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Abstract

We develop rare-event simulation methodology for the analysis of loss events in a many-
server loss system under quality-driven regime, focusing on the steady-state loss probability
(i.e. fraction of lost customers over arrivals) and the behavior of the whole system leading to
loss events. The analysis of these events requires working with the full measure-valued process
describing the system. This is the first algorithm that is shown to be asymptotically optimal,
in the rare-event simulation context, under the setting of many-server queues involving a full
measure-valued descriptor.

While there is vast literature on rare-event simulation algorithms for queues with fixed number
of servers, few algorithms exist for queueing systems with many servers. In systems with single
or a fixed number of servers, random walk representations are often used to analyze associated
rare events (see for example Siegmund (1976), Asmussen (1985), Anantharam (1988), Sadowsky
(1991) and Heidelberger (1995)). The difficulty in these types of systems arises from the boundary
behavior induced by the positivity constraints inherent to queueing systems. Many-server systems
are, in some sense, less sensitive to boundary behavior (as we shall demonstrate in the basic de-
velopment of our ideas) but instead the challenge in their rare-event analysis lies on the fact that
the system description is typically infinite dimensional (measure-valued). One of the goals of this
paper, broadly speaking, is to propose methodology and techniques that we believe are applica-
ble to a wide range of rare-event problems involving many-server systems. In particular, we will
demonstrate how measure-valued description is both necessary and useful for efficient simulation.
This arises primarily from the intimate relation between the steady-state large deviations behav-
ior and the measure-valued diffusion approximation of many-server systems. As far as we know,
the algorithm proposed in this paper is the first provably asymptotically optimal algorithm (in a
sense that we will explain shortly) that involves such measure-valued descriptor in the rare-event
simulation literature.

In order to illustrate our ideas we focus on the problem of estimating the steady-state loss
probability in many-server loss systems. We consider a system with general i.i.d. interarrival times
and service times (both under suitable tail conditions). The system has s servers and no waiting
room. If a customer arrives and finds a server empty, he immediately starts service occupying a
server. If the customer finds all the servers busy, he leaves the system immediately and the system
incurs a “loss”. The steady-state loss probability (i.e. the long term proportion of customers that
are lost) is rare if the traffic intensity (arrival rate into the system / total service rate) is less
than one and the number of servers is large. This is precisely the asymptotic environment that we
consider.

Related large deviations and simulation results include the work of Glynn (1995), who developed
large deviations asymptotics for the number-in-system of an infinite-server queue with high arrival
rates. Based on this result, Szechtman and Glynn (2002) developed a corresponding rare-event
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algorithm for the same quantity of an infinite-server queue, using a sequential tilting scheme that
mimics the optimal exponential change of measure. Related results for first passage time probabili-
ties have also been obtained by Ridder (2009) in the setting of Markovian queues. Blanchet, Glynn
and Lam (2009) constructed an algorithm for the steady-state loss probability of a slotted-time
M/G/s system with bounded service time. The algorithm in Blanchet, Glynn and Lam (2009) is
the closest in spirit to our methodology here, but the slotted-time nature, the Markovian structure
and the fact that the service times were bounded were used in a crucial way to avoid the main
technical complications involved in dealing with measure-valued descriptors.

In this paper we focus on the steady-state loss estimation of a fully continuous GI/G/s system
with service times that accommodate most distributions used in practice, including mixtures of
exponentials, Weibull and lognormal distributions. A key element of our algorithm, in addition
to the use of measure-valued process, is the application of weak convergence limits by Krichagina
and Puhalskii (1997) and Pang and Whitt (2009). As we shall see, the weak convergence results
are necessary because via a suitable extension of regenerative-type simulation (see Section 2) the
steady-state loss probability of the system can be transformed to a first passage problem of the
measure-valued process starting from an appropriate set, suitably chosen by means of such weak
convergence analysis. However, unlike infinite-server system, the capacity constraint (s servers)
introduces a boundary that forces us to work with the sample path and to tract the whole process
history. We will also see that the properties (and especially “decay” behavior) of the steady-
state measure plays an important role in controlling the efficiency of the algorithm in the case of
unbounded service time. In fact, new logarithmic asymptotic results of steady-state convergence
(in the sense described in Section 4) are derived along our way to prove algorithmic efficiency.

Our main methodology to construct an efficient algorithm is based on importance sampling,
which is a variance reduction technique that biases the probability measure of the system (via a
so-called change of measure) to enhance the occurrence of rare event. In order to correct for the
bias, a likelihood ratio is multiplied to the sample output to maintain unbiasedness. The key to
efficiency is then to control the likelihood ratio, which is typically small, and hence favorable, when
the change of measure resembles the conditional distribution given the occurrence of rare event.
Construction of good changes of measure often draws on associated large deviations theory (see
Asmussen and Glynn (2007), Chapter 6). We will carry out this scheme of ideas in subsequent
sections.

The criterion of efficiency that we will be using is the so-called asymptotic optimality (or log-
arithmic efficiency). More concretely, suppose we want to estimate some probability α := α(s)
that goes to 0 as s ↗ ∞. For any unbiased estimator X of α (i.e. α = EX) one must have
EX2 ≥ (EX)2 = α2 by Jensen’s inequality. Asymptotic optimality requires that α2 is also an
upper bound of the estimator’s variance in terms of exponential decay rate. In other words,

lim inf
s→∞

logEX2

logα2
= 1.

This implies that the estimator X possesses the optimal exponential decay rate any unbiased es-
timator can possibly achieve. See, for example, Bucklew (2004), Asmussen and Glynn (2007) and
Juneja and Shahabuddin (2006) for further details on asymptotic optimality.

Finally, we emphasize the potential applications of loss estimation in many-server systems. One
prominent example is call center analysis. Customer support centers, intra-company phone systems
and emergency rooms, among others, typically have fixed system capacity above which calls would
be lost. In many situations losses are rare, yet their implications can be significant. The most
extreme example is perhaps 911 center in which any call loss can be life-threatening. In view
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of this, an accurate estimate (at least to the order of magnitude) of loss probability is often an
indispensable indicator of system performance. While in this paper we focus on i.i.d. interarrival
and service times, under mild modifications, our methodology can be adapted to different model
assumptions such as Markov-modulation and time inhomogeneity that arise naturally in certain
application environments. As a side tale, a rather surprising and novel application of the present
methodology is in the context of actuarial loss in insurance and pension funds. In such systems
the policyholders (insurance contract or pension scheme buyers) are the “customers”, and “loss”
is triggered not by an exceedence of the number of customers but rather by a cash overflow of the
insurer. Under suitable model assumptions, the latter can be expressed as a functional of the past
system history whereby the measure-valued descriptor becomes valuable. The full development of
this application is presented in Blanchet and Lam (2011).

The organization of the paper is as follows. In Section 1 we will indicate our main results
and lay out our GI/G/s model assumptions. In Section 2 we will explain and describe in detail
our simulation methodology. Section 3 will focus on the proof of algorithmic efficiency and large
deviations asymptotics, while Section 4 will be devoted to the use of weak convergence results
mentioned earlier for the design of an appropriate recurrent set. Finally, we will provide numerical
results in Section 5, and technical details are left to the appendix.

1 Main Results and Contributions

1.1 Problem Formulation and Main Results

In this subsection we describe our problem formulation, and discuss our main results. At a general
level, our main contribution in this paper is the development of methodology for efficient rare-
event analysis of the steady-state behavior of many-server systems in a quality driven regime. Our
methodology, however, is suitable for transient rare-event analysis assuming the initial condition of
the system is within the diffusion scale from the fluid limit of the system.

The main idea of our methodology is to first introduce a coupling with the infinite server queue.
Second, take advantage of a suitable ratio representation for the associated probability of interest
for the system in consideration (in our case a loss system). Third, identify a suitable regenerative-
like set based on available results in the literature on diffusion approximations for the system in
consideration. Finally, identify a rare-event of interest inside a cycle that is common to both the
system in consideration and the infinite-server system, and that has the same asymptotics as the
probability of interest. It is crucial for the last step to select the regenerative-like set carefully. We
concentrate on loss probabilities in this paper, but an almost identical (asymptotically optimal)
algorithm can be obtained for the steady-state probability of delay in a many-server queue under
the quality driven regime (when the traffic intensity is bounded away from 1 as the number of
servers and the arrival rate grow to infinity at the same rate).

Throughout the rest of the paper we concentrate on loss systems and develop the four elements
outlined in the previous paragraph for the evaluation of steady-state loss probabilities, which are
defined as

Pπ(loss) = lim
T→∞

number of losses up to T

number of arrivals up to T
. (1)

Kac’s formula (see Breiman (1968)) allows to express the loss probability as

Pπ(loss) =
EANA

λsEAτA
, (2)
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where A is a set that is visited by the chain infinitely often. The expectation EA[·] denotes the
expectation with initial state distributed according to the steady-state distribution conditioned on
being in A. The quantity NA is the number of loss before returning to set A, and τA is the time
back to A. Moreover, λs is the arrival rate (which is assumed to scale linearly with the number of
servers s; the full discussion of our scaling assumptions will be laid out in the next subsection). For
now, let us mention that both EANA and EAτA are also dependent on the parameter s because of
the scaling.

Note that (1) cannot be directly simulated, but formula (2) provides a basis for regenerative-
type simulation (see Asmussen and Glynn (2007), Chapter 4). After identifying a recurrent set A, a
straightforward crude Monte Carlo strategy would be to run the system for a long time from some
initial state, take a record of NA and τA every time it hits A, and output the sample means of NA

and τA. This strategy is valid as long as the running time is long enough to allow for the system
to be close to stationarity. Moreover, this strategy is basically the same as merely outputting the
number of loss events divided by the run time times λs (excluding the uncompleted last A-cycle).

However, recognizing that loss is a rare event (with exponential decay rate in s as we will show
as a by-product of our analysis), this method will take an exponential amount of time in s to get
a specified relative error. This is regardless of the choice of A: if A is large, it takes short time
to regenerate i.e. τA is small, and consequently the number of losses reported as the numerator
EANA of (2) is almost always zero; whereas if A is small, it takes a long time to regenerate. In
order to dramatically speed up the computation time, our strategy is the following. We choose A
to be a “central limit” set so that EAτA is not exponentially large in s (and not exponentially small
either; see Section 2.1). This isolates the rarity of loss to the numerator EANA. In other words, it
is very difficult for the process to reach overflow in an A-cycle. The key, then, is to construct an
efficient importance sampling scheme to induce overflow and to estimate the number of losses in
each A-cycle.

We point out two practical observations using this approach: First, τA and NA can be estimated
separately i.e. one can “split” the process every time it hits A: one of which we apply importance
sampling to get one sample of NA and is then discarded, to the other one we apply the original
measure to get one sample of τA and also set the initial position for the next A-cycle (see Asmussen
and Glynn (2007), Chapter 4). Secondly, to get an estimate of standard deviation one has to use
batch estimates since the samples obtained this way possess serial correlations (Asmussen and Glynn
(2007), Chapter 4). In other words, one has to divide the simulated chain into several segments
of equal number of time units. Then an estimate of the steady-state loss probability is computed
from each chain segment. These estimates are regarded as independent samples of loss probability.
The details of batch sampling will be provided in Section 5 when we discuss numerical results.

We summarize our approach as follows:

Algorithm 1

1. Choose a recurrent set A. Initialize the GI/G/s queue’s status as any point in A.

2. Run the queue. Each time the queue hits a point in A, say x, do the following: Starting from
x,

(a) Use importance sampling to sample one NA, the number of loss in a cycle.

(b) Use crude Monte Carlo to sample one τA, the return time. The final position of this
queue is taken as the new x.
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3. Divide the queue into several segments of equal time length. Compute the estimate of steady-
state loss probability using the batch samples.

The main result of this paper is the construction and the asymptotic optimality proof of an
efficient importance sampling scheme together. In order to show the optimality of the algorithm, on
our way, we obtain large deviations asymptotics for loss probabilities that might be of independent
interest.

Theorem 1. The estimator using the recurrent set A in (10) and the importance sampler given by
Algorithm 2 is asymptotically optimal. Moreover, the steady-state loss probability (2) can be seen
to be exponentially decaying in s with decay rate I∗ defined in (19).

An important novel feature of the problem we consider (and our solution) is that it requires a
construction based on full measure-valued processes. Intuitively, the steady-state loss probability of
the GI/G/s system depends on its loss behavior starting from a “normal” or “typical” state under
stationarity (which comes from a diffusion limit). It turns out that the loss behavior can vary
substantially if one defines this initial “normal” state only through the system’s queue length (even
though loss event is defined only through the queue length). However, by defining the “normal”
state through the whole description of the system (which requires a measure) the loss behavior
starting from this measure-valued state is characterized by a natural optimal path in the large
deviations sense, and as a result we can identify the efficient importance sampling scheme to induce
such losses. These observations ultimately translate to the need of a measure-valued recurrent set
A in the simulation of EANA in (2).

We next point out two further methodological observations. First, our importance sampling
algorithm utilizes the representation of a (coupled) GI/G/∞ as a point process. This point pro-
cess representation, we believe, can also be used to prove results on sample path large deviations
for many-server systems; such development will be reported in Blanchet, Chen and Lam (2012).
Secondly, our algorithm requires essentially the information of the whole sample path of the system
due to a randomization of time horizon, in contrast to the algorithm proposed in Szechtman and
Glynn (2002) for estimating fixed-time probability.

Finally, the recurrent set A, given by (10), can be seen to possess the following properties:

Proposition 1. In the GI/G/s system,

lim
s→∞

1

s
logEAτ

p
A = 0 (3)

and

lim sup
s→∞

1

s
logEAN

p
A ≤ 0 (4)

for any p > 0.

Briefly stated, Proposition 1 stipulates that any moments of the time length and number of
losses of an A-cycle are subexponential in s. When p = 1, it in particular states that the expected
time length of a cycle is subexponential in s. As discussed above, this isolates the rarity of loss to
the numerator in (2) and ensures the validity of Algorithm 1. The result on general p in Proposition
1 is also used in the optimality proof of the importance sampling (as will be seen in Section 3).
Interestingly, the proof of Proposition 1 requires the use of the Borell-TIS inequality for Gaussian
random fields. The connection to Gaussian random fields arises in the diffusion limit of the coupled
GI/G/∞ queue.
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1.2 Assumptions on Arrivals and Service Time Distribution

We now state the assumptions of our model, namely a GI/G/s loss system. There are s ≥ 1
servers in the system. We assume arrivals follow a renewal process with rate λs i.e. the interarrival
times are i.i.d. with mean 1/(λs). More precisely, we introduce a “base” arrival system, with
N0(t), t ≥ 0 as its counting process of the arrivals from time 0 to t, and U0

k , k = 0, 1, 2, . . . as the
i.i.d. interarrival times with EU0

k = 1/λ (except the first arrival U0
0 , which can be delayed). We

then scale the system so that Ns(t) = N0(st) is the counting process of the s-th order system,
and Uk = U0

k/s, k = 0, 1, 2, . . . are the interarrival times. Moreover, we let Ak, k = 1, 2, . . . be the

arrival times i.e. Ak =
∑k−1

i=0 Ui (note the convention Uk = Ak+1 − Ak and A0 = 0). Note that for
convenience we have suppressed the dependence on s in Uk and Ak.

We assume that Uk has exponential moments in a neighborhood of the origin, and let κs(θ) =
logEeθUk be the logarithmic moment generating function of Uk. It is easy to see that κs(θ) = κ0(θ/s)
where κ0(θ) = logEeθU

0
k is the logarithmic moment generating function of the interarrival time in

the base system.
Since κ0(·) is increasing, we can let

ψN (θ) = −
(
κ0
)−1

(−θ) (5)

where
(
κ0
)−1

(·) is the inverse of κ0(·). Note that κ−1
s (θ) = s

(
κ0
)−1

(θ). Also, ψN (·) is increasing
and convex; this is inherited from κ0(·).

Now we impose a few assumptions on ψN (·). First, we assume Dom ψN ⊃ R+ (that Dom ψN ⊃
R− is obvious from the definition of ψN (·)), and hence Dom ψN = R. We also assume that ψN (·) is
twice continuously differentiable on R, strictly convex and steep on the positive side i.e. ψ′N (θ)↗∞
as θ ↗∞. Thus ψ′N (0) = λ and ψ′N (R+) = [λ,∞). Finally, we insist the technical condition

θ
d

dθ
logψN (θ)→∞ (6)

as θ ↗∞. This condition is satisfied by many common interarrival distributions, such as exponen-
tial, Gamma, Erlang etc. (Its use is in Lemma 4 as a regularity condition to prevent the blow-up
of likelihood ratio due to sample paths that hit overflow very early).

Under these assumptions we have for any 0 = t0 < t1 < · · · < tm <∞ and θ1, . . . , θm ∈ Dom ψN ,

1

s
logE exp

{
m∑
i=1

θi(Ns(ti)−Ns(ti−1))

}
→

m∑
i=1

ψN (θi)(ti − ti−1) (7)

as s↗∞. In particular, ψN (·)t is the so-called Gartner-Ellis limit of Ns(t) for any t > 0 as s↗∞.
See Glynn and Whitt (1991) and Glynn (1995). In the case of Poisson arrival, for example, the
interarrival times are exponential and we have κ(θ) = log(λ/(λ− θ)). This gives ψN (θ) = λ(eθ − 1)
and Dom ψN = R.

We now state our assumptions on the service times. Denote Vk as the service time of the
k-th arriving customer, and let Vk, k = 1, 2, . . . be i.i.d. with distribution function F (·) and tail
distribution function F̄ (·). We assume that F (·) has a density f(·) that satisfies

lim
y→∞

yh(y) =∞ (8)

where h(y) = f(y)/F̄ (y) is the hazard rate function (with the convention that h (y) =∞ whenever
F̄ (y) = 0). In particular, (8) implies that for any p > 0 we can find a > 0 such that yh(y) > p as
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long as y > a. Hence,

F̄ (y) = e−
∫ y
0 h(u)du ≤ c1e

−
∫ y
a
p
u
du =

c2

yp
(9)

for some c1, c2 > 0. In other words, F̄ (·) decays faster than any power law. It is worth pointing out
that assumption (8) covers Weibull and log-normal service times, which have been observed to be
important models in call center analysis (see e.g. Brown et al (2005)).

Note that service time distribution does not scale with s. Hence the traffic intensity, defined
by the ratio of arrival rate to service rate, is λEV (we sometimes drop the subscript k of Vk for
convenience). We assume that λEV < 1. This corresponds to a quality-driven regime and implies
that loss is rare. We will see the importance of this assumption in our derivation of efficiency and
large deviations results in Section 3.

1.3 Representation of System Status

Let Q(t) be the number of customers in the GI/G/s system at time t. More generally, we let
Q(t, y) to be the number of customers at time t who have residual service time larger than y,
where residual service time at time t for the k-th customer is given by (Vk +Ak − t)+ (defined for
customers that are not lost). We also keep track of the age process B(t) = inf{t − Ak : Ak ≤ t}
i.e. the time elapsed since the last arrival. We assume right-continuous sample path i.e. customers
who arrive at time t and start service are considered to be in the system at time t, while those who
finish their service at time t are outside the system at time t. We also make the assumption that
service time is assigned and known upon arrival of each served customer. While not necessarily
true in practice, this assumption does not alter any output from a simulation point of view as far
as estimation of loss probabilities is concerned. To insist on a Markov description of the process,
we let Wt = (Q(t, ·), B(t)) ∈ D[0,∞) × R+ as the state of the process at time t. In the case of
bounded service time over [0,M ] the state-space is further restricted to D[0,M ]× R+.

1.4 A Coupling GI/G/∞ System

As indicated briefly before, in multiple times in this paper we shall use a GI/G/∞ system that is
naturally coupled with the GI/G/s system under the above assumptions. This GI/G/∞ system
has the same arrival process and service time distribution as the GI/G/s system but has infinite
number of servers and thus no loss can occur. Furthermore, it labels s of its servers from the
beginning. When customer arrives, he would choose one of the idle labeled servers in preference
to the rest, and only choose unlabeled server if all the s labeled servers are busy. It is then easy
to see that the evolution of the GI/G/∞ system restricted to the s labeled servers follows exactly
the same dynamic of the GI/G/s system that we are considering. The purpose of introducing this
system is to remove the nonlinear “boundary” condition on the queue, hence leading to tractable
analytical results that we can harness, while the coupling provides a link from this system back to
the original GI/G/s system. In this paper we shall use the superscript “∞” to denote quantities
in the GI/G/∞ system, so for example Q∞ (t) denotes the number of customers at time t for the
GI/G/∞ system, and so on.

Throughout the paper we also use overline to denote quantities that exclude the initial cus-
tomers. So for example Q̄∞(t, y) denotes the number of customers who arrive after time 0 in
the GI/G/∞ system and are present at time t having residual service time larger than y i.e.
Q̄∞(t, y) = Q∞(t, y)−Q∞(0, t+ y).
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2 Simulation Methodology

As we have discussed, two key issues in our algorithm are the choice of recurrent set and the
importance sampling algorithm. We will present them in detail in Section 2.1 and Section 2.2
respectively.

2.1 Recurrent Set

First of all, note that one can pick T = n∆ for some ∆ > 0 in the definition of loss probability
given by equation (1) and send n→∞. The introduction of the lattice of size ∆ is useful to define
return times to the set A only at lattice points. So, let us pick a fixed small time interval ∆ (one
choice, for example, is say 1/5 of the mean of service time). We choose A to be

A = {Q(t, y) ∈ J(y) for all y ∈ [0,∞), t ∈ {0,∆, 2∆, . . .}} . (10)

Here J(y) is the interval

J(y) =

(
λs

∫ ∞
y

F̄ (u)du−
√
sC∗ξ(y), λs

∫ ∞
y

F̄ (u)du+
√
sC∗ξ(y)

)
(11)

for some well chosen constant C∗ > 0 (discussed in Remark 1 below and in Section 4) and

ξ(y) = ν(y) + γ

∫ ∞
y

ν(u)du (12)

where

ν(y) =

(
λ

∫ ∞
y

F̄ (u)du

)1/(2+η)

(13)

with any constants η, γ > 0.
The form of J(y) comes from the heavy traffic limit of GI/G/∞ queue. Pang and Whitt

(2009) proved the fluid limit Q∞(t, y)/s → λ
∫ t+y
y F̄ (u)du a.s. and the diffusion limit (Q∞(t, y) −

λs
∫ t+y
y F̄ (u)du)/

√
s ⇒ R(t, y) for some Gaussian process R(t, y) on the state space D[0,∞) with

var(R(t, y))→ λc2
a

∫∞
y F̄ (u)2du+λ

∫∞
y F (u)F̄ (u)du as t→∞, where ca is the coefficient of variation

of the interarrival times. Our recurrent set A is thus a “confidence band” of the steady state of
Q∞(t, y), with the width of the confidence band decaying slower than the standard deviation of
Q∞(∞, ·). It can be proved (see Proposition 1) that this choice of A indeed leads to a return time
that is subexponential in s. The slower decay rate of the confidence band width is a technical
adjustment to enlarge A so that a subexponential (in s) return time for the GI/G/∞ system is
guaranteed. In fact, for the case of bounded service time, it suffices to set η = 0.

Remark 1. The interval J(y) contains a non-negative integer for any value of y if C∗ is chosen
large enough. In fact, observe that the length of J(y) is continuous and decreasing in y, and let

l(s) = sup

{
y > 0 :

√
sC∗ξ(y) ≥ 1

2

}
. (14)

If y is such that the width of J(y) is equal to 1 (equivalently y = l(s)) we have that the center of
J (y), namely λs

∫∞
y F̄ (u)du satisfies

0 ≤ λs
∫ ∞
y

F̄ (u)du ≤ (λ/(C∗)2+η)(
√
sC∗ξ(y))2+η/sη/2 = (λ/(C∗)2+η)(1/2)2+η/sη/2.
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The right hand side is less than 1/2 for (C∗)2+η ≥ λ and this implies that {0} ⊂ J (y) for y = l (s).
Now, if y > l (s), we can ensure that the half-width of J(y), namely

√
sC∗ξ(y), is larger than the

center, if C∗ is chosen sufficiently large. To see this, note that a sufficient condition is that

λs

∫ ∞
y

F̄ (u)du ≤
√
sC∗

(
λ

∫ ∞
y

F̄ (u)du

)1/(2+η)

which is equivalent to

s1/2

(∫ ∞
y

F̄ (u)du

)(1+η)/(2+η)

≤ C∗λ−(1+η)/(2+η)

or

s(1+η/2)/(1+η)

∫ ∞
y

F̄ (u)du ≤ (C∗)(2+η)/(1+η) λ−1

Now, choosing C∗ ≥ max (λ, 1), we have, for y > l(s),

s(1+η/2)/(1+η)

∫ ∞
y

F̄ (u)du ≤ s1+η/2

∫ ∞
y

F̄ (u)du ≤ 1/(C∗)2+η(1/2)2+η ≤ (C∗)(2+η)/(1+η) λ−1

which gives the required implication. So {0} ⊂ J (y) for y > l (s). Obviously it includes at least one
point when y < l(s) (because the width of J (y) is larger than 1). Therefore J(y) always contains a
non-negative integer for any y ≥ 0, and the recurrent set A is hence well-defined.

Remark 2. One may ask whether it is possible to define A in a finite-dimensional fashion, instead
of introducing the functional “confidence band” in (10). For example, one may divide the the
domain of y into segments [yi, yi+1), i = 0, 1, 2, . . . , r(s) − 1 for some integer r(s) with y0 = 0 and
yr(s) = ∞, where the length of each segment can be dependent on s and non-identical. One then
define the recurrent set as {Q(t, ·) : Q(t, yi)−Q(t, yi+1) ∈ Ai for i = 0, . . . , r(s)− 1} for some well-
defined sets Ai’s. As we will see in the arguments in the subsequent sections, the important criteria
of a good recurrent set is: 1) it consists of a significantly large region in the central limit theorem,
so that it is visited often enough, 2) its deviation from the mean of Q(t, y) is small, in the sense that
the distance between any element in this recurrent set and the mean of the steady-state of Q(t, y),
at every y ∈ [0,∞), has order o(s). Criterion 2) is important, otherwise the large deviations of loss
starting from two different elements in the recurrent set can be substantially different. We want to
avoid having to consider several substantially different paths that can contribute to the loss event in
a significant way as having such variability would complicate the design of the importance sampling
estimator.

Keeping criterion 2) in mind, we conclude that it is important to fine-tune the scale of the
segments [yi, yi+1) to preserve the efficiency of the algorithm. This suggests that a reasonable de-
scription of the recurrent set would involve a dimension that grows at a suitable rate as s → ∞,
thereby effectively obtaining a set of the form that we propose. The functional definition of A in
(10) happens to balance both criteria 1) and 2).

2.2 Simulation Algorithm

First we shall explain some heuristic in constructing the algorithm. As we discussed earlier, the
choice of A isolates the rarity of steady-state loss probability to EANA, which in turn is small because
of the difficulty in approaching overflow from A. So on an exponential scale, EANA ≈ PA(τ s < τA),
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where PA(·) is the probability measure with initial state distributed as the steady-state distribution
conditional on A, and τ s = inf{t > 0 : Q(t) > s} is the first passage time to overflow. Observe
that the probability PA(τ s < τA) is identical for GI/G/s and the coupled GI/G/∞ system since
the systems are identical before τ s. The key idea is to leverage our knowledge of the structurally
simpler GI/G/∞ system. In fact, one can show that the greatest contribution to PA(τ s < τA) is
the probability PA(Q∞(t∗) > s) for some optimal time t∗, whereas the contribution by other times
is exponentially smaller.

In view of this heuristic, one may think that the most efficient importance sampling scheme is to
exponentially tilt the process as if we are interested in estimating the probability PA(Q∞(t∗) > s).
However, doing so does not guarantee a small “overshoot” of the process at τ s. Instead, we introduce
a randomized time horizon following the idea of Blanchet, Glynn and Lam (2009). The likelihood
ratio will then comprise of a mixture of individual likelihood ratios under different time horizons,
and a bound on the overshoot is attained by looking at the right horizon (namely dτ se as explained
in Section 3).

Hence our algorithm will take the following steps. Suppose we start from some position in
A. First we sample a randomized time horizon with some well-chosen distribution. Then we tilt
the coupled GI/G/∞ process to target overflow over this realized time horizon i.e. as if we are
estimating PA(Q∞(t) > s) for the realized time horizon t. This involves sequential tilting of both
the arrivals and service times. Once overflow is hit, we switch back to the GI/G/s system, drop the
lost customers, and change back to the arrival rate and service times under the original measure
to run the GI/G/s system until A is reached. At this time one sample of NA is recorded together
with the likelihood ratio.

The key questions now are: 1) the sequential tilting scheme of arrivals and service times given
a realized time horizon 2) the distribution of the random time 3) likelihood ratio of this mixture
scheme. In the following we will explain these ingredients in detail and then lay out our algorithm.
The proof of efficiency will be deferred to Section 3.

2.2.1 Sequential Tilting Scheme

Denote Pr(·) and Er[·] as the probability measure and expectation with initial system status r.
Suppose we want to estimate Pr(Q

∞(t) > s) efficiently for a GI/G/∞ system as s ↗ ∞, where
r(·) ∈ J(·) ⊂ D[0,∞) (so that r(y) is the number of initial customers still in the system at time
y). An important clue is an invocation of Gartner-Ellis Theorem (see Dembo and Zeitouni (1998))
to obtain large deviations result. Although this may not give an immediate importance sampling
scheme, it can suggest the type of exponential tilting needed that can be verified to be efficient.
This is proposed by Glynn (1995) and Szechtman and Glynn (2002), which we briefly recall here.

To be more specific, let us introduce more notations. Let, for any t > 0,

ψt(θ) :=

∫ t

0
ψN (log(eθF̄ (t− u) + F (t− u)))du (15)

This is the Gartner-Ellis limit (see for example Dembo and Zeitouni (1998)) of Q̄∞(t) since

1

s
logEeθQ̄

∞(t) =
1

s
logE exp

θ
Ns(t)∑
i=1

I(Vi > t−Ai)

→
∫ t

0
ψN (log(eθF̄ (t− u) + F (t− u)))du

where I(·) is the indicator function (see Glynn (1995) for a proof. It uses (7) and the definition of
Riemann sum; alternatively, see Lemma 6 in Section 3 as a generalization of this result). Let us
state the following properties of ψt(·) for later convenience:
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Lemma 1. ψt(·) is defined on R, twice continuously differentiable, strictly convex and steep.

Next let at = 1−λ
∫∞
t F̄ (u)du. Note that ats+o(s) is the number of customers needed excluding

the initial ones to reach overflow at time t. In other words,

Pr(Q
∞(t) > s) = P (Q̄∞(t) > ats+ o(s)) (16)

Now denote θt as the unique positive solution of the equation ψ′t(θ) = at. Such solution exists
because ψt(·) is steep and that at = 1 − λ

∫∞
t F̄ (u)du > λ

∫ t
0 F̄ (u)du = ψ′t(0). Then under our

current assumptions Gartner-Ellis Theorem concludes that (1/s) logPr(Q
∞(t) > s)→ −It where

It = sup
θ∈R
{θat − λt(θ)} = θtat − ψt (θt) (17)

It is the so-called rate function of Q̄∞(t) evaluated at at.
At this point let us note the following properties of θt and It when regarded as functions of t:

Lemma 2. θt satisfies the following:

1. θt > 0 is non-increasing in t for all t > 0

2. limt→0 θt =∞

3. limt→∞ θt = θ∞ where θ∞ is the unique positive root of the equation ψ′∞(θ) = 1, and

ψ∞(θ) =

∫ ∞
0

ψN (log(eθF̄ (u) + F (u)))du (18)

Lemma 3. It satisfies the following:

1. It is non-increasing in t for t > 0.

2. limt→∞ It = inft>0 It = I∗ where

I∗ = θ∞ − ψ∞(θ∞) (19)

3. If V has bounded support over [0,M ], then I∗ = It for any t ≥M .

To construct an implementable efficient importance sampling scheme, one can look at the deriva-
tive of ψt (θ):

ψ′t(θ) =

∫ t

0
ψ′N (log(eθF̄ (t− u) + F (t− u)))

eθF̄ (t− u)

eθF̄ (t− u) + F (t− u)
du

which is the mean of Q̄∞(t) under the exponential change of measure with parameter θ. When
θ = 0, ψ′t(0) =

∫ t
0 ψ
′
N (0)F̄ (t− u)du = λ

∫ t
0 F̄ (t− u)du. Comparing with ψ′t(θt) suggests a build-up

of the system by accelerating the arrival rate from λ to ψ′N (log(eθtF̄ (t − u) + F (t − u))) at time
u and changing the service time distributions such that the probability for an arrival at time u to
stay in the system at time t is given by eθtF̄ (t − u)/(eθtF̄ (t − u) + F (t − u)). Denote P̃ t(·) and
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Ẽt[·] as the probability measure and expectation under importance sampling. The above changes
can be achieved by setting an exponential tilting of the i-th interarrival time Ui by

P̃ t(Ui ∈ dy)

= exp{κ−1
s (− log(eθtF̄ (t−Ai) + F (t−Ai)))y − κs(κ−1

s (− log(eθtF̄ (t−Ai) + F (t−Ai))))}
P (Ui ∈ dy)

= e−sψN (log(eθt F̄ (t−Ai)+F (t−Ai)))y(eθtF̄ (t−Ai) + F (t−Ai))P (Ui ∈ dy)

given the i-th arrival time Ai (recall the convention Ui = Ai+1 − Ai), and for an arrival at Ai its
tilted service time distribution follows

P̃ t(Vi ∈ dy) =


f(y)

eθt F̄ (t−Ai)+F (t−Ai)
for 0 ≤ y ≤ t−Ai

eθtf(y)
eθt F̄ (t−Ai)+F (t−Ai)

for y > t−Ai

The contribution to likelihood ratio P (·)/P̃ t(·) by each arrival and service time assignment is ac-
cordingly (using slight abuse of notation)

P (Ui)

P̃ t(Ui)
=
esψN (log(eθt F̄ (t−Ai)+F (t−Ai)))Ui

eθtF̄ (t−Ai) + F (t−Ai)
(20)

and
P (Vi)

P̃ t(Vi)
=
eθtF̄ (t−Ai) + F (t−Ai)

eθtI(Vi>t−Ai)
(21)

We tilt the process using (20) and (21) until the time that we know overflow will happen at time

t i.e. t ∧ τ s[t] where τ s[t] = inf{u > 0 : r(t) +
∑Ns(u)

i=1 I(Vi > t − Ai) > s}. The overall likelihood
ratio on the set Q∞(t) > s will be

L =

Ns(τs[t])−1∏
i=1

esψN (log(eθt F̄ (t−Ai)+F (t−Ai)))

eθtF̄ (t−Ai) + F (t−Ai)

Ns(τs[t])∏
i=1

eθtF̄ (t−Ai) + F (t−Ai)
eθtI(Vi>t−Ai)

= exp

s
Ns(τs[t])−1∑

i=1

ψN (log(eθtF̄ (t−Ai) + F (t−Ai)))Ui − θt
Ns(τs[t])∑
i=1

I(Vi > t−Ai)


(eθtF̄ (t−Aτs[t]) + F (t−Aτs[t])) (22)

This estimator LI(Q∞(t) > s) can be shown to be asymptotically optimal in estimating Pr(Q
∞(t) >

s):

Proposition 2.

lim sup
s→∞

1

s
log Ẽtr[L

2;Q∞(t) > s] ≤ −2It

Proof. The proof follows from Szechtman and Glynn (2002), but for completeness (and also due
to our introduction of τ s[t] that simplifies the argument in their paper slightly) we shall present it
here.

Note that
∑Ns(τs[t])

i=1 I(Vi > t−Ai) = s+ 1− r(t) = ats+ o(s) by the definition of τ s[t] and r(t).
Also, eθtF̄ (t−Aτs[t]) + F (t−Aτs[t]) ≤ eθt since θt > 0.
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Since ψN is continuous,
∑Ns(τs[t])−1

i=1 ψN (log(eθtF̄ (t − Ai) + F (t − Ai)))Ui is an approximation

to the Riemann integral
∫ τs[t]

0 ψN (log(eθtF̄ (t − u) + F (t − u)))du, with intervals defined by 0 =
A0 < A1 < A2 < . . . < ANs(τs[t]) and within each interval the leftmost function value is used

as approximation (with the last interval truncated). Since ψN (log(eθtF̄ (t − u) + F (t − u))) is
non-decreasing in u when θt > 0, and τ s[t] ≤ t on Q∞(t) > s, we have

Ns(τs[t])−1∑
i=1

ψN (log(eθtF̄ (t−Ai) + F (t−Ai)))Ui

≤
∫ τs[t]

0
ψN (log(eθtF̄ (t− u) + F (t− u)))du

≤
∫ t

0
ψN (log(eθtF̄ (t− u) + F (t− u)))du

= ψt(θt)

on Q∞(t) > s. Hence (22) gives
L2 ≤ e2sψt(θt)−2θt(ats+o(s))

which yields the proposition.

2.2.2 Distribution of Random Horizon

Denote τ as our randomized time horizon. We propose a discrete power-law distribution for τ
independent of the process:

P (τ = T + kδ) =
1

(k + 1)2
− 1

(k + 2)2
for k = 0, 1, 2 . . . (23)

where δ = δ(s) = c/s for some constant c > 0. The power-law distribution of τ is to avoid
exponential contribution from the mixture probability to the likelihood ratio that may disturb
algorithmic efficiency. Notice that we use a power law of order 2, and in fact we can choose any
power law distribution (with finite mean so that it does not take long time to generate the process
up to τ).

T is a constant to avoid tilting the process on a time horizon too close to 0, otherwise likelihood
ratio would blow up for paths that hit overflow very early (because of the fact that limt→0 θt =∞
in Lemma 3 Part 1; see also Section 3). A good choice of T is the following. Let Ĩt = supθ∈R{θ(1−
λEV )−ψN (θ)t} = θ̃t(1−λEV )−ψN (θ̃t)t where θ̃t is the solution to the equation ψ′N (θ)t = 1−λEV
(which exists by the steepness assumption for small enough t). This is the rate function of Ns(t)
evaluated at 1− λEV .

We choose 0 < T <∞ that satisfies
ĨT > 2I∗ (24)

which always exists by the following lemma:

Lemma 4. Ĩt satisfies the following:

1. Ĩt is non-increasing in t for t < η for some small η > 0.

2. Ĩt →∞ as t↘ 0.
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Remark 3. In fact by looking at the arguments in the next section, one can see that δ being merely
o(1) leads to asymptotic optimality. However, the coarser the δ, the larger is the subexponential
factor beside the exponential decay component in the variance, with the extreme that when δ is
order 1, asymptotic optimality no longer holds. The choice of δ = c/s is found to perform well
empirically, as illustrated in Section 6.

2.2.3 Likelihood Ratio

After sampling the randomized time horizon, we accelerate the process using the sequential tilting
scheme (20) and (21) with a realized τ = t. But since we are now interested in the first passage
probability, we tilt the process until t∧ τ s ∧ τA (rather than τ s[t] defined above). If t∧ τ s < τA, we
continue the GI/G/s system under the original measure. Also, to prevent a blow-up of likelihood
ratio close to t = 0, we use the original measure throughout the whole process whenever τ = T
(see the proof of efficiency next section). Now denote Ẽ[·] and P̃ (·) as the importance sampling
measure. We have

P̃ (Wu, 0 ≤ u ≤ τ s ∧ τA) =
∞∑
k=0

P (τ = T + kδ)P̃ T+kδ(Wu, 0 ≤ u ≤ τ s ∧ τA)

(with P̃ T (·) = P (·)). So the overall likelihood ratio L = L(W·) on the set τ s < τA is given by

L =
dP

dP̃
=

P (Wu, 0 ≤ u ≤ τ s)∑∞
k=0 P (τ = T + kδ)P̃ T+kδ(Wu, 0 ≤ u ≤ τ s)

=
1∑∞

k=0 P (τ = T + kδ)L−1
T+kδ

(25)

where Lt = Lt(W·) is the individual likelihood ratio as a sequential product of (20) and (21) up to
t ∧ τ s i.e.

Lt =


exp

{
s
∑Ns(τs)−1

i=1 ψN (log(eθtF̄ (t−Ai) + F (t−Ai)))Ui − θt
∑Ns(τs)−1

i=1 I(Vi > t−Ai)
}

for t ≥ τ s
exp

{
s
∑Ns(t)−1

i=1 ψN (log(eθtF̄ (t−Ai) + F (t−Ai)))Ui − θt
∑Ns(t)−1

i=1 I(Vi > t−Ai)
}

for t < τ s
(26)

for t > T and is 1 for t = T .

2.2.4 The Algorithm

We now state our algorithm. Assuming we start from r(·) ∈ J(·) with a given initial age B(0), do
the following:

Algorithm 2

1. Set A0 = 0. Also initialize NA ← 0, L← 0 and τ s ←∞.

2. Sample τ according to (23). Say we get a realization τ = t.

3. Simulate U0 according to the initial age B(0). Set A1 = U0. Check if τA is reached, in which
case go to Step 7.
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4. Starting from i = 1, repeat the following (setting θt as the one in (17) for t > T and 0 for
t = T ):

(a) Generate Vi according to

P̃ t(Vi ∈ dy) :=


f(y)

eθt F̄ (t−Ai)+F (t−Ai)
for 0 ≤ y ≤ t−Ai

eθtf(y)
eθt F̄ (t−Ai)+F (t−Ai)

for y > t−Ai

(b) Generate Ui according to

P̃ t(Ui ∈ dy) := e−sψN (log(eθt F̄ (t−Ai)+F (t−Ai)))y(eθtF̄ (t−Ai) + F (t−Ai))P (Ui ∈ dy)

(c) Set Ai+1 = Ui +Ai.

(d) If τA is reached in [Ai, Ai+1), go to Step 7.

(e) Compute Q∞(Ai+1). If Q∞(Ai+1) > s then set τ s ← Ai+1, remove the new arrival at
Ai+1, update NA ← NA + 1, and go to Step 5.

(f) If Ai+1 ≥ t, go to Step 5.

(g) Update i← i+ 1.

5. Repeat the following:

(a) Generate Vi and Ui under the original measure. Set Ai+1 = Ui +Ai.

(b) If τA is reached in [Ai, Ai+1), go to Step 6.

(c) Compute Q(Ai+1). This includes the removal of new arrival Ai+1 from the system in
case it is a loss; in such case update NA ← NA+ 1, and set τ s ← Ai+1 if in addition that
τ s =∞.

(d) Update i← i+ 1.

6. Compute LI(τ s < τA) using (25) and (26).

7. Output NALI(τ s < τA).

3 Algorithmic Efficiency

In this section we will prove asymptotic optimality of the estimator outputted by Algorithm 2. To
be more precise, we will identify I∗ defined in (19) as the exponential decay rate of EANA. The
key result is the following:

Theorem 2. The second moment of the estimator in Algorithm 2 satisfies

lim sup
s→∞

1

s
log Ẽr[N

2
AL

2; τ s < τA] ≤ −2I∗

for any r(·) ∈ J(·).
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This result, together with Theorem 3 in the sequel, will expose a loop of inequality that leads
to asymptotic optimality and large deviations asymptotic simultaneously. The main technicality of
this result is an estimate of the continuity of the likelihood ratio, or intuitively the “overshoot” at
the time of loss. It draws upon a two-dimensional point process description of the system, in which
the geometry of the process plays an important role in estimating this “overshoot”.

Proof. Denote dxe = min{T + kδ, k = 0, 1, . . . : x ≤ T + kδ}. Also recall the definition at =
1− λ

∫∞
t F̄ (u)du.

Consider the likelihood ratio in (25):

LI(τ s < τA) =
1∑∞

k=0 P (τ = T + kδ)L−1
T+kδ

I(τ s < τA) ≤
Ldτse

P (τ = dτ se)
I(τ s < τA)

= P (τ = T )−1I(τ s ≤ T ; τ s < τA) + P (τ = dτ se)−1 exp

{
s

Ns(τs)−1∑
i=1

ψN (log(eθdτseF̄ (dτ se −Ai)

+ F (dτ se −Ai)))Ui − θdτse
Ns(τs)−1∑

i=1

I(Vi > dτ se −Ai)

}
I(τ s > T ; τ s < τA)

≤ C1I(τ s ≤ T ; τ s < τA) +
C2τ

3
s

δ3 exp
{
sψdτse(θdτse)− θdτse(Q̄

∞(τ s, dτ se − τ s)− 1)
}

I(τ s > T ; τ s < τA)

≤ C1I(τ s ≤ T ; τ s < τA) +
C2τ

3
s

δ3 exp

{
− sI∗ + θdτse

(
sadτse + 1− Q̄∞(τ s, dτ se − τ s)

)}
I(τ s > T ; τ s < τA)

where C1 and C2 are positive constants. Note that the second inequality comes from the fact

that
∑Ns(τs)−1

i=1 ψN (log(eθdτseF̄ (dτ se − Ai) + F (dτ se − Ai)))Ui is a Riemann sum of the integral

ψdτse(θdτse) =
∫ dτse

0 ψN (log(eθdτseF̄ (dτ se− u) +F (dτ se− u)))du (excluding the intervals at the two

ends) and that ψN (log(eθdτseF̄ (dτ se−u)+F (dτ se−u))) is a non-decreasing function in u. Also note

that
∑Ns(τs)

i=1 I(Vi > dτ se − Ai) = Q̄∞(τ s, dτ se − τ s) is the number of customers who arrive before
τ s and leave after dτ se. The last inequality follows from the definition of Idτse and Lemma 3 Part
2. Now we have

Ẽr[N
2
AL

2; τ s < τA] = Er[N
2
AL; τ s < τA]

≤ C1Er[N
2
A; τ s ≤ T ; τ s < τA] +

C2

δ3 e
−sI∗Er

[
N2
Aτ

3
s exp

{
θdτse

(
sadτse + 1− Q̄∞(τ s, dτ se − τ s)

)}
;

τ s > T ; τ s < τA

]
(27)

Consider the first summand. By Holder’s inequality Er[N
2
A; τ s ≤ T ; τ s < τA] ≤ (Er[N

2p
A ])1/p(Pr(τ s ≤

T ))1/q for 1/p+1/q = 1. Also, Pr(τ s ≤ T ) ≤ P (Ns(T ) > s−r(T )) ≤ P (Ns(T ) > s(1−λEV )+o(s))
and a straightforward invocation of Gartner-Ellis Theorem yields lims→∞

1
s logP (Ns(T ) > s(1 −

λEV ) + o(s)) = −ĨT < −2I∗ by our choice of T in (24). Combining these observations, and using
Lemma 1, we get

lim sup
s→∞

1

s
logEr[N

2
A; τ s ≤ T ; τ s < τA] ≤ lim sup

s→∞

1

sp
logEr[N

2p
A ] + lim sup

s→∞

1

sq
logPr(τ s ≤ T ) ≤ −2I∗
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for q close enough to 1.
In view of (27) and Dembo and Zeitouni (1998) Lemma 1.2.15, the proof will be complete once

we can prove that

lim sup
s→∞

1

s
logEr

[
N2
Aτ s

3 exp
{
θdτse

(
sadτse + 1− Q̄∞(τ s, dτ se − τ s)

)}
; τ s > T ; τ s < τA

]
≤ −I∗

(28)
To this end, we write

Er

[
N2
Aτ s

3 exp
{
θdτse

(
sadτse + 1− Q̄∞(τ s, dτ se − τ s)

)}
; τ s > T ; τ s < τA

]

= Er

[
N2
Aτ s

3 exp

{
θdτse

(
s+ 1− λs

∫ ∞
dτse

F̄ (u)du− Q̄∞(τ s, dτ se − τ s)

)}
; τ s > T ; τ s < τA

]

≤ eCθT
√
sEr

[
N2
Aτ

3
s exp

{
θdτse

(
s+ 1− r(dτ se)− Q̄∞(τ s, dτ se − τ s)

)}
; τ s > T ; τ s < τA

]

= eCθT
√
s
∞∑
k=1

Er

[
N2
Aτ

3
s exp

{
θdτse

(
s+ 1− r(dτ se)− Q̄∞(τ s, dτ se − τ s)

)}
; dτ se = T + kδ;

τA > T + (k − 1)δ

]

≤ eCθT
√
s
∞∑
k=1

(ErN
2p
A )1/p(ErτA

3q)1/q(Pr(τA > T + (k − 1)δ))1/h

(
Er
[
exp

{
lθT+kδ

(
s+ 1− r(T + kδ)− Q̄∞(τ s, T + kδ − τ s)

)}
;T + (k − 1)δ < τ s ≤ T + kδ

])1/l
= eO(

√
s)
∞∑
k=1

(ErN
2p
A )1/p(ErτA

3q)1/q(Pr(τA > T + (k − 1)δ))1/h

(
Er
[
exp

{
lθT+kδ

(
s+ 1− r(τ s)− Q̄∞(τ s, T + kδ − τ s)

)}
;T + (k − 1)δ < τ s ≤ T + kδ

])1/l
(29)

where C is a positive constant and 1/p + 1/q + 1/h + 1/l = 1. The first inequality follows from
the fact that r(·) ∈ J(·) and Lemma 3 Part 1 while the second inequality follows from generalized
Holder’s inequality. The last equality holds because r(τ s)−r(T+kδ) = o(s), again since r(·) ∈ J(·),
for T + (k − 1)δ < τ s ≤ T + kδ.

We now analyze

Er
[
exp

{
lθT+kδ

(
s+ 1− r(τ s)− Q̄∞(τ s, T + kδ − τ s)

)}
;T + (k − 1)δ < τ s ≤ T + kδ

]
(30)

We plot the arrivals on a two-dimensional plane, with x-axis indicating the time of arrival and
y-axis indicating the assigned service time at the time of arrival. Such plot has been used in the
study of M/G/∞ system (see for example Foley (1982)). In this representation it is easy to see
that the departure time of an arriving customer is the 45◦ projection of the point onto the x-axis.
As a result, Q̄∞(t) for example, will be the number of all the points inside the triangular simplex
created by a vertical line and a downward 45◦ line joining at the point (t, 0). See Figure 1.

For notational convenience we denote Q̄∞t1,t2 [t3, t4] :=
∑Ns(t2)

i=Ns(t1)+1 I(t3−Ai < Vi ≤ t4−Ai) as the

number of customers in the GI/G/∞ system who arrive sometime in (t1, t2] and leave the system
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Assigned 
service time 
at arrival 

Arrival time 
𝑉 = 0 𝐴2 

𝑉1 

𝐴1 

𝑈0 

𝑉2 

𝑈1 

𝑡 

… 
Departure time of 
first customer = 
𝐴1 + 𝑉1 

Residual service 
time of the 
customer at 𝑡 

𝑄 ∞ 𝑡 = number of points inside the 
triangular simplex 

Figure 1 

Assigned 
service time 
at arrival 

Arrival time 
𝑉 = 0 𝜏𝑠 

𝑄 0,𝜏𝑠
∞ [𝑇 + 𝑘𝛿,∞] =  𝐼(𝑉𝑖 > 𝑇 + 𝑘𝛿 − 𝐴𝑖)

𝑁𝑠 𝜏𝑠

𝑖=1

  

𝑇 + 𝑘𝛿 𝑇 + 𝑘 − 1 𝛿 

𝑠 − 𝑟 𝜏𝑠 − 𝑄 0,𝜏𝑠
∞ [𝑇 + 𝑘𝛿,∞]  

Figure 2 

Assigned 
service time 
at arrival 

Arrival time 
𝑉 = 0 

𝐺𝑘 ≔ 𝑄 ∞ 𝑇 + 𝑘 − 1 𝛿 + 𝑁𝑠 𝑇 + 𝑘𝛿 − 𝑁𝑠 𝑇 + 𝑘 − 1 𝛿 = 
number of points in this inverted trapezoid 

𝑇 + 𝑘𝛿 𝑇 + 𝑘 − 1 𝛿 

𝐻𝑘 ≔ 𝑄 0,𝑇+𝑘𝛿
∞ 𝑇 + 𝑘 − 1 𝛿, 𝑇 + 𝑘𝛿 =  number of 

points in this strip 

Figure 3 

Assigned 
service time 
at arrival 

Arrival time 
𝑉 = 0 𝑇 + 𝑘𝛿 𝑇 + 𝑘 − 1 𝛿 

𝐻𝑘
1(𝑧) ≔ 𝑄 0,𝑧

∞ 𝑇 + 𝑘 − 1 𝛿, 𝑇 + 𝑘𝛿  

𝑧(𝑘, 𝛿) 

𝐺𝑘
1 𝑧 ≔ 𝑄 0,𝑧

∞ 𝑇 + 𝑘 − 1 𝛿,∞  

𝐺𝑘
2 𝑧 ≔ 𝑄 𝑧,𝑇+𝑘𝛿

∞ 𝑇 + 𝑘 − 1 𝛿,∞  

𝐻𝑘
2(𝑧) ≔ 𝑄 𝑧,𝑇+𝑘𝛿

∞ 𝑇 + 𝑘 − 1 𝛿, 𝑇 + 𝑘𝛿  

Figure 4 

sometime in (t3, t4]. It is easy to see, for example, that Q̄∞(τ s, T + kδ− τ s) = Q̄∞0,τs [T + kδ,∞] for
T + kδ ≥ τ s.

Figure 2 shows the region filled in by Q̄∞(τ s, T+kδ−τ s) = Q̄∞0,τs [T+kδ,∞] as a shifted simplex
starting from the point (τ s, T + kδ − τ s). Note that by definition Q̄∞(τ s) = s + 1 − r(τ s), and so
s+1−r(τ s)−Q̄∞0,τs [T +kδ,∞] corresponds to the downward strip ending at (τ s, 0) and (τ s, T+kδ−
τ s), which is obviously smaller than the region represented by Hk := Q̄∞0,T+kδ[T + (k − 1)δ, T + kδ]
in Figure 3.

Define Gk = Q̄∞(T + (k − 1)δ) + Ns(T + kδ) −Ns(T + (k − 1)δ), which is represented by the
trapezoidal area depicted in Figure 3. Observe that T + (k − 1)δ < τ s ≤ T + kδ implies that one
of the triangular simplex corresponding to Q̄∞(t), for T + (k − 1)δ < t ≤ T + kδ, has number of
points larger than s− r(T + (k − 1)δ). This in turn implies that the region represented by Gk has
more than s− r(T + (k − 1)δ) number of points.

The above observations lead to

Er[exp{lθT+kδ(s+ 1− r(τ s)− Q̄∞0,τs [T + kδ,∞])};T + (k − 1)δ < τ s ≤ T + kδ]

≤ Er[e
lθT+kδHk ;Gk > s− r(T + (k − 1)δ)] (31)

From now on we focus on the case when service time has unbounded support (the bounded
support case is simpler and will be presented later in the proof). We introduce a time point
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z = z(k, s) and consider the divisions of areas represented by Hk and Gk in Figure 4:

H1
k(z) := Q̄∞0,z[T + (k − 1)δ, T + kδ] ⊂ G1

k(z) := Q̄∞0,z[T + (k − 1)δ,∞]

H2
k(z) := Q̄∞z,T+kδ[T + (k − 1)δ, T + kδ] ⊂ G2

k(z) := Q̄∞z,T+kδ[T + (k − 1)δ,∞]

Note that Hk = H1
k(z) +H2

k(z) and Gk = G1
k(z) +G2

k(z).
Moreover, define Aki , i = 1, . . . , Gk to be the arrival times of all the customers thatGk is counting.

Note that given the arrival times Aki , i = 1, . . . , Gk, the events whether each of these customers falls
into Hk are independent Bernoulli random variables with probability

pki :=
F̄ (T + (k − 1)δ −Aki )− F̄ (T + kδ −Aki )

F̄ (T + (k − 1)δ −Aki )
(32)

Hence we can write (31) as

Er[e
lθT+kδ(H

1
k(z)+H2

k(z));Gk > s− r(T + (k − 1)δ)]

= Er[Er[e
lθT+kδ(H

1
k(z)+H2

k(z))|Aki , i = 1, . . . , Gk];Gk > s− r(T + (k − 1)δ)]

= Er[Er[e
lθT+kδH

1
k(z)|Aki , i = 1, . . . , G1

k(z)]Er[e
lθT+kδH

2
k(z)|Aki , i = G1

k(z) + 1, . . . , G1
k(z) +G2

k(z)];

G1
k(z) +G2

k(z) > s− r(T + (k − 1)δ)]

≤ Er

elθT+kδG
1
k(z)

G1
k(z)+G2

k(z)∏
i=G1

k(z)+1

(1 + (elθT+kδ − 1)pki );G
1
k(z) +G2

k(z) > s− r(T + (k − 1)δ)

 (33)

Let

pk(z) := sup
Aki>z

pki ≤
Cδ

F̄ (T + kδ − z)
(34)

for some constant C > 0, where the inequality follows from (32). Also let

ψ1
s,z,k(θ) := logEeθG

1
k(z) = s

∫ z

0
ψN (log(eθF̄ (T + (k − 1)δ − u) + F (T + (k − 1)δ − u)))du+ o(s)

ψ2
s,z,k(θ) := logEeθG

2
k(z) = s

∫ T+kδ

z
ψN (log(eθF̄ (T + (k − 1)δ − u) + F (T + (k − 1)δ − u)))du+ o(s)

where o(s) is uniform in θ, k and z. This is due to the following lemma, whose proof will be deferred
to the appendix:

Lemma 5. We have

1

s
logEeθQ̄

∞
w,z [t,∞] →

∫ z

w
ψN (log(eθF̄ (t− u) + F (t− u)))du

uniformly over θ ∈ [θ∞, θT ], t ≥ T and 0 ≤ w ≤ z ≤ t+ η for any η > 0.
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When pk(z) is small enough, (33) is less than or equal to

Er[e
lθT+kδG

1
k(z)(1 + (elθT+kδ − 1)pk(z))

G2
k(z);G1

k(z) +G2
k(z) > s− r(T + (k − 1)δ)]

= Er[Er[e
lθT+kδG

1
k(z)+log(1+(elθT+kδ−1)pk(z))G2

k(z);G2
k(z) > s− r(T + (k − 1)δ)−G1

k(z)|G1
k(z), B(z)]]

≤ Er[exp{lθT+kδG
1
k(z)− θT+(k−1)δ(s− r(T + (k − 1)δ)−G1

k(z))

+ ψ2
s,z,k(log(1 + (elθT+kδ − 1)pk(z)) + θT+(k−1)δ)}]

= exp

{
ψ1
s,z,k(lθT+kδ + θT+(k−1)δ)− θT+(k−1)δ(s− r(T + (k − 1)δ))

+ ψ2
s,z,k(log(1 + (elθT+kδ − 1)pk(z)) + θT+(k−1)δ)

}

= exp

{
s

∫ z

0
ψN (log(elθT+kδ+θT+(k−1)δ F̄ (T + (k − 1)δ − u) + F (T + (k − 1)δ − u)))du

− s
∫ z

0
ψN (log(elog(1+(elθT+kδ−1)pk(z))+θT+(k−1)δ F̄ (T + (k − 1)δ − u) + F (T + (k − 1)δ − u)))du

− θT+(k−1)δ(s− r(T + (k − 1)δ)) + sψT+(k−1)δ(log(1 + (elθT+kδ − 1)pk(z)) + θT+(k−1)δ)

+ o(s)

}
(35)

where the inequality follows by Chernoff’s inequality, and the last equality follows from

ψ2
s,z,k(θ) = sψT+(k−1)δ(θ)− s

∫ z

0
ψN (log(eθF̄ (T + (k − 1)δ − u) + F (T + (k − 1)δ − u)))du+ o(s)

uniformly, by Lemma 5.
Now let ρs ↗ ∞ be a sequence satisfying sF̄ (ρs) ↗ ∞, whose existence is guaranteed by the

unbounded support assumption. We divide into two cases: For T + (k − 1)δ ≤ ρs, we put z = 0
and so by (34) and we have pk(0)↘ 0 as s↗∞ (recall δ = O(1/s)). Consequently (35) becomes

exp{−θT+(k−1)δ(s−r(T+(k−1)δ))+sψT+(k−1)δ(log(1+(elθT+kδ−1)pk(z))+θT+(k−1)δ)+o(s)} = e−sIT+(k−1)δ+o(s)

For T + (k − 1)δ > ρs, we put z = T + (k − 1)δ − ρs so that T + (k − 1)δ − z = ρs. Hence again
pk(z)↘ 0. Also,∫ z

0
ψN (log(elθT+kδ+θT+(k−1)δ F̄ (T + (k − 1)δ − u) + F (T + (k − 1)δ − u)))du

=

∫ T+(k−1)δ

T+(k−1)δ−z
ψN (log(elθT+kδ+θT+(k−1)δ F̄ (u) + F (u)))du

≤
∫ ∞
T+(k−1)δ−z

C1λ(elθT+kδ+θT+(k−1)δ − 1)F̄ (u)du

= C2λ

∫ ∞
ρs

F̄ (u)du = o(1)

for large enough T+(k−1)δ−z = ρs and some constants C1, C2 > 0, due to the fact that log(1+x) ≤
x for x > 0 and that ψ′N (0) = λ. It is now obvious that (35) also becomes e−sIT+(k−1)δ+o(s) in this
case.
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Hence (29) is less than or equal to

e−sI
∗/l+o(s)

∞∑
k=1

(ErN
2p
A )1/p(ErτA

3q)1/q(Pr(τA > T + (k − 1)δ))1/h

≤ e−sI
∗/l+o(s)(ErN

2p
A )1/p(ErτA

3q)1/q

(
(Pr(τA > T ))1/h +

1

δ

∫ ∞
T

(Pr(τA > u))1/hdu

)
From this, and using Lemma 1, we get

lim sup
s→∞

1

s
logEr

[
N2
Aτ s

2 exp
{
θdτse

(
sadτse + 1− Q̄∞(τ s, dτ se − τ s)

)}
; τ s > T ; τ s < τA

]
≤ −I

∗

l

Since l is arbitrarily close to 1, we have proved (28).
Finally, we consider the case when V has bounded support over [0,M ]. Pick a small constant

a > 0, and consider the set of customers G̃k = Q̄(T+(k−1)δ−M)∨0,T+kδ[T+(k−1)δ−a,∞] that consists
of Gk and a trapezoidal strip of width a running through (T + (k − 1)δ − a, 0), (T + (k − 1)δ, 0),
((T + (k− 1)δ−M)∨ 0,M ∧ (T + (k− 1)δ)) and ((T + (k− 1)δ−M)∨ 0,M ∧ (T + (k− 1)δ)− a).
See Figure 5.

Assigned 
service time 
at arrival 

Arrival time 
𝑉 = 0 𝑇 + 𝑘𝛿 𝑇 + 𝑘 − 1 𝛿 

𝑎 

𝑎 
𝑀  

Figure 5 

Denote Ãki , i = 1, . . . , G̃k as the arrival times of customers falling in G̃k. Then we have

Er[e
lθT+kδHk ;Gk > s− r(T + (k − 1)δ)]

≤ Er[e
lθT+kδHk ; G̃k > s− r(T + (k − 1)δ)]

= Er[Er[e
lθT+kδHk |Ãki , i = 1, . . . , G̃k]; G̃k > s− r(T + (k − 1)δ)]

= Er

 G̃k∏
i=1

(1 + (elθT+kδ)p̃ki ); G̃k > s− r(T + (k − 1)δ)

 (36)

where

p̃ki =
F̄ (T + (k − 1)δ − Ãki )− F̄ (T + kδ − Ãki )

F̄ (T + (k − 1)δ − a− Ãki )
≤ p̃k := sup

i=1,...,G̃k

p̃ki ≤
Cδ

F̄ (M − a)



22

Hence (36) is less than or equal to

Er[e
log(1+(elθT+kδ )p̃k)G̃k ; G̃k > s− r(T + (k − 1)δ)]

≤ e−θT+(k−1)δ(s−r(T+(k−1)δ))+ψ̃k(log(1+(elθT+kδ−1)p̃)+θT+(k−1)δ) (37)

where ψ̃k(θ) := logEeθG̃k , by Chernoff’s inequality. Now note that by Lemma 5 we have

ψ̃k(θ) = s

∫ T+kδ

(T+(k−1)δ−M)∨0
ψN (log(eθF̄ (T + (k − 1)δ − a− u) + F (T + (k − 1)δ − a− u)))du+ o(s)

= s

∫ (M−a)∧(T+(k−1)δ−a)

0
ψN (log(eθF̄ (u) + F (u)))du+ sψN (θ)(a+ δ) + o(s)

≤ sψT+(k−1)δ(θ) + saC + o(s)

for some constant C > 0, uniformly in θ and k. Hence (37) is less than or equal to

e−θT+(k−1)δ(s−r(T+(k−1)δ))+sψT+(k−1)δ(θT+(k−1)δ)+saC+o(s)

= e−sIT+(k−1)δ+saC+o(s)

Thus (29) is less than or equal to

e−sI
∗/l+saC/l+o(s)

∞∑
k=1

(ErN
2p
A )1/p(ErτA

3q)1/q(Pr(τA > T + (k − 1)δ))1/h

This gives

lim sup
s→∞

1

s
logEr

[
N2
Aτ s

3 exp
{
θdτse

(
sadτse + 1− Q̄∞(τ s, dτ se − τ s)

)}
; τ s > T ; τ s < τA

]
≤ −I

∗

l
+
aC

l

Since l and a can be chosen arbitrarily close to 1 and 0 respectively, (28) holds and conclusion
follows.

Remark 4. The proof can be simplified in the case of M/G/s system. In particular, there is no
need to condition on Aki nor introduce the constant a in the case of bounded support V . Since
arrival is Poisson, the two-dimensional description of arrivals via the arrival time and the required
service time at the time of arrival leads to a Poisson random measure. Hence all the points in Gk
are independently sampled, each with probability of falling into Hk being

pk :=

∫ T+kδ
0 (F̄ (T + (k − 1)δ − u)− F̄ (T + kδ − u))du∫ T+kδ

0 F̄ (T + (k − 1)δ − u)du
≤ Cδ(M + δ)∫ T+(k−1)δ

0 F̄ (u)du+Ns((k − 1)δ, kδ)
= O(δ)

for some constant C > 0. Then (30) immediately becomes

Er[(pke
lθT+kδ + 1− pk)Gk ;Gk > s− r(T + (k − 1)δ)]

= Er[e
O(δ)Gk ;Gk > s− r(T + (k − 1)δ)]

The rest follows similarly as in the proof.
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Remark 5. Note that the result coincides with Erlang’s loss formula in the case of M/G/s (see
for example Asmussen (2003)), which states that the loss probability is exactly given by

Pπ(loss) =
(λsEV )s/s!

1 + λsEV + · · ·+ (λsEV )s/s!

Simple calculation reveals that (1/s) logPπ(loss)→ log(λEV ) + 1− λEV = −I∗.

The next result we will discuss is the lower bound:

Theorem 3. For any r(·) ∈ J(·), we have

lim inf
s→∞

1

s
logPr(τ s < τA) ≥ −I∗

It suffices to prove that lim infs→∞(1/s) logPr(τ s < τA) ≥ −Itn for a sequence tn ↗∞ thanks
to Lemma 3 Part 1 and 2. In fact we will take tn = n∆. In the case of bounded support V , it suffices
to only consider n∆ = dMe because of Lemma 3 Part 3. For each n∆, the idea then is to identify
a so-called optimal sample path (or more precisely a neighborhood of such path) that possesses a
rate function In∆ and has the property τ s < τA. Note that the probability in consideration is the
same for GI/G/s and GI/G/∞ systems. Henceforth we would consider paths in GI/G/∞.

The way we define A in (10) implies that it suffices to focus on the process on the time-
grid {0,∆, 2∆, . . .} for checking the condition τ s < τA. For a path to reach s at time n∆,
the form of ψ′n∆(θn∆) hints that E[Q̄∞(k−1)∆,k∆[(j − 1)∆, j∆]|Q∞(n∆) > s] = sαkj + o(s) and

E[Q̄∞(k−1)∆,k∆[n∆,∞]|Q∞(n∆) > s] = sβk + o(s) where

αkj :=

∫ k∆

(k−1)∆
ψ′N (log(eθn∆F̄ (n∆− u) + F (n∆− u)))

F (j∆− u)− F ((j − 1)∆− u)

eθn∆F̄ (n∆− u) + F (n∆− u)
du

and

βk :=

∫ k∆

(k−1)∆
ψ′N (log(eθn∆F̄ (n∆− u) + F (n∆− u)))

eθn∆F̄ (n∆− u)

eθn∆F̄ (n∆− u) + F (n∆− u)
du

for k = 1, . . . , n, j = k, . . . , n. Our goal is to rigorously justify that such a path is the optimal
sample path discussed above.

We now state two useful lemmas. The first is a generalization of Glynn (1995), whose proof
resembles this earlier work and is deferred to the appendix. The second one argues that the path
we identified indeed satisfies τ s < τA:

Lemma 6. Let Θ = (θkj , θk·)k=1,...,n,j=k,...,n ∈ Rn(n+1)/2+n, and define

ψ̄(Θ) =
n∑
k=1

∫ k∆

(k−1)∆
ψN

log

 n∑
j=k

eθkjP ((j − 1)∆− u < V ≤ j∆− u) + eθk·F̄ (n∆− u)

 du

We have

1

s
logE exp


n∑
k=1

 n∑
j=k

θkjQ̄
∞
(k−1)∆,k∆[(j − 1)∆, j∆] + θk·Q̄

∞
(k−1)∆,k∆[n∆,∞]

→ ψ̄(Θ)
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Lemma 7. Starting with any r(·) ∈ J(·), the sample path with Q∞(k−1)∆,k∆[(j − 1)∆, j∆] ∈ ((αkj +

γkj)s, (αkj + ε)s), Q∞(k−1)∆,k∆[n∆,∞] ∈ ((βk + γk)s, (βk + ε)s) for all k = 1, . . . , n and j = k, . . . , n

satisfies τ s < τA. Here γkj , γk > 0,
∑

k=1,...,n
j=k,...,n

γkj +
∑

k=1,...,n γk = γ <∞ and ε > γkj , ε > γk.

Proof. For l = 1, . . . , n, consider

Q̄∞(l∆) =
l∑

k=1

Q∞(k−1)∆,k∆[l∆,∞]

>
l∑

k=1

 n∑
j=l+1

akjs+ bks

+
l∑

k=1

 n∑
j=l+1

γkjs+ γks


= s

l∑
k=1

(
n∑

j=l+1

∫ k∆

(k−1)∆
ψ′N (log(eθn∆F̄ (n∆− u) + F (n∆− u)))

F (j∆− u)− F ((j − 1)∆− u)

eθn∆F̄ (n∆− u) + F (n∆− u)
du

+

∫ k∆

(k−1)∆
ψ′N (log(eθn∆F̄ (n∆− u) + F (n∆− u)))

eθn∆F̄ (n∆− u)

eθn∆F̄ (n∆− u) + F (n∆− u)
du

)

+ s

l∑
k=1

 n∑
j=l+1

γkj + γk


= s

∫ l∆

0
ψ′N (log(eθn∆F̄ (n∆− u) + F (n∆− u)))

eθn∆F̄ (n∆− u) + F (n∆− u)− F (l∆− u)

eθn∆F̄ (n∆− u) + F (n∆− u)
du

+ s
l∑

k=1

 n∑
j=l+1

γkj + γk


> λs

∫ l∆

0
F̄ (l∆− u)du+ C1

√
s

for any given constant C1, when s is large enough. The last inequality follows from the monotonicity
of ψ′N . Note that we then have Q∞(l∆) = Q̄∞(l∆) + r(l∆) > λs+C2

√
s for any given constant C2

and large enough s. Hence τA is not reached in time n∆ when s is large.
On the other hand,

Q̄∞(n∆) =
n∑
k=1

Q∞(k−1)∆,k∆[n∆,∞]

>
n∑
k=1

βks+
n∑
k=1

γks

= s

m∑
k=1

∫ k∆

(k−1)∆
ψ′N (log(eθn∆F̄ (n∆− u) + F (n∆− u)))

eθn∆F̄ (n∆− u)

eθn∆F̄ (n∆− u) + F (n∆− u)
du+ s

n∑
k=1

γk

= s

∫ n∆

0
ψ′N (log(eθn∆F̄ (n∆− u) + F (n∆− u)))

eθn∆F̄ (n∆− u)

eθn∆F̄ (n∆− u) + F (n∆− u)
du+ s

n∑
k=1

γk

= sψ′n∆(θn∆) + s

n∑
k=1

γk
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where the last equality follows from the definition of θn∆. So Q∞(n∆) = Q̄∞(n∆) + r(n∆) > s
when s is large enough. This concludes our proof.

We now prove Theorem 3:

Proof of Theorem 3. Note that by Lemma 7, for any r(·) ∈ J(·) and s large enough,

Pr(τ s < τA)

≥ Pr(Q
∞
(k−1)∆,k∆[(j − 1)∆, j∆] ∈ ((αkj + γkj)s, (αkj + ε)s), Q∞(k−1)∆,k∆[n∆,∞] ∈ ((βk + γk)s, (βk + ε)s),

k = 1, . . . , n, j = k, . . . , n) (38)

for large enough s given arbitrary γkj , γk and ε satisfying conditions in Lemma 7. Denote Γ =
(γkj , γk)k=1,...,n, j=k,...,n. Let

SΓ =
n∏
k=1

n∏
j=k

(αkj + γkj , αkj + ε)×
n∏
k=1

(βk + γk, βk + ε) ⊂ Rn(n+1)/2+n

Using Gartner-Ellis Theorem for (38) and Lemma 6, we have

1

s
logPr(Q

∞
(k−1)∆,k∆[(j − 1)∆, j∆] ∈ ((αkj + γkj)s, (αkj + ε)s),

Q∞(k−1)∆,k∆[n∆,∞] ∈ ((βk + γk)s, (βk + ε)s), k = 1, . . . , n, j = k, . . . , n)

→ −IΓ (39)

where IΓ = infx∈SΓ
I(x) and

I(x) = sup
Θ∈Rn(n+1)/2+n

{〈Θ,x〉 − ψ̄(Θ)}

with ψ̄(Θ) defined in Lemma 6. But note that for k = 1, . . . , n, j = k, . . . , n,

∂

∂θkj
(〈Θ,x〉 − ψ̄(Θ)) = xkj −

∫ k∆

(k−1)∆
ψ′N

log

 n∑
j=k

eθkjP ((j − 1)∆− u < V ≤ j∆− u) + eθk·F̄ (n∆− u)


eθkjP ((j − 1)∆− u < V ≤ j∆− u)∑m

j=k e
θkjP ((j − 1)∆− u < V ≤ j∆− u) + eθk·F̄ (n∆− u)

du (40)

∂

∂θk
(〈Θ,x〉 − ψ̄(Θ)) = xk −

∫ k∆

(k−1)∆
ψ′N

log

 n∑
j=k

eθkjP ((j − 1)∆− u < V ≤ j∆− u) + eθk·F̄ (n∆− u)


eθk F̄ (n∆− u)∑m

j=k e
θkjP ((j − 1)∆− u < V ≤ j∆− u) + eθk·F̄ (n∆− u)

du (41)

Define x∗ = (αkj , βk)k=1,...,n, j=k,...,n. For x = x∗, it is straightforward to verify that Θ∗ = (θ∗kj , θ
∗
k·)

where θ∗kj = 0, θ∗k· = θn∆ for k = 1, . . . , n, j = k, . . . , n satisfies (40) and (41). Since 〈Θ,x〉 − ψ̄(Θ)
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is concave in Θ, we have

I(x∗) = 〈Θ∗,x∗〉 − ψ̄(Θ∗)

= θn∆

n∑
k=1

βk −
n∑
k=1

∫ k∆

(k−1)∆
ψN (log(F (n∆− u)− F ((k − 1)∆− u) + eθn∆F̄ (n∆− u)))du

= θn∆ψ
′
n∆(θn∆)− ψn∆ (θn∆)

= I∗

Now since 〈Θ,x〉 − ψ̄(Θ) is continuously differentiable in Θ and x, by Implicit Function Theorem,
I(x) is continuous in x. This implies that

IΓ ≤ I(x∗ + Γ)→ I(x∗) = I∗

as Γ→ 0. Together with (38) and (39) gives the conclusion.

Theorems 2 and 3 together imply both the asymptotic optimality of Algorithm 2 and the large
deviations of the loss probability:

Proof of Theorem 1. Note that by Jensen’s inequality

Pr(τ s < τA)2 ≤ (ErNA)2 ≤ Ẽr[N2
AL

2]

Hence using Theorems 2 and 3 yields

−2I∗ ≤ lim
s→∞

1

s
logPr(τ s < τA)2 ≤ lim

s→∞

1

s
log(ErNA)2 ≤ lim

s→∞

1

s
log Ẽr[N

2
AL

2] ≤ −2I∗

Combining Proposition 1, we conclude that the steady-state loss probability given by (2) decays
exponentially with rate I∗ and that Algorithm 2 is asymptotically optimal.

4 Logarithmic Estimate of Return Time

In this section we will lay out the argument for Proposition 1. The first step is to reduce the
problem to a GI/G/∞ calculation. Define x(t) := sup{y : Q∞(t, y) > 0} as the maximum residual
service times among all customers present at time t.

Lemma 8. We have τA ≤ τ ′A where

τ ′A = inf{t ∈ {∆, 2∆, . . .} : x(t−u) ≤ l, Q∞(w) < s for w ∈ [t−u, t] for some u > l, Q∞(t, ·) ∈ J(·)}

for any l > 0.

Proof. The way we couple the GI/G/∞ system implies that at any point of time the number of
customers in the GI/G/s system is at most that of the coupled GI/G/∞ system (in fact the served
customers in the GI/G/s system is a subset of those in GI/G/∞). Suppose at time t− u we have
Q∞(t − u) < s and x(t − u) < l. Then Q∞(w) < s for w ∈ [t − u, t] means that all the arrivals
in this interval are not lost i.e. they all get served in both the GI/G/∞ and the GI/G/s system.
Since x(t − u) ≤ l, all the customers present at time t come from arrivals after time t − u. This
implies that Q(t, ·) ≡ Q∞(t, ·). Hence the result of the lemma.
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The next step is to find a mechanism to identify the instant t− u and set an appropriate value
for l so that τ ′A is small. We use a geometric trial argument. Divide the time frame into blocks
separated at T0 = 0, T1, T2, . . . in such a way that (1) a “success” in the block would mean τ ′A is
reached before the end of the block (2) {Wu, Ti < u ≤ Ti+1}, i = 0, 1, . . . are roughly independent.
We then estimate the probability of “success” in a block and also the length of a block to obtain a
bound for τ ′A.

At this point let us also introduce a fixed constant t0 and state the following result:

Lemma 9. For any fixed t0 > 0.

P

(
Q̄∞(t, y) ∈

(
λs

∫ t+y

y
F̄ (u)du±

√
sC1ν(y)

)
for all t ∈ [0, t0], y ∈ [0,∞)

∣∣∣∣∣B(0)

)
≥ C2 > 0

(42)
and

P

(
Q̄∞(t, y) /∈

(
λs

∫ t+y

y
F̄ (u)du±

√
sC1ν(y)

)
for some t ∈ [0, t0], y ∈ [0,∞)

∣∣∣∣∣B(0)

)
≥ C3 > 0

(43)
for large enough C1 > 0 and some constants C2 and C3, all independent of s, uniformly for all
initial age B(0). ν(y) is defined in (13).

To prove this lemma, the main idea is to consider the diffusion limit of Q∞(t, y) as a two-
dimensional Gaussian field and then invoke Borell-TIS inequality (Adler (1990)). By Pang and
Whitt (2009) we know

Q∞(t, y)− λs
∫ t+y
y F̄ (u)du

√
s

⇒ R(t, y)

in the space DD[0,∞)[0,∞), where

R(t, y) = R1(t, y) +R2(t, y) (44)

is a two-dimensional Gaussian field given by

R1(t, y) = λ

∫ t

0

∫ ∞
0

I(u+ x > t+ y)dK(u, x) (45)

and

R2(t, y) = λc2
a

∫ t

0
F̄ (t+ y − u)dW (u) (46)

where W (·) is a standard Brownian motion, and K(u, x) = W (λu, F (x))− F (x)W (λu, 1) in which
W (·, ·) is a standard Brownian sheet on [0,∞)× [0, 1]. W (·) and K(·, ·) are independent processes.
ca is the coefficient of variation i.e. ratio of standard deviation to mean of the interarrival times.

The key step is then to show an estimate of this limiting Gaussian process:

Lemma 10. Fix t0 > 0. For i = 1, 2, we have

P (|R(t, y)| ≤ C∗ν(y) for all t ∈ [0, t0], y ∈ [0,∞)) > 0

for well-chosen constant C∗ > 0, where R(·, ·) and ν(·) are defined in (44), (45), (46) and (13).
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This lemma relies on an invocation of Borell-TIS inequality on the Gaussian process Ri(t, y) for
i = 1, 2. The verification of the conditions for such invocation is tedious but routine, and hence will
be deferred to the appendix. Here we provide a brief outline of the arguments: For i = 1, 2,

Step 1: Define a d-metric (in fact a pseudo-metric)

di((t, y), (t′, y′)) = E(R̃i(t, y)− R̃i(t, y))2

where R̃i(t, y) = Ri(t, y)/ν(y). Show that the domain [0, t0] × [0,∞] can be compactified
under this (pseudo) metric.

Step 2: Use an entropy argument (see for example Adler (1990)) to show that E supS R̃i(t, y) < ∞.
In particular, R̃i(t, y) is a.s. bounded over S.

Step 3: Invoke Borell-TIS inequality i.e. for x ≥ E supS R̃i(t, y),

P

(
sup
S
R̃i(t, y) ≥ x

)
≤ exp

{
− 1

2σ2
i

(
x− E sup

S
R̃i(t, y)

)2
}

where
σ2
i = sup

S
ER̃i(t, y)2

From these steps, it is straightforward to conclude Lemma 10. The rest of the proof of Lemma
9 is to show the uniformity over U0 in the weak limit of Q̄∞ to R. This is done by restricting to the
set U0 ≤ x for x = O(1/s) and using the light tail property of U0. Again, the derivation is tedious
but straightforward; the details are provided in the appendix.

We need one more lemma:

Lemma 11. Let Vk be r.v. with distribution function F (·) satisfying the light-tail assumption in
(8). For any p > 0, we have

E

(
max

k=1,...,n
Vk

)p
= O(lp(n)p) = o(nε)

where

lp(n) = inf{y : np

∫ ∞
y

up−1F̄ (u)du < η} (47)

for a constant η > 0 and ε is any positive number.

Proof. Let F̄n(x) = P (maxk=1,...,n Vk > x). Note that

E

(
max

k=1,...,n
Vk

)p
= p

∫ ∞
0

up−1F̄n(u)du ≤ yp + np

∫ ∞
y

up−1F̄ (u)du

for any y ≥ 0. Pick y = lp(n). Then

E

(
max

k=1,...,n
Vk

)p
= O(lp(n)p)

Using (9) we have O(lp(n)p) = O(nε) for any ε > 0.
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We are now ready to prove Proposition 1, which we need the following construction. Pick
γ = 1/t0 where γ is introduced in (13) and ξ(y) is defined in (12). Recall C1 as in Lemma 9. Define
Ti, i = 0, 1, 2, . . . as follows: Given Ti−1, define

v(s) = inf

{
y :
√
sC1ξ(y) <

1

2

}
z = inf {kt0 : k = 1, 2, . . . : kt0 ≥ v(s) + ∆}
xi = x(Ti−1)

wi = inf{kt0, k = 1, 2, . . . : kt0 ≥ xi}
di = ANs(Ti−1+Si)+1 − (Ti−1 + Si) i.e. di is the time of first arrival after Ti−1 + Si

Ti = Ti−1 + wi + di + z

Note that wi and z are multiples of t0. For convenience define, for u < t, Q̄∞u (t, y) := Q̄∞(u+ t, y)−
Q̄∞(u, t+ y) as the number of arrivals after time u that have residual service time larger than y at
time u + t. We define a “success” in block i to be the event ζi that all of the following occurs: 1)

Q̄∞Ti−1+(k−1)t0
(t, y) ∈

(
λs
∫ t+y
y F̄ (u)du±

√
sC1ν(y)

)
for all t ∈ [0, t0], for every k = 1, 2, . . . , wi/t0.

2) di ≤ c/s for a small constant c > 0. 3) Q∞Ti−1+wi+di+(k−1)t0
(t, y) ∈

(
λs
∫ t+y
y F̄ (u)du±

√
sC1ν(y)

)
for all t ∈ [0, t0], for every k = 1, 2, . . . , z/t0.

Roughly speaking, ζi occurs when the GI/G/∞ system behaves “normally” for a long enough
period so that Q∞(t) keeps within capacity for that period and the steady-state confidence band
J(·) is reached at the end (see the discussion preceding Proposition 1). More precisely, starting
from Ti−1 and given x(Ti−1), Ti−1 + wi is the time when all customers in the previous block have
left. Adjusting for the age at time Ti−1 +wi, starting from Ti−1 +wi + di, z is a long enough time
so that the system would fall into J(·) if it behaves normally in each steps of size t0 throughout the
period. It can be seen by summing up the interval boundaries that the occurrence of ζi ensures τ ′A
is reached during the last ∆ units of time before Ti.

Proof of Proposition 1. We first check that the occurrence of event ζi implies that τ ′A is reached
during the last ∆ units of time before Ti. As discussed above, since wi ≥ xi, all the customers at
time Ti−1 + wi will be those arrive after time Ti−1. Hence the occurrence of ζi implies that

Q∞(Ti−1 + wi, y)

∈

λswi/t0∑
k=1

∫ kt0+y

(k−1)t0+y
F̄ (u)du±

√
sC1

wi/t0∑
k=1

ν((k − 1)t0 + y)


⊂

(
λs

∫ wi+y

y
F̄ (u)du±

√
sC1

[
ν(y) +

1

t0

∫ ∞
y

ν(u)du

])
⊂

(
λs

∫ wi+y

y
F̄ (u)du±

√
sC1ξ(y)

)
(48)

and

Q∞(Ti−1 + wi + di, y) ∈
(
λs

∫ wi+di+y

di+y
F̄ (u)du±

√
sC1ξ(di + y)

)
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For each t ∈ ((k − 1)t0, kt0], denote [t] = t− (k − 1)t0, for k = 1, . . . , z/t0. Then

Q∞(Ti−1 + wi + di + t, y)

∈

(
λs

∫ t+y

y
F̄ (u)du+ λs

∫ wi+di+y+t

di+y+t
F̄ (u)du

±
√
sC1

wi/t0∑
j=1

ν((j − 1)t0 + di + (k − 1)t0 + [t] + y) + ν(y) +

k∑
j=2

ν((j − 2)t0 + [t] + y)I(k > 1)

)

⊂

λs ∫ t+y

y
F̄ (u)du+ λs

∫ wi+di+y+t

di+y+t
F̄ (u)du±

√
sC1

wi/t0+k−1∑
j=1

ν((j − 1)t0 + [t] + y) + ν(y)


⊂

(
λs

∫ t+y

y
F̄ (u)du+ λs

∫ wi+di+y+t

di+y+t
F̄ (u)du±

√
sC1

[
2ν(y) +

1

t0

∫ ∞
y

ν(u)du

])
⊂

(
λs

∫ t+y

y
F̄ (u)du+ λs

∫ wi+di+y+t

di+y+t
F̄ (u)du±

√
sC ′ξ(y)

)
(49)

where C ′ = 2C1 (which depends on γ).
It is now obvious that ζi implies Q∞(t) < s for [Ti−1 + wi, Ti]. By the definition of v(s), (48)

and the fact that λs
∫∞
y F̄ (u)du is smaller and decays faster than

√
sC1ξ(y) for y ≥ v(s) when s is

large, we get x(Ti−1 + wi) ≤ v(s) ≤ z. Let T̃i = sup{k∆ : k∆ ≤ Ti} be the largest time before Ti
such that A can possibly be hit i.e. in the ∆-skeleton. It remains to show that Q∞(T̃i, y) ∈ J(y) in
order to conclude that ζi implies a hit on τ ′A.

From (49), for t ∈ [Ti−1 + wi + di, Ti],

Q∞(t, y) ∈

(
λs

∫ t−Ti−1+y

y
F̄ (u)du− λs

∫ t−Ti−1−wi+y

t−Ti−1−wi−di+y
F̄ (u)du±

√
sC ′ξ(y)

)

In particular,

Q∞(T̃i, y) ∈

(
λs

∫ T̃i−Ti−1+y

y
F̄ (u)du− λs

∫ T̃i−Ti−1−wi+y

T̃i−Ti−1−wi−di+y
F̄ (u)du±

√
sC ′ξ(y)

)

=

(
λs

∫ ∞
y

F̄ (u)du− λs
∫ ∞
T̃i−Ti−1+y

F̄ (u)du− λs
∫ T̃i−Ti−1−wi+y

T̃i−Ti−1−wi−di+y
F̄ (u)du±

√
sC ′ξ(y)

)
(50)

Now note that

λs

∫ ∞
T̃i−Ti−1+y

F̄ (u)du+ λs

∫ T̃i−Ti−1−wi+y

T̃i−Ti−1−wi−di+y
F̄ (u)du ≤ 2λs

∫ ∞
v(s)+y

F̄ (u)du

and we claim that it is further bounded from above by
√
sCξ(y) for arbitrary constant C when s

is large enough, uniformly over y ∈ [0,∞). In fact, we have v(s) ≥ inf{y : s
∫∞
y F̄ (u) ≤ α} for

any α > 0 when s is large enough. Now when
√
sCξ(y) < α/(2λ), s

∫∞
v(s)+y F̄ (u)du ≤ s

∫∞
y F̄ (u)du

which is smaller and decays faster than
√
sCξ(y) when s is large. When

√
sCξ(y) ≥ α/(2λ), we
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have s
∫∞
v(s)+y F̄ (u)du ≤ s

∫∞
v(s) F̄ (u)du ≤ α/(2λ). Picking C∗ = C ′ +C where C∗ is defined in (11),

we conclude that ζi implies τ ′A is reached at T̃i.
Now let N = inf{i : ζi occurs }. Consider (suppressing the initial conditions), for any p > 0,

E(τ ′A)p

= E

[
N∑
i=1

(wi + di + z)

]p

= E

[ ∞∑
i=1

(wi + di + z)I(N ≥ i)

]p

≤

( ∞∑
i=1

(E[(wi + di + z)p;N ≥ i])1/p

)p

≤

( ∞∑
i=1

(E(wi + di + z)pq)1/(pq)(P (N ≥ i))1/(pr)

)p
(51)

where q, r > 0 and 1/q + 1/r = 1, by using Minkowski’s inequality and Holder’s inequality in the
first and second inequality respectively.

For i = 2, 3, . . ., we have

E(wi + di + z)pq ≤ [(Ewpqi )1/(pq) + (Edpqi )1/(pq) + z]pq (52)

by Minkowski’s inequality again.
We now analyze E(wi+di+z)p for any p > 0. From now on C denotes constant, not necessarily

the same every time it appears. First note that

(Edpi )
1/p ≤ d(p) := sup

b≥0
(E[dpi |B(Ti−1 + wi) = b])1/p =

1

s
sup
b≥0

(E[(U0 − b)p|B0(0) = b])1/p = O

(
1

s

)
(53)

and z ≤ v(s) + ∆ + t0 = o(sε) for any ε > 0. The last equality of (53) comes from the light-tail
assumption on U0. Indeed, since U0 is light-tailed, we have

exp

{
−
∫ x

0
hU (u)du

}
= F̄U (x) ≤ e−cx

for some c > 0, where hU (·) and F̄ (x) are the hazard rate function and tail distribution function of
U0 respectively. This implies that h(x) ≥ c for all x ≥ 0. Then

sup
b≥0

P (U0 − b > x|U0 > b) = sup
b≥0

exp

{
−
∫ x+b

b
h(u)du

}
≤ e−cx

and so

sup
b≥0

E[(U0 − b)p|B0(0) = b] = sup
b≥0

p

∫ ∞
0

xp−1P (U0 − b > x|U0 > b)dx ≤ p
∫ ∞

0
xp−1e−cxdx <∞

For i = 1, w1 ≤ l(s) + t0 = o(sε) where l(s) is defined in (14). Hence E(w1 + d1 + z)p ≤
[(Ewp1)1/p + (Edp1)1/p + z]p = o(sε) for any ε > 0.
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Now

Ewpi ≤ E
[(

max
i=1,...,Ns(Ti−1)−Ns(Ti−2)

Vi

)p]
= E

[
E

[(
max

i=1,...,Ns(Ti−1)−Ns(Ti−2)
Vi

)p ∣∣∣∣∣Ns(Ti−1)−Ns(Ti−2)

]]
≤ CE[lp(Ns(Ti−1)−Ns(Ti−2))p] for some constant C = C(p) and lp(·) defined in (47)

≤ CE[(Ns(Ti−1)−Ns(Ti−2))ε] for constant C = C(p, ε) (54)

for any ε > 0, by Lemma 11. Pick ε < 1. By Jensen’s inequality and elementary renewal theorem,
(54) is less than or equal to

C(E[Ns(Ti−1)−Ns(Ti−2)])ε

= C(E[Ns(Ti−1)−Ns(Ti−2)|Ti−1 − Ti−2])ε

≤ C(E[λ̃s(Ti−1 − Ti−2)])ε for some λ̃ > λ

= Cλ̃
ε
sε(E[Ti−1 − Ti−2])ε

= Cλ̃
ε
sε(E[wi−1 + di−1 + z])ε (55)

Let yi = E[wi + di + z]. We then have

yi = Csεyεi−1 + d(1) + z

By construction yi ≥ t0, and since v(s) = o(sε) for any ε > 0 we have

d(1) + z ≤ Csεtε0 ≤ Csεyεi

for large enough s, uniformly over i. Hence

yi ≤ Csεyεi−1 + d(1) + z ≤ Csεyεi−1

Now we can write

yi ≤ Csεyεi−1 ≤ Csε(Csεyεi−2)ε = C1+εsε+ε
2
yε

2

i−2

· · · ≤ (C1/(1−ε) ∨ 1)sε/(1−ε)yε
i−1

1 = o(sρ) (56)

for any ρ > 0 by choosing ε, uniformly over i.
Therefore from (52), (55) and (56), we get

E(wi + di + z)pq = o(sε) (57)

for any ε > 0 uniformly over i.
Now consider

P (N ≥ 1) = P (ζc1) = 1− P (ζ1)

≤ 1− P
(
d1 ≤

c

s

)
C

(w1+z)/t0
2

where C2 is defined in Lemma 9 and c is defined in the discussion of ζi

≤ 1− be−a(w1+z)

= 1− be−o(sε) (58)
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for some constants a > 0 and 0 < b < 1 and any ε > 0. Moreover, for i = 2, 3, . . .,

P (N ≥ i) = P (N ≥ i− 1)P (ζci−1|N ≥ i− 1)

≤ P (N ≥ i− 1)E[1− be−a(wi−1+z)|N ≥ i− 1]

≤ P (N ≥ i− 1)(1− be−a(E[wi−1|N≥i−1]+z)) (59)

by Jensen’s inequality and that the function 1− be−a(·+z) is concave.
Consider E[wi|N ≥ i] for any i = 2, 3, . . .. We have

E[wi|N ≥ i] = E[E[wi|ζci−1, wi−1 + di−1 + z]|N ≥ i] (60)

Now by singling out failure in the first trial of t0 (see the discussion on ζi), we get

P (ζci−1|wi−1 + di−1 + z) ≥ C3

where C3 is defined in Lemma 9, uniformly over wi−1 + di−1 + z. Hence

C3E[wi|ζci−1, wi−1 + di−1 + z] ≤
∫
P (ζci−1|wi−1 + di−1 + z)E[wi|ζci−1, wi−1 + di−1 + z]P (wi−1 + di−1 + z ∈ dx)

≤ Ewi

which gives

E[wi|ζci−1, wi−1 + di−1 + z] ≤ Ewi
C3

uniformly over wi−1 + di−1 + z. Therefore (60) is bounded from above by Ewi/C3.
From (55) and (56) we know that Ewi = o(sε) for any ε > 0. So (59) is less than or equal to

P (N ≥ i− 1)(1− be−a(Ewi−1/C3+z)) = P (N ≥ i− 1)(1− be−o(sε)) (61)

for any ε > 0 uniformly over i.
By (51), (58), (57) and (61) we get

Eτp ≤ o(sε)

( ∞∑
i=1

(P (N ≥ i))1/(pr)

)p

≤ o(sε)

( ∞∑
i=1

(1− be−o(sε))i/(pr)
)p

≤ o(sε) 1

[1− (1− be−o(sε))1/(pr)]p

≤ o(sε)eo(sε)

Hence
1

s
logEτp ≤ ε

s
+
o(sε)

s
→ 0

as s→∞. On the other hand, we pick A such that τA ≥ ∆ and so

1

s
logEτpA ≥

1

s
log ∆p → 0
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Conclusion follows for (3).
For (4), note that NA ≤ Ns(τA) ≤ Ns(τ

′
A) and ENs(t)

p = O(st) since (1/s) logEeθNs(t) →
−ψN (θ)t. Hence

ENs(τ
′
A)p ≤ O(sp)E(τ ′A)p

and the result follows from (3).

Remark 6. The proof of Proposition 1 can be simplified when the service time has bounded support,
say on [0,M ]. In this case the GI/G/∞ system is “M +U0-independent” i.e. W∞t , the state of the
system at time t and W∞ANs(t)+1+M , the state of the system at M time units after the first arrival

since time t are independent. As a result we can merely set v(s) = M and xi = M for any i, and
the same argument as above will apply.

5 Numerical Example

We close this paper by a numerical example for GI/G/s. We set the interarrival times in the
base system to be Gamma(1/2, 1/2) so λ = 1. For illustrative convenience we set the service
times as Uniform(0, 1). Hence traffic intensity is 1/2. In this case, we can simply set C∗ = 1 and

ξ(y) = sd(R(∞, y)) ∨ C1 =
√
λ
∫∞
y F (u)F̄ (u)du+ λc2

a

∫∞
y F̄ (u)2du ∨ C1 with C1 = 1.1 (note that

η = 0 and we use a truncated ξ(y); the validity of this simpler choice than the one displayed in
Section 2.1 can be verified from the arguments in Section 4 specialized to the case of bounded
service time). Also we choose ∆ = 1. To test the numerical efficiency of our importance sampling
algorithm, we compare it with crude Monte Carlo scheme using increasing values of s, namely
s = 10, 30, 60, 80, 100 and 120.

As discussed in Section 2, since we run our importance sampler everytime we hit set A, the initial
positions of the importance samplers are dependent. To get an unbiased estimate of standard error
we group the samples into batches and obtain statistics based on these batch samples (see Asmussen
and Glynn (2007)). To make the estimates and statistics comparable, for each experiment we run
the computer for roughly 120 seconds CPU time and always use 20 batches. In the tables below,
we output the estimates of loss probability, the relative errors (ratios of sample standard deviation
to sample mean) and 95% confidence intervals for both crude Monte Carlo scheme and importance
sampler under different values of s.

When s is small we see that crude Monte Carlo performs slightly better than our importance
sampler. However, when s is over 80, importance sampler starts to perform better. When s is above
100, crude Monte Carlo totally breaks down while our importance sampler still gives estimates that
have encouragingly small relative error.

Crude Monte Carlo

s Estimate R.E. C.I.
10 0.05318 0.0265 (0.05252, 0.05384)
30 0.003174 0.111 (0.003009, 0.003338)
60 7.0922× 10−5 1.388 (2.4847× 10−5, 1.1700× 10−4)
80 6.9444× 10−7 4.472 (−7.5904× 10−7, 2.1479× 10−6)
100 0 N/A N/A
120 0 N/A N/A

Importance Sampler

Estimate R.E. C.I.
0.05412 0.130 (0.05084, 0.05740)
0.003204 0.570 (0.002349, 0.004060)
6.2585× 10−5 2.258 (−3.5529× 10−6, 1.2872× 10−4)
4.5001× 10−8 1.879 (5.4365× 10−9, 8.4565× 10−8)
8.1178× 10−10 2.296 (−6.0511× 10−11, 1.6841× 10−9)
1.3025× 10−10 4.472 (−1.4237× 10−10, 4.0286× 10−10)

We can also analyze the graphical depiction of the sample paths. Figures 6 and 7 are two
sample paths run by Algorithm 2, initialized at the mean of Q(t, y) i.e. λs

∫∞
y F̄ (u)du. Figure 6 is
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a contour plot of Q(t, y), whereas Figure 7 is a three-dimensional plot of another Q(t, y). As we can
see, the number of customers (the color at the t-axis) increases from time 0 to around 0.95 when it
hits overflow in the contour plot. Similar trajectory appears in the three-dimensional plot. These
plots are potentially useful for operations manager to judge the possibility of overflow over a finite
horizon given the current state.

Figure 6: Contour plot of Q(t,y)
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Figure 7: Three−dimensional plot of Q(t,y)
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A Technical Proofs

A.1 Proof of Lemma 1

The domain of ψt(·) is easily seen to inherit from ψN (·). Write

ψt(θ) =

∫ t

0
ψN (log(eθF̄ (u) + F (u)))du

Note that

∂

∂θ
ψN (log(eθF̄ (u) + F (u))) = ψ′N (log(eθF̄ (u) + F (u)))

eθF̄ (u)

eθF̄ (u) + F (u)

is continuous in u and θ. Hence

ψ′t(θ) =

∫ t

0
ψ′N (log(eθF̄ (u) + F (u)))

eθF̄ (u)

eθF̄ (u) + F (u)
du

(see Rudin (1976), p. 236 Theorem 9.42). Moreover, ψ′N (log(eθF̄ (u) + F (u)))eθF̄ (u)/(eθF̄ (u) +
F (u)) is uniformly continuous in u and a neighborhood of θ, for any θ ∈ R. Hence ψ′t(θ) is continuous
in θ. Also the strict monotonicity of ψ′N (·) implies that ψ′t(θ) too is strictly increasing for any θ > 0.

Following the same argument, we have

ψ′′t (θ) =

∫ t

0

[
ψ′′N (log(eθF̄ (u)+F (u)))

(
eθF̄ (u)

eθF̄ (u) + F (u)

)2

+ψ′N (log(eθF̄ (u)+F (u)))
F (u)F̄ (u)eθ

(eθF̄ (u) + F (u))2

]
du
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which is continuous in θ.
Finally, note that as θ ↗ ∞, ψ′N (log(eθF̄ (u) + F (u)))eθF̄ (u)/(eθF̄ (u) + F (u)) ↗ ∞ for any

u ∈ supp F̄ since ψN (·) is steep. By monotone convergence theorem we conclude that ψt(·) is steep.

A.2 Proof of Lemma 2

1) Denote θ(t) = θt for convenience. Since ψ′t(·) is continuously differentiable by Lemma 1, by
implicit function theorem, we can differentiate ψ′t(θ(t)) = at with respect to t on both sides to get

ψ′N (log(eθ(t)F̄ (t) + F (t)))
eθ(t)F̄ (t)

eθ(t)F̄ (t) + F (t)
+

∫ t

0

[
ψ′′N (log(eθ(t)F̄ (u) + F (u)))

(
eθ(t)F̄ (u)

eθ(t)F̄ (u) + F (u)

)2

+ ψ′N (log(eθ(t)F̄ (u) + F (u)))
F (u)F̄ (u)eθ(t)

(eθ(t)F̄ (u) + F (u))2

]
duθ′(t) = λF̄ (t)

which gives

θ′(t)

=
λF̄ (t)− ψ′N (log(eθ(t)F̄ (t) + F (t)))eθ(t)F̄ (t)/(eθ(t)F̄ (t) + F (t))∫ t

0

[
ψ′′N (log(eθ(t)F̄ (u) + F (u)))

(
eθ(t)F̄ (u)

eθ(t)F̄ (u)+F (u)

)2
+ ψ′N (log(eθ(t)F̄ (u) + F (u))) F (u)F̄ (u)eθ(t)

(eθ(t)F̄ (u)+F (u))2

]
du

≤ 0

The inequality is due to the fact that

gt(θ) := ψ′N (log(eθF̄ (t) + F (t)))
eθF̄ (t)

eθF̄ (t) + F (t)
(62)

is non-decreasing in θ and gt(0) = λF̄ (t), and that ψN (·) is non-decreasing and convex. Hence θ(t)
is non-increasing.

2) Since at ≥ 1 − λEV , θt ≥ θ̄t where θ̄t satisfies ψ′t(θ̄t) = 1 − λEV , well-defined when t is small
enough. Moreover, it is easy to check that ψ′t(θ) ≤ ψ′N (θ)t for any θ, t > 0 (either by the formula of
ψ′t and ψ′N or by definition in terms of Gartner-Ellis limit). This implies that (ψ′−1

t (y) ≥ (ψ′−1
N (y/t)

for any y in the domain. Putting y = 1− λEV gives θ̄t ≥ (ψ′−1
N ((1− λEV )/t). By steepness of ψN

we have (ψ′−1
N ((1− λEV )/t)↗∞ as t↘ 0. So θt ↗∞ as t↘ 0.

3) Consider ψ′t(θt) = at, or θt = (ψ′−1
t (at). Now from (18) we have

ψ′∞(θ) =

∫ ∞
0

ψ′θN F̄ (u) + F (u)))
eθF̄ (u)

eθF̄ (u) + F (u)
du

and that ψ′∞(θ) is increasing in θ, by the same argument as in the proof of 1). Moreover, by
monotone convergence we have ψ′t ↗ ψ′∞ as t↗∞.

By Billingsley (1979), p. 287, or Resnick (2008), p. 5, Proposition 0.1, we have (ψ′−1
t → (ψ′−1

∞
as t↗∞. Moreover, since (ψ′−1

t is increasing over the compact interval [λEV, 1], the convergence
is uniform. By Resnick (2008), p. 2, this implies continuous convergence, and hence (ψ′−1

t (at) →
(ψ′−1
∞ (1), or θt → θ∞.
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A.3 Proof of Lemma 3

1) As in the proof of Lemma 2 Part 1, denote θ(t) = θt. Consider

d

dt
It = θ(t)λF̄ (t) + θ′(t)at − ψ′t(θ(t))θ′(t)− ψN (log(eθ(t)F̄ (t) + F (t)))

= θ(t)λF̄ (t)− ψN (log(eθ(t)F̄ (t) + F (t)))

since ψ′t(θ(t)) = at. Note that ht(θ) := ψN (log(eθF̄ (t) + F (t))) is convex in θ for any t ≥ 0 and so

ht(θ(t)) ≥ ht(0) + h′t(0)θ(t)

which gives
ψN (log(eθ(t)F̄ (t) + F (t))) ≥ λF̄ (t)θ(t)

Hence (d/dt)It ≤ 0 and so It is non-increasing.

2) Write It = atθt − ψt(θt). By Lemma 2 Part 3, θt ↘ θ∞ on [θ∞, θT ] for t ≥ T for some
T > 0. Since ψt(θ) is increasing in θ, by continuous convergence (see Resnick (2008), p. 2) we have
ψt(θt)→ ψ∞(θ∞). Hence It → I∗ defined in (19).

3) Note that in case V is supported on [0,M ], it is easy to check that It = IM is the same for any
t ≥M . Hence the conclusion.

A.4 Proof of Lemma 4

1) Following the spirit of the proof of Lemma 3 Part 1, denote θ̃(t) = θ̃t for convenience and consider

d

dt
Ĩt = θ̃

′
(t)(1− λEV )− ψ′N (θ̃(t))tθ̃

′
(t)− ψN (θ̃(t)) = −ψN (θ̃(t)) ≤ 0

for small t, using ψ′N (θ̃t)t = 1− λEV . Hence the conclusion.

2) Consider θ̃t = (ψ′−1
N ((1− λEV )/t), well-defined by the strict monotonicity of ψ′N . By steepness

of ψN we have (ψ′−1
N ((1− λEV )/t)↗∞ as t↘ 0. So θ̃t ↗∞ as t↘ 0.

Now write

Ĩt = θ̃t(1− λEV )− ψN (θ̃t)t = (1− λEV )

(
θ̃t −

ψN (θ̃t)

ψ′N (θ̃t)

)
→∞

where the convergence follows from (6) and 1).

A.5 Proof of Lemma 5

To prove Lemma 5, we first need the following analytical lemma:

Lemma 12. Let hm : D ⊂ Rn → R be a sequence of monotone functions, in the sense that
hm(x1, x2, . . . , xi−1, yi, xi+1, . . . , xn) is either non-decreasing or non-increasing in yi fixing x1, . . . , xi−1, xi, . . . , xn,
for any i = 1, . . . , n. Moreover, suppose D is compact. If hm → h pointwise, where h is continuous,
then the convergence is uniform over D.



38

Proof. Since D is compact, continuity of h implies uniform continuity. Therefore, given ε > 0, there
exists δ > 0 such that ‖x1 − x2‖ < δ implies |h(x1) − h(x2)| < ε. Compactness of D implies that
there is a finite collection of these δ-balls to cover D. Let {Nδ(x)}x∈E be such collection. Note that
hm → h uniformly over E .

For any x = (x1, . . . , xn) ∈ D, consider

|hm(x− h(x)| ≤ |hm(x)− hm(x̃)|+ |hm(x̃) + h(x̃)|+ |h(x̃)− h(x)|

where x̃ = (x̃1, . . . , x̃n) is chosen to be the closet point to x in E that satisfies: For i = 1, . . . , n,
x̃i ≥ xi if h is non-decreasing in the i-th component, and x̃i ≤ xi if h is non-increasing in the i-th
component.

By construction we have |h(x̃)− h(x)| < 2ε and |hm(x̃)− h(x̃)| < ε when m is large enough.
Now

|hm(x)− hm(x̃)|
= hm(x̃)− hm(x) by our choice of x̃ and monotone property of hm

≤ hm(x̃)− hm(˜̃x) where ˜̃x is chosen to be the closet point to x in E that satisfies:

For i = 1, . . . , n, ˜̃xi ≤ xi if h is non-decreasing in the i-th component, and

˜̃xi ≥ xi if h is non-increasing in the i-th component.

≤ |hm(x̃)− h(x̃)|+ |h(x̃)− h(˜̃x)|+ |hm(˜̃x)− h(˜̃x)|
≤ ε+ 2ε+ ε

when m is large enough.
Combining the above, we have |hm(x)− h(x)| ≤ 7ε for all x ∈ D. Hence the conclusion.

Proof of Lemma 5. For convenience write ψs(θ;w, z, t) = logEeQ̄
∞
w,z [t,∞] and

ψ(θ;w, z, t) =

∫ z

w
ψN (log(eθF̄ (t− u) + F (t− u)))du

defined for θ ∈ [θ∞, θT ], t ≥ T and 0 ≤ w ≤ z ≤ t+ η for some η > 0. We can extend the domain
by putting ψs(θ;w, z, t) = ψs(θ;w, t + η, t) and ψ(θ;w, z, t) = ψ(θ;w, t + η, t) for z > t + η, and
ψs(θ;w, z, t) = ψ(θ;w, z, t) = 0 for w > z.

Note that ψs(θ;w, z, t) defined as such is non-decreasing in θ, non-increasing in w, non-decreasing
in z and non-increasing in t. Also, ψs(θ;w, z, t) → ψ(θ;w, z, t) pointwise with ψ(θ;w, z, t) con-
tinuous. Hence the convergence is uniform over the compact set θ ∈ [θ∞, θT ] and (w, z, t) ∈
[0,K + η] × [0,K + η] × [0,K] by Lemma 12, for any K > 0. By our construction we can extend
the set of uniform convergence to (w, z, t) ∈ [0,∞)2 × [0,K].

We now choose K as follows. Given ε > 0, there exists K > 0 such that for all t > K, z ≤ t−K,
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we have

ψ(θ;w, z, t) =

∫ z

w
ψN (log(eθF̄ (t− u) + F (t− u)))du

=

∫ t−w

t−z
ψN (log(eθF̄ (u) + F (u)))du

≤
∫ ∞
K

ψN (log(eθF̄ (u) + F (u)))du

≤ C1λ

∫ ∞
K

log(1 + (eθ − 1)F̄ (u))du

≤ C2λ

∫ ∞
K

F̄ (u)du

< ε

for some C1, C2 > 0, uniformly over θ ∈ [θ∞, θT ]. Hence for z ≤ t−K, ψs(θ;w, z, t) ≤ ψs(θ; 0, t−
K, t)→ ψ(θ; 0, t−K, t) < ε uniformly over θ ∈ [θ∞, θT ] and so |ψs(θ;w, z, t)−ψ(θ;w, z, t)| < 3ε for
large enough s.

For z > t−K, we write

ψs(θ;w, z, t) =
1

s
logEe

θQ̄∞w,t−K [t,∞]I(w<t−K)+θQ̄∞
(t−K)∨w,z [t,∞]

which is bounded from above by

1

s
log
(
EeθQ̄

∞
w,t−K [t,∞]I(w<t−K)E0e

θQ̄∞
0,(z−t+K)∧(z−w)

[K,∞]
)

= ψs(θ;w, t−K, t)I(w < t−K) +
1

s
logE0e

θQ̄∞
0,(z−t+K)∧(z−w)

[K,∞]

and bounded from below by

1

s
log
(
EeθQ̄

∞
0,t−K [t,∞]I(w<t−K)E00e

θQ̄∞
0,(z−t+K)∧(z−w)

[K,∞]
)

= ψs(θ;w, t−K, t)I(w < t−K) +
1

s
logE00e

θQ̄∞
0,(z−t+K)∧(z−w)

[K,∞]
(63)

where E0[·] denotes the expectation conditioned that a customer arrives at time 0 and is counted
in Q̄∞0,(z−t+K)∧(z−w)[t,∞], while E00[·] denotes the expectation conditioned on delayed arrival with

tail distribution (in the basic scale) given by supb P (U0− b > x|U0− b). Note that supb P (U0− b >
x|U0 > b) is a valid tail distribution because of the light-tail assumption on U0. Indeed, it is obvious
that supb P (U0 − b > 0|U0 > b) = 1, and by the same argument following that of (53), we have
supb P (U0−b > x|U0 > b) ≤ e−cx → 0 for some c > 0. Moreover, it is obvious that supb P (U0−b >
x|U0 > b) is non-increasing. Now by construction this tail distribution is stochastically at most as

large as P (U0−b > x|U0 > b) for any b ≥ 0, and hence (63). Note that 1
s logE0e

θQ̄∞
0,(z−t+K)∧(z−w)

[K,∞]

and 1
s logE00e

θQ̄∞
0,(z−t+K)∧(z−w)

[K,∞]
both converge to ψ(θ; 0, (z − t+K) ∧ (z − w),K) uniformly by

the argument earlier (as a special case when t ≤ K). Also we have shown that ψs(θ;w, t − K, t)
converges to ψs(θ;w, t−K, t) uniformly for t > K (as a special case when z ≤ t−K and t > K).
The sandwich argument concludes the lemma.
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A.6 Proof of Lemma 6

Consider

1

s
logE exp


n∑
k=1

 n∑
j=k

θkjQ
∞
(k−1)∆,k∆[(j − 1)∆, j∆] + θk·Q

∞
(k−1)∆,k∆[n∆,∞]


=

1

s
logE exp

{
n∑
k=1

(
n∑
j=k

θkj

Ns(k∆)∑
i=Ns((k−1)∆)+1

I((j − 1)∆ < Vi +Ai ≤ j∆)

+ θk·

Ns(k∆)∑
i=Ns((k−1)∆)+1

I(Vi +Ai > n∆)

)}

=
1

s
logE

n∏
k=1

Ns(k∆)∏
i=Ns((k−1)∆)+1

 n∑
j=k

eθkjP ((j − 1)∆ < Vi +Ai ≤ j∆) + eθk·F̄ (n∆−Ai)


=

1

s
logE exp

{
n∑
k=1

∫ k∆

(k−1)∆
hk(u)dNs(u)

}
where

hk(u) = log

 n∑
j=k

eθkjP ((j − 1)∆ < Vi + u ≤ j∆) + eθk·F̄ (n∆− u)


Now

1

s
logE exp

{
n∑
k=1

m∑
w=1

hk(ζkw)

[
Ns

(
(k − 1)∆ +

w∆

m

)
−Ns

(
(k − 1)∆ +

(w − 1)∆

m

)]}

≤ 1

s
logE exp

{
n∑
k=1

∫ k∆

(k−1)∆
hk(u)dNs(u)

}

≤ 1

s
logE exp

{
n∑
k=1

m∑
w=1

hk(ζkw)

[
Ns

(
(k − 1)∆ +

w∆

m

)
−Ns

(
(k − 1)∆ +

(w − 1)∆

m

)]}
where ζ

kw
= argmin{hk(u) : (k − 1)∆ + (w − 1)∆/m ≤ u ≤ (k − 1)∆ + w∆/m} and ζkw =

argmax{hk(u) : (k − 1)∆ + (w − 1)∆/m ≤ u ≤ (k − 1)∆ + w∆/m}. The existence of ζ
kw

and ζkw
is guaranteed by the continuity of hk(·), which is implied by our assumption that Vi has density.

Letting s→∞ and by (7) we have

n∑
k=1

m∑
w=1

ψN (hk(ζkw))
∆

m
≤ lim inf

s→∞

1

s
logE exp

{
n∑
k=1

∫ k∆

(k−1)∆
hk(u)dNs(u)

}

≤ lim sup
s→∞

1

s
logE exp

{
n∑
k=1

∫ k∆

(k−1)∆
hk(u)dNs(u)

}

≤
n∑
k=1

m∑
w=1

ψN (hk(ζkw))
∆

m

By continuity of hk (·) and ψN (·), ψN (hk(·)) is Riemann integrable. Letting m → ∞ yields the
conclusion.
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A.7 Proof of Lemma 9 and 10

Our goal here is to prove Lemma 9, via Lemma 10. For convenience let G(y) =
(∫∞

y F̄ (u)du
)1/(2+η)

where η is defined in (13). Note that by L’Hospital’s rule and Assumption (8), we have

lim
y→∞

yF̄ (y)

G(y)
= lim

y→∞

F̄ (y)− yf(y)

−F̄ (y)
= lim

y→∞
(yh(y)− 1) =∞ (64)

As discussed before, the key step to show Lemma 9 is an estimate of the limiting Gaussian
process given by Lemma 10. The proof of this inequality takes three steps. We first consider the
case when i = 1. The first step is to define a d-metric (in fact a pseudo-metric)

d1((t, y), (t′, y′)) = E(R̃1(t, y)− R̃1(t, y))2 (65)

where R̃1(t, y) = R1(t, y)/ν(y) and show that the domain is compact under this (pseudo) metric.
Then we can prove that the Gaussian process R̃1(t, y) is a.s. bounded by an entropy argument.
The third step is an invocation of Borell’s inequality.

For convenience let S = [0, t0]× [0,∞).
Before these steps, we need an estimate of the d-metric:

Lemma 13. Let (t, y) and (t′, y′) be two points on [0, t0]× [0,∞). Without loss of generality assume
t+ y ≤ t′ + y′. Then

λ
∫ t2

0 (F̄ (t+ y − u)− F̄ (t′ + y′ − u))(1 + F (t+ y − u)− F (t′ + y′ − u))du

ν(y)2

+ λ

∫ t2

0
F̄ (t′ + y′ − u)F (t′ + y′ − u)du ·

(
1

ν(y)
− 1

ν(y′)

)2

+
λ
∫ t1
t2
F̄ (t1 + y1 − u)F (t1 + y1 − u)du

ν(y1)2
(66)

where t1 = t ∨ t′ and y1 is the corresponding y or y′.

The proof of this lemma follows the approach in Lemma 5.1 of Krichagina and Puhalskii (1999).
Hence we only sketch the proof here:

Proof. (Sketch) Recall that

R̃1(t, y) =

∫ t
0

∫∞
0 I(u+ x > t+ y)dK(u, x)

ν(y)

For a partition {u0 = 0, u1, u2, . . . , uk} of [0, t0], define

Ik,t+y(u, x) =
k∑
i=1

I(u ∈ (ui−1, ui])I(x > t+ y − ui)

Let

R̃k1(t, y) =

∫ t
0

∫∞
0 Ik,t+y(u, x)dK(u, x)

ν(y)



42

be a discretized version of R̃1(t, y). One can check that R̃k1(t, y) converges to R̃1(t, y) in mean square
as the mesh of the partition goes to 0.

Now take (t, y) and (t′, y′) in S such that t + y ≤ t′ + y′. Define t1 = t ∨ t′ and y1 be the
corresponding y or y′, and define t2 = t∧ t′ and y2 be the corresponding y or y′. Also define k̄ such
that uk̄ ≤ t1 while uk̄+1 > t1. Using (5.4) and (5.5) in Krichagina and Puhalskii (1999), we have

E(R̃k1(t, y)− R̃k1(t′, y′))2

=

k̄∑
i=1

1

ν(y)2
λ(ui − ui−1)(F (t′ + y′ − ui)− F (t+ y − ui))(1 + F (t+ y − ui)− F (t′ + y′ − ui))

+
k̄∑
i=1

(
1

ν(y)
− 1

ν(y′)

)2

λ(ui − ui−1)F̄ (t′ + y′ − ui)F (t′ + y′ − ui)

+
k∑

i=k̄+1

1

ν(y1)2
λ(ui − ui−1)F̄ (t1 + y1 − ui)F (t1 + y1 − ui)

+ o(1)

which converges to (66) as the mesh goes to 0.

Lemma 14. We can compactify the space [0, t0]× [0,∞] with the d-metric defined in (65).

Proof. Consider the mapping (i, tan) : [0, t0] × [0, π/2] → [0, t0] × [0,∞], where i is the identity
map. Here the domain is equipped with the Euclidean metric while the image is equipped with the
d-metric. We will show that the mapping (i, tan) is continuous and well-defined over its domain,
including the points (t, x) where x = π/2, and hence its image is compact.

Suppose first that (t, x)→ (t∗, x∗) where x 6= π/2. Since tan(·) is continuous, and
∫ t+y
y F̄ (u)du

and ν(y) are continuous in t and y (under Euclidean metric), it is easy to see that d1((t, tanx), (t∗, tanx∗))→
0 by using (66).

We now show that d1(·, ·) is still a (pseudo) metric when including the points (t, y) with y =∞.
Define, for y′ =∞, that

d1((t, y), (t′, y′))

=
λ
∫ t2

0 F̄ (t+ y − u)(1 + F (t+ y − u))du

ν(y)2
+

{
λ
∫ t
t′ F̄ (t+y−u)F (t+y−u)du

ν(y)2 if t > t′

0 if t ≤ t′

and d1((t, y), (t′, y′)) = 0 if y = y′ = ∞. It is straightforward to check that d1(·, ·) is continuous
at y′ = ∞ by using (66) (note that the second term of (66) goes to 0 since for y′ large enough

it is less than or equal to λ
∫ y′+t′
y′+(t′−t2) F̄ (du)du/ν(y′)2 ≤ λG(y)1−2/(2+η) → 0). Hence both the

communtativity and triangle inequality hold also at y′ =∞, which implies that d1(·, ·) is a pseudo-
metric on [0, t0]×[0,∞]. Now consider x∗ = π/2. It is now easy to see that d1((t, tanx), (t∗,∞))→ 0
as (t, x)→ (t∗, π/2).

Lemma 15. E supS R̃1(t, y) <∞. In particular, R̃1(t, y) is a.s. bounded over S.

Proof. We use C here to denote constants, not necessarily the same every time it appears. We
carry out an entropy argument (see for example Adler (1990))

E sup
S
R̃1(t, y) ≤ K

∫ ∞
0

H1/2(ε)dε = K

∫ diam(S)/2

0
H1/2(ε)dε
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where K > 0 is a universal constant, H(ε) = logN(ε) with N(ε) the ε-th order entropy of S i.e. the
minimum number of ε-balls (under d-metric) to cover S, and diam(S) is the diameter of S given by
sup(t,y),(t′,y′)∈S d1((t, y), (t′, y′)).

As in Lemma 13, let (t, y) and (t′, y′) be two points on [0, t0]× [0,∞] such that t+ y ≤ t′ + y′,
and let t1 = t ∨ t′ with y1 the corresponding y or y′. Note that from (66) we have

d1((t, y), (t′, y′)) =
λ
∫ t2

0 (F̄ (t+ y − u)− F̄ (t′ + y′ − u))du

ν(y)2

+ λ

∫ t2

0
F̄ (t′ + y′ − u)du

(
1

ν(y)
− 1

ν(y′)

)2

+
λ
∫ t1
t2
F̄ (t1 + y1 − u)du

ν(y1)2

≤
λ
∫ t+y
y F̄ (u)du

ν(y)2
+ λ

(∫ t0+y

y
F̄ (u)du ∧

∫ t0+y′

y′
F̄ (u)du

)(
1

ν(y)
− 1

ν(y′)

)2

+
λ
∫ y1+|t−t′|
y1

F̄ (u)du

ν(y1)2

≤ λG(y)1−2/(2+η) + λ(G(y)1−2/(2+η) ∨G(y′)1−2/(2+η)) + λG(y1)1−2/(2+η)

≤ C(G(y)η/(2+η) ∨G(y′)η/(2+η)) (67)

which implies that diam(S) is bounded.
Now pick any ε > 0. Since G(·) is continuous we can define G−1(·) to be the inverse of G(·).

From (67) we have d1((t, y), (t′, y′)) < ε for y, y′ > G−1((ε/C)(2+η)/η for some constant C > 0.
Now also note that

d1((t, y), (t′, y′)) ≤
λ
∫ t2

0 (F̄ (t+ y − u)− F̄ (t′ + y′ − u))du

ν(y)2

+ λ

(∫ t0+y

y
F̄ (u)du

)
∧

(∫ t0+y′

y′
F̄ (u)du

)(
1

ν(y)
− 1

ν(y′)

)2

+
λ|t− t′|
ν(y1)2

≤ C

ν(y)2 ∧ ν(y′)2
(|t− t′|+ |y − y′|) + C(G(y) ∧G(y′))

F̄ (ȳ)2

G(ȳ)2(1+1/(2+η))
|y − y′|2

where ȳ is between y and y′, by mean value theorem on 1/ν(·)

≤ C

G(y)2/(2+η) ∧G(y′)2/(2+η)
(|t− t′|+ |y − y′|) +

C

G(y)1+1/(2+η) ∧G(y′)1+1/(2+η)
|y − y′|2

≤ C

G(y)(3+η)/(2+η) ∧G(y′)(3+η)/(2+η)
(|t− t′|+ |y − y′| ∨ |y − y′|2)

When at least one of y and y′ is less than or equal to G−1((ε/C)(2+η)/η), we then get

d1((t, y), (t′, y′)) ≤ C

ε(3+η)/η
(|t− t′|+ |y − y′| ∨ |y − y′|2)

Hence we can fill up the space S by

N(ε) = O

(
1

ε2
· 1

ε(3+η)/η
·G−1

(( ε
C

)(2+η)/η
))

number of ε-balls. By (9) we get that G(y) ≤ C/y1/p for any p > 0, and so G−1(ε) ≤ C/ε1/p. This
gives

N(ε) = O

(
1

ε2
· 1

ε(3+η)/η
· 1

εp

)
= O

(
1

ε2+(3+η)/η+p

)
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and hence ∫ diam(S)

0
H1/2(ε)dε = O

(∫ C

0

√
log

(
1

ε

)
dε+ C

)
<∞

Lemma 16. Borell-TIS inequality holds i.e. for x ≥ E supS R̃1(t, y),

P

(
sup
S
R̃1(t, y) ≥ x

)
≤ exp

{
− 1

2σ2
1

(
x− E sup

S
R̃1(t, y)

)2
}

where
σ2

1 = sup
S
ER̃1(t, y)2

Proof. Note that

ER̃1(t, y)2 =
λ
∫ t

0 F̄ (t+ y − u)F (t+ y − u)du

ν(y)2
≤
λ
∫ t+y
y F̄ (u)du

G(y)2/(2+η)
≤ λG(y)η/(2+η)

and so
σ2

1 = sup
S
ER̃1(t, y) ≤ C

for some constant C. By Lemma 15 R̃1(t, y) is a.s. bounded and Borell-TIS inequality holds.

We now carry out the same scheme for R2(t, y). Let R̃2(t, y) = R2(t, y)/ν(y). Indeed it is
straightforward to show that the d-metric of R̃2(t, y) is given by

d2((t, y), (t′, y′)) = E(R̃2(t, y)− R̃2(t′, y′))2

= λc2
a

∫ t2

0

(
F̄ (t+ y − u)

ν(y)
− F̄ (t′ + y′ − u)

ν(y′)

)2

du+ λc2
a

∫ t1

t2

(
F̄ (t1 + y1 − u)

ν(y1)

)2

du

(68)

where again t1 = t ∨ t′, t2 = t ∧ t′ and y1, y2 are the corresponding y or y′.

Lemma 17. We can compactify the space S with the d-metric defined in (68).

Proof. For (t, y), (t′, y′) such that y, y′ 6=∞, write

d2((t, y), (t′, y′))

= λc2
a

(∫ t2
0 F̄ (t+ y − u)2du

ν(y)2
+

∫ t2
0 F̄ (t′ + y′ − u)2du

ν(y′)2
−

2
∫ t2

0 F̄ (t+ y − u)F̄ (t′ + y′ − u)du

ν(y)ν(y′)

+

∫ t1
t2
F̄ (t1 + y1 − u)2du

ν(y1)2

)
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and define, for y′ =∞, that

d2((t, y), (t′, y′)) =

∫ t

0

F̄ (t+ y − u)2

ν(y)2
du

and d2((t, y), (t′, y′)) = 0 if both y, y′ =∞.
Then d2((t, y), (t′, y′)) is continuous at y′ =∞ since∫ t2

0 F̄ (t′ + y′ − u)du

ν(y′)2
≤
∫ t0+y′

y′ F̄ (u)du

ν(y′)2
= G(y′)η/(2+η) → 0

and ∫ t2
0 F̄ (t+ y − u)F̄ (t′ + y′ − u)du

ν(y)ν(y′)
≤

√∫ t2
0 F̄ (t+ y − u)2du

∫ t2
0 F̄ (t′ + y′ − u)2du

ν(y)ν(y′)

≤

√∫ t0+y
y F̄ (u)du

ν(y)2
·

√√√√∫ t0+y′

y′ F̄ (u)du

ν(y′)2

≤ G(y)η/(2(2+η))G(y′)η/(2(2+η))

→ 0

If t′ > t, then ∫ t′
t F̄ (t′ + y′ − u)2du

ν(y′)2
≤
∫ t0+y′

y′ F̄ (u)du

ν(y′)2
≤ G(y′)η/(2+η) → 0

Hence d2(·, ·) is continuous at y′ =∞. The rest follows as in the proof of Lemma 14.

Lemma 18. E supS R̃2(t, y) <∞. In particular, R̃2(t, y) is a.s. bounded over S.

Proof. From (68) we have the estimate

d2((t, y), (t′, y′))

≤ 2λc2
a

(∫ t

0

(
F̄ (t+ y − u)

ν(y)

)2

du ∨
∫ t′

0

(
F̄ (t′ + y′ − u)

ν(y′)

)2

du

)
+ λc2

a

∫ t2

t1

(
F̄ (t1 + y1 − u)

ν(y1)

)2

du

≤ 2λc2
a(G(y)η/(2+η) ∨G(y′)η/(2+η)) + λc2

aG(y1)η/(2+η) (69)

On the other hand, using multivariate Taylor series expansion,

F̄ (t+ y − u)

ν(y)
− F̄ (t′ + y′ − u)

ν(y′)

≤ sup
t,y

∣∣∣∣f(t+ y − u)

ν(y)

∣∣∣∣ |t− t′|+ sup
t,y

∣∣∣∣ 1

2 + η

F̄ (t+ y − u)F̄ (y)

G(y)1+1/(2+η)
− f(y)

G(y)1/(2+η)

∣∣∣∣ |y − y′|
≤ C

G(y)(3+η)/(2+η)
(|t− t′|+ |y − y′|)



46

and hence

d2((t, y), (t′, y′)) ≤ C

G(y)(3+η)/(2+η)
(|t− t′|+ |y − y′|) (70)

where C are constants not necessarily the same every time they appear. With (69) and (70), the
rest follows as in the proof of Lemma 15.

Lemma 19. Borell-TIS inequality holds i.e. for x ≥ E supS R̃2(t, y),

P

(
sup
S
R̃2(t, y) ≥ x

)
≤ exp

{
− 1

2σ2
2

(x− E sup
S
R̃2(t, y))2

}
where

σ2
2 = sup

S
ER̃2(t, y)2

Proof. Note that

ER̃2(t, y)2 =
λc2

a

∫ t
0 F̄ (t+ y − u)2du

ν(y)2
≤
λc2

a

∫ t+y
y F̄ (u)du

G(y)2/(2+η)
≤ λc2

aG(y)η/(2+η)

The rest follows as in the proof of Lemma 16.

Lemma 10 is now an immediate corollary of Lemma 16 and 19:

Proof of Lemma 10.

P (|R(t, y)| ≤ C∗ν(y) for all t ∈ [0, t0], y ∈ [0,∞))

≥ P

(
sup
S
|R̃1(t, y)|+ sup

S
|R̃2(t, y)| ≤ C∗

)
≥ P

(
sup
S
|R̃1(t, y)| ≤ C∗

2

)
P

(
sup
S
|R̃2(t, y)| ≤ C∗

2

)
> 0

when C∗ is large enough, by the independence of R̃1(·, ·) and R̃2(·, ·) in the second inequality.

With Lemma 10, we now prove Lemma 9.

Proof of Lemma 9. First consider (42). Take C1 = 3C∗ where C∗ is the constant in Lemma 10. We
have

P

(
Q̄∞(t, y) ∈

(
λs

∫ t+y

y
F̄ (u)du±

√
sC1ν(y)

)
for all t ∈ [0, t0], y ∈ [0,∞)

∣∣∣∣∣B(0)

)

≥ P

(
U0 ≤ x, 0 ∈

(
λs

∫ t+y

y
F̄ (u)du±

√
sC1ν(y)

)
for t ∈ [0, U0], y ∈ [0,∞),

Q̄∞(t, y) ∈
(
λs

∫ t+y

y
F̄ (u)du±

√
sC1ν(y)

)
for all t ∈ [U0, t0], y ∈ [0,∞)

∣∣∣∣∣B(0)

)
(71)
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Letting x = 1/(λs), we will show that 0 ∈
(
λs
∫ t+y
y F̄ (u)du±

√
sC1ν(y)

)
for t ∈ [0, U0] and

y ∈ [0,∞) in the expression is redundant. In fact, let m(s) = inf
{√

sC∗ν(y) < 1
2

}
. When

y = m(s), λs
∫ t+y
y F̄ (u)du is less than 1 for large enough s, and when y ≥ m(s) it decays faster than

√
sC1ν(y) < 1

2 (see Remark 1 in the paper for similar argument). Hence
(
λs
∫ t+y
y F̄ (u)du±

√
sC1ν(y)

)
contains 0 when y ≥ m(s). When y < m(s), the choice of x gives

λs

∫ t+y

y
F̄ (u)du ≤ λstF̄ (y) ≤ λsx = 1

for t ∈ [0, U0] and U0 ≤ x. Hence
(
λs
∫ t+y
y F̄ (u)du±

√
sC1ν(y)

)
also contains 0 when y < m(s).

In fact with the same choice of x, by similar argument we have
(
λs
∫ t+y
y F̄ (u)du±

√
sC∗ν(y)

)
contains only 0 for t ∈ [0, U0] and y ≥ m(s), and that 0 ∈

(
λs
∫ t+U0+y
y F̄ (u)du±

√
sC1ν(y)

)
for

t ∈ [0, U0] and y ≥ m(s). This will be useful later on in the proof.
The same choice of x, together with the fact that F̄ (·) is decreasing, also guarantees that

λs

∫ t+U0+y

t+y
F̄ (u)du ≤ 2C∗

√
sν(y) (72)

In fact, when y = m(s), λs
∫ t+U0+y
t+y F̄ (u)du is less than 1 when s is large enough, and when y ≥ m(s)

it decays faster than 2C∗
√
sν(y). Hence the inequality (72) when y ≥ m(s). When y < m(s) the

fact that U0 ≤ x leads to λs
∫ t+U0+y
t+y F̄ (u)du ≤ 1, hence the conclusion. Again this will be useful

later on.
Hence (71) is greater than or equal to

P (U0 ≤ x|B(0))P

(
Q̄∞0 (t, y) ∈

(
λs

∫ t+U0+y

y
F̄ (u)du±

√
sCC̃(y)

)
for all t ∈ [0, t0]

∣∣∣∣∣U0 ≤ x

)

where Q̄∞0 (t, y) is independent of U0 and has the same distribution as Q̄∞(t, y) with initial age 0
and no initial customers.
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For any U0 ≤ x, we have

P

(
Q̄∞0 (t, y) ∈

(
λs

∫ t+U0+y

y
F̄ (u)du±

√
sC1ν(y)

)
for all t ∈ [0, t0], y ∈ [0,∞)

)
≥ P

(
Q̄∞0 (t, y) ∈

(
λs

∫ t+U0+y

y
F̄ (u)du±

√
sC1ν(y)

)
for all t ∈ [0, t0], y ∈ [0,m(s))

Q̄∞0 (t, y) ∈
(
λs

∫ t+y

y
F̄ (u)du±

√
sC∗ν(y)

)
for all t ∈ [0, t0], y ∈ [m(s),∞)

)

(since the interval

(
λs

∫ t+y

y
F̄ (u)du±

√
sC∗ν(y)

)
only contains 0 while

0 ∈
(
λs

∫ t+U0+y

y
F̄ (u)du±

√
sC1ν(y)

)
when y > m(s) as discussed above)

≥ P

(
sup

y∈[0,m(s))

∣∣∣∣∣Q̄
∞
0 (t, y)− λs

∫ t+y
y F̄ (u)du

√
s

∣∣∣∣∣+ sup
y∈[0,m(s))

λ
√
s

∫ t+U0+y

t+y
F̄ (u)du ≤ C1ν(y),

Q̄∞0 (t, y) ∈
(
λs

∫ t+y

y
F̄ (u)du±

√
sC∗ν(y)

)
for all t ∈ [0, t0], y ∈ [m(s),∞)

)

≥ P

(∣∣∣∣∣Q̄
∞
0 (t, y)− λs

∫ t+y
y F̄ (u)du

√
s

∣∣∣∣∣ ≤ C∗ν(y) for all t ∈ [0, t0], y ∈ [0,∞)

)
(by (72))

→ P (|R(t, y)| ≤ C∗ν(y) for all t ∈ [0, t0], y ∈ [0,∞)) > 0

by Lemma 10. The convergence follows from Functional Central Limit Theorem (see Pang and
Whitt (2009)) and that the set {f : |f(t, y)| ≤ C∗ν(y) for all t ∈ [0, t0], y ∈ [0,∞)} is a continuity
set.

Lastly, since U0 is light-tailed, by the argument following (53) in the proof of Proposition 1, we
have

inf
b≥0

P

(
U0 ≤

1

λs

∣∣∣∣B(0) = b

)
= inf

b≥0
P

(
U0 − b ≤ 1

λ

∣∣∣∣U0 > b

)
≥ 1− e−c/λ > 0

for some constant c > 0. Hence (42) holds. Inequality (43) is obvious since one can isolate any
point inside S and the projection of the process on the point will possess Gaussian distribution.
For example, we can write

P

(
Q̄∞(t, y) /∈

(
λs

∫ t+y

y
F̄ (u)du±

√
sC1ν(y)

)
for some t ∈ [0, t0], y ∈ [0,∞)

∣∣∣∣∣B(0)

)

≥ P (U0 ≤ x)P

(
Q̄∞0 (t∗, y∗) ≥ λs

∫ t∗+x+y∗

y∗
F̄ (u)du+

√
sC1ν(y∗)

)
> 0

for any t∗ ∈ [0, t0] and y∗ ∈ [0,∞).
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