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Abstract

This paper compares two different frameworks recently introduced in the literature for measuring
risk in a multi-period setting. The first corresponds to applying a single coherent risk measure to the
cumulative future costs, while the second involves applying a composition of one-step coherent risk
mappings. We summarize the relative strengths of the two methods, characterize several necessary and
sufficient conditions under which one of the measurements always dominates the other, and introduce
a metric to quantify how close the two risk measures are.

Using this notion, we address the question of how tightly a given coherent measure can be approx-
imated by lower or upper-bounding compositional measures. We exhibit an interesting asymmetry
between the two cases: the tightest possible upper-bound can be exactly characterized, and corre-
sponds to a popular construction in the literature, while the tightest-possible lower bound is not
readily available. We show that testing domination and computing the approximation factors is gen-
erally NP-hard, even when the risk measures in question are comonotonic and law-invariant. However,
we characterize conditions and discuss several examples where polynomial-time algorithms are possible.
One such case is the well-known Conditional Value-at-Risk measure, which is further explored in our
companion paper Huang et al. [2012]. Our theoretical and algorithmic constructions exploit interesting
connections between the study of risk measures and the theory of submodularity and combinatorial
optimization, which may be of independent interest.

1 Introduction.

Measuring the intrinsic risk in a particular unknown outcome and comparing multiple risky alternatives
has been a topic of central concern in a wide range of academic disciplines, resulting in the development
of numerous frameworks, such as expected utility, stochastic ordering, and, in recent years, convex and
coherent risk measures.

The latter class has emerged as an axiomatically justified and computationally tractable alternative
to several classical approaches, and has provided a strong bridge across a variety of parallel streams of
research, including ambiguous representations of preferences in economics (e.g., Gilboa and Schmeidler
[1989], Schmeidler [1989], Epstein and Schneider [2003], Maccheroni et al. [2006]), axiomatic treatments of
market risk in financial mathematics (Artzner et al. [1999], Féllmer and Schied [2002]), actuarial science
(Wirch and Hardy [1999], Wang [2000], Acerbi [2002], Kusuoka [2001], Tsanakas [2004]), operations
research (Ben-Tal and Teboulle [2007]) and statistics (Huber [1981]). As such, our goal in the present
paper is not to motivate the use of risk measures — rather, we take the framework as given, and investigate
two distinct ways of using it to ascribe risk in dynamic decision settings.

A first approach, prevalent among practitioners, entails applying a static risk measure to the total fu-
ture costs accumulated over the remaining problem horizon, and conditioned on the available information.
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More formally, a decision maker faced with a future sequence of random costs Xy, ..., X, respectively
dispensed over a finite horizon ¢,t + 1,...,T, would measure the risk at time ¢ by us(Xy + -+ - + Xp|F),
where F; denotes the filtration containing all information at time ¢, and p; is a static risk measure. In
practice, the same pu; = p is often used at every time ¢, resulting in a risk preference that is easy to spec-
ify and calibrate. Apart from simplicity, the approach also has one other key advantage: when the risk
measure used is convex, static decisions can be efficiently computed by combining simulation procedures
with convex optimization (e.g., Rockafellar and Uryasev [2000], Ruszczynski and Shapiro [2006b]). This
has lead to a wide adoption of the methodology in practice, as well as in several academic papers (see,
e.g., Basak and Shapiro [2001], Cuoco et al. [2008] and references therein).

The paradigm above, however, is known to suffer from several serious shortcomings. It can result in
inconsistent preferences over risk profiles in time, whereby a decision maker faced with two alternative
cumulative costs Y and Z can deem Y riskier than Z in every state of the world at some time ¢ + 1, but
nonetheless deem Z riskier than Y at time ¢. This dynamic or time inconsistency has been criticized from
an axiomatic perspective, as it is a staple of irrational behavior [Epstein and Schneider, 2003, Roorda
et al., 2005, Artzner et al., 2007]. Furthermore, time inconsistent objectives couple risk preferences over
time, which is very undesirable from a dynamic optimization viewpoint, since it prevents applying the
principles of Dynamic Programming to decompose the problem in stages (Epstein and Schneider [2003],
Ruszczynski and Shapiro [2006a], Nilim and El Ghaoui [2005], Iyengar [2005]).

In order to correct such undesirable effects, additional conditions must be imposed on the risk mea-
surement process at distinct time periods. Such requirements have been discussed extensively in the
literature, and it has been shown that any risk measure that is time consistent is obtained by composing
one-step conditional risk mappings. More formally, a time consistent decision maker faced with costs
X1,..., X7 would assess the risk at time ¢ by puy (Mt+1(~ copr(Xe+ -+ X F) - )), for a set of suitable
mappings {fir}req,.. 7} (see, e.g., Epstein and Schneider [2003], Riedel [2004], Cheridito et al. [2006],
Artzner et al. [2007], Roorda et al. [2005], Follmer and Penner [2006], Ruszczyriski [2010]). Apart from
yielding consistent preferences, this compositional form also allows a recursive estimation of the risk, and
an application of the Bellman principle in optimization problems involving dynamic risk measures [Nilim
and El Ghaoui, 2005, Iyengar, 2005, Ruszczynski and Shapiro, 2006a].

From a pragmatic perspective, however, the compositional form entails a significantly more compli-
cated risk assessment than the naive inconsistent approach. A risk manager would need to specify single-
period conditional risk mappings for every future time-point; furthermore, even if these corresponded to
the same risk measure p, the exact result of the composition would no longer be easily interpretable, and
would bear no immediate relation to the original u. Our conversations with managers also revealed a
certain feeling that such a measurement could result in “overly conservative” assessments, since risks are
compounded in time — for instance, by composing VaR, one would obtain extreme quantiles of quantities
that are already extreme quantiles. This has been recognized informally in the literature by Roorda
and Schumacher [2007, 2008], who proposed new notions of time consistency that avoided the issue, but
without establishing formally if or to what degree the conservatism is actually true. Furthermore, it
is not obvious how “close” a particular compositional measure is to a given inconsistent one, and how
one could go about constructing the latter in a way that tightly approximates the former. This issue
should be very relevant when considering dynamic decision problems under risk, but it seems to have
been largely ignored by the literature (most papers examining operational problems under dynamic risk
typically start with a set of given dynamic risk measures, e.g., Ahmed et al. [2007], Shapiro [2012], Choi
et al. [2011]).

With this motivation in mind, the goal of the present paper is to better understand the relation and
exact tradeoffs between the two measurement processes outlined above, and to provide guidelines for
constructing and/or estimating safe counterparts of one from the other. Our contributions are as follows.

e We provide several equivalent necessary and sufficient conditions guaranteeing when a time con-
sistent risk measure pc always over (or under) estimates risk as compared with an inconsistent



measure puy. We argue that iterating the same p; does not necessarily over (or under) estimate
risk as compared to a single static application of ur, and this is true even in the case considered
by Roorda and Schumacher [2007, 2008]. We show that composition with conditional expectation
operators at any stage of the measurement process results in valid, time consistent lower bounds.
By contrast, upper bounds are obtained only when composing with worst-case operators in the last
stage of the measurement process.

e We formalize the problem of characterizing and computing the smallest o, ,, and o, ,. such

that po < pr < auq ;- pe and pr < pe < gy e, respectively. The smallest such factors,
ayu; and aj o, o, provide a compact notion of how closely a given p; can be multiplicatively
approximated through lower (respectively, upper) bounding consistent measures ¢, respectively.
Since, in practice, u; may be far easier to elicit from observed preferences or to estimate from
empirical data, characterizing and computing a; oy and a; 1.uc can be seen as the first step towards
constructing the time-consistent risk measure puc that is “closest” to a given uj.

e Using results from the theory of submodularity and matroids, we particularize our results to the
case when y; and pc are both comonotonic risk measures. We show that computing o, and
A}, ue is generally NP-hard, even when the risk measures in question are law-invariant. However,

we provide several conditions under which the computation becomes simpler. Using these results,

we compare the strength of approximating a given py by time-consistent measures obtained through

composition with conditional expectation or worst-case operators.

e We characterize the tightest possible time-consistent and coherent upper bound for a given uj, and
show that it corresponds to a construction suggested in several papers in the literature [Epstein and
Schneider, 2003, Roorda et al., 2005, Artzner et al., 2007, Shapiro, 2012], which involves “rectan-
gularizing” the set of probability measures corresponding to py. This yields not only the smallest

possible O‘;*u,u .» but also the uniformly tightest upper bound among all coherent upper bounds.

e We summarize results from our companion paper [Huang et al., 2012], which applies the ideas
derived here to the specific case when both p;r and uc are given by Average Value at Risk, a
popular measure in financial mathematics. In this case, the results take a considerably simpler
form: analytical expressions are available for two-period problems, and polynomial-time algorithms
are available for some multi-period problems. We give an exact analytical characterization for the
tightest uniform upper bound to pjy, and show that it corresponds to a compositional AVaR risk
measure that is increasingly conservative in time. For the case of lower bounds, we give an analytical
characterization for two-period problems. Interestingly, we find that the best lower-bounds always
provide tighter approximations than the best upper bounds in two-period models, but are also
considerably harder to compute than the latter in multi-period models.

The rest of the paper is organized as follows. Section 2 provides the necessary background in static and
dynamic risk measures, and introduces the precise mathematical formulation for the questions addressed
in the paper. Section 3 discusses the case of determining upper or lower bounding relations between
two arbitrary consistent and inconsistent risk measures, and characterizes the resulting factors o,
and «aj, .. Section 4 discussed our results in detail, touching on the computational complexity, and
introducing several examples of how the methodology can be used in practice. Section 5 concludes the

paper and suggests directions for future research.

1.1 Notation.

With ¢ < j, we use [i,j] to denote the index set {i,...,j}. For a vector € R™ and i € {1,...,n}, we
use x; to denote the i-th component of . For a set S € {1,...,n}, we let x(S) = ¥, _gx;. Also, we use

xs € R™ to denote the vector with components x; for ¢ € S and 0 otherwise (e.g., 1g is the characteristic



vector of the set S), and x|s € RIS to denote the projection of the vector & on the coordinates i € S.
When no confusion can arise, we denote by 1 the vector with all components equal to 1. We use x’ for
the transpose of «, and x”y oo D,z y; for the scalar product in R™.

For a set or an array S, we denote by II(S) the set of all permutations on the elements of S. 7(S)
or o(S) designate one particular such permutation, with (i) denoting the element of S appearing in the
i-th position under permutation .

We use A™ to denote the probability simplex in R, i.e., A" & {peR} : 1"p = 1}. For a set
P < R", we use ext(P) to denote the set of its extreme points.

Throughout the exposition, we adopt the convention that % =0.

2 Consistent and Inconsistent Risk Measures.

As discussed in the introduction, the goal of the present paper is to analyze two paradigms for assessing
risk in a dynamic setting: a “naive” one, obtained by applying a static risk measure to the conditional
cumulative future costs, and a “sophisticated”, time-consistent method, obtained by composing one-
period risk mappings.

In the present section, we briefly review the relevant background material in risk theory, describe the
two approaches formally, and then introduce the main questions addressed in the paper.

2.1 Probabilistic Model.

We begin by describing the probabilistic model. Our notation and framework are closely in line with that
of [Shapiro et al., 2009], to which we direct the reader for more details.

For simplicity, we consider a scenario tree representation of the uncertainty space, where ¢ € [0, 7]
denotes the time, €2 is the set of nodes at stage t € [0,7], and %; is the set of children® of node i € €.
We also use Z; to denote the set of all leaves descending from node i, i.e., with ; = {i}, Vi € Qp, we
recursively define Z; Ly jes; Dj, Vi€ uz;*olﬁt. Similarly, we define Z;; o Useu Y; for any set U < €.

With the set Q7 of elementary outcomes, we associate the o-algebra Fp = 297 of all its subsets, and
we consider the filtration Fy € F; < - -- € Fp, where F; is the sub-algebra of F;,1 that is generated by
the sets {%;}icq,, for any ¢t € [0,T — 1].

We construct a probability space (7, Fr,P) by introducing a reference measure P € A7l agsumed
to satisfy? P > 0. On the space (Qr, Fr,P), we use X7 to denote the space of all functions X7 : Qp — R
that are Fr-measurable. Since Xy is isomorphic with RI®7l we denote by Xt the random variable, and
by X7 the vector in RI*7l of induced scenario-values, and we identify the expectation of X7 with respect
to a measure g € A7l as the scalar product g7 X¢. In a similar fashion, we introduce the sequence
Xy, t € [0,T — 1], where X} is the sub-space of Xp containing functions which are F;-measurable. Note
that any function X; € &} is constant on every set %;, ¢ € £, so that X; can also be identified with the
vector X; € R, To this end, in order to simplify the notation, we identify any function f : X1 — X;
with a set of || functions, and we write f = (f;)icq,, where f; : RI®t+1l — R, Furthermore, since all the
functions of this form that we consider correspond to conditional evaluations on the nodes of the tree,
we slightly abuse the notation and write f = (f;)ieq,, where f; : RI% - R.

2.2 Static Risk Measures.

Consider a discrete probability space (2, F,P), and let X be a linear space of random variables on 2.
In this setup, we are interested in appropriate ways of assessing the riskiness of a random cost (or loss)
X € X. The standard approach in the literature [Artzner et al., 1999, Follmer and Schied, 2004] is to use

In other words, {%;, i € Q:} is a partition of the nodes in Q;41, Vt € {0,...,T — 1}.
2This is without loss of generality - otherwise, all arguments can be repeated on a tree where leaves with zero probability
are removed.



a functional p : X — R such that (X)) represents the minimal reduction making a cost X acceptable to
the risk manager. The following axiomatic requirements are typically imposed.

[P1] Monotonicity. For any X,Y € X such that X > Y, u(X) = pu(Y).

[P2] Translation invariance. For any X € X and any m € R, u(X +m) = u(X) + m.

[P3] Convezity. For any X,Y € X, and any A€ [0,1], u(AX + (1 =N Y) < Ap(X) + (1 — ) u(Y).
[P4] Positive homogeneity. For any X € X, and any A = 0, u(AX) = A pu(X).

[P5] Comonotonicity. (X +Y) = pu(X) + p(Y) for any X,Y € X that are comonotone, i.c., [X(w) —
X(w)][Y(w) =Y (w)] =0, for any w,w’ € Q.

[P6] Law-invariance. u(X) = p(Y) for any X,Y € X such that Fx(-) = Fy ().

Monotonicity requires that a larger cost should always be deemed riskier. Translation (or cash)
invariance gives i an interpretation as capital requirement: typically, a cost X is deemed acceptable
if 4(X) < 0, so cash invariance implies that p(X — p(X)) = 0, ie., u(X) is the smallest amount
of cost reduction making X acceptable. Convexity suggests that diversification of costs should never
increase the risk (or, conversely, that a convex combination of two acceptable costs X and Y should also
be acceptable), while positive homogeneity implies that risk should scale linearly with the size of the
cost. Comonotonicity implies that the risk in costs that move together (i.e., are comonotone) cannot be
diversified by mixtures, while law-invariance requires the risk measures to only depend on the probability
distribution of the random costs. For an in-depth discussion and critique of these axioms, we direct the
reader to [Artzner et al., 1999, Follmer and Schied, 2004] and references therein.

Following the common terminology in the literature, we call any functional satisfying [P1-2] a risk
measure. Any risk measure satisfying [P3] is said to be conver, and any convez risk measure that satisfies
[P4] is said to be coherent. The main focus of the present paper are functionals that satisfy® [P1-5],
which are called comonotonic risk measures. Some of our results take a simpler form when further
restricting attention to the class of distortion risk measures, which are all comonotonic risk measures
additionally satisfying [P6]. Such measures have been examined in economics, actuarial science, and
financial mathematics, and form a well-established class of risk metrics (see, e.g., [Schmeidler, 1986,
Wang, 2000, Tsanakas, 2004, Cotter and Dowd, 2006, Kusuoka, 2001, Acerbi, 2002, 2004, Féllmer and
Schied, 2004] for more references and details).

One of the main results in the literature is a universal representation theorem for any coherent risk
measure, which takes a specialized form in the comonotonic case [Schmeidler, 1986, Follmer and Schied,
2004].

Theorem 2.1. A risk measure p is coherent if and only if it can be represented as

X) = maxEg [X], 1
p(X) = maxEq [X] (1)
for some Q < A, Furthermore, if p is comonotonic, then Q = {Q e A9 Q(S) < ¢(S), VS € ]:},
where ¢ is a Choquet capacity.

The result essentially states that any coherent risk measure is an expectation with respect to a
worst-case probability measure, chosen adversarially from a suitable set of test measures (or generalized
scenarios) Q. For comonotonic risk measures, this set is uniquely determined by a particular function c,
known as a Choquet capacity.

3Tt is known that comonotonicity actually implies positive homogeneity [Follmer and Schied, 2004], so the we can define
comonotonic risk measures as those satisfying [P1-3] and [P5] (the reverse is not true, i.e., not all coherent risk measures
are comonotonic [Acerbi, 2004]).



Definition 2.1. A set function ¢ : 2% — [0, 1] is said to be a Choquet capacity if it satisfies the following
properties:

e nondecreasing: ¢(A) < c¢(B),YVA<S B<Q
e normalized: ¢(J) =0 and ¢(Q2) =1
o submodular: ¢c(An B)+c(Au B) <c(A)+¢(B),VA, B< Q.

When a comonotonic risk measure is additionally law-invariant (i.e., it is a distortion measure), the
Choquet capacities are uniquely determining by a concave distortion function, i.e.,

c(S) =Y(P(S)),VSeF, (2)

where U : [0,1] — [0, 1] is a concave, nondecreasing function satisfying ¥(0) = 0 and ¥(1) = 1.

A popular example of comonotonic (in fact, distortion) risk measure, studied extensively in the liter-
ature, is Average Value-at-Risk at level ¢ € [0, 1] (AVaR,), also known as Conditional Value-at-Risk, Tail
Value-at-Risk or Expected Shortfall. 1t is defined as

1 1
AVaR.(X) & = VaRi_(X) dt. (3a)

€ J1—¢

ef

where VaR.(X) & inf{m € R : P[X —m > 0] < e} is the Value at Risk at level . As the name
suggests, AVaR. represents an average of all VaR measures with level at most €. When the underly-
ing reference measure P is non-atomic, it can be shown [Follmer and Schied, 2004] that AVaR.(X) =
Ep [X | X = VaR.(X)], which motivates the second and third names that the latter measure bears. While
AVaR is a distortion measure, VaR is not even convex, since it fails requirement [P3].

2.3 Dynamic Risk Measures.

As stated in the introduction, the main focus of the present paper are dynamic risk measures, i.e., risk
measures defined for cash streams that are received or dispensed across several time-periods. More pre-
cisely, a dynamic risk measure entails the specification of an entire sequence of risk measures {,u[t’T]}tT;Ol,

such that pf; 7] maps a future stream of random costs X[; 7y S (X¢, ..., Xr) into risk assessments at t.

Following a large body of literature [Riedel, 2004, Artzner et al., 2007, Detlefsen and Scandolo, 2005,
Roorda et al., 2005, Cheridito et al., 2006, Follmer and Penner, 2006, Ruszczynski and Shapiro, 2006a,
Ruszczyniski, 2010, Cheridito and Kupper, 2011], we furthermore restrict the risk measurements at time
t to only depend on the cumulative costs in the future, i.e., we take up ) : Xr — A, and the risk of
X,y 18w (Xe + -+ -+ Xr). While such measures have been criticized for ignoring the timing when
future cashflows are received, they are consistent with the assumptions in many academic papers focusing
on portfolio management under risk [Basak and Chabakauri, 2010, Cuoco et al., 2008], as well as with
current risk management practice [Jorion, 2006], and provide a natural, simpler first step in our analysis.

In this framework, we introduce the first way of measuring dynamic risk, whereby pf; ) is obtained
by applying a static risk measure, conditioned on information available at time ¢. In the context of the
probabilistic space of Section 2.1, this can be formalized as follows.

Definition 2.2. A time inconsistent (dynamic) risk measure is any set of mappings {M[t,T]}tT:1 of the
Jorm ppy ) = (1")ieq,, Yt € [0,T], where u' : Xp — R is a risk measure, for any node i € ;.

In other words, conditional on reaching node i € (% at time ¢, the risk of a future cashflow Xy, 1

is given by /ﬁ(ZZzt X,), where every p is a static risk measure, which can be furthermore required to
satisfy additional axiomatic properties, as per Section 2.2.



The choice above is eminently sensible - the specification of risk can be done in a unified fashion, by
means of a single risk measure at every node and time. This makes for a compact representation of risk
preferences, which can be more easily calibrated from empirical data, more readily comprehended and
adopted by practitioners, and more uniformly applied across a variety of businesses and products. For
instance, it is by far the most common paradigm in financial risk management, where a 10-day VaR is
typically calculated at level ¢ = 1%, assuming the trading portfolio remains fixed during the assessment
period [Jorion, 2006].

However, as the name suggests, such risk measures readily result in time inconsistent behavior. To
see this, consider the following example, adapted from Roorda et al. [2005].

Example 2.1. Consider the tree in Figure 1, with the elementary events Q = {UU,UD, DU, DD}.
Consider the risk measure given by

pt(X) = maxEp[X|i], Vie {R,U, D},
PeP

where P contains two probability measures, one corresponding to p = 0.4, and the other to p = 0.6.
Clearly, all {,ui}ie{R,U’D} correspond to coherent risk measures. For the random cost X such that X (UU) =
X(DD) =0, and X(UD) = X(DU) = 100, we have u¥ (X) = pP(X) = 60, and p*(X) = 48. Therefore,
X is deemed strictly riskier than a deterministic cost Y = 50 in all states of nature at time t = 1, but
nonetheless Y is deemed riskier than X at time t = 0.

Figure 1: Example showing time inconsistency of a static risk measure. The random cost X with
X(UU)=X(DD)=0, X(UD) = X(DU) =100 is deemed strictly riskier in all states of nature at time
t = 1 than a deterministic cost Y = 50, but nonetheless Y is deemed riskier than X at time ¢t = 0.

We note that there is nothing peculiar in the choices above, in that similar counterexamples can be
constructed for any risk measures u’, even when the latter are comonotonic. Rather, the issue at play
is the key feature distinguishing dynamic from static risk assessment, namely the consistency in the risk
preference profile over time. This is summarized in the axiom* of time (or dynamic) consistency, which

asks that a dynamic risk measure { Nt,T}tT:_ol should satisfy, for all ¢t € [0,7 — 1] and all X,Y € Xp,

pe1,7(X) = pyrr,7(Y) implies py 7(X) = py 7 (Y).

This is a requirement on the particular functional forms that can be considered for pp; 7y, which is
typically violated by the naive dynamic measures of Definition 2.2. A central result in the literature
[Riedel, 2004, Artzner et al., 2007, Detlefsen and Scandolo, 2005, Roorda et al., 2005, Cheridito et al.,
2006, Roorda and Schumacher, 2007, Penner, 2007, Follmer and Penner, 2006, Ruszczyriski, 2010] is the
following theorem, stating that any consistent measure has a compositional representation in terms of
one-period risk mappings.

“We note that there are several notions of time consistency in the literature (see Penner [2007], Acciaio and Penner [2011],
Roorda and Schumacher [2007] for an in-depth discussion and comparison). The one we adopt here is closest in spirit to
strong dynamic consistency, and seems to be the most widely accepted notion in the literature.



Theorem 2.2. Any dynamic risk measure {uth}tT;Ol that is time consistent can be written as

Mt,T(Xt + -+ XT) = Ut+1 (Ut+2(- .. (,U,T(Xt + -+ XT)) e )) (4)
where py : Xy — Xi—1, t € [1,T] are a set of single-period conditional risk mappings.

This leads us to define the second way of measuring dynamic risk on the scenario tree of Section 2.1,
by means of composing risk measures.

Definition 2.3. A set of mappings {M[t,T]}th_ol is said to be a time consistent (dynamic) risk measure if
M) = Hesr © iera 0+ pr for any t € [0,T — 1], where fus1 = (4)ico,, and i - R - R are risk
measures, for any i € .

We say that {u[LT]}tT:_Ol is a time-consistent, coherent (comonotonic) risk measure if every u’ is
coherent (respectively, comonotonic), for any i € ; and ¢ € [0,7 — 1].

Apart from being axiomatically justified, this compositional form has the advantage of allowing a
recursive estimation of the risk, and an application of the Bellman optimality principle in optimization
problems involving dynamic risk measures [Nilim and El Ghaoui, 2005, Iyengar, 2005, Ruszczynski and
Shapiro, 2006a, Ruszczynski, 2010]. This has lead to its adoption in actuarial science [Hardy and Wirch,
2004, Brazauskas et al., 2008], as well as in several recent papers that re-examine operational problems
under coherent measures of risk [Ahmed et al., 2007, Choi et al., 2011].

The main downside of the compositional form is that it requires a specification of all the mappings
u, which furthermore no longer lends itself to an easy interpretation, particularly as seen from the
perspective of time ¢ = 0. In particular, even if ;¢ corresponded to the same primitive risk measure pu,
the overall compositional measure’ Mjo,r] = H o po---op would bear no immediate relation to u. As
an example, when u' = AVaR., the overall p[g 7| corresponds to the so-called “iterated CTE” [Hardy
and Wirch, 2004, Brazauskas et al., 2008, Roorda and Schumacher, 2007], which does not lend itself to
the same simple interpretation as a single AVaR. Furthermore, practitioners often feel that the overall
risk measure po 7] is overly conservative, since it composes what are already potentially conservative
risk evaluations backwards in time — for instance, for the iterated TCE, one is taking tail conditional
expectations of tail conditional expectations. This has been recognized informally in the literature by
Roorda and Schumacher [2007, 2008], who propose new notions of time consistency that avoid the issue,
but without establishing precisely whether or to what extent the conservatism is actually true. From
a different perspective, it is not obvious how “close” a particular compositional measure is to a given
inconsistent one, and how one could go about constructing the latter in a way that tightly approximates
the former.

2.4 Main Problem Statement.

In this context, the goal of the present paper is to take the first step towards better understanding the
tradeoffs between the two ways of measuring risk. More precisely, we consider dynamic risk as viewed
from the perspective of time ¢t = 0, and examine two potential metrics: a time-inconsistent (comonotonic)
risk measure py : Xp — R, and a time-consistent (comonotonic) risk measure pc : Xr — R. For two
such metrics, we seek to address the following related problems.

Problem 1. Given pur and pc, test whether

pe(Y) <pr(Y), VY eXr or p(Y)<pc(Y), VY e Xr.

SHere and throughout the paper, we use the shorthand notation u o 1 with the understanding that the elementary risk
measure p is applied in stages ¢ > 1 in a conditional fashion.



Problem 2. Given uy, pc, find the smallest oy, i, > 0 and oy, i > 0 such that

if po(Y) <pr(YV), VY (YY) < oy - oY), VY € Xp, Y >0
i r(Y) < pe(Y), VY pe(Y) < apype - 1r(Y), VY € Xp, Y > 0. (5b)

A satisfactory answer to Problem 1 would provide a test for whether one of the formulations is always
over or under estimating risk as compared to the other. As we show, consistent measures obtained by
iterating the same primitive measure p do not necessarily over (or under) estimate risk as compared to
i, and this is true even when p = AVaR., the case considered in [Roorda and Schumacher, 2007, 2008].
However, by composing p with conditional expectation operators, one always obtains lower bounds to
the static risk measurement under p. For instance, polE and Eo u are both lower bounds to a given static
evaluation by p. By contrast, upper bounds are obtained only when composing with worst-case operators
in the final periods of the horizon: e.g., u o max is necessarily an upper bound for p, but max oy is not.

To understand the relevance of Problem 2, note that the minimal factors o, , , and a7, satisfying
(5a) and (5b), respectively, provide a compact notion of how closely p; can be approximated through
lower or upper bounding consistent measures pc, respectively. Since, in practice, it may be far easier

to elicit or estimate a single static risk measure pj, characterizing and computing o, and o

constitutes the first step towards constructing the time-consistent risk measure pc thgg fsl “closes‘g’gjif)
a given ;. We note that a similar concept of inner and outer approximations by means of distortion
risk measures appears in [Bertsimas and Brown, 2009]. However, the goal and analysis there are quite
different, since the question is to approximate a static risk measure by means of another static distortion
risk measure.

In a different sense, the smallest o*

1 e could be used to scale up risk measurements according to p in
order to turn them into “safe” (i.e., conservative) estimates of measurements according to pc. Scaling risk
assessments by particular factors is actually common practice in financial risk management: according to
the rules set forth by the Basel Committee for banking regulation, banks are required to report the 10-day
VaR calculated at 1% level, which is then multiplied by a factor of 3 to provide the minimum capital
requirement for regulatory purposes; the factor of 3 is meant to account for losses occurring beyond VaR,
and also for potential model misspecification (see Chapter 5 of [Jorion, 2006]). Therefore, this usage of
ay,, e could integrate well with practice.
We conclude the section by a remark pertinent to the two problems and our analysis henceforth.

Remark 2.1. On first sight, the requirement of non-negative Y in the text of Problem 2 might seem
overly restrictive. However, note that, if we insisted on puc(Y) < pur(Y) holding for any cost Y, and
if uo, pr were allowed to take both positive and negative values, then the questions in Problem 2 would
be meaningless, in that no feasible c.. values would exist satisfying (5a) or (5b). To this end, we are
occasionally forced to make the assumption that the stochastic losses Y are non-negative. This is not too
restrictive whenever a lower bound Yy, is available for Y. By using the cash-invariance property ([P2])
of the risk measures involved, one could reformulate the original question with regards to the random loss
Y — Y7, which would be nonnegative. Furthermore, in specific applications (e.g., multi-period inventory
management [Ahmed et al., 2007]), Y is the sum of intra-period costs X; that are always non-negative,
so requiring Y to be nonnegative is quite sensible.

3 Bounds for Coherent and Comonotonic Risk Measures.

In this section, we seek appropriate answers to Problem 1 and Problem 2, with the end-goal of charac-
terizing the tightest multiplicative approximation of a given inconsistent risk measure by means of lower
(or upper) bounding consistent risk measures.

To keep the discussion compact and avoid repetitive arguments, we first treat an abstract setting
of comparing two coherent measures on the same space of outcomes. The conditions that we derive



will be quite general, since no further structure will be imposed on the two measures. Section 3.2 will
then discuss in detail the comparison between a time-inconsistent, comonotonic risk measure py and a
consistent, comonotonic risk measure uc, deriving particular forms for the results and conditions. In
Section 3.3, we derive the main technical result needed to obtain multiplicative bounds on inconsistent,
comonotonic risk measures, which we then use in Section 3.2 to address the main problems of interest.

Consider a discrete probability space (€2, F,P), and let X be the space of all random variables on
Q (isomorphic with R‘m). On this space, we are interested in comparing two coherent risk measures
p1,2 : X — R given by polyhedral sets of measures, i.e.,

wi(Y) = max 'Y, VY eXx, Vie{l,2},
qeY;

where Q19 € Al are (bounded) polyhedra®. Our main focus is on (1) characterizing conditions such
that p1(Y) < pa(Y), VY € X, and (2) finding the smallest factor « such that

(V)< (Y)<awm(Y),VY e X (Y =0).

In this context, the risk measure 1;(Y’) can be identified as the support function of the convex set Q;,
so that the following standard result in convex analysis (see, e.g., [Rockafellar, 1970, Corollary 13.1.1])
can be invoked to test whether one risk measure dominates the other.

Proposition 3.1. The inequality p1(Y) < po(Y), VY € X holds if and only if Q1 < Qo.

The usefulness of the latter condition critically depends on the representation of the sets of measures
Q;. For instance, if Q; are polytopes, the containment problem Q; € Qs is co-NP-complete when O
is given by linear inequalities and Qs is given by its extreme points, but it can be solved in polynomial
time, by linear programming (LP), for all the other three possible cases [Freund and Orlin, 1985].

Proposition 3.1 also sheds light on the second question of interest, through the following corollary.

Corollary 3.1. There does not exist any o # 1 such that pua(Y) < am(Y), VY € X.

Proof. Proof. For any a > 0, the condition {u2(Y) < au(Y), VY € X} is equivalent to Qa € Q.
Since Q12 < Al the containment cannot hold for any « # 1. O O

This result prompts the need to restrict the space of random losses considered. As suggested in
Section 2.4, an eminently sensible choice is to take Y > 0, which is always reasonable when a lower bound
on the losses is available. This allows us to characterize the desired conditions by examining inclusions
of down-monotone closures of the sets Q;. To this end, we introduce the following two definitions (see
Section 6.1 of the Appendix for more details and references).

Definition 3.1. A non-empty set Q < R} is said to be down-monotone if for any x € Q and any y such
that 0 < y < x, we also have y € Q.

Definition 3.2. The down-monotone closure of a set Q@ < R, denoted by sub(Q), is the smallest
down-monotone set containing Q, i.e.,

sub(Q) = {xeR”? : IgeQ, xz < q}.

When restricting attention to nonnegative losses, one can readily show that a coherent risk measure
can be obtained by evaluating the worst case over an extended set of generalized scenarios, given by the
down-monotone closure of the original set. This is summarized in the following extension of representation
Theorem 2.1.

5Several of the results discussed here readily extend to arbitrary closed, convex sets of representing measures. We restrict
attention to the polyhedral case since it captures the entire class of comonotonic risk measures, it is simpler to describe, and
computationally advantageous, since evaluating the risk measure entails solving a linear program.
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Proposition 3.2. Let u(Y) = maxgeo q7'Y be a coherent risk measure. Then,

Y) = Ty vy >o0. 6
w(Y) e @Y, (6)

Proof. Proof. The inequality maxseg ¢7Y < MaX gesub(Q) q"Y follows simply because Q < sub(Q). To
prove the reverse, consider any Y > 0 and let g, be the maximizer of maxgesun(9) q"Y . By Definition 3.2,
there exists g € Q such that g, > g; > 0. Then:

T T T T
maxq'Y >2q5Y >2q; Y = max Y. O
qeQ q 12 4 gesub(Q) d

O

In view of this result, one can readily show that testing whether a risk measurement dominates another
can be done equivalently in terms of the down-monotone closures of the representing sets of measures, as
stated in the next result.

Lemma 3.1. The inequality p1(Y) < po(Y), VY € X holds if and only if sub(Q1) < sub(Q2).

Proof. Proof. By Proposition 3.1, the above is equivalent to showing

Q1 € Q9 < sub(Qy) < sub(Q2) .

(=) Consider q; € sub(Q;). Then, by Definition 3.2, there exists ¢} € Q; such that ¢} > q;. Since
Q1 € Q9, we have q} € Q, and therefore g; € sub(Q2).

(<) Note that Q; = sub(Q;) n AlYl for i = 1,2. Then:

sub(Q1) € sub(Qz) =
sub(Q1) N Al < sub(Qy) N AP =
QcQ. O

O]

Figure 2 depicts examples of the sets Q1, Q2 and their down-monotone closures sub(Q;) and sub(Qs),
respectively. Note that the conditions provided by Lemma 3.1 hold for any cost Y, i.e., non-negativity is
not needed; they may also be more efficient in practice than directly checking Q1 € Qo, in cases when a
suitable representation is available for sub(Qj 2), but not for Q; o [Freund and Orlin, 1985].

By considering down-monotone closures and restricting to nonnegative losses, we can also address the
second question of interest, namely retrieving the smallest scaling factor « such that pa(Y) < a- i (Y).
The following result characterizes any such feasible .

Proposition 3.3. The inequality p2(Y) < o - p1(Y) holds for all' Y = 0 if and only if sub(Qa) <
a-sub(Qy).

Proof. Proof. By Proposition 3.2, 1;(Y") = maxgequb(0;) q"Y for i = 1,2. The claim then follows directly
from Lemma 1 in [Goemans and Hall, 1996] (also see Theorem 6.1 in the Appendix). O O

In view of this result, the minimal o exactly corresponds to the smallest inflation of the down-
monotone polytope sub(Q;) that contains the down-monotone polytope sub(Q2). This identification
leads to the following characterization of the optimal scaling factor.

Theorem 3.1. Let aj, . denote the smallest value of o such that ua(Y) < - 1 (Y), VY > 0.

11
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Figure 2: Inclusion relation between Q;, Qo (and the corresponding down-monotone closures, sub(Q;)
and sub(Qz2), respectively) that is equivalent to p;(Y) < pa(Y), VY € Xa.

1. If sub(Qy) = {q eR% : alq <b;, Vi EI}, where a; = 0, b; = 0, then

T T

MaXgesub(Qy) @; 9 maXgeQ, @; q o(a;

Oy = MAX gesub(Qz) T T _ oy 10%a€Q %l _ 0 B ( Z).
’ €l bl 1€l bl €l bl

(7)

2. If Q1 = {q eR™ : Aq < b}, then o, ,,, is the smallest value t such that the optimal value of the

following bilinear program is at most zero:

max (Aq —tb)'p

q’“
a¢€ 9 (®)
pn=0

ATp =0

Proof. Proof. The first claim is a known result in combinatorial optimization — see Theorem 6.1 in the
Appendix and Theorem 2 in [Goemans and Hall, 1996] for a complete proof.
To argue the second claim, note that the smallest o can be obtained, by definition, as follows:

min{ t: max[max YTq—t-max YTq] < O} = min{ t: max[max YTq—t- min bTu] < 0}

Y >0LlqgeQ2 g1 Y >0LlgeQs ATp=Y
pn=0
= min{ t: max (Ag—tb)'u<0 }
gqeQ2
p=0
ATpz0

The first equality follows by strong LP duality applied to the maximization over q € Q1, which always has
a finite optimum since Q; is bounded. The second equality follows by replacing the inner minimization
with a maximization, switching the order of the maximizations, and eliminating the variables Y. O [

*

A and

The results in Theorem 3.1 give a direct connection between the problem of computing «
the representations available for the sets Q; and sub(Q;). More precisely,

*

e If a polynomially-sized inequality description is available for sub(Qy), then o, ,, can be obtained
by solving the small number of LPs in (7). Every such LP essentially entails an evaluation of the
risk measure po, leading to an efficient overall procedure.

12



e If a compact inequality representation is available for Qy, then «j, , can be found by bisection

search over ¢ > 0, where in each step the bilinear program in (8) is solved. Since bilinear programs
can be reformulated as integer programs [Horst and Tuy, 2003], for which powerful commercial
solvers are available, this approach may lead to a scalable procedure, albeit not one with polynomial-
time complexity.

Our observations concerning the complexity of testing sub(Q2) S « - sub(Q;) are summarized in
Table 1 below. When Qg or sub(Qz2) have polynomially-sized vertex descriptions, the test simply requires
checking containment for a finite set of points, and when sub(Qs) has a polynomially-sized description,
the results of Theorem 3.1 apply. We conjecture that all the remaining cases are NP-complete, but
do not pursue a formal analysis in the present paper. Section 4.1 revisits the question of computational
complexity in the context of comonotonic risk measures, and argues that the general containment problem
is NP-hard.

Poly ext(Q;) | Poly face(Q;) | Poly ext(sub(Q;)) | Poly face(sub(Q1))
Poly ext(Qs) P P P P
Poly face(Q2) P
Poly ext(sub(Qs)) P P P P
Poly face(sub(Q2)) P

Table 1: Computational complexity for determining whether ps(Y) < a-p1(Y), VY > 0 for a given a > 0.
“Poly ext” and “Poly face” denote a polynomially-sized vertex and inequality description, respectively.
“P” denotes a polynomial-time algorithm is available.

*

We conclude our general discussion by noting that the tightest scaling factor aj, ,, can also be used
to directly re-examine the first question of interest, namely testing when a given coherent risk measure
upper bounds another. This is formalized in the following corollary, which is a direct result of Lemma 3.1
and Proposition 3.3.

Corollary 3.2. The inequality pa(Y) < p1(Y), VY € X holds if and only if o, ,,, < 1.

The latter result suggests that characterizing and computing the tightest scaling factor is instrumental
in answering all questions relating to the approximation of a coherent risk measure by means of another.
In particular, given p; and pg, by determining the scaling factors o,
domination and also approximate one measure by the other, as follows:

N .
and aj, , , we can readily test

o Ifar, , <1, then uy(Y)e [ﬁ 1] p2(Y), VY = 0.

o Ifaj, ,, <1, then yy(Y)e [1, a;%m] ~p2(Y), VY = 0.

3.1 Tightest Time Consistent and Coherent Upper Bound.

The results and exposition in the prior section made no reference to the way in which the coherent risk
measures [t » were obtained, as long as the sets of representing measures Q1, Q2 were polyhedral. In this
section, we discuss some of these results in the context of Section 2.4 — more precisely, we take p; as the
time-inconsistent risk measure py, while po denotes the compositional measure pc.

Our goal is to show that, when py is coherent, a complete characterization of the tightest possible
uniform upper bound to u is readily available, and is given by a popular construction in the literature
[Epstein and Schneider, 2003, Roorda et al., 2005, Artzner et al., 2007, Shapiro, 2012]. This not only
yields the tightest possible factor o, , ., but also considerably simplifies the test u/(Y) < pc(Y), VY,
for any coherent uc.

The next proposition introduces this construction for an arbitrary coherent measure .

13



Proposition 3.4. Consider a risk measure ji(Y') = supgeg q'Y, VY € Xr, and define the risk measure

aY) &of (10 fizo---oap)(Y), where the mappings fi E(“l)ieﬁtq 1 Xy — Xy_q are given by

def

Vie[l,T], Vie Y1, A(Y)E sup ¢"Y, VY e R4, (9)

qeQ;,

A de : 9.
QLd:f{qu‘% :dpe Q: qj—f)i@?))

,Vje%}. (10)

Then, [i is a time-consistent, coherent risk measure, and u(Y) < p(Y), VY € Ap.

As mentioned, this construction has already been considered in several papers in the literature, and
several authors have recognized that it provides an upper bound to p. It is known that [ is time-consistent,
and has a representation of the form (YY) = SUp,. 5 q"Y,VY € Xr, where the set Q, has a product

"

or rectangular structure. Note that it is obtained by computing products of the sets @L of single-step

conditional probabilities obtained by marginalization at each node in the tree. Furthermore, O < @/u
and therefore u(Y) < i(Y), VY € Ap [Epstein and Schneider, 2003, Roorda et al., 2005, Shapiro, 2012].

Theorem 3.2 (Example 2.1 Revisited.). To understand the construction, consider again Ezample 2.1.
The set Q yielding the inconsistent measure p at the root node R is given by two probabilities, correspond-
ing to p=0.4 and p = 0.6, i.e.,

Q = {(0.16, 0.24, 0.24, 0.36), (0.36, 0.24, 0.24, 0.16) }.
The sets of conditional one-step probabilities corresponding to nodes U, D, and R are then:

QU = QP = O = {(0.4, 0.6), (0.6, 0.4)}.

This yields a set @M containing eight different probability measures, for all possible products of one-step
measures chosen from Qg, QE, Qﬁ. More precisely,

9, ={(0.16, 0.24, 0.24, 0.36), (0.16, 0.24, 0.36, 0.24), (0.24, 0.16, 0.24, 0.36), (0.24, 0.16, 0.36, 0.24),
(0.24, 0.36, 0.16, 0.24), (0.24, 0.36, 0.24, 0.16), (0.36, 0.24, 0.16, 0.24), (0.36, 0.24, 0.24, 0.16) }.

In this context, we claim that 17 actually represents the tightest upper bound for py, among all
possible coherent and time-consistent upper bounds. This is formalized in the following result.

Lemma 3.2. Consider any risk measure ur(Y) = SUPgeo, q'Y, VY € Xr, and let [i7 be the correspond-
ing risk measure obtained by the construction in Proposition 3.4. Also, consider any time-consistent,
coherent risk measure puc(Y) < (p1ops--- o pr)(Y), where p, = (pi)iegt_1 1 Xy — X1 are given by

pi(Y) = maxq"Y, VY e RI%,
qeQ;,

for some closed and convex sets Qi, < A%l Then, the following results hold:
1. If,uc(Y) = ,LL[(Y), VY € X7, then

pe(Y)=>m(Y), VY e Xp  and . (11)

a;[»ﬁ < a.u‘IuU'C
2. pe(Y) = pr(Y), VY € Xp holds if and only if

9, cQ VieQ 1,Vte[L,T]. (12)
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Proof. Proof. [1] Since uc is a coherent risk measure, it can always be written as puc(Y) = maxgeo. g7 Y.
Furthermore, it is known that the set of representing measures Q¢ is obtained by taking products of the
sets Q) (see, e.g., Roorda et al. [2005] or Féllmer and Schied [2004]). Due to this property, Q¢ is closed
under the operation of taking marginals and computing the product of the resulting sets of conditional
one-step measures [Epstein and Schneider, 2003, Roorda et al., 2005, Artzner et al., 2007], i.e.,

Q= {qu‘%‘ :3peQc g = p(%;)

p(%),we%}. (13)

Since puc(Y) = pur(Y), we must have Qr € Qc¢. But then, from (10) and (13), we obtain that QLI c
ﬁ,, Vi€ Q1, Vt. This readily implies that @M € Qc, and hence 17 (Y) < puc(Y), VY. The inequality
for the multiplicative factors oy, . follows from the definition.
[2] For the second result, note that theA“:>” implication has aAlready been proved in the first part.
The reverse direction follows trivially since Qf” c Qf) implies that Q,, < Qc, and, since p;(Y") < f7(Y),

we have p;(Y) < pc(Y), VY. O O

The result above is useful in several ways. First, it suggests that the tightest time-consistent, coherent
upper bound for a given uy is 17. This not only yields the smallest possible multiplicative factor .
but the upper-bound is uniform, i.e., for any loss Y. Also, a;hm is a lower bound on the best possible
a},; . when the consistent measures pc are further constrained, e.g., to be comonotonic.

The conditions (13) also prescribe a different way of testing p; < pe, by examining several smaller-
dimensional tests involving the sets @f”, QZ < Al%l. This will also prove relevant in our subsequent
analysis of the case of comonotonic risk measures.

3.2 The Comonotonic Case.

The results introduced in Section 3 and Section 3.1 become more specific when the risk measures Q; and
Q¢ are further restricted to be comonotonic. We discuss a model with T" = 2, but the approach and
results readily extend to a finite number of time periods, a case which we revisit in Section 3.4.

We start by characterizing uy, with its set of representing measures Q; and its down closure sub(Qy).
The central result here, formalized in the next proposition, is the identification of Q; with the base
polytope corresponding to a particular Choquet capacity c¢. This analogy proves very useful in our
analysis, since it allows stating all properties of Q; by employing known results for base polytopes of
polymatroid rank functions’, a concept studied extensively in combinatorial optimization (see Section 6.2
of the Appendix for all the results relevant to our treatment, and [Fujishige, 2005, Schrijver, 2003] for a
comprehensive review).

Proposition 3.5. Consider a naive dynamic comonotonic risk measure puy : Xo — R, with pur(Y) =

maxXgeQ,; q'Y , VY € Xy. Then, there exists a Choquet capacity c : 2%l R such that
1. The set of measures Qy is given by the base polytope corresponding to c, i.e.,

Qr=B.E{ ge Rl : q(8) <c(9), VS S o, q(Q2) = () }. (14)

2. The down-monotone closure of Qr is given by the polymatroid corresponding to c, i.e.,

sub(Qr) = P. & {ge R . q(9) < ¢(9), VS =2y} (15)

"We note that, with the exception of the normalization requirement ¢(Q2) = 1 that is unimportant for analyzing funda-
mental structural properties, the definition of a Choquet capacity is identical to that of a rank function of a polymatroid
[Fujishige, 2005, Chapter 2]. Therefore, we use the two names interchangeably throughout the current paper.
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Proof. Proof. By Theorem 2.1 for comonotonic risk measures, there exists a Choquet capacity ¢ such
that Q; = { q € ARl g(8) < ¢(S), VS < Q2}. Since ¢(€2) = 1, this set can be rewritten equivalently
as the base polytope corresponding to ¢ (also refer to Corollary 6.1 of the Appendix for the argument that
B. c R‘f?l). For the second claim, we can invoke a classical result in combinatorial optimization, that the
downward monotone closure of the base polytope B, is exactly given by the polymatroid corresponding
to the rank function ¢, i.e., P, (see Theorem 6.3 in Section 6.2). O O

In particular, both sets Q; and sub(Q;) are polytopes contained in the non-negative orthant, and
generally described by exponentially many inequalities, one for each subset of the ground set 2. However,
evaluating the risk measure uy for a given Y € X5 can be done in time polynomial in ||, by a simple
Greedy procedure (see Theorem 6.4 in the Appendix or Lemma 4.92 in [F6llmer and Schied, 2004]).

In view of the results in Section 3.1, one may also seek a characterization of the tightest upper bound
to uy, i.e., puy, or of its set of representing measures @M. Unfortunately, this seems quite difficult for
general Choquet capacities ¢ — a particular case when it is possible is when uy is given by AVaR,, a case
discussed in our companion paper Huang et al. [2012]. However, the result in Lemma 3.2 nonetheless
proves useful for several of the results in this section.

The following result provides a characterization for the time-consistent and comonotonic risk measure
e = 1 o e as a coherent risk measure, by describing its set of representing measures Q¢ and its
down-monotone closure sub(Q¢).

Proposition 3.6. Consider a two-period consistent, comonotonic risk measure pc(Y) = puy o pe, where
Mt : Xt i thl- Then,

1. There exists Qc < A2l sych that ue(Y) £ MaXgeQ, qTY VY € Xs.

2. The set of measures Q¢ is given by

Qc d:Cf{qE A%l 3p e Al p(5) <a(S),VS<s }
q(U) < pi-cou(U), YU S 63, Vie
= {QGA‘Qﬂ : HPGBcl t qlw; eBpng\ia ViGQl},

where ¢ : 21 S R and Cali 24l R, VieQ are Choquet capacities, and Be,, Be,,, are the base

polytopes corresponding to c¢1 and cy);, respectively.

Ca|i

3. The downward monotone closure of Q¢ is given by
p(S) <ci(S), VS < Q, }
qU) < pi-co;(U), VU S €, Vie N
€ Ppreyys Vi € Ql}

<
sub(Qc) & {qe R'fﬂ :dpe R‘fll, B

Q
:{qeRLQ‘ :3peP., i q

where P, and Py,

cyps GTE the polymatroids associated with ¢y and picy);, Tespectively.

Proof. Proof. The proof is technical, and involves a repeated application of ideas similar to those in the
proof of Proposition 3.5. Therefore, we relegate it to Section 6.3 of the Appendix. O O

As expected, the set of product measures Q¢ and its down-monotone closure sub(Q¢) have a more
complicated structure than Q; and sub(Qy), respectively. However, they remain polyhedral sets, charac-
terized by the base polytopes and polymatroids associated with particular Choquet capacities ¢1 and cyj;.
The inequality descriptions of Q¢ and sub(Q¢) involve exponentially many constraints, but evaluating
uo(Y) at a given Y € Xy can still be done in time polynomial in |Qs], by using the Greedy procedure
suggested in Theorem 6.4 in a recursive manner.
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Because Q; and Q¢ are polytopes, they can also be described in terms of their extreme points. The
description of the vertices of polymatroids and base polytopes has been studied extensively in combina-
torial optimization (see Theorem 6.5 in the Appendix or [Schrijver, 2003] for details). Here, we apply the
result for the case of Qj, and extend it to the special structure of the set Qc.

Proposition 3.7. Consider two risk measures puy and pc, as given by Proposition 3.5 and Proposition 3.6.
Then,

1. The extreme points of Qr are given by

do(i) = C(UZ:IUUC)) - C(Ui;_zllo'(k))v L€ [17 ‘92’]7
where o € I1(Q2) is any permutation of the elements of Qa.

2. The extreme points of Q¢ are given by
Qoy(i) = [cl(uf;:ﬂr(k‘)) — cl(ui_zllw(k:))] . [02‘5(&)22105(/@)) — 62|g(u2_:110g(k:))], Vie[l,|%]|], Ve Q,

where w € T1(Qq) is any permutation of the elements of 1, and o, € 11(6}) is any permutation of
the elements of €y (for each € Q).

Proof. Proof. Part (1) follows directly from the well-known characterization of the extreme points of an
extended polymatroid, summarized in Theorem 6.5.

Part (2) follows by a repeated application of Theorem 6.5 to both p and g in the description of Q¢ of
Proposition 3.6. In particular, any value of p can be expressed as a convex combination of the extreme
points p™ of B., such that p = ZweH(Ql) Arp™ for appropriate {Ar}rcm(n,). Now, for each £ € €2 the
value q|¢, € Ppe-cm , can be similarly expressed as a convex combination of the extreme points g for an
appropriate set of convex weights {{s}scri(4,), such that

Z {oq7 = Z Z Ae&oDi ] = Z Z Xr,oPr 47 -

o€ll(%) mell(Q1) oell(%;) 7ell(Q1) oell(6,)

The proposition then follows directly from the fact that xr, are themselves convex combination coeffi-
cients, and py g, are extreme points. ] ]

3.3 Computing the Optimal Bounds o}, and o} .

With the representations provided above, we now derive our main technical result, establishing a method
for computing the tightest multiplicative bounds for a pair of consistent and inconsistent comonotonic
risk measures. The following theorem summarizes the result.

Theorem 3.3. For any pair of risk measures puy and uc as introduced in Section 3.2,

. ZieS maxyce; Cgl(% 16
s = A ax ") (16)
. q(S)

= max max

. 17
Yrpc gesub(Q¢) S<SQ2 C(S) ( )

Furthermore, the value for o, remains the same if the outer mazimization over q is done over

Qy,ext(Qy) or ext(sub(Qy)), and corresponding statements hold for oy, , ..
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Proof. Proof. To prove the first result, recall from Proposition 3.3 that for any Y = 0,
pr(Y)<a-pc(Y) < sub(Qr) € a-sub(Q¢) .

Consider an arbitrary g € sub(Qy). Any feasible scaling o > 0 must satisfy that éq € sub(Q¢). Using
the representation for sub(Q¢) in Proposition 3.6, this condition yields

p(S) < c1(S), VS <y

1 €]
—qgesub(Qc) = dpelR :
- (Qc) + ~q(U) <pi-eu(U), YU S G, Vie.

The second set of constraints implies that any feasible p satisfies p; > émaXUC “ - ‘( (l}) Vie Q. Cor-
roborated with the first set of constraints, this yields

1 max (V) <2pi<cl(5),VS§Ql =

i€ €S
3 a(U)
ies MAXUCE,; ¢, T)
o = max
Scy 01(5)

Since this must be true for any q € sub(Q;), the smallest possible « is given by maximizing the expression
above over g € sub(Qy), which leads to the result (16).

The expression for aj, ,  is a direct application of the second part of Theorem 3.1, by identifying
sub(Q;) with sub(Q) and using the compact representation for sub(Q;) from Proposition 3.5.

The claim concerning the alternative sets follows by recognizing that the function maximized is always
nondecreasing in the components of g, so that sub(Q) can be replaced with Q, and it is also convex in
q, hence reaching its maximum at the extreme points of the feasible set. O O

From Theorem 3.3, it can readily seen that, when uc < py, the optimal o, will always be at
least 1, and can be +00 whenever the dimension of the polytope Q¢ is strictly smaller than that of Q.
Similarly, when u; < pc, the optimal o7, , . is always at least 1, and can be +00 when the dimension of
the polytope Qj is smaller than Q¢. To avoid the cases of unbounded optimal scaling factors, one can
make the following assumption about the Choquet capacities.

Assumption 3.1 (Relevance). The Choquet capacities c, cy, C|i appearing in the representations for piy
and pe (Proposition 3.5 and Proposition 3.6) satisfy the properties

c({k}) > 0, Vi € O
a({i}) > 0, Vie 0
02|Z({]}) >0,Vie Qq, Vje ;.

This ensures that both risk measures consider all possible outcomes in the scenario tree, and is in line
with the original requirement of relevance in [Artzner et al., 1999], which states that, for any random cost
Y such that Y = 0 and Y # 0, any risk measure p should satisfy u(Y) > 0. In this case, the polytopes
Qr and Q¢ are both full-dimensional (see [Balas and Fischetti, 1996] and Appendix A), which leads to
finite minimal scalings.

As suggested in our general exposition at the beginning of Section 3, determining the optimal scaling
factors o and o also leads to direct conditions for determining whether uc lower bounds uy or

e e
viceversa. The following corollary states these in terms of optimization problems.

Corollary 3.3. For any pair of risk measures ur and pc as introduced in Section 3.2,
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1. The inequality po(Y) < pur(Y), YY € Xy holds if and only if

S)—c(S)] <0.
etk L) 3]

2. The inequality pur(Y) < pc(Y), VY € Xy holds if and only if

q(U)
max max max
geext(Qr) S oy Uct; CQ\Z(U)

~als)| <o

Proof. Proof. The proof follows from Corollary 3.2, by recognizing that the condition puc < py is equiv-

alent to setting o, , <1 (and similarly for the reverse inequality and «;, c,w)' The formulas in
Theorem 3.3 then immediately yield the desired conclusions. O O

The results in Corollary 3.3 are stated in terms of non-trivial optimization problems. It is also possible
to write out the conditions in a combinatorial fashion, using the analytical description of the extreme
points of Q¢ and Qy, as summarized in the following corollary.

Corollary 3.4. For any pair of risk measures py and pc as introduced in Section 3.2,

1. The inequality po(Y) < pur(Y), YY € Xy holds if and only if

€21
. -
Z [Cl (Vioisk) — a1 (Uizﬁk)] - cols; (Usy) < c(Vien,Ui),
j=1
where (s1,...,5|q,|) denotes any permutation of the elements of 1, and U; S €; for any i € Q.

2. The inequality pur(Y) < pc(Y), VY € Xy holds if and only if

C(Uies(gz’) < Cl(S), VS c Ql,
c(U)
c(U)+1—1¢(Q\%, v )

< Czyi(U), YU C %, Vie Q.

Proof. Proof. The proof is slightly technical, so we defer it to Section 6.3 of the Appendix. O O

The above conditions are explicit, and can always be checked when oracles are available for evaluating
the relevant Choquet capacities. The main shortcoming of that approach is that the number of conditions
to test is generally exponential in the size of the problem, even for a fixed T (’)((|Ql " -2|92|) for po < py,
and O(|A| - 2maxiea€il) for p; < pe, respectively, where A & Uselo,r—1]$%- However, under additional
assumptions on the Choquet capacities or the risk measures, it is possible to derive particularly simple
polynomially-sized tests. We refer the interested reader to the discussion in Section 4.1 and the example
in Section 4.3.

We note that the reason the conditions for pu; < pc take a decoupled form and result in a smaller
overall number of inequalities is directly related to the results of Lemma 3.2, which argues that testing
wr < pe can be done by separately examining conditions at each node of the scenario tree.

3.4 Multi-stage Extensions.

Although we focused our discussion thus far on a setting with 7' = 2, the ideas can be readily extended
to an arbitrary, finite number of periods. We briefly outline the most relevant results in this section, but
omit including the proofs, which are completely analogous to those for T' = 2.

In a setting with general T', our goal is to compare a comonotonic py with a time-consistent, comono-
tonic uc 4 pu1opgo---opup. The former is exactly characterized by Proposition 3.5, while the represen-
tation for the latter can be summarized in the following extension of Proposition 3.6.
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Proposition 3.8. Consider a time-consistent, comonotonic risk measure pc. Then,
1. There exists Qo < A1 such that puc (V) < maxgeo, 1Y, VY € Xs.
2. The set of measures Q¢ is given by

Qo = {pre Al 3{p, e ANy 1oy, P (U) <Py ({3)) - €u(U), VU S €, Vie o, Vie [1,T]}
={pre Al 3{p, e AN}, 1 1), B/l € B (i Vi€ Qor, Ve [1,T] }, (18)

Dy

where c¢y; - 2%l — R are Choquet capacities with corresponding base polytopes Bctw for every
t € [1,T] and for every i€ Qy_q.

3. The downward monotone closure sub(Qc) of Q¢ is obtained by replacing A% with Rt?t\ and
Bp, .\ ({i})-cy; with the polymatroid Py, ((i}).c,, 0 equation (18).

-1 “Ctli

The proof exactly parallels that of Proposition 3.6, and is omitted due to space considerations. With
this result, we can now extend our main characterization in Theorem 3.3 for the optimal multiplicative
factors to a multi-period setting, as follows.

Theorem 3.4. For any comonotonic measure py and time-consistent comonotonic measure uc,

* ZiES 21 (Z7 q)
_ ) 19
Cpopr = 0 B TUS) (19)

where z7(i,q) < qi, Vi€ Qp, and z(i,q) < maxpcg, %, Vte[l,T —1],Vie Q. Also,

ar = max max q(S).
rrpe gesub(Q¢) SSQr C(S)

(20)

Furthermore, the value for o, would remain the same if the outer mazimization were taken over
Qr,ext(Qr) or ext(sub(Qy)). Corresponding statements hold for «

*
|87 /el

The proof follows analogously to that of Theorem 3.3, by using the expressions for sub(Q;) and
sub(Q¢) provided by Proposition 3.5 and Proposition 3.8, respectively, to analyze the conditions sub(Qy) <
a - sub(Q¢) or vice-versa. We omit it for brevity.

By comparing (22) and (20) with their two-period analogues in (16) and (17), respectively, it is inter-
esting to note that the complexity of the formulation for o, , = remains the same, while the optimization
problems yielding o, ., get considerably more intricate. Section 4 contains a detailed analysis of the
computational complexity surrounding these problems.

For completeness, we remark that direct multi-period counterparts for Corollary 3.3 and Corollary 3.4
can be obtained, by recognizing that puc(Y) < pr(Y), VY is equivalent to Ay, ue < 1, and by using the
results in Theorem 3.4 and Lemma, 3.2 to simplify the latter conditions. We do not include these extensions

due to space considerations.

4 Discussion of the Results.

In view of the results in the previous section, several natural questions emerge. What is the computational
complexity of determining the optimal scaling factors o}, , . and o, , for coherent /comonotonic risk
measures? If this is generally hard, are there special cases that are easy, i.e., admitting polynomial-time
algorithms? What examples of time-consistent risk measures can be derived starting with a given uy,
and how closely do they approximate the original measure?

The goal of the present section is to address these questions in detail. As we argue in Section 4.1,

computing the scaling factors is hard even when restricting attention to distortion risk measures — a
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proper subclass of comonotonic measures. However, several relevant cases are nonetheless tractable.
Section 4.2 introduces examples obtained by composing p; with the conditional expectation operator
“E” or conditional worst-case operator “max”, and compares them in terms of their approximation
strength. Section 4.3 then summarizes the case when py and pc correspond to the AVaR risk measure,
and shows how many of the results drastically simplify.

4.1 Computational Complexity.

As argued in Section 3, computing the optimal scaling factors «j, , . and o}, , entails solving the
optimization problems in (16) and (17). We now show that this is NP hard even for a problem with
T =1, and even when only examining distortion risk measures. We use a reduction from the SUBSET-

SUM problem, which is NP hard [Cormen et al., 2001] and is defined as follows.

Definition 4.1 (SUBSET-SUM). Given a set of integers {ki,ka, ..., km}, is there a subset that sums to
s?

This following result is instrumental in showing the complexity of computing the optimal scalings

* *
Qe d o

Theorem 4.1. Consider two arbitrary distortion risk measures pu12 : X1 — R. Then, it is NP-hard to
decide if o, , =, for any v = 0. The problem remains NP-hard even when p2(Y) < pa(Y'), for all
YeX (Y =0).

Proof. Proof. We use the representation of distortion risk measures to show the reduction from the
SUBSET-SUM problem. By the representation Theorem 2.1 written for the specific case of distortion
measures yields, u;(Y) = maxgeg, g7 Y, where

Q; — { ge A%l () <a(S), VS } Vie (1,2,

and ¢;(S) = ¥;(P(S)), where ¥; : [0,1] — [0,1] are concave, increasing functions satisfying ¥;(0) =
0, ¥;(1) = 1. Because both sub(Q;) and sub(Q3) are polymatroids and downward monotone, the second
result in Theorem 3.3 can be further simplified to:

. c1(5)

B2, gggi 62(5)' (21)

a

Now, consider a SUBSET-SUM problem with values ki, ko ...k, and a value s such that 1 < s < K,
where K = Z;nzl k;. Construct the functions c; and ¢z as follows:

P(s;) = ki/K c1(S) = min{(P(S) . K) /s, 1} es(S) = min{cl(S), IP’(S)}

Since both ¢, ¢ satisfy the conditions of distortion risk measures, any SUBSET-SUM problem can be
reduced to the problem of computing the optimal scale of two distortion risk measures.
Now, the optimal value of (21) is upper bounded as:

C1 (S) K
max <A/ — -
SOy e2(S) s
The maximum is achieved when there exists S such that P(S) = s/K. To show this, consider ¢;(S)/ca(5)
as a function of P(S). This function is: (1) non-decreasing on the interval [0, s/K) and non-increasing
on the interval (s/K, 1], (2) strictly greater than one for P(S) = s/K, (3) equal to 1 for P(S) € {0, 1},
and (4) continuous. Therefore, the SUBSET-SUM problem has a subset that sums to s if and only if
the optimal value of (21) is 4/K/s. Finally, the result also holds when us(Y) < p1(Y), since our choice
already has c3(S) < ¢1(5) for all S € Qq, which implies p2(Y) < p1(Y). O O
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* and o readily follows as a direct corol-

The complexity of computing the optimal scalings o7, , . o

lary of Theorem 4.1.

Corollary 4.1. Under a fited T = 1 and for any given v = 0, it is NP-complete to decide whether
Qg = 7 Jor an arbitrary inconsistent distortion measure pr and a consistent distortion measure jic.
The result remains true even when pc and py are such that po(Y) < pr(Y) for all'Y € Xp (Y = 0).
Similarly, it is NP-complete to decide whether o, , . =7, and the result remains true even when ur(Y) <
He(Y), VY € Xp (Y > 0).

Proof. Proof. First, note that finding the scaling factors for any 7' > 1 is at least as hard as for T' = 1.
This can be seen by setting || = 1 for all ¢ € 2,7 —1]. The NP-hardness then follows from Theorem 4.1
by setting uo = pc and pg = py. The membership in NP follows by checking the inequality (16) for every
extreme point q, subset .S, and the appropriate subsets U. The second result follows analogously. [0 [

Corollary 4.1 argues that computing the optimal scaling factors for arbitrary distortion risk measures
cannot be done in polynomial time. While the NP-hardness may be somewhat disappointing, solving
the two optimization problems in Theorem 3.3 is nonetheless clearly preferable to simply examining all
possible values of Y.

While the problem of computing the scaling factors is hard for general distortion measures, polynomial-
time algorithms are possible when the representations of Qr, Q¢ or sub(Qj),sub(Q¢) fall in the tractable
cases discussed in Table 1 of Section 3.

In fact, some of the results of Table 1 can even be strengthened - one such case is when a vertex
description for the polytope Q; is available, and problem (22) can be solved in time polynomial in |Q7],
under oracle access to the Choquet capacities ¢;); yielding the measure ¢

Lemma 4.1. If the polytope Qr is specified by a polynomial number of extreme points, then o can

Hespr1
be computed in time polynomial in |Qrp|.

Proof. Proof. Consider the specialization of (22) for a fixed g € Qy:

ar = max maxM
KesiT gesub(Qy) SS Cl(S) ’

where z7(i,q) < ¢, Vie Qp, and (i, q) £ maxycy, %, Vte[l, T —1],Vie Q.

Note that each value z (i, q) and also ), , , can be written as:

Zt(l" q) = max Zt-l,—l(U, q)

vet; crp1(U) mm{ © cra1i(U) = 2111(U, q) c }

For any [, the constraint [ - ¢;11;(U) — 2zt+1(U,q) = 0, VU < %; can be checked in polynomial time,
since the set function on the left-hand side is submodular in U, and can be minimized with a polynomial
number of function evaluations [Schrijver, 2003]. O O

The result above is slightly stronger than what Table 1 suggests, since the representation of Q¢ = Q;
can still be exponential both in terms of extreme points and vertices, as long as oracle access to ¢;; is
available.

4.2 Examples.

To see how our results can be used to examine the tightness of particular dynamically consistent risk
measures, we now consider several constructions suggested in the literature. The starting point is typ-
ically a single distortion risk measure py : Xo — R, denoting the inconsistent evaluation. This is then
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composed with other suitable measures (for instance, with itself, with the conditional expectation and/or
the conditional worst-case operator), to obtain time-consistent risk measures that are derived from pu;.
The questions we would like to address here is which of these measures lower-bound or upper-bound the
inconsistent evaluation py, and what can be said about the relative tightness of the various formulations.

In order to construct dynamically-consistent measures by composing py, we must first specify the
conditional one-step risk mappings corresponding to py, formally denoted by ,u} : X1 — Rand ,u% Xy —
Xi1. When puy is a distortion risk measure, this can be done in a natural way in terms of the corresponding
concave distortion function. To this end, recall that, by the representation Theorem 2.1, any distortion
measure py is uniquely specified by the concave function ¥ yielding its set of representing measures,
through the Choquet capacity c(S) = ¥(P(5)), V.S < Q. The conditional one-step risk mappings i}
and ,u,% = (u?'l)iegl are then obtained by applying the same distortion function ¥ to suitable conditional

i

probabilities. More precisely, u} and ,u? * are the distortion risk measures corresponding to the Choquet

capacities:

¢1:2% SR, ¢(S) = W(ZP(%)), VS
€S

P(U;)
P(%;)

cyi 1 2% R, 02|7;(U2-)=\If( ),vm;%,v@'egl.

The conditional risk mappings u} and ,u% can be used to define dynamic time-consistent risk measures,
either alone or by composition with other conditional risk mappings. In particular, all of the following
dynamic time-consistent risk measures have been considered in the literature:

Eo H% ,u,} o M} © M% ,u,} © max max OM%
where E denotes the conditional expectation operator, and max is the conditional worst-case operator.
Whenever the meaning is clear from context, we sometimes omit the time-subscript, and use shorthand
notation such as Eo uy, ur o E, puy o g, ete., although we are formally referring to compositions with ,u}
and/or 3.

4.2.1 Time-Consistent Lower Bounds Derived From a Given pj.

We begin by discussing two choices for lower-bounding consistent risk measures derived from py. The
following proposition formally establishes the first relevant result.

Proposition 4.1. Consider any distortion risk measure uy : Xo — R, and the time-consistent, comono-
tonic measures py o B and E o uy. Then, for any cost Y € X,

(k1 oE)(Y) < p(Y) and  (Eopur)(Y) < p(Y).

Proof. Proof. The proof entails directly checking the conditions in Corollary 3.4. A complete derivation
is included in Section 6.3 of the Appendix. O

This is not a surprising result, since the E operator is known to be a uniform lower bound for any static
coherent risk measure [Follmer and Schied, 2004]. We confirm that the same remains true in dynamic
settings, provided that the risk measure py is applied in a single time step, and conditional expectation
operators are applied in other stages.

Since both uy o E and E o uj are lower bounds for py, a natural question is whether one provides a
“better” approximation than the other. More precisely, the following are questions of interest:

1. For a given uy, is it true that (uy o E)(Y) < (Eopur)(Y), VY € Xy (or vice-versa)?

2. Is it true that o

nioE g = oy, JOr any distortion measure iy (or vice-versa)?
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Clearly, a positive answer to the first question would provide a very strong sense of tightness of approxi-
mation. However, as the following example shows, neither inequality holds in general.

Example 4.1. Consider a scenario tree with T = 2, || = 2, |6;| = 2, Vi € Qy, under uniform reference
measure. Introduce the following two random costs X,Y (specified as vectors in R'QQ‘):

Xlgg=M-1, X|<52=0
Y|<51 = Y|‘52 = [Mv O]T'

With M > 0, and p; = AVaRy, it can be checked that (uy o E)(X) = M > (Eo pus)(X) = A, while
(ur oE)(Y) = & < (Eour)(Y) = M.

Insofar as the second question is concerned, we note that it can always be answered for a specific
distortion measure Qj, by calculating the optimal scalings, so that it really makes sense when posed
for all risk measures. Unfortunately, our computational experiments show that counterexamples can be
constructed for this claim, as well, and that any one of the scaling factors can be better than the other.
However, it would be very interesting to characterize conditions (on the risk measures, the underlying
probability space, or otherwise) under which a particular compositional form always results in a smaller
scaling factor. The following result, which we prove in the Appendix, is a potential first step in this
direction, suggesting that the two lower bounds can result in equal tightness of approximation in certain
cases of interest.

Theorem 4.2. Consider a uniform scenario tree, i.e., || = N, |6;| = N, Vi € Q1, under a uniform
reference measure. Then, for any distortion risk measure uy, we have

U(1/N?) U(2/N?)
TN T/ ,...,\I/(l/N)}.

ol = ag = N - max
proE,py Eopr,pr

4.2.2 Time-Consistent Upper Bounds Derived From a Given puj.

In an analogous fashion to the previous discussion, one can ask what time-consistent upper bounds can
be derived from a distortion measure py. In particular, a natural supposition, analogous to the results
of Section 4.2.1, may be that p; o max and maxou; are upper bounds to pj, since max is the most
conservative risk mapping possible [Foéllmer and Schied, 2004]. The following result shows that, unlike in
the lower bound setting, only one of the two composed measures is a valid upper bound.

Proposition 4.2. Consider any distortion risk measure g, and the time-consistent, comonotonic mea-
sures py o max and maxopuy, where max denotes the conditional worst-case operator. Then:

(i) For any costY € Xa, ur(Y) < (puy omax)(Y).

(11) There exists a choice of uy and of random costs Y12 € Xa such that (maxopur)(Yy) < pr(Y1) and
(e opur)(V2) > 11 (¥2).

Proof. Proof. The proof for Part (i) entails checking the conditions of Corollary 3.4. Since it is rather
technical in nature, we leave it for Section 6.3 of the Appendix of the paper.

To show Part (ii), consider a uniform scenario tree with || = |%;| = 2, Vi € Qq, and let the
reference measure be P = [0.1, 0.5, 0.2, 0.3]7. For simplicity, assume the first two components of
[P correspond to nodes in the same child. Then, for the risk measure u; = AVaR;/, and the costs
Y =1[1,0,0,04]" and Yo = [0, 0, 0, 1]7, it can be checked that (Y1) = 0.44 > (maxopu;) (Y1) = 0.4,
but pr(Y2) = 0.3 < (maxopur)(Ye) = 1. O O
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The result in Proposition 4.2 also suggests that upper bounds to u; can be derived by composing
with more conservative mappings in later time periods. This intuition is sharpened in Section 4.3 and
our companion paper [Huang et al., 2012], which show that, when u; = AVaR., all upper bounds of the
form AVaR. o AVaR, must have v < ¢, and, in many practical settings, v = 0, i.e., worst-case as the
second-stage evaluation.

Since gy o max is an upper bound for a given uy, one can also turn to the question of comparing the
resulting scaling factor o, , omax With the factors of the previous section, namely a;IO]E’ up OF g, P
Our computational tests show that there is no general relation between these, even when the scenario
tree and the reference measure are uniform, a claim due to the following result, whose proof is included

in the paper’s Appendix.

Proposition 4.3. Consider a uniform scenario tree, i.e., |Q1| = N, |6;| = N, Vi€ Q1, under a uniform
reference measure. Then, for any distortion risk measure uy, we have

, max{ U(1/N) T(2/N) 1 }

MI,promax

W(1/N?)" W(2/N?)" " W(1/N)

*

Corroborating this result with the expression in Theorem 4.2 for O, o,y ODE Can readily find simple
examples of distortions ¥ such that either the latter or the former scaling factor is smaller.

An opinion often held among practitioners, and informally argued in the literature [Roorda and
Schumacher, 2007, 2008] is that composing a risk measure with itself would compound the losses, resulting
in a larger evaluation of risk, i.e., that uy o uy should over-bound py. For instance, if uy = AVaR — the
case considered in [Roorda and Schumacher, 2007] — the compositional measure corresponds to the so-
called “iterated tail-CTE”, which takes tail conditional expectations of quantities that are already tail
conditional expectations. We show by means of an example that this informal belief is actually not true,
even in the case of AVaR.

Example 4.2 (Iterated AVaR). Consider a uniform scenario tree (i.e., || = |€;| = 4, Vi e 1), and
a uniform reference measure. Furthermore, consider the risk measure iy = AVaRg),, and the following
two costs (specified as real vectors in R with components split in the four sub-trees of stage T = 2 ):

X
Y

%’2:17 X|<53:X|‘€4:[1v 1, =M, _M]T
o =Ylg=[1,1,1,-M" Y|g=-M-1.

@ =X
¢ =Y

When M > —1, it can be readily checked® that pp(X) =1> (uyous)(X) = %, while (pur o pr)(Y) =
1> p(Y) =254

The example shows that the iterated AVaR is neither an upper nor a lower bound to the static AVaR.
We direct the interested reader to our companion paper [Huang et al., 2012], which is focused specifically
on the AVaR case, and discusses the exact necessary and sufficient conditions for when one of the two
dominates the other.

4.2.3 The Tightest Possible Time-Consistent Upper-bound.

A natural time-consistent upper bound to a given py is the measure 17, obtained by the rectangularization
procedure in Proposition 3.4. It is the tightest possible coherent upper bound to gy, both in a uniform
and multiplicative-alpha sense. The main potential drawback in using g7 is that it may not satisfy
additional axiomatic properties, and it typically bears no interpretation in terms of p;. For instance,
starting with a comonotonic p; does not generally result in a comonotonic 17, and fi is usually not given

8For the case of discrete probability measures, one has to be careful in defining AVaRe, since it is no longer exactly
given by the conditional expectation of the loss exceeding VaR.. The precise concepts are presented and discussed at length
in [Rockafellar and Uryasev, 2002], which we follow here.
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by compositions of one-step risk measures that correspond to uy. Determining conditions that guarantee
the latter two properties is an interesting question, which we do not pursue further in the present paper.
However, we note that this is possible in at least one case of practical interest: when u; = AVaR., one
can show that ;17 always corresponds to a composition of one-step AVaR measures, at appropriate levels
— see our discussion in Section 4.3 and the detailed treatment in our companion paper [Huang et al.,
2012].

For completeness, we also note that the ordering relation between the scaling factor a;h 4, and scalings
ay,.,.u,; derived from lower-bounding measures i is generally not obvious: our computational experiments
suggest that either one could dominate the other. However, more can be said in particular settings, such

as the case of AVaR, which we discuss next.

4.3 The Case of AVaR.

In this section, we discuss how several of the results introduced throughout the paper can be considerably
simplified when the risk measures in question correspond to AVaR. In particular, analytical expressions
or polynomial-time procedures can be derived for computing o}, , and o}, . and for testing u 1(Y) <
uc(Y) or viceversa. Furthermore, one can consider designing the risk measures pc that provide the
tightest possible lower or upper approximations to a given ;.

The case is discussed at length in our companion paper [Huang et al., 2012], to which we direct the
interested reader for any technical details and proofs. Our goal for the remainder of the section is to
outline the main results, and briefly discuss the implications.

To start, we consider a uniform scenario tree under uniform reference measure (|;| = N, Vi € ul_'Q,
and P = %), and the following choice of risk measures:

pr = AVaR,, ee[1/NT, 1] (23a)
puc = AVaR,, o AVaR,, o--- o AVaR.,, et € [1/N, 1], Vte [1,T]. (23b)

1

~7 is identical

Note that the restriction on € and ¢; is without loss of generality, since AVaR. with ¢ <
to the worst-case risk measure, rendering the case ¢ € [0, ﬁ) analogous to € = ﬁ
In this setup, we can revisit our main results in Theorem 3.3, and provide the following expressions

for the tightest factors o, , , and aj, . for the case T' = 2.

Theorem 4.3. Consider a case T = 2, and the pair of risk measures in (23a) and (23b). Then,

Ney, 222 N <%
a;C » _ max{e €1, c 62}, 9 ]I, (24&)
’ max {ZL, f(N,¢,e2)}, €> 7
% 3
aHLMC = maX{l, @}, (24b)

*

LI HC remains true under

where f(N,e,e2) is an explicit analytical function. Furthermore, the result for o
an arbitrary scenario tree and reference measure P.

Note that the above result has several immediate implications. First, it readily allows checking
whether puc(Y) < pr(Y), VY (or vice-versa), since the latter conditions are equivalent to o, , <1
(respectively, « < 1). This leads to the following simple tests.

HCHET
Corollary 4.2. Consider the pair of risk measures in (23a) and (23b). Then,
1. the inequality po(Y) < pur(Y), VY € Xy holds if and only if

€169 = &, (25)
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2. the inequality pr(Y) < po(Y), VY € Xy holds if and only if
< (i ) d &< (iN—N+1> (26)
et Smax(.e) and ey <max( 4, Ne .

Furthermore, (25) remains true under an arbitrary scenario tree and reference measure P.

The latter result confirms the observation in Example 4.2 that the iterated AVaR, i.e., uyo = AVaR. o
AVaR., is generally neither an upper nor a lower bound to the inconsistent choice u; = AVaR.. By (26),
g1 = ¢ is always a feasible option, but one must take e9 < max(1/N, Ne — N + 1). In fact, as argued in
[Huang et al., 2012], most relevant choices of £ would actually lead to taking eo = 1/N, i.e., the worst-case
operator in the second stage.

The analytical results above can also be used to optimally design the compositional risk measure
pe that is the tightest approximation to a given pu; = AVaR.. More precisely, one can characterize the

choice of pc (i.e., levels slfg) that results in the smallest possible factor o, among all compositional

Bl
AVaR that are lower bounds for AVaR., and, similarly, the values 5}{]2?’ yielding the smallest possible

042”7 ue among all upper-bounding compositional AVaRs. The optimal choices satisfy several interesting
properties:

e for values of ¢ that are common in financial applications, i.e., satisfying e < 1/N [Jorion, 2006], the

optimal ay, , ,is obtained by taking ebB = 615]3 = /g, corresponding to an iterated AVaR measure.

*
12287 %e}

e used in practice would entail eJ® = 1/N, i.e., the worst-case scenario in the second stage.

e the optimal « requires choosing e\'B = ¢ and e¥® = max(1/N, Ne — N +1). Typical values of

* *

e the optimally designed o, , , is always smaller than o7, , , i.e., for every € and N, which suggests
that starting with an under-estimating AVaR,. results in tighter dynamically consistent approxima-
tions for AVaR.

The results discussed in Theorem 4.3 for ' = 2 can also be (partially) extended to a case of an
arbitrary T', which is summarized in the following claim.

Theorem 4.4. Consider an arbitrary T, and the pair of risk measures in (23a) and (23b). Then,

. . . . T2
1. There is an algorithm that computes o, ,, in time O(N*).
2.0, e = max{l,l_[:p%}, and the expression remains valid for an arbitrary scenario tree and
’ t=1°Ft

reference measure.

*

It is interesting to note that computing «j, , ., and hence also testing uc < py, remains as easy
for general T as for T = 2: an analytical expression is available, which actually holds in considerably
more general settings (arbitrary tree and reference measure). By contrast, computing ay..u, and testing
ur < pe now requires an algorithm that is polynomial only for a fixed T'. In light of our earlier result,
this suggests that, although starting with lower-bounds for p; may lead to a tighter approximating uc,
the gain does not come for free, as the computation of the resulting o is typically harder than that

for o HC KT
Kmr,pc”

In a multiperiod setting, the question of designing the tightest possible lower-bounding approximation
pc to a given py becomes harder — even computing one scaling factor aj, ., requires a polynomial-time
algorithm. By contrast, a complete characterization of the tightest upper-bound uc is available! Quite
surprisingly, it turns out that this choice exactly corresponds to the risk measure ji; introduced by the
construction in Proposition 3.4, by expanding the set of measures of ;. This is summarized in the
following result (for a proof, see [Huang et al., 2012]).
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Theorem 4.5. Consider the risk measure ur = AVaR., under an arbitrary reference measure P, and the
construction for the risk measure iy characterized in Proposition 3.4. Then, jif = AVaRj o AVaRso---0
AVaRr, where AVaRy = (f1;)ieq,_,, and

max, itP(Z)<1—¢

Vie 1, (i =
o {AVaR%., otherwise.

P(Z;)—1+e

Here, ~; = B TCAR and AVaR., is computed under the conditional probability induced by P, i.e.,
(P(%‘))
P(@Z) JEG; "

This result, which holds under any reference measure P, suggests that starting with u; = AVaR. and
expanding its set of representing probability measures until it becomes rectangular exactly results in a
risk measure [iy that is a composition of one-step AVaRs. These one-step AVaRs are computed under
levels «; that can be different at each node 4 in the tree, and under the natural conditional probability
induced by the reference measure P.

There are several immediate implications. First, since fiy is the tightest possible coherent upper-
bound for any given coherent p; (see Lemma 3.2), this implies that the tightest possible choice for a
compositional AVaR that upper bounds a given AVaR. is exactly AVaR.. In a different sense, this also
provides an instance when starting with a comonotonic (in fact, distortion) risk measure p; results in a
comonotonic (distortion) risk measure fi7, which furthermore belongs to the same class as ;.

Lastly, the theorem confirms that the best possible compositional AVaR that upper bounds AVaR.
does involve compositions with the worst-case operator, in any node ¢ that has probability at most 1 —e.
Furthermore, it suggests, in a precise sense, that the compositional AVaR gets increasingly conservative
as the risk measurement process proceeds in time: note that v; > v;, Vj € €;, and once node ¢ requires a
worst-case operator, so will any descendant of i, since P(%;) > P(%;), Vj € €;. In particular, all future
stages are more conservative than the measurement at time ¢ = 0 (i.e., the root node), which exactly
corresponds to the inconsistent evaluation p; = AVaR..

This last point may be of particular relevance when designing risk measures for use in dynamic
financial settings: it suggests that regulators looking for safe counterparts (i.e., upper-bounds) for a
static AVaR, should use risk measurement processes that are compositions of increasingly conservative
AVaR, measurements.

5 Conclusions.

In this paper, we examined two different paradigms for measuring risk in dynamic settings: a time-
consistent formulation, whereby the risk assessments are designed so as to avoid naive reversals of pref-
erences in the measurement process, and a time-inconsistent one, which is easier to specify and calibrate
from preference data. We discussed necessary and sufficient conditions under which one measurement
uniformly bounds the other from above or below, and provided a notion of the multiplicative tightness
with which one measure can be approximated by the other. We also showed that it is generally hard
to compute the scaling factors even for distortion risk measures, but provided concrete examples when
polynomial-time algorithms are possible.

6 Appendix

6.1 Submissives, Downward Monotone Closures and Anti-blocking Polyhedra.

In the current section, we discuss the important notion of the down monotone closure of a polytope,
also known as its anti-blocking polyhedron or its submissive. Our exposition mostly follows Chapter 9
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in Schrijver [2000], to which we direct the interested reader for a more comprehensive treatment and
references to related literature.
A polyhedron @ in R" is said to be down-monotone or of anti-blocking type if

Q#J, Q<R and0 <y <z and z € Q imply y € Q.
The following proposition summarizes a useful representation for down-monotone polyhedra.

Proposition 6.1. A polyhedron Q) in R™ is down-monotone if and only if there is a finite set T of vectors
{a;}icr and coefficients {b;}icr such that a; =0, a; # 0, b; >0, VieZ, and

Q={zeR" :alz<b,Viel}.

Proof. Proof. The proof follows closely from the definitions. We omit it here, and direct the interested
reader to [Schrijver, 2000]. O O

We remark that, whenever @) is full-dimensional, the right-hand sides b; in the representation above
can be taken to be strictly positive.

For any polyhedron Q < R", we can define its down-monotone closure, also known as its submissive,
by

sub(Q) & yeRﬁ:HweQ,x}y}. (27)

It can be easily checked that sub(Q) = (@ + R"”) n R, and that sub(Q) is full-dimensional if and only
if Q\{x e R" : x; = 0} # &, for all j € [1,n] (see Balas and Fischetti [1996]). A very interesting
characterization of the down-monotone closure of a polyhedron is also possible in terms of the polar of
the polyhedron P. However, since these results are not directly needed in our treatment here, we direct
the interested reader to [Balas and Fischetti, 1996, Balas et al., 2004] or Chapter 9 in [Schrijver, 2000)
for more details.

Down-monotone polyhedra have been used for studying the strength of relaxations in integer pro-
gramming and combinatorial optimization — see Goemans and Hall [1996] are references therein. The
following result is relevant for our purposes.

Theorem 6.1. Let P and () be two nonempty, downward monotone polytopes in R;. Then

1. P < aQ if and only if, for any nonnegative vector w € R™,

1
max{w’x : reQ} > —max{w’z : x e P}.
e
2. IfQ = {:c e RY aiT:B < b, Vi EI}, where a;, b; = 0, then

a® = max %, where d; < max alz.
1€l bz' xeP

Proof. Proof. Part (1) is essentially Lemma 1 in [Goemans and Hall, 1996]. Since the latter reference
omits a proof, we include one below, for completeness. “=" follows trivially. “<” Note first that a > 0.
Assume (by contradiction) that 3& € P\ a Q. Since @) is down-monotone, by Proposition 6.1, it can be
written as Q = {x € R? : al'z < b;, Vi € T}, where a;, b; > 0, Vi € Z. Since Z ¢ a @, there exists
j € I such that ajTic > ab;. Since & € P, we obtain the desired contradiction, imax{ajTac :x e P} >
éa;‘-riz > b; > max {aJT:L' s x e Q).

Part (2) is exactly Theorem 2 in [Goemans and Hall, 1996], to which we direct the reader for a
complete proof. O O

The above result shows that a* can be +00, which is the case if () has a strictly smaller dimension
than P (in this case, some b; are 0, while the corresponding d; are strictly positive [Schrijver, 2000]).
However, if @ is full-dimensional, o* is always finite.
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6.2 Submodular Functions and Polymatroids

In this section of the Appendix, we discuss the basic properties of Choquet capacities in light of their
connection with rank functions of polymatroids. The exposition is mainly based on volume B of [Schrijver,
2003] (Chapter 44) and Chapter 2 of [Fujishige, 2005] (Section 3.3), to which we direct the interested
reader for more information.

Consider a ground set © with |Q2] = n, and let ¢ be a set function on 2, that is, ¢ : F — R, where
F = 2% is the set of all subsets of Q. The function ¢ is called submodular if

c(T)+cU)zc(TnU)+c(TOU),VT,U € F.

The function c¢ is called nondecreasing if ¢(T) < ¢(U) whenever T < U < ). For a given set function ¢
on {2, we define the following two polyhedra

P E{xzeR¥ x>0 2(5) <cS),vSc}

(28)
EP.E{xze R 2(9) <e(S),vScQ}.

Note that P. is nonempty if and only if ¢ > 0, and that EP, is nonempty if and only if ¢(¢f) = 0.
These conditions are trivially satisfied in our exposition, since all set functions c of interest are Choquet
capacities, i.e., by Definition 2.1, they are are nondecreasing and normalized, ¢(&J) = 0, ¢(Q2) = 1.

If ¢ is a submodular function, then P, is called the polymatroid associated with c, and EP. the extended
polymatroid associated with c. Note that a nonempty extended polymatroid is always unbounded, while
a polymatroid is always a polytope, since 0 < z; < ¢({i}), Vi € Q. The next theorem provides a very
useful result concerning the set of tight constraints in the representation of EP..

Theorem 6.2 (Theorem 44.2 in [Schrijver, 2003].). Let ¢ be a submodular set function on 2 and let
x € EP.. Then the collection of sets U < Q satisfying x(U) = c(U) is closed under taking unions and
intersections.

Proof. Proof. Suppose (T") = ¢(T") and (U) = ¢(U). Then
c(T)+c(U)z2c(TnU)+c(TulU)zx(TnU)+x(TuU)=a(T)+xU) =c(T) + c(U),
hence equality most hold throughout, and (T "U) = ¢(T nU) and (T v U) = ¢(T v U). O O

A vector € EP,. (or in P,) is called a base vector of EP. (or of P.) if () = ¢(2). The set of all
base vectors is called the base polytope of ¢ and is denoted by B,

B.Z{zeR% . 2(S) <c(S), VS S Q,z() =c(Q) }.
The following theorem summarizes several simple properties of B., and its relation to £P. and P,.
Theorem 6.3. For any submodular function c satisfying ¢() = 0,
(i) B. is a face of EP., and is always a polytope.
(ii)) EP. = B. + R™, so that EP. and B, have the same extreme points.
(14i) P, = sub(B.).

(iv) For any A =0, Byxe = XA+ Be, EPxe = A - EP¢, and Pye = X - Pe.
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Proof. Proof. (i) The fact that B, is a face of EP, follows directly from the definitions. To see that B, is
a polytope, note that, for any ¢ € Q, z; < c¢({i}), and x; = (Q) — x(Q\ {i}) = ¢(Q) — c(Q\ {i}).

(ii) “2” Follows trivially. “<” Consider any y € £P.. Without loss of generality”?, assume y does
not lie in the strict interior of EP., and let T, < {SeF : y(S) = c(S)} denote the collection of
sets corresponding to tight constraints at y. If Q € Z,,, then y € B., and the proof would be complete.
Therefore, let us assume Q ¢ Z,,.

We claim that there exists s € {2 such that s ¢ S, VS € Z,. To see this, note that, if any s € Q
were contained in some S € Z,, then ) € Z,, since the set of tight constraints is closed under union
and intersection, by Theorem 6.2. We can then consider the vector y, = y + A1, for A > 0. It is
easy to test that, for small enough A, y, € £P.. By making A sufficiently large, at least one constraint
a set S containing s becomes tight, hence enlarging the set Z,. Repeating the argument for the point
Y, recursively, we eventually recover a vector y that belongs to B.. Since y = y + & for some £ > 0,
we have that y € B. + R™, which completes the proof of the first part of (ii). Since R™ is a cone, and
B is a polytope, the representation exactly corresponds to the Motzkin decomposition of an arbitrary
polyhedron, so that ext(EP.) = ext(B.).

(iii) Follows immediately from (ii), since P, = EP. "R = (B, + R™) n R’} ' sub(B,).

(iv) Since Ac is also submodular, the results immediately follow from the definitions. O O

A central result in the theory of submodularity, due to Edmonds, is that a linear function w’@ can

be optimized over an (extended) polymatroid by an extension of the greedy algorithm. The following
theorem summarizes the finding.

Theorem 6.4 (Theorem 44.3, Corollaries 44.3(a,b) in [Schrijver, 2003].). Let c : 2% — R be a submodular
set function with ¢(&) =0, and let w € R‘fl. Then the optimum solution of maxgeep, wlz is

x(s;) dl=Efc({31,...7si}) —c({s1,...,si-1}), i € [1,n],

where (S1,...,8n) is a permutation of the elements of Q such that w(s1) = w(sy) = ... w(sy). If ¢ is
also nondecreasing, then the above x is also an optimal solution to the problem maxgzep, wlz.

Proof. Proof The proof follows by duality arguments. We omit it here, and direct the interested reader
to [Schrijver, 2003]. O O

In view of this result, the following characterization for the extreme points of B., EP. and P, is
immediate.

Theorem 6.5. For a submodular set function c satisfying ¢(&) = 0, the extreme points of B. and EP.
are given by

To() = c({a(l), .. ,U(i)}) — c({a(l), coyo(t— 1)}), i€ [l,n],

where o € II(Q) is any permutation of the elements of Q. When ¢ is also nondecreasing, the extreme
points of P. are given by

c({o(1),...,00)}) —c({o(1),...,0(i—1)}) ifi<k,
Lo(i) = ;
A ifi>k,
where o € II(Q) is any permutation of the elements of Q, and k ranges over [0,n].

Proof. Proof. For a complete proof, we direct the reader to Theorem 3.22 in [Fujishige, 2005] and Section
44.6¢ in [Schrijver, 2003]. O

9Such a y can always be obtained by adding a certain & > 0, and if the resulting y + &€ € B. + R™, then also y € B. +R™.
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The previous result shows that there is a one-to-one correspondence between vertices of B, and
permutations of [1,n], and also that every inequality constraint in the characterization of B. is tight at
some x € B.. The following corollary also immediately follows from the above result.

Corollary 6.1. For any submodular ¢ such that c(&) = 0, B. < R} if and only if ¢ is nondecreasing.

Proof. Proof. “<” Immediate, since B, is the convex hull of its extreme points, which (by Theorem 6.5)
are nonnegative. “=" Consider any two sets T' < U < (2, and take a chain of sets 51 < Sy < -+~ < Sjin gy
such that S; = 7" and S| = U. By Theorem 6.5, there exists an extreme point  of B. having elements
c(Sit1) — ¢(Si), i € [1, JU\T| — 1] among some of its coordinates. Since & > 0, we immediately obtain
that ¢(U) — ¢(T) = 0. O

6.3 Technical Proofs.

This section contains several technical results from our analysis.

Theorem 6.6 (Proposition 3.6.). Consider a (two-period) consistent, comonotonic risk measure pc(Y) =
W1 0 po, where py @ Xy — Xi—1. Then,

1. There exists Qc < A2l such that po(Y) < maxgeo. ¢7Y, VY € Xs.

2. The set of measures Q¢ is given by

Qc = {qe Alfl EIpeA‘Qﬂ’ p(S) <ca(S),VSc }
qU) < pi-cou(U), YU S €, Vie
E{qu\Qzl :dpe B, : qlgieBi.%,Vieﬂl},

where ¢ : 21 S R and Cali : 214l > R, Vie Qy are Choguet capacities, and Be,, Be,. are the base

polytopes corresponding to c¢1 and cy);, respectively.

C2|i

3. The downward monotone closure of Q¢ is given by

p(S) <c1(9),VS < N, }
q(U) Pi'Cg\i(U),VUQ%-,Vz’eﬁl

60 € Pproys Vi€ O}

<
sub(Qc) & {qe ]RL{22| :dpe R‘fll, _

Q
— {qeRLQ‘ :3peP, i q
where P, and P, iy ATE the polymatroids associated with c1 and picy);, Tespectively.

Proof. Proof. The first claim is a standard result in the literature [Epstein and Schneider, 2003, Artzner
et al., 2007, Roorda et al., 2005], but we rederive it here together with the second claim, to keep the paper
self-contained. To this end, recall that Definition 2.3 implies any DC comonotonic risk measure pc can
be written as p11 o 2, where p1 : X — R is a first-period comonotonic risk measure, and s = (u%)icq,
where ¢ : RI%| — R, Vi e Q; are comonotonic risk measures. By the representation in Theorem 2.1, for
any X; € X and Xs € A5, we have

w1 (X1) = max pl X1, Q d:ef{peA‘Q1| : p(S) <ar(S), VS <}, (29a)
1

A&Xﬂ=ﬁgffxm Qo E {qe A% 1 q(U) < epy(U), YU € ;s qloye, =0} (29b)
2|4

In particular, Q1 = B, and, similarly, the projection of the polytope Qy|; on the coordinates ¢; is
exactly given by B, ,, for any i € {2;. From these relations, we have that puce(Y) = max 4e0 q"Y , where
Q has the following product form structure [Shapiro et al., 2009]:

Q= {qe Al 3pe 0, 34" € Q)i, Vi € y, such that q = Z piqi}. (30)

iEQl
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We now show that Q = Q¢, by double inclusion.

“c” Consider any q € Q, and let p € Q; and ¢’ € Qy); denote the corresponding vectors in representa-
tion (30). Since gy, = p; - q', Vi € Q1, and q' € Qy);, Vi € q, we trivially have that p and q satisfy the
equations defining Q¢.

“2” Consider any q € Qc¢, and let p be a corresponding measure satisfying the constraints for Q¢. It

can be readily checked that ¢ £ q% € Qyi (the only non-obvious constraint is 17¢* = 1, which must
hold, since, otherwise, we would have e, 4(6i) = Yieq, Pillq' < p(Q ) = 1, contradicting g € Al®2l).
Therefore, q = Zzte piq' € Q. For completeness, we also note that ¢* = fl € Qy; & qm € BCQ‘

i-co0 fOr any i € O (by part (iv) of Theorem 6.3 in Section 6.2 of the Appendix).

To prove the last claim, note that the two sets on the right being identical is immediate from the
definition of the polymatroid associated with a rank function ¢ (see Section 6.2). As such, denote by .4
the set on the right of the equation.

“c”. Consider an arbitrary @ € sub(Q¢). By definition, & > 0 and 3q € Q¢ such that ¢ > x. Let p
correspond to q in the representation for Q¢c. To argue that @ € A, we show that the pair (p7 ) satisfies
all the constraints defining .A. To this end, since p € B, (and B, < RL?”), we immediately have p € P, .
Furthermore, Vi €  and YU < %, we have x(U) < q(U) < p; - ¢p;(U), which proves that x € A.

“2”. Consider an arbitrary q € A, and let p be such that the pair (p, q) satisfies all the constraints
defining A. Since p € P., = sub(B,,), 3p € B., such that p > p > 0. Furthermore, g

¢ € Ppicy; =

sub(Bp,.c,;), for any i € Q. Therefore, 3q € R‘fﬂ such that qlg, € Bp,.c,; and gl > qlg, = 0, for any
i € . It can be readily checked that, by construction, the pair (p, q) satisfies all the constraints defining
Qc. Therefore, with g € Q¢ and @ = g > 0, we must have q € sub(Q¢). O O

Theorem 6.7 (Corollary 3.4.). For any pair of risk measures py and pc as introduced in Section 3.2,

1. The inequality pc(Y) < pr(Y), VY € Xy holds if and only if

€24
. -
Z [Cl (Vioisk) — a1 (Uizlsk)] - cols; (Us;) < c(Vien, Ui),
j=1
where (s1,. .., S|Q1‘) denotes any permutation of the elements of Oy, and U; € €; for any i € (1.

2. The inequality py(Y) < pc(Y), VY € Xy holds if and only if

C(UZ‘ESC&) < 01(5), VS < Q,
c(U)
c(U)+1—c(Q\% ul)

< ci(U), YU S 6, Vie Q.

Proof. Proof. The main idea proof behind the proof is to rewrite the results in Corollary 3.3 in terms of
the extreme points of Q¢ and Qj, and then to suitably simplify the resulting problems.
To prove part (1), by Corollary 3.3, we have that uc(Y) < pr(Y), VY € X3 holds if and only if

max ¢q(S) <¢(5), VS < Q.
geext(Qc)

To this end, consider any S < )9, and partition it as S = Ugeq, Uy, for some U, < €, VI € Q. The
expression for ext(Q¢) is given in Proposition 3.7, which we paste below for convenience

Uoy(i) = [Cl(uizlﬂ-(k)) - Cl(Uf;lllW(k))] : [Cz\z(%:lae(k)) - C2|z(UZ;110z(k))], Vie[1,|€]],Vle Q.

where 7 is any permutation of €21, and oy is any permutation of %7, for each £ € ;.
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Consider a fixed permutation 7 € £2;. We claim that the permutation o, yielding a maximal value of
q(Uy) is always of the form (o(Up), 0(4¢7\Uy)), i.e., it has the elements of Uy in the first |Uy| positions.
This is because the functions ¢y, are submodular, so that c(Uy) — ¢(&) = c¢(Up v A) — c(A), for any

A € 6,\U;. With this recognition, the optimal permutations oy always result in gq(Uy) = [cl (Ui_m(k))—

c1 (uf;llﬂ(k))] c)¢(Up). Maximizing over all permutations 7 € I1(£21) then leads to the first set of desired
conditions.

To prove part (2), one can use the expression from Corollary 3.3, and show that it reduces to the
desired condition. Instead, we find it more convenient to work with the results of Lemma 3.2 concerning
11, the tightest possible coherent upper bound to p;. To this end, first recall the representation for Q¢

in Proposition 3.6, pasted below for convenience:

(gl.GBp

i°C25)

Qc={q€A‘QQ|23p€Bc1:q Vz‘eﬂl}.

Lemma 3.2 implies that that p7(Y) < pc(Y) < @Ll < Be,,, Vi€ Q1, Vt € [1,2]. Here, @LI are the
one-step conditional risk measures yielding ji7, and are given by (10). This is equivalent to

maxq(uiescfi) <c(S), VS <y (%)
qeQr
max (W) < 02|i(U), YU C €, Vie ) ()

a<Qr:q(%)#0 q(E;)

We now argue that () and (#*) are equivalent to the conditions in part (2). Recalling the description
of Qr in Proposition 3.5, and the fact that any inequality g(S) < ¢(S) is tight at some set S (also see
Theorem 6.5), it can be seen that the maximum value of q(u;es%;) in (*) is exactly ¢(uies%;), which
yields the first desired condition. The proof that (xx) are equivalent to the second condition is the subject
of Proposition 6.2 below, which completes our proof. O O

Proposition 6.2. Consider any i € Q1 for some t € [1,T]. Then, for any U < €;, we have

qeQr:q(%;)#0 q(@z) C(.@U) +1— C(QT\.@i ) .@U)

Proof. Proof. Since the problem on the left is a fractional linear program, the maximum is reached at an
extreme point of Q; [Boyd and Vandenberghe, 2004]. Note also that the objective is increasing in any
¢;, j € Yu, and decreasing in any g¢s, s € Z;\%Zy.

Recalling the expression for ext(Qy) in Proposition 3.7,

do(i) = C(U};:la(k)) - C(UZ_:lla—(k))> Vie [17 ‘QT‘L

let v7 € ext(Q) be the extreme point corresponding to o € II(27). We claim that there exists an optimal
solution in (31) such that the permutation o is of the form

P = {o(1), ... o(|7u]) )
P2\%v = {o(|Q\%; v Dy| +1),...,0(|Qr])},
i.e., the elements of 2y appear in the first |Zy| positions of o, and the elements of 2;\%y appear in the
last positions of o.
The proof involves a repeated interchange argument. We first argue that there exists an optimal
permutation o such that the elements of 7 appear before those of Z;\ %y .
To see this, consider any permutation ¢ such that v is optimal in (31), yet there exist j € Zy and
s € P;\Py such that j = o(k), s = o(k), and k < k. In fact, let k be the smallest, and k the largest such
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index among all indices satisfying the property (this ensures that there are no indices from %; appearing
in o between k and k). Consider a new permutation 7 where the positions k and k are interchanged, and
let v™ denote the corresponding vertex of Q;. By submodularity of c,

vy & c(uﬁzla(é)) - c(uﬁglla(f)) > c(ué?:la(f)) - c(uf;lla(é)) & vy

By a similar argument, v7 < vZ. Furthermore, by construction, v = vZ, Vr € Z;\{J, s}, since no indices
from 2; appear between k and k. Therefore, we have v™(2y) = v?(2y), and v™(Z;\%v) < v°(2:\%v),
so that the objective at v™ is at least as large as at v?. Repeating the argument as often as needed, we
obtain an optimal permutation satisfying the desired property.

Having argued that (w.l.o.g.) o contains the elements of Z;; before those of Z,\%y;, a similar inter-
change argument can be done with respect to Q7\%;, to reach the conclusion (32). The final result of
the lemma exactly denotes the value corresponding to such a configuration (it follows immediately by
recognizing the telescoping sums appearing in the expressions). ] ]

Theorem 6.8 (Proposition 4.1.). Consider any distortion risk measure pur : Xo — R, and the time-
consistent, comonotonic measures urolE and Eouy, where E denotes the conditional expectation operator.
Then, for any cost' Y € Xs,

(1o E)(Y) < (V) and (Eopur)(Y) < p(Y).

Proof. Proof. First note that both measures are readily time-consistent and comonotonic, by Defini-
tion 2.3. The proof entails arguing that these choices correspond to Choquet capacities that verify the
first set of conditions in Corollary 3.4.

To this end, let ¥ denote the distortion function corresponding to the (distortion) measure uy, i.e.,
the Choquet capacity is given by ¢(S) = W(P(S)), VS < Qo, where ¥ : [0,1] — [0,1] is concave,
nondecreasing, with ¥(0) = 0, ¥(1) = 1. Recall from Section 4.2 that the (compositional) risk measure
wr o E (or, more correctly, u} o E) exactly corresponds to the following choice of Choquet capacities for
the first and second stage, respectively:

¢1:2% SR, ¢(S) = \IJ(ZIP’(%)), VSO

i€S
P(U; .
C2‘i : 2%7' - R, 62|Z(UZ) = ]P)Ecgi, VUZ < Cgi, Vie Ql.

Note that the same distortion function ¥ (yielding the risk measure puy) is applied in the first stage, but
to the appropriate conditional probability measure. The second stage is simply a standard conditional
expectation.

With p; & P(;) and u; < P(U;), the desired condition in Corollary 3.4 becomes:

1] g (S ) — (il . €21
Z (Z]:I po'(.]))p (Z]:I pU(])) ua(z) < W(Z uU@))} Voe H(Ql), vul c [O,pz], Vie Ql- (*)
i=1 o (i) i=1

To see this, one can use the decreasing marginal returns property of ¥, i.e.,

V(y2) = Ulyr) _ W(wz) — W(a)
Y2 — U1 b T2 — 1

Vo <xo, 1 <1, T2 < Y2, Y1 < Y2,

(Sim1 o) ¥ (ST po)) _ ¥ (Se w0)) ~ ¥ (S50} o))
Do (4) = Ug (1)
of () and telescoping the sum directly yields the desired result.

\I!
to argue that . Replacing this in the left-hand side
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In a similar fashion, the risk measure [E o u; corresponds to a choice of capacities

c1:2% >R, 1(S) = Y P(%), VS S
€S

P(U;)

P(%;)

02|Z2(gl—>R, CQ|1(UZ):\I/< ),VU@Q%’VZEQl

With the same notation p; & P(%;) and u; < P(U;), the conditions to test become:
€| Uei ||
Z pg(i)\IJ(M> < \I/(Z ui>, Voe H(Ql), Yu; € [0,])1‘], VieQ.
i=1 oli i=1

These are readily true, since {p;}icq, are convex combination coefficients, and ¥ is concave. O ]

Theorem 6.9 (Theorem 4.2.). Consider a uniform scenario tree, i.e., || = N, |6;| = N, Vi € Q,
under a uniform reference measure. Then, for any distortion risk measure uy, we have

U(1/N?) ¥(2/N?)
AT ,...,@(1/N)}.

a;mE,m = aﬁom,uz =N- max{

Before presenting the proof, we introduce two lemmas that outline several relevant properties for the
two expressions that need to be compared. To fix ideas, assume the distortion risk measure uy is given
by a concave distortion function W : [0,1] — [0,1]. To this end, by applying the result in Theorem 3.3,
our goal is to argue that

Dlies MAXU,C, 2ty > a a0
ot v (B(U)/B(%)) ieS MAXU,CE; BU,)B(7) det
= max max = max max =

geext(Qr) S ZiES P(CKZ) geext(Qr) S v (Zies P(%)) o nreBar
(33)

a*
Eour,ur

The following lemma discusses the factor ag,, , in the expression above.
Lemma 6.1. Consider the maximization problems yielding alﬁom,m in (33). We claim that:

1. For any given q € Qj, the inner maximization over S < Qp is reached at a singleton set S = {i}
for some i € Q.

2. The optimal q € Qy in the outer mazimization always corresponds to a permutation o € TI()
satisfying the property

{o(1),...,0(N)} =% (34)
for some i € Qq. That is, the first N elements in the permutation belong to the same subtree €;.

3. For any fized i € Q,

qUi) U (P(U;))
max max TU = Imax TU
geext(Qr) Ui ‘I’(PE#&) vist: W(PE%)
4. o = max;eq, MaXy,cy, %,
o T rE ()



Proof. Proof of Lemma 6.1. Claim (1) follows from the mediant inequality. To see this, for a fixed q,

q(U:)
B(U:)/B(%))
singleton {i} < arg max{v,/P(%6;) : ¢ € Q1 }.

To see Claim (2), first recall that the set ext(Qy) corresponds to all possible permutations of %,
(Proposition 3.7). By Claim (1), since the inner maximum always occurs at a singleton i*(q), the optimal
g* must be such that components in €j«(4+) are “as large as possible”. Due to the concavity of ¥, this
occurs when they appear in the first N positions in the permutation o (also see the proof of Corollary 3.4).

Claim (3) follows directly from Claim (2), by switching the order of the two maximizations, and using
the expression for the extreme points of Q; from Proposition 3.7.

Claim (4) follows from Claims (1) and (3), after switching the order of the maximizations over S and

let v; & maXy,cs, ( Vi € €1, and note that the maximum over S < {2 is achieved at any

q. ] O
The following lemma similarly summarizes properties of the second quantity of interest, O‘:uoIE, ur
Lemma 6.2. Consider the mazrimization problems yielding a;mE,uz in (33). We claim that:

1. For any given q € Qp, and any i € 1, the inner maximization over U; S 6; is reached at a singleton
set U; = {j} for some j € €.

2. Fiz S € Q1. The optimal q*(S) € Qr corresponds to a permutation o° € II(Qg) such that
Bj10e{1,...,]S|} such that o(j1), o(j2) € 6;, for some i € Q.
In other words, the first |S| elements in the permutation o belong to distinct subtrees E;.

3. Under the same setup as (2), the first |S| elements in o° € TI(Qy) correspond to the minimum-
probability in their respective subtree, i.e.,

Vke[L1,|S]], o%(k)eargminP;, where i is such that o(k) € E;.
JEG;

4. Let m(i) < arg min;eq, P;. Then

S B(Go) ¥ (Shos Prato) —¥ (i) Pro)

Pmoi
= Imax Imax (@)

S oell(5) ¥ (2 P(Gno))

*
QpyoE,ug

Proof. Proof. Claim (1) follows, again, by the mediant inequality. The logic is the same as in Claim (1)
of Lemma 6.1, and is omitted.

Claim (2) follows from Claim (1), and by recognizing again that g should have components “as large
as possible” in the singletons j that yield the maximums.

To see Claim (3), first note that Claim (2) allows restricting attention to permutations ¢ that have

elements from distinct subtrees in the first |S| components. For any such o(j), with j € {1,...,|S|},
i—1 i—1
o — Y (Poy) + 2hm1 Por) — Y (oko1 Porry)
i By j)/B(%1) ’

where o(j) € €;. By the concavity of ¥, the above expression is decreasing in P which implies that
o(7) always corresponds to the element in %; with smallest probability.

Claim (4) follows from the previous three. O ]

a(4)

With the previous results, we are now ready to provide a complete proof for our desired result, namely

. * _ *
that under a uniform reference measure, og,, . = g, -
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Proof. Proof of Theorem 4.2. By Lemma 6.1, ag, prpr = MaXieQ, MAXy,ce; 2 ) . For a uniform

reference measure, due to the symmetry, this expression becomes
U(1/N?) (2/N?)
U(1/N) " ¥(2/N)’

i 1—1
15| p , (St o) =¥ (S o))
i1 P(Cmoi))) [

¥ (2 P(Gmoin)

a*
Eopr,pur

=N-max{ ‘I’(l/N)}

Similarly, by Lemma 6.2, aMIOE u = MaXgco, MaAXsery(s) )

which becomes, under uniform reference measure,

U(1/N?) W(2/N?)
* =N - -m { , , U(1/N }
oL ax U(1/N)’ ¥(2/N) (1/N)
Comparing the two expressions above immediately yields the desired equality. ] ]

Theorem 6.10 (Proposition 4.2.). Consider any distortion risk measure py, and the time-consistent,
comonotonic measures pr o max and maxopuy, where max denotes the conditional worst-case operator.
Then:

(i) For any costY € Xa, ur(Y) < (g o max)(Y).

(11) There exists a choice of uy and of random costs Y12 € Xa such that (maxopur)(Yy) < pr(Y1) and
(max o) (Ya) > gy (V2).
Proof. Proof. Let the Choquet capacity yielding the distortion measure p; be of the form ¢(S) =

U(P(S)), V.S < Qy. We show Part (i) of the corollary by checking the conditions of Corollary 3.4. Recall
that the risk measure ,u} o max corresponds to a choice of capacities

Q—)
9 LR, (S (;P >v5g91

Coi 1 29 S R, o(U;) = 1, YU; # & S 6, Vie Q.

The conditions to check from Corollary 3.4 are

U(P(UiesE))) (Z]P’ ) VSO,
€S
v(PU))
V(PO)) + L — U(P(Q\G, u 1))

<1, VUCE, VieQ,.

The first inequality holds since P(uieg%i) =D s P(%;). The second inequality readily follows since W is
upper bounded by 1. O O

Theorem 6.11 (Proposition 4.3.). Consider a uniform scenario tree, i.e., || = N, |€;| = N, Vie Q,
under a uniform reference measure. Then, for any distortion risk measure uy, we have

* _ Y(1/N) ¥(2/N) 1
max{xy(l/m)’ U(2/N2)" 7 W(1/N) }

Br,promax

Proof. Proof. Recall that the risk measure pc = py o max (or, more correctly, ,u} o max) corresponds to
a choice of capacities

L2 LR, (S (ZIP’ ) (’]‘3.’) VSc O

Coi 1 29 > R, eo(U;) = 1, VU; # & S 6, Vie .
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*

By Theorem 3.3, the optimal scaling factor is given by o}, , . = maxgeg, maxscq, q(S)/\IJ(]l\%) Let us
switch the order of the maximizations, and fix an arbitrary S = U;eq,U; < (2. Using the representation
of Q¢ provided by Proposition 3.6, it can be readily seen that q(U;) = 0 if U; = &, and q(U;) < p,
otherwise, where p(5) < ¢1(5), VS < ;. Therefore,

gsa) =) = w(7).

*

which, when used in the expression for e

immediately leads to the desired result. O
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