounded by
(2n+3m)(∆/2+∆/4+ . . .+∆/2k) < (2n+3m)∆. Since in the ∆′-phase we have a 0-discrepancy
solution, the total discrepancy at the end of the ∆-phase is at most (2n + 3m)∆, proving the
theorem.

Assume now the procedure runs forever. For each i ∈ V , κi is decreasing and thus converges
to some limit κ∗i . Let κ∗ =

∑

i∈V Miκ
∗
i . As above, the total decrease of the excess discrepancy

after phase ∆ is bounded by (2n + 3m)∆, hence κf ≤ κ∗ + (2n + 3m)∆. The proof finishes by
constructing an optimal pseudoflow f∗ with discrepancy κ∗.

Let f (t) denote the flow at time t, for ∆(t) = ∆0/2
t, with labels µ

(t)
i . For each node i, µ

(t)
i is

increasing; let µ∗
i = limt→∞ µ

(t)
i . For every ij ∈ E, f

(t)
ij is a bounded sequence (0 ≤ f

(t)
ij ≤ uij).

Consequently, we can choose an infinite set T ′ ⊆ N so that restricted to t ∈ T ′, all sequences f
(t)
ij

converge; let f∗
ij denote the limits. We shall prove that f∗ is an optimal pseudoflow with optimal

labeling µ∗
i , completing the proof.

Let V∞ = {i : µ∗
i = ∞}. We claim that V − V∞ 6= ∅. Indeed, if i is ∆-negative in a certain

phase, then µi = 1/Mi, and once i becomes ∆-positive or neutral, it would never again become
∆-negative. Consequently, the set of ∆-negative nodes is decreasing. Once it becomes empty, we
arrive at a 0-discrepancy solution. If it never becomes empty, then we have a set N∗ which remains
the set of ∆-negative nodes after a finite number of steps and thus µ∗

i = 1/Mi for i ∈ N∗.
Let e∗i denote the excesses of f∗ If e∗i < 0, then clearly i ∈ N∗ and µ∗

i = 1/Mi. If e∗i > 0,
we shall prove µ∗

i = ∞. For a contradiction, assume µ∗
i < ∞. Then for sufficiently large t ∈ T ′,

(di + 2n+ 3m)∆(t)µ
(t)
i < e

(t)
i and thus Exµ

∆(t)(f) > (2n+ 3m)∆(t), a contradiction.

We have to prove Γµ∗+
ij (f∗µ∗

ij) ≤ 1 whenever ij ∈ Ef∗ . If µ∗
j < ∞, then Γµ∗+

ij (f∗µ∗

ij) = 0. If
µ∗
j <∞, then the definition (9) gives

1 ≥ θµ
(t)

∆(t)(ij) =
∆(t)µ

(t)
j

Γ−1
ij (Γij(f

(t)
ij) + ∆(t)µ

(t)
j)− f

(t)
ij

·
µ
(t)
i

µ
(t)
j

.

Then ∆(t)µ
(t)
j → 0 and hence the first fraction converges to Γ+

ij(f
∗
ij) = 1/{Γ−1

ij }
+(Γ+

ij(f
∗
ij)), while

the second to µ∗
i /µ

∗
j , leading to the conclusion using Claim 6.5.

24

Theorem 6.14. The above algorithm finds an ε-approximate solution to the symmetric concave
generalized flow problem in O(m(m+ n log n) log(MUm/ε)) oracle calls.

Proof. The initial value of ∆ is MU + 1, and we terminate if ∆ < ε/(2n + 3m) by Theorem 6.13.
Hence the total number of scaling phases is O(log(MUm/ε)). The number of iterations in a phase
is O(m) by Lemma 6.12, and the running time of an iteration is dominated by Tighten-Label, a
slightly modified version of Dijkstra’s algorithm that can be implemented in O(m + n log n) time
using Fibonacci heaps as in [10]

7 Sink versions of the problems

In this section, we show how the algorithms in Sections 5 and 6 can be applied to solve the to
the sink versions of the corresponding problems. For generalized flows, let us set Mt = 1 and
Mi = Bn+1 for every i ∈ V − t. Let us set bt = ⌈

∑

j:jt∈E γjtujt−
∑

j:tj∈E ℓtj +1⌉ ≤ dtB
2+1. This

a strict upper bound on
∑

j:jt∈E γjtfjt −
∑

j:tj∈E ftj, hence et < 0 will hold for any pseudoflow.
Let us run the algorithm for the symmetric formulation with these Mi’s, returning an optimal

pseudoflow f and optimal labels µ. We claim that f is also optimal for the sink formulation. If
ei ≥ 0 for all i 6= t, this is clearly the case.

On the other hand, we claim that if there exists a node i with ei < 0, then the sink version
is infeasible. First, we show that such an i cannot be reached from t on a path in Ef . Indeed,
if P were a t–i path in Ef , then 1 ≥ γµ(P) = γ(P)µt/µi. Since both i and t are negative,
µi = 1/Mi = 1/(Bn + 1) and µt = 1. Consequently, γ(P) ≤ 1/(Bn + 1). This is a contradiction
since γ(P) is the product of at most n rational numbers, each with denominator at most B. Let
V ′ ⊆ V be the set of nodes j for which there exists a path in Ef from j to some i ∈ V − t with
ei < 0. This set verifies that the sink version cannot be feasible.

By setting the bt value and the Mi’s, B has increased to dtB
2 + 1 and M = Bn +1. This gives

running time O(m2(m+ n log n) logB).

Let us turn to concave generalized flows. An ε-approximate solution to the sink version means
a pseudoflow f with

∑

i∈V−tmax{0,−ei} ≤ ε and et being at least the optimum value minus ε.
Let us set bt = U∗ + 1, a strict upper bound on

∑

j:jt∈E Γjt(fjt) −
∑

j:tj∈E ftj (we defined U∗

in Section 2.1). Thus et < 0 is always guaranteed. Let us set Mi = ⌈2U
∗/ε⌉ + 1 if i ∈ V − t and

Mt = 1. Let us run the algorithm for the symmetric formulation to obtain an ε-optimal solution f .
If κf > 2U∗ + ε, then no feasible solution may exist. Indeed, by the definition of U∗, if there

is a feasible solution f ′, then there exists one with et ≥ −U
∗. If f ′ is such a feasible solution

for the sink formulation, then its excess discrepancy for the symmetric formulation is at most
κf ′ ≤ bi + U∗ ≤ 2U∗, a contradiction as f was ε-optimal for the symmetric formulation.

If κf ≤ 2U∗ + ε, then

∑

i∈V−t

max{0,−ei} =
1

⌈2U∗/ε⌉ + 1

∑

i∈V−t

Miκi ≤
κf

⌈2U∗/ε⌉+ 1
≤ ε.

Also κt cannot be further than ε from the optimum value of et for the sink formulation. Indeed, let
f ′ be the optimal solution to the sink formulation with e′t flow reaching the sink. Then κf ′ = bt−e′t.
The claim follows by

bt − e′t + ε = κf ′ + ε ≥ κf ≥ κt = bt − et,

and thus et ≥ e′t − ε. This gives a running time bound O(m(m+ n log n) log(U∗m/ε)).

25

8 Finding the optimal solution for rational convex programs

In this section, we first give a general theorem which shows how an approximate solution to the sink
version can be converted to an exact optimal solution, given that one exists. We shall verify the
required technical properties with appropriate parameters for nonsymmetric Arrow-Debreu Nash
bargaining. Unlike the linear Fisher model, ADNB might be infeasible. However, it can be shown
that if the problem is infeasible, then for appropriate (polynomially small) ε, the ε-approximate
version is also infeasible. Similar reductions should hold for all other rational convex programs
discussed in Section 3 as well, giving polynomial time algorithms for finding optimal solutions.

Theorem 8.1. Let problem P be given by the sink formulation with n nodes and m arcs, and
complexity parameters U , U∗. Assume P is guaranteed to have a rational optimal solution, and the
following conditions hold for some values ε, T and a function τ(n,m,U∗).

(P1) Consider the algorithm for the sink version for an ε-approximation. Then either there is
no ε-feasible solution, or µi ≤ T holds for any i ∈ V , even if running the algorithm for an
arbitrary number of phases.

(P2) A subroutine is provided for finding an optimal solution f̃ in τ(n,m,U∗) time, if the following
assumptions hold. Assume that for each ij ∈ E, we are given an interval Iij ⊆ [ℓij, uij] with
|Iij | ≤ 2Tε, with the guarantee that there exists an optimal solution f∗ with f∗

ij ∈ Iij for all
ij ∈ E.

Then there exist an algorithm for finding the exact optimal solution or proving that the problem is
infeasible in O(m(m+ n log n) log(U∗m/ε)) + τ(n,m,U∗).

We remark that in (P2), f̃ = f∗ is not required.

Proof. Let us formulate the symmetric version for ε-approximation as in Section 7. Assume we run
the algorithm for this problem forever, as in the proof of Theorem 6.13. The µj’s shall converge to
some finite values µ∗

j ≤ T . In any ∆-phase, the total change of fµ
ij is bounded by ε′ = (2n+3m)∆,

and thus fij may change by at most Tε′. Therefore all fij’s converge to some values f∗
ij, which can

be seen to give an optimal solution, as in the proof of Theorem 6.13.
The algorithm terminates whenever ∆ < ε/(2n + 3m). At this point, the intervals Iij =

[fij−Tε, fij+Tε] satisfy the conditions in (P1), since |fij−f
∗
ij| ≤ Tε. Running the ε-approximation

algorithm and then the algorithm in (P2) gives the running time bound.

To ensure property (P1), a useful method is to enforce the existence of a unique optimal
solution by perturbing the input data, as done by Orlin [30] for linear Fisher markets. If there is
a unique rational optimal solution f∗ with all entries having denominator at most Q, then setting
2Tε < 1/Q enables us to identify the set of arcs with f∗

ij > 0. This can be already enough to
compute f∗ efficiently.

8.1 Application to nonsymmetric Arrow-Debreu Nash bargaining

Let us now apply Theorem 8.1 for the nonsymmetric ADNB problem. Let us assume all utilities
Uij , budgets mi and disagreement utilities ci are nonnegative integers, with Umax = max{Uij : i ∈
B, j ∈ G}, R = max{mi : i ∈ B}, and C = max{ci : i ∈ B}. Let n = |G| + |B| and let m be the
number of pairs ij with Uij > 0; in the concave generalized flow instance, the number of nodes is
n + 1 and the number of arcs is m + |B|. Let us assume that there exists at least one arc with

26

positive utility incident to any buyer and to any good. The special case c ≡ 0 is identical to Fisher’s
market with linear utilities.

Consider a candidate solution with price pj for each good j ∈ G. Let xij ≥ 0 denote the amount
of good j purchased by buyer i. It follows from the KKT-conditions (see also [41]) that (p, x) is
an optimal solution if and only if (i)

∑

i∈B xij = 1 for each good j, that is, each good is fully sold;
and (ii) for any buyer i and good j, Uij/pj ≤ (

∑

j∈G Uijxij − ci)/mi, and equality holds whenever
xij > 0.

By strict concavity of the objective, the utilities
∑

j∈GUijxij accrued by the players are the
same in any optimal solution whenever there is a feasible solution. Yet these same values can be
obtained by different allocations. As in [30], we assume that there exist a unique optimal allocation
as well. This can be done by a lexicographic perturbation of the Uij values, without significantly
increasing the running time. This guarantees that the set of arcs with xij > 0 in an optimal solution
is cycle-free.

For the concave generalized flow instance, let us set upper capacity vji = 2 on each arc ji with
j ∈ G, i ∈ B, and vit = 2

∑

j∈GUij on each arc it (we set larger capacities so that the capacity
constraints would never become tight). Hence the complexity parameter U is bounded by 2|G|Umax.
We shall prove the following.

Theorem 8.2. Let K = nRUmax. Setting T = U∗ = max{C,nK logK}, ε = 1/(2KnU∗) satisfies
the requirements on U∗ in Section 2.1 and (P1) and (P2) in Theorem 8.1. Our algorithm delivers
an optimal solution in running time O(m(m+ n log n)(n log(nRUmax) + logC)) for nonsymmetric
ADNB.

The running time τ(n,m,U∗) will be negligible compared to the main algorithm and therefore
it does not affect the complexity bound. In the rest of the section, we shall verify the above choices.

Lemma 8.3 (see [41, Thm 2], [30, Lemma 2.1]). Assuming that the problem is feasible and there
exists a unique optimal allocation x∗, all positive x∗ij values are rational numbers with a common
denominator S ≤ Kn.

Proof. The optimal allocations x∗ and prices p∗ can be uniquely obtained given the set F of arcs
ji with x∗ij > 0. If we introduce the variable qj = 1/pj , then an optimal solution must satisfy the
following system of linear equations.

∑

j:ji∈E

xij = 1 ∀i ∈ G (15)

∑

k:ki∈E

Uikxik − Uijmiqj = ci ∀ji ∈ F

We claim that this system has a unique solution (x∗, p∗). Fixing the price of one good j0 as pj0 = α
in a component of F , it uniquely determines pj for any good j in the same component as α times
the product of the Uab values on the unique path from j0 to j. Similarly, this determines the best
bang-per-buck values bi = Uij/pj = (

∑

k:ki∈E Uikxik − ci)/mi for ji ∈ F , which are proportional
to 1/α. The optimality conditions imply that in an equilibrium, the money spent by buyer i is
ri = mi + ci/bi. In each component of F , the sum of prices should be equal to the money spent by
the buyers. This uniquely determines all prices and bang-per-buck values in the component. The
xij values in the component have to sum up to 1 for each good i and

∑

k:ki∈E Uikxik = bimi + ci.
As F is a forest, this has a unique solution.

In the solution to (15), a common denominator is the determinant S of a largest non-singular
submatrix of the constraint matrix. The Hadamard-bound gives S ≤ (nUmaxR)n = Kn, using that
|F | ≤ n− 1.

27

The above proof also gives a simple linear time algorithm for finding the optimal solution,
verifying (P2) if 2Tε < 1/Kn, with τ(n,m,U∗) being negligible compared to the running time of
the approximation algorithm.

Next we justify the choice of U∗. U ≤ U∗ clearly holds. For an arbitrary pseudoflow f ,
et ≤

∑

i∈Gmi log vit ≤ nR logU ≤ U∗. It is left to show that if the problem is feasible, there
exists a feasible solution with et > −U∗. Since the Uij and ci values are integers, whenever
∑

j:ji∈E Uijxij−ci > 0, it should be at least 1/Kn. Consequently, if the sink version of the problem

is feasible, the optimal objective value is at least et ≥
∑

i∈G mi log(1/K
n) ≥ −n2R logK ≥ −U∗.

The next claim verifies (P1) and thus completes the proof of Theorem 8.2.

Lemma 8.4. Either the problem is not feasible, or µk ≤ U∗ holds for any k ∈ B ∪G in arbitrary
∆-phase.

Proof. Recall from Section 7 that we solve the sink version by reducing it to the symmetric algorithm
with Mt = 1 and Mi = ⌈2U

∗/ε⌉ + 1. Since µi is non-decreasing, these values converge to some
limits µ∗

i ∈ R ∪ {∞}. We have 0 ≤ fij ≤ uij on all arcs ij ∈ E in every phase, and therefore we
can choose an infinite subset T ′ ⊆ N so that all fij’s converge if we restrict ourselves to iteration
numbers in T ′. As in Theorem 6.13, it can be easily verified that the limit f∗ is an optimal solution
to the symmetric version with conservative labeling µ∗.

As in Section 7, if κf > 2U∗, then the sink version is not feasible, and otherwise f∗ is also
optimal to the sink version. In the latter case, f∗

it > 0 for arbitrary i ∈ B must hold as otherwise
et = −∞ in the sink version gives infeasibility. Recall also that the symmetric version was defined
such that et < 0 holds for every feasible solution and therefore µ∗

t = 1.
Consider now an arbitrary i ∈ B. Both it, ti ∈ Ef (it is easy to verify that fit = vit is impossible),

and therefore
µ∗

i

µ∗

t

mi

f∗

it
= 1 must hold by the conservativity of µ∗. This means µ∗

i = f∗
it/mi ≤ U ≤ U∗.

Finally, let j ∈ G. Then for an arbitrary arc ji ∈ E, ji ∈ Ef easily follows, and therefore

conservativity gives
µ∗

j

µ∗

i
Uji ≤ 1, which implies µ∗

j ≤ U∗.

Finally, we remark that if we apply this algorithm to linear Fisher markets (c ≡ 0), the algorithm
runs in a fundamentally different way as [6] or [30]. While both these algorithms increase the prices,
our algorithm works the other way around: it starts with the highest possible prices, and decreases
them.

9 Discussion

We have given the first polynomial time combinatorial algorithms for both the symmetric and the
sink formulation of the concave generalized flow problem. Our algorithm is not strongly polynomial.
In fact, no such algorithm is known already for the linear case: it is a fundamental open question
to find a strongly polynomial algorithm for linear generalized flows. If resolved, a natural question
could be to devise a strongly polynomial algorithm for some class of convex generalized flow prob-
lems, analogously to the recent result [42], desirably including the market and Nash bargaining
applications.

Linear Fisher market is also captured by [42]. A natural question is if there is any direct
connection between our model and the convex minimum cost flow model studied in [42]. Despite
certain similarities, no reduction is known in any direction. Indeed, no such reduction is known
even between the linear special cases, that is, generalized flows and minimum-cost circulations. In
fact, the only known market setting captured by both is linear Fisher. Perfect price discrimination
and ADNB are not known to be reducible to flows with convex objective. In contrast, spending

28

constraint utilities [40] are not known to be captured by our model, although they are captured by
the other.

As discussed in Section 4.4, it seems difficult to extend any generalized flow algorithm having
separate cycle cancelling and flow transportation subroutines. While this includes the majority
of combinatorial algorithms, there are some exceptions. Goldberg, Plotkin and Tardos [12] gave
two different algorithms: besides Fat-Path, they also presented MCF, an algorithm that uses a
minimum-cost circulation algorithm directly as a subroutine. Hence for the concave setting, it could
be possible to develop a similar algorithm using a minimum concave cost circulation algorithm, for
example [18] or [24] as a black box.

Another approach that avoids scaling is [43] for minimum-cost generalized flows and [33] for
generalized flows: these algorithms can be seen as extensions of the cycle cancelling method, ex-
tending minimum mean cycles to GAP’s in a certain sense. While it does not seem easy, it might
be possible to develop such an algorithm for concave generalized flows as well.

In defining an ε-approximate solution for the sink version of concave generalized flows, we allow
two types of errors, both for the objective and for feasibility. A natural question is if either of
these could be avoided. While the value oracle model as we use it, seems to need feasibility error,
it might be possible to avoid it using a stronger oracle model as in [24]. One might also require a
feasible solution as part of the input, as a starting point to maintain feasibility (For example if all
lower bounds and node demands are 0 and Γij(0) = 0 on all arcs ij, then f ≡ 0 is always feasible).

Acknowledgments

The author is grateful to Vijay Vazirani for several fruitful discussions on market equilibrium
problems.

References

[1] D. P. Ahlfeld, J. M. Mulvey, R. S. Dembo, and S. A. Zenios. Nonlinear programming on
generalized networks. ACM Transactions on Mathematical Software (TOMS), 13(4):350–367,
1987.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Inc., Feb. 1993.

[3] D. P. Bertsekas, L. C. Polymenakos, and P. Tseng. An ε-relaxation method for separable
convex cost network flow problems. SIAM Journal on Optimization, 7(3):853–870, 1997.

[4] E. Cohen and N. Megiddo. New algorithms for generalized network flows. Mathematical
Programming, 64(1):325–336, 1994.

[5] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton,
1963.

[6] N. R. Devanur, C. H. Papadimitriou, A. Saberi, and V. V. Vazirani. Market equilibrium via a
primal–dual algorithm for a convex program. Journal of the ACM (JACM), 55(5):22, 2008.

[7] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network
flow problems. Journal of the ACM (JACM), 19(2):248–264, 1972.

29

[8] E. Eisenberg and D. Gale. Consensus of subjective probabilities: The pari-mutuel method.
The Annals of Mathematical Statistics, 30(1):165–168, 1959.

[9] L. K. Fleischer and K. D. Wayne. Fast and simple approximation schemes for generalized flow.
Mathematical Programming, 91(2):215–238, 2002.

[10] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network opti-
mization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

[11] G. Goel and V. V. Vazirani. A perfect price discrimination market model with production, and
a (rational) convex program for it. Mathematics of Operations Research, 36:762–782, 2011.

[12] A. V. Goldberg, S. A. Plotkin, and É. Tardos. Combinatorial algorithms for the generalized
circulation problem. Mathematics of Operations Research, 16(2):351, 1991.

[13] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling negative
cycles. Journal of the ACM (JACM), 36(4):873–886, 1989.

[14] D. Goldfarb and Z. Jin. A faster combinatorial algorithm for the generalized circulation
problem. Mathematics of Operations Research, 21(3):529–539, 1996.

[15] D. Goldfarb, Z. Jin, and Y. Lin. A polynomial dual simplex algorithm for the generalized
circulation problem. Mathematical programming, 91(2):271–288, 2002.

[16] D. Goldfarb, Z. Jin, and J. B. Orlin. Polynomial-time highest-gain augmenting path algorithms
for the generalized circulation problem. Mathematics of Operations Research, 22(4):793–802,
1997.

[17] D. Goldfarb and Y. Lin. Combinatorial interior point methods for generalized network flow
problems. Mathematical programming, 93(2):227–246, 2002.

[18] D. S. Hochbaum and J. G. Shanthikumar. Convex separable optimization is not much harder
than linear optimization. Journal of the ACM (JACM), 37(4):843–862, 1990.

[19] K. Jain. Generalized online matching with concave utilities. Unpublished manuscript, 2011.

[20] K. Jain and V. V. Vazirani. Eisenberg-gale markets: Algorithms and game-theoretic properties.
Games and Economic Behavior, 70(1):84–106, 2010.

[21] W. S. Jewell. Optimal flow through networks. Operations Research, 10:476–499, 1962.

[22] E. Kalai. Nonsymmetric Nash solutions and replications of 2-person bargaining. International
Journal of Game Theory, 6(3):129–133, 1977.

[23] S. Kapoor and P. M. Vaidya. Speeding up Karmarkar’s algorithm for multicommodity flows.
Mathematical programming, 73(1):111–127, 1996.

[24] A. V. Karzanov and S. T. McCormick. Polynomial methods for separable convex optimization
in unimodular linear spaces with applications. SIAM J. Comput., 26(4):1245–1275, 1997.

[25] M. Minoux. Solving integer minimum cost flows with separable convex cost objective polyno-
mially. Mathematical Programming Study, 25:237, 1985.

[26] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani. Algorithmic Game Theory. Cambridge
University Press New York, NY, USA, 2007.

30

[27] K. Onaga. Dynamic programming of optimum flows in lossy communication nets. IEEE
Transactions on Circuit Theory, pages 308–327, 1966.

[28] K. Onaga. Optimum flows in general communication networks. Journal of the Franklin Insti-
tute, 283(4):308–327, 1967.

[29] J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations Research,
41(2):338–350, 1993.

[30] J. B. Orlin. Improved algorithms for computing fisher’s market clearing prices. In Proceedings
of the 42nd ACM symposium on Theory of computing, pages 291–300. ACM, 2010.

[31] T. Radzik. Approximate generalized circulation. Technical Report93-2, Cornell Computational
Optimization Project, Cornell University, 1993.

[32] T. Radzik. Improving time bounds on maximum generalised flow computations by contracting
the network. Theoretical Computer Science, 312(1):75–97, 2004.

[33] M. Restrepo and D. P. Williamson. A simple GAP-canceling algorithm for the generalized
maximum flow problem. Mathematical Programming, 118(1):47–74, 2009.

[34] M. Shigeno. A survey of combinatorial maximum flow algorithms on a network with gains.
Journal of the Operations Research Society of Japan, 47:244–264, 2004.

[35] M. Shigeno. Maximum network flows with concave gains. Math. Program, 107(3):439–459,
2006.

[36] V. I. Shmyrev. An algorithm for finding equilibrium in the linear exchange model with fixed
budgets. Journal of Applied and Industrial Mathematics, 3(4):505–518, 2009.

[37] É. Tardos and K. D. Wayne. Simple maximum flow algorithms in lossy networks. In Proceedings
of IPCO, Lecture Notes in Computer Science, volume 1412, pages 310–324, 1998.

[38] K. Truemper. On max flows with gains and pure min-cost flows. SIAM Journal on Applied
Mathematics, 32(2):450–456, 1977.

[39] K. Truemper. Optimal flows in nonlinear gain networks. Networks, 8(1):17–36, 1978.

[40] V. V. Vazirani. Spending constraint utilities with applications to the Adwords market. Math-
ematics of Operations Research, 35(2):458–478, 2010.

[41] V. V. Vazirani. The notion of a rational convex program, and an algorithm for the Arrow-
Debreu Nash bargaining game. Journal of ACM (JACM), 59(2), 2012.

[42] L. A. Végh. Strongly polynomial algorithm for a class of minimum-cost flow problems with
separable convex objectives. In Proceedings of STOC, 2012. (to appear).

[43] K. D. Wayne. A polynomial combinatorial algorithm for generalized minimum cost flow.
Mathematics of Operations Research, pages 445–459, 2002.

31

	1 Introduction
	2 Problem definitions
	2.1 Complexity model

	3 Applications to market equilibrium and Nash-bargaining problems
	4 Background and overview
	4.1 Minimum-cost flows: cycle cancelling and successive shortest paths
	4.2 Linear generalized flows – cycle cancelling and excess transportation
	4.3 Minimum-cost circulations with separable convex costs
	4.4 Concave generalized flows

	5 Linear generalized flow algorithm
	5.1 Optimality conditions
	5.2 -conservative labels
	5.3 -canonical labels
	5.4 Description of the algorithm
	5.5 Analysis
	5.6 Moving to an optimal solution

	6 Concave generalized flows algorithm
	6.1 Optimality conditions
	6.2 -conservative labelings
	6.3 -canonical labelings
	6.4 The main algorithm
	6.5 Analysis

	7 Sink versions of the problems
	8 Finding the optimal solution for rational convex programs
	8.1 Application to nonsymmetric Arrow-Debreu Nash bargaining

	9 Discussion

