
ar
X

iv
:1

31
0.

67
13

v2
  [

m
at

h.
ST

] 
 2

7 
Ju

l 2
01

4

PARAMETER ESTIMATION: THE PROPER WAY TO USE

BAYESIAN POSTERIOR PROCESSES WITH BROWNIAN NOISE

ASAF COHEN

Abstract. This paper studies a problem of Bayesian parameter estimation for a se-
quence of scaled counting processes whose weak limit is a Brownian motion with an
unknown drift. The main result of the paper is that the limit of the posterior distri-
bution processes is, in general, not equal to the posterior distribution process of the
mentioned Brownian motion with the unknown drift. Instead, it is equal to the pos-
terior distribution process associated with a Brownian motion with the same unknown
drift and a different standard deviation coefficient. The difference between the two
standard deviation coefficients can be arbitrarily large. The characterization of the
limit of the posterior distribution processes is then applied to a family of stopping time
problems. We show that the proper way to find asymptotically optimal solutions to
stopping time problems w.r.t. the scaled counting processes is by looking at the limit
of the posterior distribution processes rather than by the naive approach of looking
at the limit of the scaled counting processes themselves. The difference between the
performances can be arbitrarily large.

1. Introduction

Brownian1 motion is a fundamental process in modeling various stochastic phenom-
ena. It has practical applications in various fields, such as mathematical finance, physics,
queueing networks, and signal processing. Brownian motion is the continuous-time ana-
logue of random walks and it can be obtained as the weak limit of discrete processes.

In this paper we study the relation between a Brownian motion with an unknown
drift and a sequence of scaled counting processes in continuous time, which we term as
‘discrete processes’. We assume that there exists a random variable θ with a known
prior distribution, and a sequence of discrete processes {(L̃n

θ (t))}n∈N that converges in

distribution to L̃(t) = L̃θ(t) := θt+σW (t), where (W (t)) is a standard Brownian motion
independent of the drift θ. The decision maker (DM) does not observe the random

variable θ, but rather observes continuously L̃n := L̃n
θ . Therefore, for sufficiently large

n ∈ N, the observed process is approximately distributed as a Brownian motion with
an unknown drift. For every n, define π̃n (resp. π̃) to be the (Bayesian) posterior

distribution process of θ given the observations from L̃n (resp. L̃).
In many optimal control/stopping time problems such as the Bayesian sequential test-

ing problem in its different versions and the Bayesian Brownian bandit problem (see the
literature review below) it is possible to formulate both the problem and the solution

Key words and phrases. Bayesian sequential testing, parameter estimation, posterior process, Brow-
nian motion, diffusion approximation, optimal stopping.
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1This paper is an extended version of the paper with the same title that appears on Mathematics of

Operations Research. The only difference is that in this version we allow the case that thw system was
activated before time t = 0.
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by using the posterior distribution process. Because in these models the posterior dis-
tribution process is of interest, the naive approach of using results taken from optimal
stopping problems w.r.t. the posterior distribution process π̃, such as the structure of
the optimal strategy, and implementing them in optimal stopping problems concerning
the process L̃n (for sufficiently large n) is not relevant; the right approach should be to
find the limit of the posterior distribution processes π̃n instead of the posterior distri-
bution process of the limit process L̃ = lim

n→∞
L̃n. To illustrate this point, in Remark 3.2

below we show that L̃(t), the value of the process (L̃(s))0≤s≤t at time t, is a sufficient
statistic for the posterior distribution process π̃ at time t. That is, π̃ is independent
of past observations from L̃, given the present value of L̃. However, it appears that,
usually, π̃n depends not only on the present value of L̃n, but also on past observations
from L̃n. Therefore, it uses ‘more information’ than π̃ does and it is ‘more accurate’.
We show below that this is indeed the case.

1.1. Main Results. The paper’s main results are: (1) characterizing the limit of the
posterior processes, lim

n→∞
π̃n, and (2) using this characterization in order to find asymp-

totically optimal solutions for Bayesian stopping time problems. It might happen that
lim
n→∞

π̃n is trivial. This case arises, e.g., when the value of θ is detected in an infinitesimal

time interval or when the limit is a constant. Under mild assumptions, we find an ex-
plicit expression for the limit of the posterior distribution processes, lim

n→∞
π̃n, and show

that in general lim
n→∞

π̃n 6= π̃. Although, the limit lim
n→∞

π̃n has a different distribution

than the posterior distribution process π̃, we prove that this limit can be expressed as
the posterior distribution process of a different Brownian motion with an unknown drift
that is given by

M̂(t) = M̂θ(t) := θt+ σ′W ′(t), t ∈ [0,∞),(1.1)

where (W ′(t)) is a Brownian motion independent of θ and 0 < σ′ ≤ σ. The quantity σ′

depends on the structure of the processes {L̃n}n∈N. Since σ′ ≤ σ, the paths of the process

(M̂(t)) will be more concentrated around the path of the linear drift (θt) than the paths

of the process (L̃(t)). In other words, (M̂(t)) is less noisy than (L̃(t)). Therefore, it is

easier to estimate the parameter θ given (M̂(t)) than given (L̃(t)); that is, lim
n→∞

π̃n is

more informative than π̃.
In addition, we identify when the equality σ′ = σ holds. We show that it happens

if and only if the processes {(L̃n
l (t))}l∈S, n∈N satisfy a memorylessness property and no

information, regarding the posterior distribution processes, is lost by looking at the
present values of the {(L̃n

l (t))}l∈S, n∈N rather than at their past and present values (e.g.,
Poisson processes with unknown rates that depend on θ and n). This is the same
property that holds in the Brownian motion with an unknown drift model. We also
show that the difference between the parameters σ′ and σ can be arbitrarily large.

Our study thus strengthens the motivation for analyzing the posterior distribution
process of a Brownian motion with an unknown drift. Moreover, the fact that the struc-
ture of lim

n→∞
π̃n is the same as that of π̃ is interesting and raises further questions about

the structures of posterior processes of more general diffusion processes that involve
uncertainty.
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We finally show how to find asymptotically optimal solutions for the Bayesian stopping
time problems for L̃n by using the approximation lim

n→∞
π̃n rather than π̃. In fact, since the

difference between σ′ and σ can be arbitrarily large, by using the incorrect approximation
π̃ in order to calculate the optimal strategy in the n-th model, the performance can be
arbitrarily bad.

The rest of the paper is organized as follows: The introduction is concluded with a
literature review. In Section 2 we introduce some technical preliminaries. In Section 3
we present a model of a Brownian motion with an unknown drift. We give a closed-
form formula for the posterior distribution process. In Section 4 we define a sequence
of systems (indexed by n ∈ N) that converges to a Brownian motion with an unknown
drift. In Section 5 we present the main results and find the distribution of the limit of
the sequence of the posterior distribution processes. In Section 6 we consider a general
optimal stopping problem for the n-th system and find asymptotically optimal solution
by using the presentation we give to the limit of the posterior distribution processes.
Summary and directions for future research appear in Section 7. The Appendix contains
the proofs of several theorems.

1.2. Literature Review. The model of a DM who observes a Brownian motion with
an unknown drift (and known standard deviation) is well explored in the literature and
appears in the context of filtering theory, optimal stopping problems, and economics.

A variation of this model was studied in filtering theory by Kalman and Bucy (1961)
[17] and Zakai (1969) [27]. These authors analyzed a more general model, where a DM
observes a function of a diffusion process with an additional noise, which is formulated
as a Brownian motion. They provided equations that the posterior or the unnormalized
posterior distribution process satisfies.

Shiryaev (1978) [24] defined a Bayesian sequential testing problem where a DM ob-
serves continuously a Brownian motion with an unknown drift and has two hypotheses
about the drift together with a prior probability about these hypotheses. In this prob-
lem the goal of the DM is to test sequentially the hypotheses with a minimal loss.
The choice that the DM should make is to choose a stopping time and at that time to
guess which one of the two hypotheses holds. This problem was generalized in several
ways. Zhitlukhin and Shiryaev (2011) [28] generalized it to three hypotheses. Gapeev
and Peskir (2004) [12] explored the problem with finite horizon. Gapeev and Shiryaev
(2011) [14] explored a sequential testing problem where the observed process is a diffu-
sion process satisfying a stochastic differential equation. Buonaguidi and Muliere (2013)
[6] studied a sequential testing problem where the observed process is a Lévy process
with unknown parameters.

Berry and Friestedt (1985) [3] investigated a Bayesian Brownian bandit problem where
a DM operates a two-armed bandit with two available arms; a safe arm that yields a
constant payoff, and a risky arm that yields a stochastic payoff, which is a Brownian
motion with an unknown drift. There are two hypotheses about the drift together with
a prior probability about these hypotheses. The DM has to decide when to switch from
the risky arm to the safe arm. Bolton and Harris (1999) [5] investigated a game involving
this type of bandit. Cohen and Solan (2013) [8] studied the single DM problem in the
case where the observed process is a Lévy process with unknown parameters.

Other statistical Bayesian tests involving hypotheses on a Brownian motion with an
unknown drift can be found in the literature. For example, Polson and Roberts (1994)
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[22] investigated the likelihood function for a diffusion process with an unknown pa-
rameter and provided an example of a Brownian motion with an unknown drift with a
normal prior on the drift.

In economic theory, the model of a Brownian motion with two prior hypotheses about
the drift was studied, e.g., by Felli and Harris (1996) [10], Bergemann and Valimaki
(1997) [2], Bolton and Harris (1999) [5], Keller and Rady (1999) [19], and Moscarini
(2005) [20]. In Jovanovic (1979) [16] the prior about the drift is assumed to have the
normal distribution. In the listed papers it is assumed that random changes appear after
every small time interval and the process of total change can be modeled approximately
by a Brownian motion.

Another well-known example of the use of Brownian motion as a continuous-time ap-
proximation of a discrete-time processes is in queueuing theory; under heavy traffic, the
queue size, which changes by discrete jumps after every random time interval, converges
to a reflected Brownian motion with a drift. The uncertainty about the drift can model
a situation of a G/G/1 queue in heavy traffic where the rate of service is unknown. Such
a case arises, for example, when the number of projects that a server works on and the
amount of the effort that it dedicates to each project are unknown. For further examples
of queueing models with parameter uncertainty see Whitt (2006) [26] and the references
therein.

2. Technical Preliminaries

Let T > 0 and let DT := D[0, T ] (resp. D∞ := D[0,∞)) be the space of real-valued
RCLL (right-continuous with left limits) functions on [0, T ] (resp. [0,∞)).

Fix a Borel set S ⊆ R. Let ET (resp. E∞) be the space of real-valued functions on
S× [0, T ] (resp. S× [0,∞)) that are DT (resp. D∞) with respect to the second variable.
The space ET is endowed with the metric2

eT (ν, κ) := sup
l∈S,t∈[0,T ]

|ν(l, t)− κ(l, t)| ∧ 1, for ν, κ ∈ ET .(2.1)

By using this metric, we define on the space E∞ the metric

e∞(ν, κ) :=

∞
∑

T=1

eT (ν, κ)
1

2T
, for ν, κ ∈ E∞.

The metric e∞ is a generalization of the standard metric with which one usually defines
convergence to a Brownian motion (see Karatzas and Shreve (1991) [18]) for functions
of two variables.

Remark 2.1. Let {κ} ∪ {κn}n∈N ⊂ E∞. From the definitions of eT and e∞ it follows
that {κn}n∈N converges to κ if and only if for every T ∈ N, the restriction of {κn}n∈N to
S × [0, T ] converges to the restriction of κ to S × [0, T ].

Throughout the paper we denote processes with observations in E∞ by bold Greek
letters, processes with observations in D∞ by capital Latin letters, and functions from
S to R by small Latin letters.

2All the limiting functions in this paper are in C∞ := C[0,∞) or CT := C[0, T ] (the subspaces of
continuous functions on [0,∞) and [0, T ], respectively) with respect to their second variable. Therefore,
the uniform topology is sufficient for our purpose instead of the often used Skorokhod topology (see
Chen and Yao (2001, Ch. 5.1) [7] for further discussion).
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2.1. Types of Convergence. Let {ζ}∪{ζn}n∈N be measurable mappings from a prob-
ability space (Ω,F , P ) to (E∞,B(E∞)). We define two types of convergence lim

n→∞
ζn = ζ

that are used in this paper.

2.1.1. Uniform Convergence over Compact Sets. We say that {ζn}n∈N converges
uniformly over compact sets (u.o.c.) to ζ if

P
(

lim
n→∞

e∞(ζn, ζ) = 0
)

= 1.(2.2)

Remark 2.1 implies that Eq. (2.2) is equivalent to the requirement that for every T ∈ N

one has

P
(

lim
n→∞

eT (ζ
n, ζ) = 0

)

= 1.(2.3)

2.1.2. Convergence in Distribution. We say that {ζn}n∈N converges in distribution

to ζ (and write lim
n→∞

ζn d
= ζ) if for every bounded and continuous function f (w.r.t. the

metric e∞) defined on E∞ one has

lim
n→∞

E[f(ζn)] = E[f(ζ)].

As is well known, convergence u.o.c. implies convergence in distribution.
If X : Ω → D∞ or h : S → R, then one may look at X(ω) and h as elements in E∞

that are independent of the first and second variables, respectively.

3. An Auxiliary Model - Brownian Motion with an Unknown Drift

3.1. Formulations and Notations. In this section we study a model of a Brownian
motion with an unknown drift. Let θ be a random variable with a countable3 support
S ⊂ R and a distribution π := {πl}l∈S. Let (W (t)) be a standard Brownian motion
independent of θ. Set σ > 0 and define

X(t) = Xθ(t) := θt + σW (t), t ∈ [0,∞).

Suppose that the DM observes the process (X(t)) continuously, but does not observe θ.
The drift θ is not known by the DM. For every l ∈ S define the hypothesis Hl : θ = l.
The parameter πl represents the prior probability that Hl is true. Denote by Pl the
probability measure over the space of realized paths under the hypothesis Hl, and by
P := Pπ =

∑

l∈S πlPl the probability measure that corresponds to the description above
(see Gapeev and Peskir (2004) [12] for a rigorous construction of P ).

3.2. The Posterior Distribution Process. At time t = 0, the parameter θ is chosen
randomly according to the distribution π. The DM does not observe θ but he knows π
and and σ. At each time instant t the DM observes the process (X(t)) and updates his
belief about the hypotheses based on this information in a Bayesian fashion. We would
like to give a closed-form expression to the posterior distribution process4

π(l, t) := P (θ = l | FX
t ; π), l ∈ S, t ∈ [0,∞),(3.1)

3The results in the section can be extended to a Borel set S with the cardinality of the continuum,
see Section 5.4.2.

4Note that the process (π(l, t)) depends on the prior distribution π; indeed, for every l ∈ S one has
π(l, 0) = πl. To save cumbersome notation, we omit the dependence on π.
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where FX
t is the sigma-algebra that is generated by (X(s))0≤s≤t. The value π(l, t) is the

posterior distribution at time t that Hl is true given the past observations.
Without loss of generality we assume that 0 ∈ S, since by taking m ∈ S one can look

at the process

X(t)−mt = (θ −m)t + σW (t), t ∈ [0,∞).

The processes (X(t)−mt) and (X(t)) admit the same filtration; and 0 is in the support
of θ −m.

An important auxiliary process is the Girsanov process, also called the Radon–Nikodým
density, which is defined by

ϕ(l, t) :=
d(Pl | FX

t )

d(P0 | FX
t )

, l ∈ S, t ∈ [0,∞).(3.2)

The next result connects the process π to the process ϕ.

Lemma 3.1. For every l ∈ S, and every t ∈ [0,∞),

π(l, t) =
πlϕ(l, t)

∑

k∈S πkϕ(k, t)
.(3.3)

For a proof, see Cohen and Solan (2013, Lemma 1) [8]. By Jacod and Shiryaev (1987,
Ch. III, Theorems 3.24 and 5.19) [15] the process ϕ admits the following representation:

ϕ(l, t) = exp

{

l

σ2
X(t)− 1

2

(

l

σ

)2

t

}

= exp

{

l

σ
W (t)− 1

2

(

l

σ

)2

t+
θ

σ
· l
σ
t

}

, l ∈ S, t ∈ [0,∞).(3.4)

Remark 3.2. Notice that, based on the observed process (X(s))0≤s≤t, the present value
at time t, X(t), is a sufficient statistic for θ. That is, for every l ∈ S and every t ∈ [0,∞),
the value of the process (ϕ(l, s)) at time t, ϕ(l, t), and therefore also π(l, t), depends
on the process (X(s))0≤s≤t only through X(t). This means that the Radon–Nikodým
density and the posterior distribution process at time t depend on (X(s)) through the
present value X(t) and are independent of past values (X(s))0≤s<t.

In order to emphasize the dependence of the processes ϕ and π on σ, we denote them
by ϕσ and πσ.

4. Deterministic and Random Parameter Systems

In this section we define a sequence of processes indexed by n ∈ N that converges
in distribution (w.r.t. n) to a Brownian motion with an unknown drift. For each such
process we define a relative posterior distribution process. In Section 4.1 we define a
model of a system that consists of arrivals with a known rate. In Section 4.2 we generalize
the model to a system that consists of arrivals with an unknown rate. In Section 4.3 we
define a sequence of systems with unknown rates. In Section 4.4 we show that under
proper assumptions, the scaled number of arrivals to these systems can be approximated
by a Brownian motion with an unknown drift.
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4.1. Deterministic Parameter System. We define a system that consists of arrivals
(each of size 1) that occur according to the random variables {vi}i≥1. We assume that
the system was activated before time t = 0. The parameter tv is the time passed since
the last arrival that occurred before time t = 0. We start the numeration of arrivals from
time t = 0. v1 is interpreted as the time passed from t = 0 until the first arrival; and
for every i ≥ 2, the random variable vi is interpreted as the interarrival time between
the (i − 1)-th and the i-th arrivals into the system. We present the interarrival time
distribution as v

µ
, where v is a nonnegative random variable with expectation 1 and µ is

a positive constant.
Formally, a deterministic parameter system

S = (tv, v, µ, {vi}i≥1)

is given by
• a nonnegative constant tv;
• a nonnegative random variable v;
• a positive constant µ;
• a sequence of independent random variables {vi}i≥1.

We make the following assumption on {vi}i≥1.

Assumption 4.1.

For every t ∈ [0,∞), one has P (v1 + tv ≥ t) = P
(

1
µ
v ≥ t | 1

µ
v ≥ tv

)

, and for every

i ≥ 2, vi is distributed as the random variable 1
µ
v.

We assume that v has a finite variance and without loss of generality, we assume that
it has expectation 1.

Assumption 4.2.

4.2.1. E[v] = 1.
4.2.2. σ2

v := Var[v] < ∞.

The arrival rate is defined by 1
E[v2]

, which, by the definition of vi and Assumption

4.2.1, equals µ.

4.1.1. The Counting Processes. Define the process

L(t) := max

{

m

∣

∣

∣

∣

∣

m
∑

i=1

vi ≤ t

}

, t ∈ [0,∞).(4.1)

The process (L(t)) counts the number of arrivals during the time interval [0, t], and it is
called the counting process of the system.

4.2. Random Parameter System. Let θ be a random variable with bounded and
countable5 support S ⊆ R. For every l ∈ S, let πl := P (θ = l). Consider a constant tv
and a random variable v that satisfy Assumptions 4.1 and 4.2, respectively. For every
l ∈ S, let

Sl = (tv, v, µl, {vi,l}i≥1)

be a deterministic parameter system such that the random variables {vi,l}i≥1 are inde-
pendent of θ. Let (Ll(t)) be the corresponding counting process. A random parameter

5All the results in the paper can be extended to a bounded set S with cardinality of the continuum,
see Subsection 5.4.2.
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system is a system where the parameter µ is chosen randomly according to θ. That is,
it is a random variable, and its support is the collection of the deterministic parameter
systems {Sl}l∈S. Formally, a random parameter system

RSπ(θ) = (tv, v, µθ, {vi}i≥1, π)

is given by6

(tv, v, µθ, {vi}i≥1) =
∑

l∈S
I{θ=l} (tv, v, µl, {vi,l}i≥1) ,

where π := {πl}l∈S. The corresponding counting process is

L(t) = Lθ(t) =
∑

l∈S
I{θ=l}Ll(t), t ∈ [0,∞).

A DM operates a random parameter system. The parameter θ represents the type
of the arrival rate and it is unknown to the DM. For every l ∈ S, the parameter πl

represents the probability that the arrival rate’s type is θ = l.
For every l ∈ S, define the hypothesis Hl : θ = l. Denote by Pl the probability

measure over the space of realized paths under the hypothesis Hl, and by P := Pπ =
∑

l∈S πlPl the probability measure that corresponds to the description above.

4.2.1. The Posterior Distribution Processes. At time t = 0, the DM observes the initial
state (tv, π) without observing θ, and thereafter he observes the counting process (L(t))
continuously. At each time instant t, the DM can update his belief on θ in a Bayesian
fashion. Formally, the posterior distribution process is

π(l, t) : = P (θ = l | FL
t , π) = P (θ = l | L(t), tv, v1, . . . , vL(t); t; π), l ∈ S, t ∈ [0,∞),

(4.2)

where FL
t is the sigma-algebra generated by (L(s))0≤s≤t. This is the posterior distribu-

tion process at time t that Hl is true given past observations of interarrivals times from

the system v1, . . . , vL(t), and the absence of arrivals during the time interval
(

∑L(t)
i=1 vi, t

]

.

That is, the DM updates his belief using all the available information he has from the
observed process up to time t.

4.3. The n-th System. In this section we define a sequence of random parameter
systems indexed by a parameter n, which can be any natural number. All the notation
established in Section 4.2 is carried forward, except that we append a superscript n to
denote a quantity which depends on n. We assume that the random variables v and θ
are independent of n.

For every n ∈ N, let

RSn
π(θ) = (tnv , v, µ

n
θ , {vni }i≥1, π)

be a sequence of random parameter systems with the corresponding counting process

Ln(t) = Ln
θ (t) =

∑

l∈S
I{θ=l}L

n
l (t), t ∈ [0,∞).

In order to define the diffusion approximation, we investigate the n-th system at time
nt. Without loss of generality we assume that 0 ∈ S, since by taking m ∈ S one can

6Note that the sequence {vi}i≥1 depends on the random variable θ; indeed, for every i ≥ 1, one has
vi = vi,θ =

∑

l∈S I{θ=l}vi,l. To avoid cumbersome notation, we omit the dependence on θ.
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look at the random variable θ−m, and 0 belongs to its support. For every n ∈ N define
the scaled posterior distribution process

π̃n(l, t) := πn(l, nt), l ∈ S, t ∈ [0,∞).(4.3)

4.4. The Posterior Distribution Process of the Limit of the Counting Pro-

cesses. In this section we find a diffusion approximation related to the sequence of
processes {Ln}n∈N. To this end, we require that the rates under the different types are
relatively close, up to order of7 1√

n
. Loosely speaking, it states that µn

θ ≈ α + 1√
n
θ. It

reminds the heavy traffic condition, which asserts that the difference between the arrival
rate and the departure rate in a G/G/1 queue is by order of 1√

n
.

For every n ∈ N, let hn : S → R be the function

hn(l) :=
√
n(µn

l − µn
0 ).(4.4)

Assumption 4.3.

4.3.1. lim
n→∞

sup
l∈S

|hn(l)− l| = 0.

4.3.2. lim
n→∞

µn
0 = α, where α is a positive constant.

In Remark 4.7 below we discuss about the necessity of this assumption. Assump-
tion 4.3.1 relates8 to the difference between the arrival rates under the different types. It
states that every two possible arrival rates are distinguished by an order of 1√

n
. Assump-

tion 4.3.2 states that the limit of the sequence of rates {µn
0}n∈N is positive. Together

with Assumption 4.3.1 it implies that

lim
n→∞

sup
l∈S

|µn
l − α| = lim

n→∞
sup
l∈S

|µn
l − µn

0 | = 0.(4.5)

This assumption is also fundamental for the diffusion approximation of the sequence of
processes π̃n.

For every n ∈ N, denote

Ľn(t) :=
Ln(nt)− µn

θnt√
n

, t ∈ [0,∞).

The following result was proved, e.g., in Billingsley (1999, Theorem 14.6) [4].

Proposition 4.4. Under Assumptions 4.1, 4.2, and 4.3.2, there exists a standard Brow-
nian motion process (W (t)), independent of θ, such that

lim
n→∞

Ľn d
= σv

√
αW.(4.6)

Although the DM observes the process (Ln(nt)), he does not observe θ, and therefore
does not observe µθ. That is, the parameter µθ is not known by the DM. Hence, the
sigma-algebra that is generated by the relative process

Ln(nt)− µn
θnt√

n
, t ∈ [0,∞),

7In Remarks 4.7 and 8.5 we explain why we require an order of 1√
n
and detail the differences in the

analysis in case that the order is higher or smaller than 1√
n
.

8Assumption 4.3.1 can be written also as lim
n→∞

e∞(hn, IS) = 0, where IS is the identity function on

S.
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is different from the sigma-algebra FLn

nt . We therefore define the relative process9

L̃n(t) :=
Ln(nt)− µn

0nt√
n

, t ∈ [0,∞).

For every n ∈ N the process (L̃n(t)) can be calculated by the DM, since the sigma-

algebra that is generated by (L̃n(t)) is F L̃n

t := FLn

nt , which is observed by the DM. The
process (L̃n(t)) can be expressed as

L̃n(t) =
Ln(nt)− µn

θnt√
n

+
√
n(µn

θ − µn
0 )t, t ∈ [0,∞).(4.7)

From Eq. (4.6) the limit of the first term is a Brownian motion with a standard deviation√
ασv and without drift, and from Assumption 4.3.1 the limit of the second term is (θt).

Therefore, the limit process:

L̃(t) :
d
= lim

n→∞
L̃n(t), t ∈ [0,∞),

exists and it is a Brownian motion with an unknown drift. This is summarized in the
following proposition.

Proposition 4.5. Under Assumptions 4.1, 4.2, and 4.3, there exists a standard Brow-
nian motion process (W (t)), independent of θ, such that

L̃(t) = θt +
√
ασvW (t), t ∈ [0,∞).(4.8)

From the definitions of ϕσ and πσ (recall Eqs. (3.1) and (3.2) and the notation given
after Remark 3.2) we deduce the following corollary.

Corollary 4.6. Let ϕ̃ and π̃ be the Radon–Nikodým derivative process and the posterior

distribution process, respectively, under F L̃
t . Under Assumptions 4.1, 4.2, and 4.3, the

process ϕ̃ is distributed as ϕ√
ασv

and the process π̃ is distributed as π√
ασv

.

The following remark explains the requirement that the proper rates under the differ-
ent types are relatively close, up to order of 1√

n
(Assumption 4.3.1).

Remark 4.7. If there exists a parameter value l∗ ∈ S such that the difference between
the rates µn

l∗ and µn
0 satisfies10 |µn

l∗ − µn
0 | >> 1√

n
, then under θ = l∗ the second term in

Eq. (4.7) converges to ±∞ and the DM would be able to distinguish between them. On
the other hand, if there is a parameter value l∗ ∈ S such that the difference between the
rates µn

l∗ and µn
0 satisfies |µn

l∗−µn
0 | << 1√

n
, then under θ = l∗ the second term in Eq. (4.7)

converges to 0 and the DM would not be able to distinguish between them. The analysis
without Assumption 4.3.1 would be similar, but with more complex notation.

5. The Limit of the Posterior Distribution Processes

In this section we find the limit of the posterior distribution processes, lim
n→∞

π̃n, and

study the relation between this limit and the posterior distribution process π̃. In Section
5.1 we formulate assumptions on the density of the random variable v. In Section 5.2
we provide examples of densities that satisfy these assumptions and an example of a

9Notice that µn
θ is replaced by µn

0 .
10Hereafter, the notation |f1(n)−f2(n)| >> f3(n) (resp. <<) means that lim

n→∞
|f1(n)−f2(n)|/f3(n) =

∞ (resp. 0).
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density that does not. Section 5.3 gives the main theorems in the paper. We find the
limit of the posterior distribution processes and discuss its properties. In Section 5.4 we
discuss about some generalizations.

5.1. Assumptions on Densities. In order to find the diffusion approximation for the
sequence of processes {π̃n}n∈N, we need several assumptions on the distribution of the
random variable v. If no such assumptions are made, then it may happen that for some
l ∈ S and some t ≥ 0, the posterior probability π̃n(l, t) will vanish with a positive
probability for some n ∈ N. Such cases differ from each other in the form of their
analysis and require different tools than the ones that we are using in this paper. The
following assumption states that the support of the interarrival times is the positive part
of the axis. This assumption rules out a situation where a single arrival can reveal a lot
of information.

Assumption 5.1. The random variable v has the probability density function11 (pdf)
f ∈ C3, with the support (0,∞).

Remark 5.2. For every l ∈ S, denote by F n
l the cumulative distribution function (cdf)

of vn1,l and by fn
l the pdf of vn1,l. By Assumption 4.1, for every s > 0, F n

l (s) = F (sµn
l ),

where F (s) is the cdf of v. Moreover, for every s > 0, fn
l (s) = µn

l f(sµ
n
l ), while f

n
l (s) = 0

for s ≤ 0. In particular, for l ∈ S the support of vn1,l is (0,∞).

In the analysis of the posterior distribution process (π̃n(l, t)), the following log-
likelihood terms will appear:

ln

(

fl(s)

f0(s)

)

, ln

(

1− Fl(s)

1− F0(s)

)

.

When we will use the representations of the cdfs that were introduced in Remark 5.2
and the Taylor approximation for the log-likelihood ratios above, we will encounter the
terms

f ′(s)

f(s)
,

f(s)

1− F (s)
.

The following assumptions state that these functions are “sufficiently” bounded.

Assumption 5.3.

5.3.1. The random variable f ′(v)
f(v)

v has a finite standard deviation, denoted by σf .

5.3.2. There exist a monotone nondecreasing function M(x) and a positive parameter
ǫM > 0, such that for every x ∈ (0,∞)

∣

∣

∣

∣

(

f ′(x)

f(x)

)′′
x3

∣

∣

∣

∣

≤ M(x)

and
E [M ((1 + ǫM) v)] < ∞.

5.3.3. There exist a monotone nondecreasing function N(x) and a positive parameter
ǫN > 0, such that for every x ∈ (0,∞)

∣

∣

∣

∣

xf(x)

1− F (x)

∣

∣

∣

∣

≤ N(x)

11C3 is the class of real-valued functions with continuous third derivative.
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and

E [N ((1 + ǫN) v)]
2 < ∞.

5.2. Examples. In this section we provide an example of a family of distributions that
satisfy Assumptions 4.2, 5.1, and 5.3. In fact, most of the frequently used continuous
distributions that satisfy Assumptions 4.2 and 5.1 also satisfy Assumption 5.3. We then
present an example of a distribution that satisfies Assumptions 4.2 and 5.1, but not
Assumption 5.3.1. This example illustrates that Assumption 5.3.1 is independent of
Assumptions 4.2 and 5.1. As for Assumptions 5.3.2 and 5.3.3, we do not know whether
they follow from previous assumptions or they are independent of them.

5.2.1. An Example that satisfies the Assumptions. Let v be a random variable with the
support (0,∞) whose pdf is given by

f(x) = w1(x)e
w2(x),

where w1(x) and w2(x) are sums of power functions and the powers in w2(x) are positive.
Denote by d the highest power in w2(x). Since f(x) is a pdf with the support (0,∞),
w1(x) > 0 and the smallest power in w1(x) is higher than −1. Clearly f ∈ C3. By
simple computations one can verify that there exists a constant C, such that for every
x ∈ (0,∞) the following holds

∣

∣

∣

∣

f ′(x)

f(x)
x

∣

∣

∣

∣

,

∣

∣

∣

∣

(

f ′(x)

f(x)

)′′
x3

∣

∣

∣

∣

,

∣

∣

∣

∣

xf(x)

1− F (x)

∣

∣

∣

∣

≤ Cmax{1, xd}.

Assumption 5.3.1 follows since E[max{1, xd}]2 < ∞. Since for every ǫ > 0,

E[max{1, ((1 + ǫ)x)d}], E[max{1, ((1 + ǫ)x)d}]2 < ∞,

and the functions Cmax{1, xd} and (Cmax{1, xd})2 are monotone nondecreasing, it
follows that Assumptions 5.3.2 and 5.3.3 hold by choosing M(x) := Cmax{1, xd},
N(x) := C2max{1, xd}2, and ǫN , ǫM to be arbitrary positive constants.

This family of distributions contains the gamma, Weibull, Maxwell–Boltzmann, and
Rayleigh distributions.

5.2.2. An Example that does not Satisfy Assumption 5.3.1. We show that there exists a
random variable that satisfies Assumptions 4.2 and 5.1 and fails to satisfy Assumption
5.3.1. For every d ∈ N, define xd := 1+ 1

2
+· · ·+ 1

d
. Let g(x) be the following function: for

every d ∈ N and every xd < x ≤ xd+1 define g(x) :=
1

d+1
(x−xd). Then g is not a pdf of a

random variable and it is not differentiable. However, by smoothing g and changing its
values on a bounded interval, one can construct a random variable with a pdf function f
that satisfies Assumptions 4.2 and 5.1. Since Assumption 4.2.1 follows from Assumption
4.2.2 by normalization, and Assumption 5.1 is only a matter of smoothing, it is sufficient
to show that Assumption 4.2.2 can be satisfied. This follows from the following series
of equalities and inequalities:
∫ ∞

0

x2g(x)dx =
∞
∑

d=1

∫ xd+1

xd

x2g(x)dx ≤
∞
∑

d=1

x2
d+1

∫ xd+1

xd

g(x)dx =
1

2

∞
∑

d=1

x2
d+1

1

(d+ 1)3

≈ 1

2

∞
∑

d=1

ln2(d+ 1)
1

(d+ 1)3
< ∞.
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Assumption 5.3.1, however, does not hold, since

∫ ∞

0

(

g′(x)

g(x)
x

)2

g(x)dx =
∞
∑

d=1

∫ xd+1

xd

(

g′(x)

g(x)
x

)2

g(x)dx ≥
∞
∑

d=1

(d+ 1)2x2
d

∫ xd+1

xd

g(x)dx

=
1

2

∞
∑

d=1

(d+ 1)2x2
d

1

(d+ 1)3
≈ 1

2

∞
∑

d=1

ln2(d+ 1)
1

d+ 1
= ∞.

5.3. The Limit of the Posterior Distribution Processes. Similar to the construc-
tions of the Radon–Nikodým process and the posterior distribution process in the model
of the Brownian motion with an unknown drift (see Eqs. (3.2) and (3.3)), one can show
that for every l ∈ S and every t ∈ [0,∞),

π̃n(l, t) =
πlϕ̃

n(l, t)
∑

k∈S πkϕ̃
n(k, t)

, l ∈ S, t ∈ [0,∞),(5.1)

where

ϕ̃n(l, t) :=
d(P n

l | FLn

nt )

d(P n
0 | FLn

nt )
, l ∈ S, t ∈ [0,∞)(5.2)

is the Radon–Nikodým process. In fact, for every l ∈ S, (ϕ̃n(l, t)) is the likelihood ratio
process w.r.t. t and it satisfies

ϕ̃n(l, t) =
P n(Ln(nt), vn1 , . . . , v

n
Ln(nt);nt | θ = l, tnv )

P n(Ln(nt), vn1 , . . . , v
n
Ln(nt);nt | θ = 0, tnv )

, t ∈ [0,∞).(5.3)

The next theorem shows that the Radon–Nikodým process and the posterior distribution
process of the n-th system converge to ϕσ and πσ, respectively, for a properly chosen σ.

Theorem 5.4 (Main Theorem). Under Assumptions 4.1, 4.2, 4.3, 5.1, and 5.3, the
following hold:

lim
n→∞

ϕ̃n d
= ϕ√

α

σf

,(5.4)

lim
n→∞

π̃n d
= π√

α

σf

.(5.5)

Remark 5.5. The quantity σf in Eqs. (5.4) and (5.5) depends on the pdf of the ran-
dom variable v. That is, the limit of the posterior distribution process depends on the

structure of the density of v and not only on its moments. Notice also that
√
α

σf
is not

the parameter that is associated with (L̃(t)) (see Eq. (4.8)). The relation between the
parameters σv and 1

σf
is studied in Theorems 5.6 and 5.9 below.

The proof of Theorem 5.4 is given in the Appendix. We now outline the main ideas of
the proof. We start with the first part of the theorem. First, we show that (a) the fact
that the system was activated before time t = 0, and (b) the lack of arrivals during the

time interval
(

∑Ln(nt)
i=1 vni , t

]

, have almost-surely an effect of order o(1) on the posterior

distribution process as n goes to infinity (Lemma 8.2). Therefore, there is no significant
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difference if the DM updates his belief only at arrival times. That is,12

ϕ̃n(l, t) = exp







Ln(nt)
∑

i=1

ln

(

fn
l (v

n
i )

fn
0 (v

n
i )

)

+ o(1)







a.s.,(5.6)

where nt =
∑Ln(nt)

i=1 vni (this means that time nt is an arrival time), see Eqs. (8.9),

(8.14), and (8.15). Second, we find the distribution of
∑Ln(nt)

i=1 ln
(

fn
l
(vni )

fn
0 (vni )

)

. We show

that for every n ∈ N there exists a process (W̃ n(t)) with the following properties: it is

independent of θ; the limit W̃ :
d
= lim

n→∞
W̃ n exists and the process (W̃ (t)) is a standard

Brownian motion such that
Ln(nt)
∑

i=1

ln

(

fn
l (v

n
i )

fn
0 (v

n
i )

)

=
√
nσf

µn
l − µn

0

µn
k

W̃ n

(

Ln(nt)

n

)

− 1

2

(

lσf

α

)2
Ln(nt)

n
+

(

lθσ2
f

α2

)

Ln(nt)

n
+ o(1) a.s.,

see Eqs. (8.12) and (8.24). By taking the limit n → ∞ and using the random time-change

theorem (see Chen and Yao (2001, Theorem 5.3) [7]) for the composition W̃ n
(

Ln(nt)
n

)

one gets the desired result (see Proposition 8.4).13

We now turn to the second part of the theorem. Notice that if we prove Eq. (5.4),
then Eq. (5.5) follows from the definitions of ϕσ and πσ and from Eqs. (3.3) and (5.1),

because the mapping ϕ(·, ·) 7→ πlϕ(·,·)
∑

k∈S πkϕ(k,·) is continuous.

From Eq. (5.5) and the definition of πσ, it follows that lim
n→∞

π̃n is distributed as

a posterior distribution process of a Brownian motion with an unknown drift. The
following theorem summarizes this observation.

Theorem 5.6. Under Assumptions 4.1, 4.2, 4.3, 5.1, and 5.3, the process lim
n→∞

π̃n can

be expressed as the posterior distribution process of the process

M̂(t) = M̂θ(t) := θt+
√
α
1

σf
W ′(t), t ∈ [0,∞),(5.7)

where (W ′(t)) is a standard Brownian motion independent of θ. Moreover, 1
σf

≤ σv

where equality holds if and only if the random variable v has a gamma distribution (with
expectation 1).

Since 1
σf

≤ σv, the paths of the process (M̂(t)) will be more concentrated around the

path of the linear drift, (θt), than the paths of the process (L̃(t)). In other words, the

process (M̂(t)) is less noisy than (L̃(t)). Therefore, it is easier to estimate the parameter

θ given (M̂(t)) than given (L̃(t)). That is, lim
n→∞

π̃n is more informative than π̃.

Remark 5.7. If v has a gamma distribution with expectation 1, then its density is of

the form f(s) = ββ

Γ(β)
sβ−1e−βs, where β is a positive constant. From Remark 5.2 and

12The a.s. convergence is with respect to the metric e∞.
13see Eq. (3.4) for the structure of ϕσ .



THE PROPER WAY TO USE BAYESIAN POSTERIOR PROCESSES WITH BROWNIAN NOISE 15

Eq. (5.6) it follows that

ln(ϕ̃n)(l, s) = Ln(ns) ln

(

µn
l

µn
0

)β

− nsβ(µn
l − µn

0) + o(1).(5.8)

That is, for sufficiently large n ∈ N, the Radon–Nikodým density, and therefore also
the posterior distribution process at time nt, depend on the process (Ln(ns))0≤s≤t only
through Ln(nt), up to order o(1). Loosely speaking, for sufficiently large n’s the param-

eter θ has sufficient statistics (based on (L̃n(s))s≤t) that are ‘approximately independent
of the past’. This is the same property that holds in the Brownian motion with an
unknown drift model (see Remark 3.2). Therefore, we expect that indeed this case the
processes lim

n→∞
π̃n and π̃ will be identically distributed, because no information is lost

by looking at the present rather than at the past.

Before proving Theorem 5.6, we state a lemma that provides insights about the pa-
rameter σf , which is then used in the proof.

Lemma 5.8. Under Assumptions 4.2, 5.1, and 5.3.1, the following equalities hold:

E

[

f ′(v)

f(v)
v

]

= −1(5.9)

and

E

[(

f ′(v)

f(v)

)′
v2
]

= 1− σ2
f .(5.10)

Proof.

E

[

f ′(v)

f(v)
v

]

=

∫ ∞

0

f ′(v)v dv = f(v)v

∣

∣

∣

∣

∞

0

−
∫ ∞

0

f(v)dv = −1,

where the last equality holds since
∫ ∞

0

f(v)v dv,

∫ 1

0

f(v)dv < ∞

and therefore

lim
u→∞

f(v)v = lim
u→0+

f(v)v = 0.

From Assumption 5.3.1, and by using similar arguments as above, it follows that

E

[(

f ′(v)

f(v)

)′
v2
]

= 1− σ2
f .

Proof of Theorem 5.6. From the definition of πσ it follows that the posterior
distribution process of the process (M̂(t)) is given by π√

α

σf

. From Eq. (5.5) it follows

that lim
n→∞

π̃n is distributed as π√

α

σf

. We now show that

σfσv ≥ 1,
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and that equality holds if and only if v has a gamma distribution with expectation 1.
The inequality follows from the following relations:

σfσv =

√

E

[

f ′(v)

f(v)
v + 1

]2

E [v − 1]2 ≥
∣

∣

∣

∣

E

[(

f ′(v)

f(v)
v + 1

)

(v − 1)

]∣

∣

∣

∣

= 1.

The first equality holds by the definitions of σf and σv, Assumption 4.2.1 and by Lemma
5.8 (Eq. (5.9)). The inequality is the Cauchy–Schwartz inequality. The second equality
follows from Lemma 5.8 (Eq. (5.10)) and from the equation

E

[

f ′(v)

f(v)
v2
]

= −2,

which is obtained via integration by parts. Notice that the inequality turns into equality

if and only if f ′(v)
f(v)

v + 1 and v − 1 are linearly dependent. One can verify that under

Assumptions 4.2 and 5.1 this happens if and only if v has a gamma distribution with
expectation 1.

The next theorem states that the difference between σv and 1
σf

can be arbitrarily

large. Hence, the distributions of π√

α

σf

(and by Theorem 5.4 also π̃n) and π√

ασv
can

be very different.

Theorem 5.9. The difference σv − 1
σf

can be arbitrarily large.

The proof of Theorem 5.9 is given in the Appendix. To show that σv − 1
σf

can be

arbitrarily large we construct a family of random variables that satisfy Assumptions 4.2,
5.1, and 5.3 and for which the variances σ2

v ’s can be arbitrarily large and the parameters
1
σ2
f

’s are uniformly bounded from above.

In Sections 6.3.1 and 6.4.1 below we show how to use the distribution of π√

α

σf

in order

to solve optimal stopping problems w.r.t. the observed process (L̃n(t)). We show there
that if one calculates his strategy based on the distribution of π√

ασv
instead of the

distribution of π√

α

σf

, then his payoff will be suboptimal. By Theorem 5.9 it turns out

that the strategies and the payoffs that follow by the distributions of π√

ασv
and π√

α

σf

can be very different and therefore by taking the wrong approximation, the performance
can be relatively bad (see Remark 6.11 below).

5.4. Generalizations.

5.4.1. Intermittent System. There are cases where the system operates intermittently.
For example, the departure process from a G/G/1 queue with an unknown service rate
can be modeled as the system described above that operates only when the queue is not
empty (with ‘departures’ instead of ‘arrivals’). In this section we study systems that
operate intermittently, and let (Bn(t)) be the process that represents the cumulative
time that the n-th system works during the time interval [0, t]. Let

π̃n
B
(l, t) := π̃n(l, Bn(t)) = πn(l, Bn(nt)), l ∈ S , t ∈ [0,∞),

be the posterior distribution process for the observed process (Ln(Bn(nt))). The follow-
ing theorem describes the distribution of lim

n→∞
π̃n

B
.



THE PROPER WAY TO USE BAYESIAN POSTERIOR PROCESSES WITH BROWNIAN NOISE 17

Theorem 5.10. Suppose that there is a constant 0 ≤ ρ ≤ 1 such that lim
n→∞

Bn(nt)
n

= ρt

u.o.c. Under Assumptions 4.1, 4.2, 4.3, 5.1, and 5.3, the following holds:

lim
n→∞

π̃n
B

d
= π √

α

σf
√

ρ

.(5.11)

The proof follows from the random time-change theorem (Chen and Yao (2001, The-
orem 5.3) [7]) in a similar way to the proof of Theorem 5.4, and is therefore omitted.

5.4.2. Continuous Distribution over θ. Theorems 5.4, 5.6, and 5.10 also hold in case
that θ is a continuous random variable with the density πl, l ∈ S. In this case, the term
∑

k∈S in Eqs. (3.3) and (5.1) is replaced by
∫

k∈S.

6. Optimal Stopping Problems

The problem of finding closed-form solutions for optimal stopping problems w.r.t. (Ln(t))
in the general case suffers from high complexity. Buonaguidi and Muliere (2013) [6] and
Cohen and Solan (2013) [8] solved such optimal stopping problems in case that, given θ,
the process (Ln(t)) is a Lévy process. We do not make that assumption and rather find
an asymptotically optimal solution by using the limit process lim

n→∞
π̃n. As mentioned

in Section 1, there are several optimal stopping problems that have been studied in the
literature with respect to a Brownian motion with an unknown drift. The purpose of this
section is to show that optimal stopping problems such as the Bayesian Brownian bandit
problem (Berry and Friestedt (1985) [3], Bolton and Harris (1999) [5], Cohen and Solan
(2013) [8]) and the sequential testing problem14 (Shiryaev (1978) [24]), are relevant for a
process that is close in distribution to a Brownian motion with an unknown drift. These
papers considered a Brownian motion with an unknown drift where there are only two
hypotheses about the drift, and therefore we limit the discussion on this section to the
case of two available hypotheses Hl and H0, where 0 6= l ∈ R. The optimal stopping
problems consist of (a) an observed process, (b) a stopping time adapted to the observed
process, and (c) a payoff function that is a function of the observed process. Although
the optimal stopping problems are formulated with the observed process, which is a
Brownian motion with an unknown drift, it is possible to formulate the problems and
their solutions in terms of the posterior distribution process. We present a sequence
of random parameter systems that converges to a Brownian motion with an unknown
drift. Under modest assumptions we formulate a stopping time problem with respect
to the posterior distribution process (π̃n(l, t), π̃n(0, t)). We solve these problems by
using Theorem 5.4, and we deduce from Theorem 5.9 that by using the approximation
π̃ instead of lim

n→∞
π̃n, the performance can be relatively bad.

In Section 6.1 we define the cost function and the optimal stopping problems with
respect to the posterior distribution process (π̃n(l, t), π̃n(0, t)). In Section 6.2 we find
an approximate solution by using Theorem 5.4. In Sections 6.3 and 6.4 we show that
the Bayesian Brownian bandit problem and the Brownian sequential testing problem are
special cases of the general problem that is described here.

Define ϕ̂ :
d
= lim

n→∞
ϕ̃n and π̂ :

d
= lim

n→∞
π̃n. From Eq. (5.4) it follows that ϕ̂ is distributed

as ϕ√

α

σf

.

14We consider here discounted optimal stopping problems, whereas Shiryaev considers an undis-
counted problem.
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Recall that in this section we study the case where the support of θ consists of two
states: 0 and l. By knowing the prior/posterior probability of one state, the DM can
infer the probability of the other. Therefore, it is sufficient to make the forthcoming
analysis w.r.t. the following processes π̂(t) := π̂(l, t), π̃n(t) := π̃n(l, t), ϕ̂(t) := ϕ̂(l, t),
ϕ̃n(t) := ϕ̃n(l, t), t ∈ [0,∞), and the prior probability π := πl.

6.1. The Cost Function. Suppose that a DM who operates the n-th system, observes
the process (Ln(t)), and continuously updates his belief about the hypotheses Hl and
H0. Let kn, Kn : [0, 1] → R be two functions that stand for the instantaneous cost
and for the terminal cost, respectively; the DM’s instantaneous discounted cost15 for
operating the system during the time interval [t, t + dt) is r

n
e−

r
n
tkn(πn(t))dt, where

πn(t) := P (θ = l | FLn

t ; π). The choice that the DM should make is when to stop
operating the system. If the DM stops at time T then he has an additional discounted
cost of r

n
e−

r
n
TKn(πn(T )). Formally, the DM chooses a stopping time τn for the process

(Ln(t)); that is, the stopping time is adapted to the filtration FLn

t , which is the natural
filtration generated by (Ln(t)). The expected discounted loss of the DM if he chooses
the stopping time τn is

V n
τn(π) := Eπ

[∫ τn

0

r

n
e−

r
n
tkn(πn(t))dt+

r

n
e−

r
n
τnKn(πn(τn))

]

.(6.1)

Set τ̃n := 1
n
τn. The stopping time τ̃n is adapted to the filtration FLn

nt , which is identical

to the filtration F π̃n

t . Eq. (6.1) is equivalent to16

V n
τ̃n(π) = Eπ

[
∫ τ̃n

0

re−rtkn(π̃n(t))dt+
r

n
e−rτ̃nKn(π̃n(τ̃n))

]

.(6.2)

The goal of the DM is to minimize V n
τ̃n(p) and to find, if exists, the optimal stopping

time τ ∗,n for which the infimum of (6.2) is attained. Let

Un(π) := inf
τ̃n

V n
τ̃n(π)(6.3)

be the minimal loss that the DM can achieve, and in case that the infimum is attained,
let

τ̃ ∗,n(π) ∈ argmin
τ̃n

V n
τ̃n(π)(6.4)

be an optimal stopping time given that the prior belief is π.

Assumption 6.1.

6.1.1. The sequence of functions kn converges uniformly to a function k on [0, 1].
6.1.2. k is continuous on the interval [0, 1].
6.1.3. The sequence of functions Kn/n converges uniformly to a function K on [0, 1].
6.1.4. K is continuous on the interval [0, 1].

Remark 6.2. From Assumption 6.1.2 (resp. 6.1.4) it follows that the function k (resp.
K) is bounded and uniformly continuous on [0, 1]. From Assumption 6.1.1 (resp. 6.1.3)
it follows that there exists a constant Ck > 0 (resp. CK), such that for every n ∈ N and
every π ∈ [0, 1], one has |kn(π)|, |k(π)| ≤ Ck (resp. |Kn(π)/n|, |K(π)| ≤ CK).

15Notice that the discount factor r is scaled by an order of n.
16Recall that for every t > 0 we defined π̃n(t) := πn(nt) (see Eq. (4.3)).
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We now define the expected cost and the value function with respect to F π̂
t . Fix

π ∈ [0, 1]. Then the expected cost by using the F π̂
t -adapted stopping time τ is

Vτ (π) := Eπ

[
∫ τ

0

re−rtk(π̂(t))dt+ re−rτK(π̂(τ))

]

.

Let

U(π) := inf
τ
Vτ (π)(6.5)

be the value function, and in case that the infimum is attained, let

τ ∗(π) ∈ argmin
τ

Vτ (π)(6.6)

be an optimal stopping time given that the prior belief is π.

6.2. Stopping Times. Since the optimal stopping times (if exist) of the problems (6.3)–
(6.4) and (6.5)–(6.6) are stationary Markovian stopping times with respect to the poste-
rior distributions processes (π̃n(t)) and (π̂(t)), respectively (see Cohen and Solan (2013,
Remark 4) [8]), it is natural to confine our discussion to the set of stationary Markovian
stopping times. We now define a first exit time strategy. To this end, we define a subset
of [0, 1] such that if the posterior is within this subset, then the DM continues and stops
otherwise. Let D =

⋃

i(ai, bi) ⊆ [0, 1] be a finite union of disjoint open intervals such
that if bj = 1 (resp. ai = 0), then the open interval (aj, bj) (resp. (ai, bi)) is replaced by
the semi-open interval (aj, 1] (resp. [0, bi)).

Assumption 6.3. For every i < j one has bi < aj.

Assumption 6.3 merely says that the intervals do not ‘touch each other’. Define17

τ̃nD(π) := inf{t | π̃n
π (t) /∈ D},(6.7)

τ̃D(π) := inf{t | π̂π(t) /∈ D}.(6.8)

That is, D is the continuation region with respect to the stopping times {τ̃nD}n∈N and
τ̃D. From Assumption 6.3 it follows that if the DM continues for every prior in a certain
punctured neighborhood of a, then he should also continue for the prior a.

The next theorem asserts that by using the same continuation region D for every
n ∈ N, the stopping times τ̃nD(π) converge in distribution to τ̃D(π) and the expected cost
functions V n

τ̃n
D
(π) converge to Vτ̃D(π).

Theorem 6.4. Under Assumptions 4.1, 4.2, 4.3, 5.1, 5.3, 6.1, and 6.3, we have

lim
n→∞

τ̃nD(π)
d
= τ̃D(π)(6.9)

and

lim
n→∞

V n
τ̃n
D
(π) = Vτ̃D(π).(6.10)

The proof is relegated to the Appendix. In fact, Theorem 6.4 holds even if we replace
the D’s on the left-hand sides of Eqs. (6.9) and (6.10) by Dn’s, where Dn → D in
the sense that the indicators of Dn converge pointwise to the indicator of D. The proof
requires some technical modifications that we wish to avoid in order to ease the notation.

In some models such as the Bayesian Brownian bandit and the Sequential testing (as
shown in Sections 6.3.1 and 6.4.1 respectively) the limit problem admits a unique optimal

17The subscript π indicates the prior probability that θ = l. That is, π̃n

π (0) = π and π̂π(0) = π.
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stopping time that is associated with a continuation region D∗. That is, Vτ̃D∗ = U .
Therefore, by Theorem 6.4 it follows that for every π ∈ [0, 1] one has

lim
n→∞

V n
τ̃n
D∗
(π) = Vτ̃D∗ (π) = U(π),

whereas for every D̄ 6= D∗ and every π ∈ [0, 1] one has

lim
n→∞

V n
τ̃n
D̄
(π) = Vτ̃D̄

(π) ≥ U(π).(6.11)

This is summarized in the following corollary.

Corollary 6.5. Under Assumptions 4.1, 4.2, 4.3, 5.1, 5.3, 6.1, and 6.3, if the limit
problem admits an optimal stopping time that is associated with a continuation region
D∗, then

lim
n→∞

Un(π) = lim
n→∞

V n
τ̃n
D∗
(π) = Vτ̃D∗ (π) = U(π).

Remark 6.6. For every n we defined the expected discounted loss in Eq. (6.1) by using
the functions kn and Kn, and found an equivalent representation in Eq. (6.2). By
Assumption 6.1, the functions kn and Kn/n converge uniformly to the functions k and
K, respectively. Therefore, it would not make much difference if we defined

V n
τ̃n
D
(π) := Eπ [R(π̃n)] ,

and

Vτ̃D(π) := Eπ [R(π̂)] ,

where18

R(π) :=

∫ τD

0

re−rtk(π(t))dt+ re−rτDK(π(τD))

and

τD := τD(π) = inf{t | ππ(t) /∈ D}.
That is, for every n ∈ N one has kn ≡ k and Kn/n ≡ K. In this case, one may try

to use the convergence in distribution lim
n→∞

π̃n d
= π̂ and conclude that lim

n→∞
Eπ[R(π̃n)] =

Eπ[R(π̂)]. However, the function R is not continuous with respect to the process π, since
it is possible to exhibit two processes π1 and π2 that are relatively close, but that the
stopping times τD(π1) and τD(π2) are relatively far from each other, in which case the
difference |R(π1) − R(π2)| may be large. Hence, the inference that lim

n→∞
Eπ[R(π̃n)] =

Eπ[R(π̂)] holds is incorrect.

6.3. Bayesian Brownian Bandit Problem. In Sections 6.1 and 6.2 we studied a
family of optimal stopping problems w.r.t. a sequence of discrete processes whose weak
limit is a Brownian motion with an unknown drift. In this section we provide an example
of an optimal stopping problem for which the limit problem is the Bayesian Brownian
bandit problem (see Berry and Friestedt (1985) [3], Bolton and Harris (1999) [5], Cohen
and Solan (2013) [8]). We provide an asymptotically optimal solution by using Theorem
6.4 and Corollary 6.5. We also infer that if one calculates his strategy based on the
distribution of π̃ instead of the distribution of lim

n→∞
π̃n, then his payoff will be suboptimal.

18Notice that according to Eqs. (6.7) and (6.8), τ̃nD and τ̃nD are functions of the processes π̃n and π̂

respectively.



THE PROPER WAY TO USE BAYESIAN POSTERIOR PROCESSES WITH BROWNIAN NOISE 21

A DM operates a system in continuous time which can be of two types, High (Hl)
or Low (H0). The DM observes the process (Ln(t)) where n ∈ N is fixed and updates
his belief continuously about the hypotheses Hl and H0. For each job arriving to the
system, the DM gets 1 dollar. In addition, he pays cn dollars per time unit for operating
the system. The choice that the DM should make is when to stop operating the system.
Formally, the DM should choose a stopping time τn for the process (Ln(t)); that is, the
stopping time is adapted to the filtration FLn

t . The expected discounted loss of the DM
if he chooses the stopping time τn is

V n
τn(π) :=

√
nEπ

[
∫ τn

0

r

n
e−

r
n
td(cnt− Ln(t))

]

.(6.12)

The goal of the DM is to minimize V n
τ (π), and to find, if it exists, the optimal stopping

time τ ∗,n for which the infimum of (6.12) is attained.
We now present the cost function by using π̃n. Since for every k ∈ {0, l} one has

E[cnt − Ln(t) | θ = k] = (cn − µn
k)t, we naturally assume that µn

0 < cn < µn
l . That

is, the arrival rate is higher (resp. lower) in the High (resp. Low) type than the cost
per time unit for operating the system; otherwise, the problem would be degenerate: if
µn
0 < µn

l < cn the DM will stop operating the system at time 0, while if cn < µn
0 < µn

l he
will operate it indefinitely. By standard arguments (see Cohen and Solan (2013, Lemma
4) [8]), one can represent the function V n

τn(π) as follows:

V n
τn(π) =

√
nEπ

[
∫ τn

0

r

n
e−

r
n
t[(cn − µn

l )π
n(t) + (cn − µn

0 )(1− πn(t))]dt

]

,(6.13)

which by Eq. (6.2) equals

V n
τ̃n(π) =

√
nEπ

[
∫ τ̃n

0

re−rt[(cn − µn
l )π̃

n(t) + (cn − µn
0 )(1− π̃n(t))]dt

]

.(6.14)

That is, the cost functions kn and Kn of the n-th system can be represented as follows:

kn(π) =
√
n(cn − µn

l )π +
√
n(cn − µn

0)(1− π), π ∈ [0, 1](6.15)

and

Kn(π) ≡ 0, π ∈ [0, 1].(6.16)

Suppose that for every n ∈ N, µn
0 < cn < µn

l . Moreover, we need the following as-
sumption that states that the High type is better than the Low type by an “ 1√

n
order

style”.

Assumption 6.7.

c0 := lim
n→∞

√
n(cn − µn

0) > 0 > lim
n→∞

√
n(cn − µn

l ) =: cl.

Assumption 6.7 says that the scaled limit of the difference between the operation cost
and the arrival rate in the High (resp. Low) type yields a negative (resp. positive)
expected loss. Under Assumption 6.7 it follows that kn converges uniformly on [0, 1] to

k(π) := clπ + c0(1− π), π ∈ [0, 1].(6.17)
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6.3.1. Asymptotic Optimality. In this section we define cut-off strategies by using the
notion of first exit time strategies of the posterior processes from an interval of the form
(p̄, 1]. We call p̄ the cut-off point. We prove that the n-th system admits a unique
optimal stopping time and that it is a cut-off strategy. We will therefore restrict the
class of stopping times to the class of cut-off strategies. We also show that for every
cut-off point p̄, the first exit time of the process (π̃n(t)) from the interval (p̄, 1] and the
payoff that is associated with this strategy, converge to the first exit time of the process
(π̂(t)) from that interval (p̄, 1] and the payoff that is associated with this strategy,
respectively. We conclude this section by finding asymptotically optimal stopping time
and the asymptotic value function.

We start with a few properties of the value function Un(π) and deduce that the optimal
strategy in the n-th system is a cut-off strategy. The proof is similar to the proof of
Proposition 2 in Cohen and Solan (2013) [8] and is therefore omitted.

Proposition 6.8. For every fixed n ∈ N, the function π 7→ Un(π) is monotone, nonin-
creasing, bounded from above by 0, concave, and continuous.

Remark 6.9. From Proposition 6.8 it follows that there is a cut-off point p∗,n in (0, 1],
such that Un(π) = 0 if π ≤ p∗,n, and Un(π) < 0 otherwise. That is, the optimal strategy
is to continue while the posterior lies in the interval (p∗,n, 1], and to stop otherwise. We
call this strategy a cut-off strategy with cut-off point p∗,n.

Berry and Friestedt (1985) [3] showed that the Bayesian Brownian bandit problem
admits a unique optimal strategy and that it is a cut-off strategy w.r.t. the posterior
process of the Brownian motion with the unknown drift. Denote by p∗ the cut-off point
that is associated with the optimal cut-off w.r.t. the limit process lim

n→∞
π̃n = π̂ (which is

distributed as π√

α

σf

). That is, for every π ∈ [0, 1] one has U(π) = Vτ̃(p∗,1](π). Recall that

(p∗, 1] is the continuation region for the posterior process. For every n ∈ N and every
p̄ ∈ [0, 1] define the continuation region (p̄, 1]. The next result follows from Eqs. (6.15)–
(6.17), Theorem 6.4, and Corollary 6.5.

Theorem 6.10. Fix 0 ≤ p̄ ≤ 1. Under Assumptions 4.1, 4.2, 4.3, 5.1, 5.3, and 6.7, we
have19

lim
n→∞

τ̃n(p̄,1](π)
d
= τ̃(p̄,1](π),(6.18)

lim
n→∞

V n
τ̃n
(p̄,1]

(π) = Vτ̃(p̄,1](π)(6.19)

and there exists p∗ ∈ [0, 1] such that

lim
n→∞

Un(π) = lim
n→∞

V n
τ̃n
(p∗,1]

(π) = Vτ̃(p∗,1](π) = U(π).(6.20)

Remark 6.11. From Eq. (6.20) it follows that in order to find the asymptotically optimal
cut-off point p∗, the DM must use the cut-off point taken from the optimal solution
of the Bayesian Brownian bandit problem w.r.t. the posterior process π√

α

σf

and not

w.r.t. the posterior process π√

ασv
. Denote by p∗f and p∗v the cut-off points that are

19The function Vτ̃(p̄,1]
(π) can be expressed explicitly through the parameters of the problem, but

since it has no fundamental contribution, this expression is omitted (see Berry and Friestedt (1985,
pp. 171–172) [3]).
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associated with the Bayesian Brownian bandit problem w.r.t. the posteriors π√

α

σf

and

π√

ασv
, respectively. Theorem 5.9 states that the difference between σv and 1

σf
can be

arbitrarily large and therefore the distributions of π√

α

σf

and π√

ασv
can be relatively

different, and so the difference between the optimal cut-off points p∗f and p∗v can be
arbitrarily large within the interval [0, 1]. By Eq. (6.19) it follows that for every prior
π ∈ [0, 1] and for sufficiently large n, the payoff that is associated with the cut-off point
p∗v is approximately Vτ̃(p∗v,1]

(π), which, by Eq. (6.11), is greater than Vτ̃(p∗
f
,1]
(π) = U(π).

The difference between these functions can be relatively large, see Berry and Friestedt
(1985, pp. 171–172) [3] for closed-form formulas.

6.4. Discounted Sequential Testing. In this section we provide an example of an
optimal stopping problem w.r.t. a sequence of discrete processes for which the limit
problem is a discounted version of the sequential testing problem (Shiryaev (1978) [24]).
We provide an asymptotically optimal solution by using Theorem 6.4 and Corollary 6.5.
We also infer that if one calculates his strategy based on the distribution of π̃ instead
of the distribution of lim

n→∞
π̃n, then his payoff will be suboptimal.

Fix n ∈ N. The DM observes the process (Ln(t)) and continuously updates his belief
on the hypotheses Hl and H0. Using the belief process, his goal is to test sequentially
these hypotheses with minimal loss. The choice that the DM should make is when to
stop operating the system, and at that time to guess which one of the two hypotheses
holds. Formally, the DM should choose a decision rule (τn, dn) for (Ln(t)), that is, a
stopping time τn that is adapted to the filtration FLn

t , and a decision function dn that
is a FLn

τ -measurable random variable taking the values 0 and l. The choice dn = l is
interpreted to mean that the DM accepts Hl, while the choice dn = 0 is interpreted to
mean that the DM accepts H0. The expected loss of the DM under the decision rule
(τn, dn) is

Y n
(τn,dn)(π) := Eπ

[
∫ τn

0

r

n
e−

r
n
tcndt+

r

n
e−

r
n
τn(anI(dn=0,θ=l) + bnI(dn=l,θ=0))

]

,(6.21)

where an, bn, and cn are given positive constants that represent the cost of type II error,
the cost of type I error, and the operation cost per unit of time, respectively. The goal
of the DM is to minimize Y n

(τn,dn)(π), and to find, if exists, the optimal stopping rule

(τ ∗,n, d∗,n) for which the infimum (6.21) is attained. Formally, let

Un(π) := inf
(τn,dn)

Y n
(τn,dn)(π)

be the minimal loss that the DM can achieve and in case that the infimum is attained,
let

(τ ∗,n, d∗,n)(π) ∈ argmin
(τn,dn)

Y n
(τn,dn)(π)

be an optimal decision rule, given that the prior belief is π.
We now present the cost function by using π̃n. By standard arguments (see Shiryaev

(1978, pp. 166–167)) [24], one can show that the optimal terminal decision d∗,n exists
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and satisfies d∗,n = l if and only if π̃n(τ ∗,n) ≥ bn

an+bn
. Therefore, we define

V n
τn(π) : = Y n

(τn,d∗,n)(π)(6.22)

= Eπ

[∫ τn

0

r

n
e−

r
n
tcndt+

r

n
e−

r
n
τn(anπn(τn) ∧ bn(1− πn(τn)))

]

which from Eq. (6.2) equals

V n
τ̃n(π) := Y n

(τ̃n,d∗,n)(π) = Eπ

[∫ τ̃n

0

re−rtcndt+
r

n
e−rτ̃n(anπ̃n(τ̃n) ∧ bn(1− π̃n(τ̃n)))

]

.

(6.23)

That is, the cost functions kn and Kn of the n-th system can be represented as

kn(π) = cn, π ∈ [0, 1](6.24)

and

Kn(π) = anπ ∧ bn(1− π), π ∈ [0, 1].(6.25)

Suppose that the limits lim
n→∞

an/n, lim
n→∞

bn/n, and lim
n→∞

cn exist and denote them by a, b,

and c, respectively. It follows that kn and Kn/n converge uniformly on [0, 1] to

k(π) = c, π ∈ [0, 1](6.26)

and

K(π) = aπ ∧ b(1− π), π ∈ [0, 1],(6.27)

respectively.

6.4.1. Asymptotic Optimality. In this section we prove that the optimal stopping time
in the n-th system exists uniquely and that it is the first exit time from an interval.
We will therefore restrict the class of the stopping times that we consider to the class
of first exit time strategies. We also show that for every interval (q1, q2), the first exit
time of the process (π̃n(t)) from that interval and the payoff that is associated with this
strategy converge to the first exit time of the process (π̂(t)) from that interval and the
payoff that is associated with this strategy, respectively. We conclude this section by
finding the asymptotically optimal stopping time and asymptotic value function.

We start with a few properties of the value function Un(π) and deduce that the optimal
strategy in the n-th system is a first exit time strategy. The proof is very similar to the
proof of Theorem 1 in Shiryaev (1978, Ch. IV) [24] and is therefore omitted.

Proposition 6.12. For every fixed n ∈ N, the function π 7→ Un(π) is bounded from
above by Kn(π)/n, concave, and continuous. Moreover, Un(0) = Un(1) = 0.

Remark 6.13. From Proposition 6.12 it follows that there are two points 0 ≤ q∗,n1 <
q∗,n2 ≤ 1, such that Un(π) = (anπ ∧ bn(1 − π))/n = Kn(π)/n if π /∈ (q∗,n1 , q∗,n2 ), and
Un(π) < Kn(π) otherwise. That is, the optimal strategy is the first exit time from the
interval (q∗,n1 , q∗,n2 ) (see the discussion in Shiryaev (1978, Ch. IV, pp. 168–169)) [24].

Proposition 6.12 and Remark 6.13 can be formulated for the limit problem as well.
Therefore, one can deduce that there exists an optimal stopping time that is associated
with the continuation region D∗ = (q∗1 , q

∗
2). For every n ∈ N, every π ∈ [0, 1], and every

q1 < q2 ∈ [0, 1], define the continuation region (q1, q2). The next theorem follows from
Eqs. (6.24)–(6.27), Theorem 6.4, and Corollary 6.5.
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Theorem 6.14. Fix 0 ≤ q1 < q2 ≤ 1. Under Assumptions 4.1, 4.2, 4.3, 5.1, and 5.3,
the following limits hold:20

lim
n→∞

τ̃n(q1,q2)(π)
d
= τ̃(q1,q2)(π),(6.28)

lim
n→∞

V n
τ̃n
(q1,q2)

(π) = Vτ̃(q1,q2)
(π),(6.29)

and there are two points 0 ≤ q∗1 < q∗2 ≤ 1 such that

lim
n→∞

Un(π) = lim
n→∞

V n
τ̃n
(q∗

1
,q∗
2
)
(π) = Vτ̃(q∗1 ,q∗2)

(π) = U(π).

The analog to Remark 6.11 to this model holds.

7. Conclusion

7.1. Summary. In this paper we studied a problem of estimating a parameter θ. We
started with a sequence of scaled counting processes {(L̃n

θ (t))}n whose distributions
depend on an unknown parameter θ, the prior distribution of which is known. Moreover,
we assumed that {(L̃n

θ (t))}n converges in distribution to a Brownian motion (L̃θ(t)) with
an unknown drift (θt). We defined by (π̃n(t)) the posterior distribution process of the

parameter θ, given the observations (L̃n
θ (s))s≤t and by (π̃(t)) the posterior distribution

process of the parameter θ, given the observations (L̃θ(s))s≤t. We showed that, generally,
lim
n→∞

π̃n 6= π̃, unless the counting processes satisfy a memorylessness property and no

information, regarding the posterior processes, is lost by looking at the present of the
counting processes rather than at their past and present.

We also proved that the limit process lim
n→∞

π̃n equals to a posterior distribution pro-

cess of the process (M̂θ(t)), which is a Brownian motion with the same unknown drift

and a different standard deviation coefficient than the one of (L̃θ(t)). Apparently, the

difference between the standard deviation coefficients of (L̃θ(t)) and (M̂θ(t)) can be arbi-
trarily large. Therefore, we concluded that results concerning optimal stopping problems
w.r.t. (L̃θ(t)) cannot be applied to optimal stopping problems w.r.t. (L̃n

θ (t)), as the dif-
ference in the performance can be arbitrarily bad.

7.2. Future Directions.

7.2.1. The Disorder Problem, Diffusion Approximations, and Queues. The Brownian
disorder problem was introduced in Shiryaev (1978) [24].21 In this problem, the drift
of a Brownian motion changes at some unknown and unobservable disorder time. The
objective is to detect this change as quickly as possible after it happens. This problem is
also studied by using the Bayesian posterior process, that now estimates the probability
that the drift has already changed, based on the past information. I managed to show
that the Bayesian posterior distribution process of a disorder discrete process that is close
in distribution to a disorder Brownian motion, has a similar structure to the posterior

20As in Section 6.3, the function Vτ̃(q1 ,q2)
(π) can be expressed explicitly through the parameters of

the problem, but since it has no fundamental contribution, this expression is omitted.
21This model was generalized in the context of Brownian motion by, e.g., Vellekoop and Clark (2001)

[25], Gapeev and Peskir (2006) [13], Dayanik (2010) [9], Sezer (2010) [23], and in the context of other
processes different from the Brownian motion, e.g., Peskir and Shiryaev (2002) [21], Gapeev (2005) [11],
and Bayraktar, Dayanik, and Karatzas (2006) [1].
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distribution process in our paper. I would like to apply this result to optimal stopping-
time problem in the context of a G/G/1 queue under heavy traffic where one of the
parameters of the model such as the arrival/service rate changes randomly.

I believe that ‘disorder queues’ can enrich the classical models, as it often happens in
real life situations that the parameters of the system change over time.

7.2.2. Parameter Estimation in General Diffusion Processes. The structure of the limit
process lim

n→∞
π̃n is surprising and raises further questions about the structure of Bayesian

posterior distribution processes of more general diffusion processes with uncertainty. I
plan to study an approximation for a model suggested by Zakai (1969) [27]. This model
is fundamental in filtering theory and signal processing. Zakai analyzed a model with a
diffusion process (X(t)) satisfying the stochastic differential equation

X(t) = X(0) +

∫ t

0

a(X(s))ds+

∫ t

0

b(X(s))dW1(s),(7.1)

where X(0) is a random variable, (W1(t)) is a Brownian motion, and a and b are real-
valued functions such that b 6= 0. Let (L(t)) be the observed process which is related to
(X(t)) by

L(t) =

∫ t

0

g(X(s))ds+

∫ t

0

σdW2(s),(7.2)

where (W2(t)) is a Brownian motion, g is a real-valued function, and σ is a positive
constant. Notice that if g is the identity function and if a = b = 0 then X(t) ≡ X(0)
and (L(t)) is a Brownian motion with an unknown linear drift (X(0)t). This is the
model that we studied in this paper with θ = X(0). Zakai presented an equation that
is satisfied by the unnormalized Bayesian posterior distribution process of the location
of (X(t)) given the observation (L(s))0≤s≤t, commonly known as the Zakai equation,
see Zakai (1969, equation (11)) [27]. I would like to consider a sequence of processes
{(Xn(t), Ln(t))}n∈N that converges in distribution to (X(t), L(t)) and to analyze the
limit of the Bayesian posterior distribution processes

pn(t, l) := P (θ = l | (Ln(s))0≤s≤t), t ∈ [0,∞), l ∈ S.

I would like to see whether the limit of pn exists, under proper scaling of the parameters,
the functions and the processes, and if so, what is its structure and when can it be
considered as the Bayesian posterior distribution process of another process (X ′(t), L′(t))
that satisfies Eqs. (7.1)–(7.2) with some a′, b′, g′, and σ′.

This research can shed a light on the behavior of Bayesian posterior distribution pro-
cesses in more general and realistic models, where the process (X(t)) evolves randomly
over time.
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8. APPENDIX - Proofs

For the proofs of Theorems 5.4 and 6.4 it is convenient to present a precise probability
space on which the sequence of random parameter systems is defined.

8.1. Probability Space. Let θ be a random variable defined on the probability space
(Ωθ,Fθ, Pθ). Denote the support of θ by S ⊆ R and suppose that S is bounded and
countable. For every l ∈ S, let πl := Pθ(θ = l). Let (ΩV ,FV , PV ) be a probability space
on which a sequence of i.i.d. random variables {ui}i≥1 is defined such that for every
i ≥ 2, ui is distributed as the random variable v that satisfies Assumption 4.2. Define
the probability space (Ωθ×ΩV , σ(Fθ×FV ), P ) such that for every A1×A2 ⊆ S×ΩV one
has P (A1×A2) = Pθ(A1)PV (A2). Therefore, {ui}i≥1 and θ are independent with respect
to the probability function P . Denote by Pl the probability measure over Ωθ ×ΩV given
θ = l. That is, for every l ∈ S, and every C ⊆ S × ΩV , set Pl(C) := P (C | θ = l).

8.2. The n-th System. Let tu be a parameter and u1 be the random variable defined
in the previous paragraph, such that for every t ∈ [0,∞) one has

P (u1 + tu ≥ t) = P (v ≥ t | v ≥ tu).(8.1)

For every l ∈ S and every n ∈ N, define the parameter µn
l . For every i ≥ 1, every l ∈ S,

and every n ∈ N define vni,l :=
ui

µn
l

and tnv := tu
µn
l

. For every n ∈ N, let

RSn
π(θ) = (tnv , v, µ

n, {vni }i≥1, π) =
∑

l∈S
I{θ=l}

(

tnv , v, µ
n
l , {vni,l}i≥1

)

be a sequence of random parameter systems. For every n ∈ N this construction generates
the random parameter system that was defined in Section 4.3. Notice that for every l ∈ S
and every t ∈ [0,∞) one has

Pl

(

vn1,l + tnv ≥ t
)

= Pl

(

u1

µn
l

+
tv
µn
l

≥ t

)

= Pl (u1 + tv ≥ tµn
l ) = P (v ≥ tµn

l | v ≥ tu)

= P

(

v

µn
l

≥ t

∣

∣

∣

∣

v

µn
l

≥ tu
µn
l

)

= P

(

v

µn
l

≥ t

∣

∣

∣

∣

v

µn
l

≥ tnv

)

,

where the third equality follows from Eq. (8.1). Therefore, for every n ∈ N Assumption
4.1 is satisfied.

8.3. Proof of Theorem 5.4. We divide the proof into two parts. We first prove
Eq. (5.4) and thereafter conclude Eq. (5.5).

8.3.1. Proof of Eq. (5.4). Recall that by the definition of ϕσ, the process ϕ√

α

σf

sat-

isfies

ϕ√

α

σf

(l, t) = exp

{

lσf√
α
W ′(t)− 1

2

(

lσf√
α

)2

t+
θσf√
α
· lσf√

α
t

}

, l ∈ S, t ∈ [0,∞),(8.2)

where (W ′(t)) is a standard Brownian motion independent of θ.
In order to prove Eq. (5.4) it suffices to prove that

lim
n→∞

ln(ϕ̃n)
d
= ln(ϕ√

α

σf

).(8.3)
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Denote

W̃ n(t) :=

∑⌊nt⌋
i=1

[

−f ′(ui)
f(ui)

ui

]

− nt

σf

√
n

, t ∈ [0,∞),

L̄n(t) :=
Ln(nt)

n
, t ∈ [0,∞),

and

ζ̃n(l, t) :=σf

√
n
µn
l − µn

0

µn
θ

W̃ n(L̄n(t))(8.4)

− 1

2

(

lσf

α

)2

L̄n(t) +
θσf

α
· lσf

α
L̄n(t), l ∈ S, t ∈ [0,∞).

From Eq. (8.3) and Theorem 3.1 in Billingsley (1999) [4] it follows that in order to prove
Eq. (5.4) it suffices to prove that

lim
n→∞

(ln(ϕ̃n)− ζ̃n) = 0 u.o.c. (Proposition 8.1)(8.5)

and

lim
n→∞

ζ̃n d
= ln(ϕ√

α

σf

) (Proposition 8.4).(8.6)

Proposition 8.1 (Proving Eq. (8.5)). Under Assumptions 4.1, 4.2, 4.3, 5.1, and 5.3,
the following holds:

lim
n→∞

(ln(ϕ̃n)− ζ̃n) = 0 u.o.c.(8.7)

Proof. The following series of equations presents the Radon–Nikodým derivative
(ϕ̃n(l, t)) in a more convenient form. For every l ∈ S and every t ∈ [0,∞) one has

ϕ̃n(l, t) =
fn
l (v

n
1 |vn1 > tnv )

fn
0 (v

n
1 |vn1 > tnv )

·
∏Ln(nt)

i=2 fn
l (v

n
i )

∏Ln(nt)
i=2 fn

0 (v
n
i )

(8.8)

·
Pl

(

vnLn(nt)+1 > nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)

P0

(

vnLn(nt)+1 > nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)

=
P n
0 (v

n
1 > tnv )

P n
l (v

n
1 > tnv )

·
∏Ln(nt)

i=1 fn
l (v

n
i )

∏Ln(nt)
i=1 fn

0 (v
n
i )

·
Pl

(

vnLn(nt)+1 > nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)

P0

(

vnLn(nt)+1 > nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)

=exp







Ln(nt)
∑

i=1

ln

(

fn
l (v

n
i )

fn
0 (v

n
i )

)

+ ln

(

1− F n
0 (t

n
v )

1− F n
l (t

n
v )

)

(8.9)

+ ln





1− F n
l

(

nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)

1− F n
0

(

nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)











.
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From Eq. (8.9) and the triangle inequality it follows that, for every l ∈ S and t ∈ [0,∞),

| ln(ϕ̃n)(l, t)− ζ̃n(l, t)|

(8.10)

≤

∣

∣

∣

∣

∣

∣

Ln(nt)
∑

i=1

ln

(

fn
θ (v

n
i )

fn
0 (v

n
i )

)

+ ln

(

1− F n
0 (t

n
v )

1− F n
θ (t

n
v )

)

+ ln





1− F n
θ

(

nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)

1− F n
0

(

nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)





− σf

√
n
µn
0 − µn

θ

µn
θ

W̃ n(L̄n(t))− 1

2

(

(0− θ)σf

α

)2

L̄n(t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

Ln(nt)
∑

i=1

ln

(

fn
θ (v

n
i )

fn
l (v

n
i )

)

− ln

(

1− F n
l (t

n
v )

1− F n
θ (t

n
v )

)

− ln





1− F n
θ

(

nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)

1− F n
l

(

nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)





− σf

√
n
µn
l − µn

θ

µn
θ

W̃ n(L̄n(t))− 1

2

(

(l − θ)σf

α

)2

L̄n(t)

∣

∣

∣

∣

∣

.

We prove that the second term on the right-hand side of Eq. (8.10) converges to zero
u.o.c. The proof for the first term is similar and is therefore omitted. From the triangle
inequality it follows it is sufficient to verify that the following two processes converge to
zero u.o.c.:

ξ̃n(l, t) := ln

(

1− F n
l (t

n
v )

1− F n
θ (t

n
v )

)

+ ln





1− F n
θ

(

nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)

1− F n
l

(

nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)



 ,(8.11)

l ∈ S, t ∈ [0,∞), and

χ̃n(l, t) :=

nL̄n(t)
∑

i=1

ln

(

fn
θ (v

n
i )

fn
l (v

n
i )

)

− σf

√
n
µn
l − µn

θ

µn
θ

W̃ n(L̄n(t))− 1

2

(

(l − θ)σf

α

)2

L̄n(t),

(8.12)

l ∈ S, t ∈ [0,∞). We prove these convergence in Lemma 8.2 and Lemma 8.3, respec-
tively.

Lemma 8.2. Under Assumptions 4.1, 4.2, 4.3, and 5.3.3,

lim
n→∞

ξ̃n = 0 u.o.c.(8.13)

Proof. To prove Eq. (8.13) it suffices to show that for every T > 0 the following two
equalities hold:

P

(

lim
n→∞

sup
S×[0,T ]

∣

∣

∣

∣

ln

(

1− F n
l (t

n
v )

1− F n
θ (t

n
v )

)∣

∣

∣

∣

= 0

)

= 1(8.14)

and

P



 lim
n→∞

sup
S×[0,T ]

∣

∣

∣

∣

∣

∣

ln





1− F n
l

(

nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)

1− F n
θ

(

nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)





∣

∣

∣

∣

∣

∣

= 0



 = 1.(8.15)
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We prove only Eq. (8.15). The proof of Eq. (8.14) is similar and is therefore omitted.
The following series of equations, which holds for sufficiently large n ∈ N, yields an

upper bound for the expression sup
S×[0,T ]

∣

∣

∣

∣

ln

(

1−Fn
l

(

nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)

1−Fn
θ

(

nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)

)∣

∣

∣

∣

:

sup
S×[0,T ]

∣

∣

∣

∣

∣

∣

ln





1− F n
l

(

nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)

1− F n
θ

(

nt−
∑Ln(nt)

i=1 vni |
∑Ln(nt)

i=1 vni

)





∣

∣

∣

∣

∣

∣

= sup
S×[0,T ]

∣

∣

∣

∣

∣

∣

ln



1− F



µn
l



nt−
Ln(nt)
∑

i=1

vni





∣

∣

∣

∣

∣

∣

Ln(nt)
∑

i=1

vni







(8.16)

− ln



1− F



µn
θ



nt−
Ln(nt)
∑

i=1

vni





∣

∣

∣

∣

∣

∣

Ln(nt)
∑

i=1

vni









∣

∣

∣

∣

∣

∣

= sup
S×[0,T ]

|µn
θ − µn

l |



nt−
Ln(nt)
∑

i=1

vni





f
(

dnl

(

nt−
∑Ln(nt)

i=1 vni

))

1− F
(

dnl

(

nt−
∑Ln(nt)

i=1 vni

))(8.17)

≤ sup
S×[0,T ]

√
n|µn

θ − µn
l |

dnl

1√
n
N



dnl



nt−
Ln(nt)
∑

i=1

vni







(8.18)

≤ sup
S

√
n|µn

θ − µn
l |

dnl
· sup
[0,T ]

1√
n
N
(

(1 + ǫN )µ
n
θv

n
Ln(nt)+1

)

(8.19)

= sup
S

√
n|µn

θ − µn
l |

dnl
· sup
[0,T ]

1√
n
N
(

(1 + ǫN )uLn(nt)+1

)

,(8.20)

where dnl ∈ (µn
θ , µ

n
l ) or dnl ∈ (µn

l , µ
n
θ ). Eq. (8.16) follows from Remark 5.2, while

Eq. (8.17) follows from the Lagrange mean value theorem. Inequality (8.18) follows
from Assumption 5.3.3 and the fact that N(x) is monotone nondecreasing. Inequality
(8.19) follows since, by Eq. (4.5),

lim
n→∞

sup
S

|dnl − µn
θ | ≤ lim

n→∞
sup
S

|µn
l − µn

θ | = 0,(8.21)

and since N(x) is monotone nondecreasing. Eq. (8.20) follows since for every i ≥ 1
and every n ∈ N one has µn

θv
n
i = ui (see Section 8.1). Assumption 5.3.3 implies that

E[N((1 + ǫN )v)]
2 < ∞ and therefore

lim
n→∞

1√
n
N
(

(1 + ǫN )uLn(nt)+1

)

= lim
n→∞

√

1
n
N2
(

(1 + ǫN)uLn(nt)+1

)

= 0 u.o.c.(8.22)

Finally, from Assumption 4.3.1 it follows that

lim
n→∞

sup
S×[0,T ]

√
n|µn

l − µn
θ | ≤ lim

n→∞
sup
S

|
√
n(µn

l − µn
0)− l|+ sup

S
|
√
n(µn

θ − µn
0 )− θ|(8.23)

+ sup
S

|l|+ |θ| < ∞,

where the last inequality follows since S is bounded. Eqs. (8.22)–(8.23) imply that the
right-hand side of Eq. (8.20) converges to 0 u.o.c.
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Lemma 8.3. Under Assumptions 4.2, 4.3, 5.1, 5.3.1, and 5.3.2,

lim
n→∞

χ̃n(l, t) = 0 u.o.c.(8.24)

Proof. Eq. (8.24) is equivalent to the requirement that

P

(

lim
n→∞

sup
S×[0,T ]

|χ̃n(l, t)| = 0

)

= 1(8.25)

for every T > 0. The first term in Eq. (8.12) is
∑L̄n(t)

i=1 ln
(

fn
θ
(vni )

fn
l
(vn

i
)

)

which is a composition

of
⌊nt⌋
∑

i=1

ln

(

fn
θ (v

n
i )

fn
l (v

n
i )

)

and L̄n(t). For every l ∈ S denote

µ̂n
l :=

µn
l − µn

θ

µn
θ

.(8.26)

The following series of equations presents
∑⌊nt⌋

i=1 ln
(

fn
θ
(vni )

fn
l
(vni )

)

in a more convenient form:

⌊nt⌋
∑

i=1

ln

(

fn
θ (v

n
i )

fn
l (v

n
i )

)

=

⌊nt⌋
∑

i=1

ln

(

µn
θf(µ

n
θv

n
i )

µn
l f(µ

n
l v

n
i )

)

(8.27)

=− nt ln(1 + µ̂n
l )−

⌊nt⌋
∑

i=1

[ln (f(µn
l v

n
i ))− ln (f(µn

θv
n
i ))]

(8.28)

=− nt ln(1 + µ̂n
l )−

⌊nt⌋
∑

i=1

[ln (f(ui + uiµ̂
n
l ))− ln (f(ui))]

(8.29)

=− nt
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µ̂n
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1

2
(µ̂n
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2

)

− nt
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l )− µ̂n

l +
1

2
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+
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√
nµ̂n

l )
3

3!
·
⌊nt⌋
∑
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1

n1.5

(

f ′(cni,l)
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ln(1 + µ̂n
l )− µ̂n

l +
1
2
(µ̂n

l )
2

(µ̂n
l )

2

)

t,

where cni,l ∈ (ui, ui+uiµ̂
n
l ) or c

n
i,l ∈ (ui+uiµ̂

n
l , ui). Eq. (8.28) follows from Remark 5.2 and

the definition of µ̂n
l . Eq. (8.29) follows by the definition of ui. Since f ∈ C3, Eq. (8.30)
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follows from the Taylor expansion of the function ln(f(x)) with Lagrange remainder of
order 3. Eq. (8.31) is merely a rearrangement of the terms. From Eqs. (8.12) and (8.31)
it follows that for every l ∈ S and t ∈ [0,∞) one has

χ̃n(l, t) =

nL̄n(t)
∑

i=1

ln

(

fn
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n
i )

fn
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n
i )

)

− σf

√
nµ̂n

l W̃
n(L̄n(t))− 1

2

(

(l − θ)σf

α

)2

L̄n(t)

(8.32)

=



−1

2

(

(l − θ)σf

α

)2

L̄n(t) +
1

2
(
√
nµ̂n

l )
2



L̄n(t)− 1
n

nL̄n(t)
∑

i=1

(

f ′(ui)

f(ui)

)′
u2
i







(8.33)

+
(
√
nµ̂n

l )
3

3!
·
⌊nt⌋
∑

i=1

1

n1.5

(

f ′(cni,l)

f(cni,l)

)′′

u3
i

+ (
√
nµ̂n

l )
2

(

ln(1 + µ̂n
l )− µ̂n

l +
1
2
(µ̂n

l )
2

(µ̂n
l )

2

)

L̄n(t).

We are now ready to prove Eq. (8.24). We show that each of the three terms on the
right-hand side of Eq. (8.33) converges to zero u.o.c.
Part I: First term. Define the following functions and processes:

g1(l) :=
l − θ

α
, l ∈ S,(8.34)

gn1 (l) :=
√
nµ̂n

l =
√
n
µn
l − µn

θ

µn
θ

, l ∈ S,(8.35)

G1(l) := (1− σ2
f )t, t ∈ [0,∞),(8.36)

Gn
1 (l) :=

1
n

⌊nt⌋
∑

i=1

(

f ′(ui)

f(ui)

)′
u2
i , t ∈ [0,∞),(8.37)

and

L̄(t) = αt, t ∈ [0,∞).(8.38)

Therefore, the first term in Eq. (8.32) can be expressed as

−1

2
(g1(l))

2 σ2
f L̄

n(t) +
1

2
(gn1 (l))

2
(

L̄n(t)−Gn
1 (L̄

n(t))
)

, l ∈ S, t ∈ [0,∞).(8.39)

From the definition of µ̂n
l it follows that

(
√
nµ̂n

l ) =

(√
n(µn

l − µn
θ )

µn
θ

)

=

(√
n(µn

l − µn
0 )

µn
θ

+

√
n(µn

θ − µn
0 )

µn
θ

)

.(8.40)

Assumption 4.3 and Eq. (8.40) implies that

lim
n→∞

gn1 = g1 u.o.c.(8.41)

From Lemma 5.8 (Eq. (5.10)) and the Functional Strong Law of Large Numbers (FSLLN,
see Chen and Yao (2001, Theorem 5.10) [7]) it follows that

lim
n→∞

Gn
1 = G1 u.o.c.(8.42)
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Next, Assumption 4.3.2 and the FSLLN imply that

lim
n→∞

L̄n = L̄ u.o.c.(8.43)

and therefore, by Eqs. (8.42) and (8.43) and the random time-change theorem (Chen
and Yao (2001, Theorem 5.3) [7]),

lim
n→∞

Gn
1 (L̄

n) = G1(L̄) u.o.c.(8.44)

Therefore, from Eqs. (8.41),(8.43), and (8.44) it follows that

lim
n→∞

[

−1

2
(g1)

2 σ2
f L̄

n +
1

2
(gn1 )

2
(

L̄n −Gn
1 (L̄

n)
)

]

= 0 u.o.c.(8.45)

Part II: Second term. Define the process

Gn
2 (t) :=

1

n1.5

⌊nt⌋
∑

i=1

[(

f ′(cni,l)

f(cni,l)

)′′

u3
i (µ̂

n
l )

3

]

, t ∈ [0,∞).(8.46)

Therefore, the second term can be expressed as

(gn1 (l))
3

3!
Gn

2 (L̄
n(t)), l ∈ S, t ∈ [0,∞).(8.47)

The following equations hold for sufficiently large n:

Gn
2 (t) =

1

n1.5

⌊nt⌋
∑

i=1

∣

∣

∣

∣

∣

(

f ′(cni,l)

f(cni,l)

)′′

u3
i

∣

∣

∣

∣

∣

≤ 1

(1− ǫM)3
1

n1.5

⌊nt⌋
∑

i=1

M((1 + ǫM )ui)(8.48)

The inequality in Eq. (8.48) follows from Assumption 5.3.2 since cni,l ∈ (µn
kv

n
i , µ

n
l v

n
i ) or

cni,l ∈ (µn
l v

n
i , µ

n
kv

n
i ). Eq. (4.5) implies that for sufficiently large n ∈ N and every l ∈ S

one has (1− ǫM )ui ≤ cni,l ≤ (1 + ǫM )ui. From the FSLLN and Eq. (8.48) it follows that

limGn
2 (t) = 0 u.o.c.(8.49)

Now Eqs. (8.41), (8.43), and (8.49) and the random time-change theorem (Chen and
Yao (2001, Theorem 5.3) [7]) yield that

lim
n→∞

gn1
3!
Gn

2 (L̄
n) = 0, u.o.c.(8.50)

Part III: Third term. Define the function

gn2 (l) =
ln(1 + µ̂n

l )− µ̂n
l +

1
2
(µ̂n

l )
2

(µ̂n
l )

2
, l ∈ S.(8.51)

Therefore, the third term can be expressed as

(gn1 (l))
2gn2 (l)L̄

n(t), l ∈ S, t ∈ [0,∞).(8.52)

From the Taylor expansion of ln(1 + x) and Eq. (8.41) and (8.43) it follows that

lim
n→∞

(gn1 )
2gn2 L̄

n = 0 u.o.c.

This completes the proof of Lemma 8.3.
This completes the proof of Proposition 8.1.
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Proposition 8.4 (Proving Eq. (8.6)). Under Assumptions 4.3 and 5.3.1,

lim
n→∞

ζ̃n d
= ln(ϕ√

α

σf

).

Proof. From Eq. (4.4) it follows that for every n ∈ N the process ζ̃n can be expressed
as

ζ̃n(l, t) =σf

√
nhn(l)W̃ n(L̄n(t))− 1

2

(

IS(l)σf

α

)2

L̄n(t)

+
θσf

α
· IS(l)σf

α
L̄n(t), l ∈ S, t ∈ [0,∞).

We prove that there exists a probability space ΩW such that

lim
n→∞

ζ̃n = ln(ϕ√

α

σf

) u.o.c.(8.53)

in the probability space Ωθ × ΩW . For this, we investigate separately the parts of the
process ζ̃n that depend on θ and the parts that depend on {ui}i≥1. From Assumption
4.3 it follows that

lim
n→∞

σf

√
nhn = σf

IS
α

u.o.c.(8.54)

The processes (L̄n(t)) and (W̃ n(L̄n(t))) depend on {ui}i≥1, which is independent of θ.
From the Skorokhod Representation Theorem and the random time-change theorem (see
Chen and Yao (2001, Theorems 5.1 and 5.3) [7]) it follows that there exist a probability

space ΩW and a standard Brownian motion (W̃ (t)) defined on ΩW , such that

lim
n→∞

(L̄n, W̃ n(L̄n)) = (L̄, W̃ (L̄)) u.o.c.(8.55)

From Eqs. (8.54) and (8.55) it follows that in the probability space Ωθ × ΩW

lim
n→∞

ζ̃n = lim
n→∞

σf

√
nhnW̃ n(L̄n)− 1

2

(

ISσf

α

)2

L̄n +
θσf

α
· ISσf

α
L̄n(8.56)

= σf
IS
α
W̃ (L̄)− 1

2

(

ISσf

α

)2

L̄+
θσf

α
· ISσf

α
L̄ u.o.c.

and since convergence u.o.c. implies convergence in distribution,

lim
n→∞

ζ̃n d
= σf

IS
α
W̃ (L̄)− 1

2

(

ISσf

α

)2

L̄+
θσf

α
· ISσf

α
L̄(8.57)

The scaling of the standard Brownian motion implies that (W̃ (L̄(t))) is distributed as
(
√
αW̃ (t)) and the result follows.
This completes the proof of Eq. (5.4).
The following remark explains the requirement that the appropriate rates under the

different types are relatively close, up to order 1√
n
(Assumption 4.3.1).

Remark 8.5. If there exists a parameter value l∗ ∈ S such that the difference between
the rates µn

l∗ and µn
0 satisfies |µn

l∗ − µn
0 | >> 1√

n
, then for every t > 0 the following limit

holds: lim
n→∞

σf

√
nhn(t, l∗) = ±∞, and there will be no convergence of ζ̃n(t, l∗). On the

other hand, if there is a parameter value l∗ ∈ S such that the difference between the
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rates µn
l and µn

0 satisfies |µn
l∗ −µn

0 | << 1√
n
, then for every t > 0 the following limit holds:

lim
n→∞

σf

√
nhn(t, l∗) = 0, and the DM will not be able to distinguish between them.

8.3.2. Proof of Formula (5.5). From Eq. (3.3) we have

π√

α

σf

(l, t) :=

πlϕ√

α

σf

(l, t)

∑

k∈S πkϕ√

α

σf

(k, t)
, l ∈ S, t ∈ [0,∞).

We show that

lim
n→∞

π̃n d
= π√

α

σf

.

To this end we define a function Λ : E∞ → E∞ by

Λ(ϕ)(l, t) :=
πlϕ(l, t)

∑

k∈S πkϕ(k, t)
, l ∈ S, t ∈ [0,∞).(8.58)

Λ is continuous with respect to the metric e∞. Therefore,

lim
n→∞

π̃n = lim
n→∞

Λ(ϕ̃n)
d
= Λ(ϕ√

α

σf

) = π√

α

σf

,

where the first equality follows from Eqs. (5.1) and (8.58), and the second equality
follows from Eq. (5.4). This completes the proof of Theorem 5.4.

8.4. Proof of Theorem 5.9. In order to construct a random variable for which the
difference σv − 1

σf
is large, we use a random variable that has expectation 1 and has no

variance. Let z be a random variable with the density g(x) := C/(1 + x3), x > 0, where
C = 2π/31.5. Then, E[z] = 1 and Var[z] = ∞. We now show that z satisfies Assumption

5.3. The variance of g′(z)
g(z)

z is given by

σ2
f =

∫ ∞

0

(

g′(x)

g(x)
x

)2

g(x)dx =

∫ ∞

0

(

3x3

1 + x3

)2

g(x)dx < ∞(8.59)

and there exists a constant D1 such that for every x > 0
∣

∣

∣

∣

(

g′(x)

g(x)

)′′
x3

∣

∣

∣

∣

,

∣

∣

∣

∣

xg(x)

1−G(x)

∣

∣

∣

∣

≤ D1,(8.60)

where G is the cdf of z. The random variable z fails to satisfy Assumption 4.2.2 since
Var[z] = ∞. Let IA(x) be a function that equals 1 if x ∈ A and 0 otherwise and fix
y > 1. We now construct a y-dependent random variable that satisfies Assumptions
4.2, 5.1, and 5.3, whose density is ‘similar’ to the function gy(x) := g(x)I{0<x<y}(x) +
e−x

I{y<x}(x), and for which the difference σv − 1
σf

is large. One may notice that for

sufficiently large y, the function gy is not a density function since
∫∞
0

gy(x)dx < 1.

Moreover, for large y’s the ‘expectation’ is not one as
∫∞
0

xgy(x)dx < 1. In order to
construct a density ‘similar’ to gy we add to gy a function hy that is a sum of two
functions. Each of these two functions has a significant contribution only to one of
the two integrals mentioned above. Let u, C2, C3 be positive constants and define the
function h(x) := uC1I{1/u<x<2/u}(x)+uC2I{u<x<u+1/u2}(x). For a sufficiently large u one

has
∫∞
0

h(x)dx = C1 + C2/u ≈ C1 and
∫∞
0

xh(x)dx = 3C1/2u + C2(1 + 1/2u3) ≈ C2.
Therefore, for sufficiently large y one can construct a C3 function ey that satisfies the
following conditions:
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(C1) ey ≈ gy+hy, where hy admits the same form as h with some proper y-dependent
parameters u, C1, and C2, where u > 4 for every y,

(C2)
∫∞
0

ey(x)dx = 1;

(C3)
∫∞
0

xey(x)dx = 1;
(C4) there exists w := wy > 0 such that for every x > w one has ey(x) = gy(x) = e−x;
(C5) for every 2/3 < x < 1 one has ey(x) = gy(x); and

(C6) there exists a positive parameterD2 such that
∣

∣

∣

e′y(x)

ey(x)
x
∣

∣

∣
,

∣

∣

∣

∣

(

e′y(x)

ey(x)

)′′
x3

∣

∣

∣

∣

, and
∣

∣

∣

xey(x)
1−Ey(x)

∣

∣

∣

are bounded from above by D2 on the interval (0, w), where Ey is the cdf that is
associated with the pdf ey.

Conditions (C1)–(C3) can hold by the preceding discussion. To see why one can choose
ey that satisfies Conditions (C4) and (C5) notice that hy is nonzero only over (1/u, 2/u)∪
(u, u + 1/u2). Therefore, ey can be chosen to be equal to gy on any subinterval of the
complement of (1/u, 2/u)∪(u, u+1/u2). Condition (C4) can hold by taking w = u+1/u2,
and Condition (C5) can hold since u > 4 for every y by Condition (C1). Condition (C6)
can hold by Eq. (8.60) and by Condition (C1).

Let v := vy be a random variable that is associated with the pdf ey. We show that v
satisfies Assumptions 4.2 and 5.3. The variance of v is finite since

σ2
v[y] =

∫ ∞

0

x2ey(x)dx ≈
∫ ∞

0

x2(gy(x) + hy(x))dx(8.61)

=

∫ y

0

x2g(x)dx+

∫ ∞

y

x2e−xdx+

∫ ∞

0

x2hy(x)dx < ∞.

The variance of
e′y(v)

ey(v)
v is also finite since by Conditions (C5) and (C6) one has

σ2
f [y] =

∫ ∞

0

(

e′y(x)

ey(x)
x

)2

ey(x)dx =

∫ w

0

(

e′y(x)

ey(x)
x

)2

ey(x)dx+

∫ ∞

w

(

e′y(x)

ey(x)
x

)2

ey(x)dx

≤ D2w + e−w < ∞.

Assumptions 5.3.2 and 5.3.3 also follow by Conditions (C5) and (C6).
We now show that by taking large y’s, the difference σv[y]− 1

σf [v]
becomes large. To this

end, we show that lim
y→∞

(

σv[y] − 1
σf [v]

)

= ∞. Let y be such that Conditions (C1)–(C6)

hold. As in Eq. (8.61) one has

σ2
v[y] ≈

∫ ∞

0

x2(gy(x) + hy(x))dx ≥
∫ y

0

x2gy(x)dx =

∫ y

0

x2g(x)dx = C ln(1 + y3)/3.

(8.62)

By Condition (C5) one has

σ2
f [y] =

∫ ∞

0

(

e′y(x)

ey(x)
x

)2

ey(x)dx ≥
∫ 1

2/3

(

e′y(x)

ey(x)
x

)2

ey(x)dx =

∫ 1

2/3

(

g′(x)

g(x)
x

)2

g(x)dx

=

∫ 1

2/3

(

3x4

1 + x3
x

)2

g(x)dx := D3 < ∞.
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Notice that D3 is independent of y, and therefore

1

σ2
f [y]

≤ 1

D3
.(8.63)

From Eqs. (8.62) and (8.63) one concludes that lim
y→∞

(

σv[y] − 1
σf [v]

)

= ∞ and the result

follows.

8.5. Proof of Theorem 6.4. Let22 Ω′ := Ωθ ×ΩW . This probability space is the basis
for the proof of Theorem 6.4. From Eqs. (8.7) and (8.56) it follows that23

lim
n→∞

ϕ̃n = ϕ̂, Ω′-u.o.c.(8.64)

8.5.1. Proof of Eq. (6.9). By using this convergence we show now that on this prob-
ability space lim

n→∞
τnD(π) = τD(π), Ω

′-a.s.

Lemma 8.6. Fix T > 0. Under Assumptions 4.1, 4.2, 4.3, 5.1, 5.3, 6.1, and 6.3,

lim
n→∞

(τ̃nD(π) ∧ T ) = (τ̃D(π) ∧ T ), Ω′-a.s.

Proof. If π /∈ D, then τ̃nD = τ̃D = 0. For the case π ∈ D we express the stopping
times τ̃nD and τ̃D in a more convenient way. From Eqs. (3.3) and (5.1) it follows that

π̃n(t)

1− π̃n(t)
=

π

1− π
ϕ̃n(t)(8.65)

and

π̂(t)

1− π̂(t)
=

π

1− π
ϕ̂(t).(8.66)

Eqs. (8.65) and (8.66) imply that

τ̃D(π) = inf {t |ϕ̂(t) /∈ ∪j (cj, dj)} = inf {t |ϕ̂(t) /∈ (ci, di)}(8.67)

and

τ̃nD(π) = inf {t |ϕ̃n(t) /∈ ∪j (cj, dj)} ,(8.68)

where for every index j, cj := 1−π
π

· aj
1−aj

and dj := 1−π
π

· bj
1−bj

. The second equality

in Eq. (8.67) follows since (ϕ̂(t)) is a continuous process w.r.t. the parameter t (see
Eq. (8.2)). In order to prove that lim

n→∞
(τ̃nD(π)∧T ) = (τ̃D(π)∧T ), Ω′-a.s., we distinguish

between two possibilities: τ̃D(π)(ω) > T and τ̃D(π)(ω) ≤ T . Fix24 ω ∈ Ω′.
If τ̃D(π)(ω) > T then, since ϕ̂(t)(ω) is continuous w.r.t. t, it follows that the supremum

M(T )(ω) := sup
0≤t≤T

ϕ̂(t)(ω)

and the infimum

m(T )(ω) := inf
0≤t≤T

ϕ̂(t)(ω),

22See the paragraph preceding Eq. (8.54) for the definition of ΩW .
23The process ϕ̂ was defined in Section 6 as lim

n→∞
ϕ̃n = ϕ√

α
σf

.

24The following properties that we state hold for almost every ω ∈ Ω′. We chose ω ∈ Ω′ for which
these properties hold.
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are attained and satisfy ci < m(T )(ω) < M(T )(ω) < di. Moreover, Eq. (8.64) implies
that for every 0 < δ < min{di −M(T )(ω), m(T )(ω)− ci} there exists Nδ > 0 such that
for every n > Nδ and every t ∈ [0, T ] one has

|ϕ̃n(t)(ω)− ϕ̂(t)(ω)| < δ,

and therefore,

ci < ϕ̃n(t)(ω) < di.

Hence, τ̃nD(ω) > T , and consequently (τ̃nD(ω) ∧ T ) = (τ̃D(ω) ∧ T ).
If τ̃D(π)(ω) ≤ T we assume without loss of generality25 that ϕ̂(τ̃D(π))(ω) = di. Fix

ǫ > 0. Denote

δ1 = δ1(ω) := di − sup
0≤t≤τ̃D(ω)−ǫ

ϕ̂(t)(ω)

and

δ2 = δ2(ω) := inf
0≤t≤τ̃D(ω)−ǫ

ϕ̂(t)(ω)− ci.

By the continuity of ϕ̂(t)(ω) with respect to t, and by the definition of τ̃D it follows that
δ1, δ2 > 0. Denote

δ3 = δ3(ω) := sup
τ̃D(ω)≤t≤τ̃D(ω)+ǫ

ϕ̂(t)(ω)− di.

From Eq. (8.2) and the fluctuations of the Brownian motion, it follows that δ3 > 0. Let

δ4 :=
1

2
(ci+1 − di) .

Assumption 6.3 implies that δ4 > 0. Denote

τd(π) := inf {t |ϕ̂(t) = d+ (δ4 ∧ δ3)} .

Then clearly one has τ̃D(ω) < τd(ω) < τ̃D(ω) + ǫ. Let δ := min{δ1, δ2, δ3, δ4, ǫ}. From
Eq. (8.64) it follows there exists Nδ > 0 such that for every n > Nδ and every t ∈ [0, T ],

|ϕ̃n(t)(ω)− ϕ̂(t)(ω)| < δ.

Therefore, for every such n > Nδ and every t ∈ [0, τ̃D(ω)− ǫ] one has

ci < ϕ̃n(t)(ω) < di,(8.69)

and at time τd one has

di < ϕ̃n(τd)(ω) < di+1.(8.70)

Since τ̃D(ω) < τd(ω) < τ̃D(ω) + ǫ, Eqs. (8.69)–(8.70) yield

|(τ̃nD(ω) ∧ T )− (τ̃D(ω) ∧ T )| < ǫ.

As a corollary, we get that lim
n→∞

τ̃nD(π)
d
= τ̃D(π). This completes the proof of Eq. (6.9).

25The proof for ϕ̂(τ̃D(π))(ω) = ci is similar and is therefore omitted.
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8.5.2. Proof of Eq. (6.10). To avoid cumbersome notation we write τ̃ := τ̃D and
τ̃n := τ̃nD. In order to prove that V n

τ̃n(π) converges to Vτ̃ (π) we will bound the expression
|V n

τ̃n(π) − Vτ̃ (π)| by other terms for which the convergence is easier to prove. By the
triangle inequality, for every index n ∈ N and every time T > 0,

|V n
τ̃n(π)− Vτ̃ (π)|

≤
∣

∣

∣

∣

Eπ

[
∫ τ̃n

0

re−rtkn(π̃n(t))dt−
∫ τ̃n∧T

0

re−rtkn(π̃n(t))dt

]∣

∣

∣

∣

(8.71)

+

∣

∣

∣

∣

Eπ

[
∫ τ̃n∧T

0

re−rtkn(π̃n(t))dt−
∫ τ̃∧T

0

re−rtkn(π̃n(t))dt

]∣

∣

∣

∣

(8.72)

+

∣

∣

∣

∣

Eπ

[
∫ τ̃∧T

0

re−rtkn(π̃n(t))dt−
∫ τ̃∧T

0

re−rtk(π̂(t))dt

]∣

∣

∣

∣

(8.73)

+

∣

∣

∣

∣

Eπ

[∫ τ̃∧T

0

re−rtk(π̂(t))dt−
∫ τ̃

0

re−rtk(π̂(t))dt

]∣

∣

∣

∣

(8.74)

+
∣

∣Eπ
[

re−rτ̃n 1
n
Kn(π̃n(τ̃n))− re−rτ̃K(π̂(τ̃ ))

]∣

∣(8.75)

We now show that each of the terms converges to zero. That is, for every fixed ǫ > 0,
there exists Nǫ > 0 such that for every n > Nǫ, each of the terms is bounded by ǫ. We
divide the proof into four parts.
Part I: First and fourth terms. In this part we show that for every n ∈ N and
for sufficiently large T , if the DM cannot operate the system after time T , then his
expected loss by using the stopping time (τ̃n ∧ T ) is close up to ǫ to the expected loss
from the integral cost part without the limitation of the maximal time of operating the
system. From Remark 6.2 it follows that the sequence {kn(π̃n(t))}n∈N is bounded by
Ck. Therefore, for every T > 0,

∣

∣

∣

∣

Eπ

[
∫ τ̃n

0

re−rtkn(π̃n(t))dt−
∫ τ̃n∧T

0

re−rtkn(π̃n(t))dt

]∣

∣

∣

∣

(8.76)

≤ Eπ

∣

∣

∣

∣

∫ τ̃n

τ̃n∧T
re−rtkn(π̃n(t))dt

∣

∣

∣

∣

≤ CkE
π

∣

∣

∣

∣

∫ τ̃n

τ̃n∧T
re−rtdt

∣

∣

∣

∣

≤ CkE
π

∣

∣

∣

∣

∫ ∞

T

re−rtdt

∣

∣

∣

∣

= Cke
−rT .

The last term on Eq. (8.76) converges to zero as T goes to infinity, and so there exists
a constant T := Tǫ such that for every n ∈ N

∣

∣

∣

∣

Eπ

[
∫ τ̃n

0

re−rtkn(π̃n(t))dt−
∫ τ̃n∧T

0

re−rtkn(π̃n(t))dt

]∣

∣

∣

∣

< ǫ.

Similarly, one can choose Tǫ to be such that, in addition,
∣

∣

∣

∣

Eπ

[
∫ τ̃

0

re−rtk(π̂(t))dt−
∫ τ̃∧T

0

re−rtk(π̂(t))dt

]∣

∣

∣

∣

< ǫ.

Part II: Second term. We now show that for sufficiently large n ∈ N, by changing
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the FLn

nt -adapted stopping time τ̃n to the F π̃
t -adapted stopping time τ̃ , the expected

integral cost does not change by much:

∣

∣

∣

∣

Eπ

[
∫ τ̃n∧T

0

re−rtkn(π̃n(t))dt−
∫ τ̃∧T

0

re−rtkn(π̃n(t))dt

]∣

∣

∣

∣

(8.77)

≤ Eπ

∣

∣

∣

∣

∫ τ̃n∧T

τ̃∧T
re−rtkn(π̃n(t))dt

∣

∣

∣

∣

≤ rCkE
π |(τ̃n ∧ T )− (τ̃ ∧ T )| .

From Lemma 8.6 one has lim
n→∞

(τ̃n ∧ T ) = (τ̃ ∧ T ), Ω′-a.s. Therefore, by the bounded

convergence theorem, there exists Nǫ > 0 such that for every n > Nǫ the last term in
Eq. (8.77) is smaller than ǫ.
Part III: Third term. In this part we show that if the DM cannot operate the system
after time T , then his expected integral cost from the n-th system and by using the
F π̃

t -adapted stopping time τ̃ is close to the expected integral cost of the limit problem
using the same stopping time τ̃ :

∣

∣

∣

∣

Eπ

[
∫ τ̃∧T

0

re−rtkn(π̃n(t))dt−
∫ τ̃∧T

0

re−rtk(π̃(t))dt

]∣

∣

∣

∣

(8.78)

≤ Eπ

[
∫ τ̃∧T

0

re−rt |kn(π̃n(t))− k(π̂(t))| dt
]

≤ Eπ

[

T sup
0≤t≤T

|kn(π̃n(t))− k(π̂(t))|
]

.

From Eqs. (8.64), (8.65), and (8.66) it follows that lim
n→∞

π̃n(t) = π̂(t), Ω′-u.o.c. Moreover,

by Assumption 6.1.1, the functions kn converge uniformly on [0, 1] to k, and therefore,
lim
n→∞

sup
0≤t≤T

|kn(π̃n(t))− k(π̂(t))| = 0, Ω′-a.s. The bounded convergence theorem implies

that for sufficiently large n ∈ N, the last term in Eq. (8.78) is smaller than ǫ.

Part IV: Fifth term. In this part we show that for sufficiently large n ∈ N, the
expected terminal cost from the n-th system using the stopping time τ̃n is relatively
close to the expected terminal cost from the limit system using the stopping time τ̃ . To
this end, we show that lim

n→∞
re−rτ̃n 1

n
Kn(π̃n(τ̃n)) = re−rτ̃K(π̂(τ̃)), Ω′-a.s. From Remark

6.2 and the bounded convergence theorem it will follow that there exists Nǫ > 0 such
that, for every n > Nǫ,

∣

∣Eπ
[

re−rτ̃n 1
n
Kn(π̃n(τ̃n))− re−rτ̃K(π̂(τ̃ ))

]∣

∣ < ǫ.

From Lemma 8.6 it follows that

P (ω ∈ Ω′ | ∀T ∈ N lim
n→∞

(τ̃n(π)(ω) ∧ T ) = (τ̃(π)(ω) ∧ T )) = 1.(8.79)

Fix ω ∈ Ω′ such that for every T ∈ N one has lim
n→∞

(τ̃n(ω) ∧ T ) = (τ̃ (ω) ∧ T ) and

lim
n→∞

π̃n(ω) = π̂(ω) u.o.c. We divide the proof into two cases: τ̃ (ω) = ∞ and τ̃ (ω) < ∞.

If τ̃ (ω) = ∞ then, since by Lemma 8.6 one has lim
n→∞

(τ̃n(ω) ∧ T ) = (τ̃(ω) ∧ T ) = T , it
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follows that there exists Nǫ > 0 such that, for every n > Nǫ, |(τ̃n(ω)∧ T )− T | < 1. Let
T be such that re−r(T−1) < ǫ

CK
. Then for every n > Nǫ,

|re−rτ̃n 1
n
Kn(π̃n(τ̃n))(ω)− re−rτ̃K(π̂(τ̃ ))(ω)|

= |re−rτ̃n 1
n
Kn(π̃n(τ̃n))(ω)|

≤ CKre
−r(T−1) ≤ ǫ.

If τ̃ (ω) < ∞ then, since by Lemma 8.6 lim
n→∞

τ̃n(ω) = τ̃ (ω), Ω′-a.s., it follows that for

sufficiently large n ∈ N the following two conditions hold:

τ̃n(ω) < τ̃(ω) + 1,(8.80)

|e−rτ̃n(ω) − e−rτ̃(ω)| < ǫ

2rCK
.(8.81)

By Assumptions 6.1.3 and 6.1.4, the functions Kn/n converge uniformly on [0, 1] to
the continuous function K. Since lim

n→∞
π̃n(t)(ω) = π̂(t)(ω) uniformly on [0, τ̃(ω) + 1], it

follows from Eq. (8.80) that for sufficiently large n ∈ N

| 1
n
Kn(π̃n(τ̃n))(ω)−K(π̂(τ̃))(ω)| < ǫ

2rCK
.(8.82)

By combining Eqs. (8.81)–(8.82) one concludes that there exists Nǫ > 0 such that for
every n > Nǫ,

|re−rτ̃n 1
n
Kn(π̃n(τ̃n))− re−rτ̃K(π̂(τ̃))|(ω)

≤ re−rτ̃n(ω)| 1
n
Kn(π̃n(τ̃n))(ω)−K(π̂(τ̃))(ω)|+ |K(π̂(τ̃))(ω)||re−rτ̃n(ω) − re−rτ̃(ω)| ≤ ǫ.

This completes the proof of Eq. (6.10).
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