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Abstract

We develop a framework for proving approximation limits of polynomial-size linear pro-
grams from lower bounds on the nonnegative ranks of suitably defined matrices. This frame-
work yields unconditional impossibility results that are applicable to any linear program as
opposed to only programs generated by hierarchies. Using our framework, we prove that

O(n1/2−ǫ)-approximations for CLIQUE require linear programs of size 2nΩ(ǫ)
. This lower bound

applies to linear programs using a certain encoding of CLIQUE as a linear optimization prob-
lem. Moreover, we establish a similar result for approximations of semidefinite programs by
linear programs.

Our main technical ingredient is a quantitative improvement of Razborov’s rectangle cor-
ruption lemma (1992) for the high error regime, which gives strong lower bounds on the non-
negative rank of shifts of the unique disjointness matrix.

1 Introduction

Linear programs (LPs) play a central role in the design of approximation algorithms, see, e.g.,
[Vazirani, 2001, Williamson and Shmoys, 2011, Lau et al., 2011]. Therefore, understanding the lim-
itations of LPs as tools for designing approximation algorithms is an important question.

The first generation of results studied the limitations of specific LPs by seeking to determine
their integrality gaps. The second generation of results, pioneered by Arora et al. [2002], studied
the limitations of structured LPs such as those generated by lift-and-project procedures or hierarchies
(e.g., Sherali and Adams [1990] and Lovász and Schrijver [1991]).

In this work, we start a third generation of results that apply to any LP for a given problem.
For example, our lower bounds address the following question: Is there a polynomial-size linear
programming relaxation LPn for CLIQUE that achieves a nΘ(1)-approximation for all graphs with
at most n vertices? We develop a framework for reducing questions of this kind to lower bounds on
the nonnegative rank1 of certain matrices associated to the problem, and then prove lower bounds
for the matrices corresponding to CLIQUE.

1The nonnegative rank of a matrix M, denoted rank+(M), is the minimum r such that M = TU where T and U are
nonnegative matrices with r columns and r rows, respectively.
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The matrices studied here are related to the unique disjointness problem, a variant of the fa-
mous disjointness problem from communication complexity (see, e.g., Chattopadhyay and Pitassi
[2010] for a survey). In the disjointness problem (DISJ), both Alice and Bob receive a subset of [n] :=
{1, . . . , n}. They have to determine whether the two subsets are disjoint. The unique disjointness
problem (UDISJ) is the promise version of the disjointness problem where the two subsets are
guaranteed to have at most one element in common. Denoting the binary encoding of the sets
of Alice and Bob by a, b ∈ {0, 1}n , respectively, this amounts to computing the Boolean function
UDISJ(a, b) := 1 − a⊺b on the set of pairs (a, b) ∈ {0, 1}n × {0, 1}n with a⊺b ∈ {0, 1}. Viewing it as
a partial 2n × 2n matrix, we call UDISJ the unique disjointness matrix.

It is known that the communication complexity of UDISJ is Ω(n) bits for deterministic, non-
deterministic and even randomized communication protocols [Kalyanasundaram and Schnitger,
1992, Razborov, 1992, Bar-Yossef et al., 2004]. One consequence of this is that the nonnegative rank
of any matrix obtained from UDISJ by filling arbitrarily the blank entries (for pairs (a, b) with
a⊺b > 1) and perhaps adding rows and/or columns is still 2Ω(n). Indeed: (i) the support of the
resulting matrix has Ω(n) nondeterministic communication complexity because it contains UDISJ,
(ii) for every matrix M, log rank+(M) is lower bounded by the nondeterministic communication
complexity of (the support matrix of) M [Yannakakis, 1991].

In a recent paper Fiorini et al. [2012] proved strong lower bounds on the size of LPs expressing
the traveling salesman problem (TSP), or more precisely on the size of extended formulations of the
TSP polytope (see Section 2 for definitions of concepts related to polyhedra, extended formulations
and slack matrices). Their proof works by embedding UDISJ in a slack matrix of the TSP polytope
of the complete graph on Θ(n2) vertices. This solved a question left open in Yannakakis [1991]. We
use a similar approach for approximate extended formulations. In case of CLIQUE, our approach
requires lower bounds on the nonnegative rank of partial matrices obtained from the UDISJ matrix
by adding a positive offset to all the entries.

1.1 Related Work

Our results are closely related to previous work in communication complexity for the (unique) dis-
jointness problem and related problems. Lower bounds of Ω(n) on the randomized, bounded error
communication complexity of disjointness were established in Kalyanasundaram and Schnitger
[1992]. In Razborov [1992] the distributional complexity of unique disjointness problem was an-
alyzed, which in particular implies the result of Kalyanasundaram and Schnitger [1992]. In that
famous paper, Razborov proved the following rectangle corruption lemma: for every large rectangle
within UDISJ, the number of 0-entries is proportional to the number of 1-entries.

The most recent proof that the randomized, bounded error communication complexity of DISJ
is Ω(n) is due to Bar-Yossef et al. [2004] and is based on information theoretic arguments. This
leads to a lower bound for randomized communication within a high-error regime, that is, when
the error probability is close to 1/2. Here we derive a strong generalization dealing with shifts for
approximate EFs and we recover the high-error regime bound.

There has been extensive work on LP and SDP hierarchies/relaxations and their limitations;
we will be only able to list a few here. In Charikar et al. [2009], strong lower bounds (of 2 − ǫ) on
the integrality gap for nǫ rounds of the Sherali-Adams hierarchy when applied to (natural relax-
ations of) VERTEX COVER, Max CUT, SPARSEST CUT have been been established via embeddings
into ℓ2; see also Charikar et al. [2010] for limits and tradeoffs in metric embeddings. For integral-
ity gaps of relaxations for the KNAPSACK problem see Karlin et al. [2011]. A nice overview of
the differences and similarities of the Sherali-Adams, the Lovász-Schrijver and the Lasserre hierar-
chies/relaxations can be found in Laurent [2003].

Similar to the level of a hierarchy, we have the notion of rank for the Lovász-Schrijver relax-
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ation and rank correspond to a similar complexity measure as the level. The rank is the minimum
number of application of the Lovász-Schrijver operator N until we obtain the integral hull of the
polytope under consideration. Rank lower bounds of n for Lovász-Schrijver relaxations of CLIQUE
have been obtained in Cook and Dash [2001]; a similar result for Sherali-Adams hierarchy can be
found in Laurent [2003].

In Singh and Talwar [2010] integrality gaps, after adding few rounds of Chvátal-Gomory cuts,
have been studied for problems including k-CSP, Max CUT, VERTEX COVER, and UNIQUE LABEL
COVER showing that in some cases (e.g., k-CSP) the gap can be significantly reduced whereas in
most other cases the gap remains high.

In the context of SDP relaxations, in particular formulations derived from the Lovász-Schrijver
N+ hierarchies (see Lovász and Schrijver [1991]) and the Lasserre hierarchies (see Lasserre [2002])
there has been significant work in recent years. For example, Arora et al. [2009] obtained a O(

√
log n)

upper bound on a suitable SDP relaxation of SPARSEST CUT. For lower bounds in terms of rank,
see e.g., Schoenebeck [2008] for the k-CSP in the Lasserre hierarchy or Schoenebeck et al. [2007] for
VERTEX COVER in the semidefinite Lovász-Schrijver hierarchy. Motivated by the Unique Games
Conjecture, several works studied upper and lower bounds for SDP hierarchy relaxations of Unique
Games (see for example, Guruswami and Sinop [2011], Barak et al. [2011, 2012b,a]).

Approximate extended formulations have been studiedbefore, for specific problems, e.g., KNAP-
SACK in Bienstock [2008], or as a general tool, see Vyve and Wolsey [2006].

For recent results on computing the nonnegative rank see, e.g., Arora et al. [2012].

1.2 Contribution

The contribution of the present paper is threefold.

(i) We develop a framework for proving lower bounds on the sizes of approximate EFs. Through
a generalization of Yannakakis’s factorization theorem, we characterize the minimum size of
a ρ-approximate extended formulations as the nonnegative rank of any slack matrix of a pair
of nested polyhedra. Thus we reduce the task of proving approximation limits for LPs to the
task of obtaining lower bounds on the nonnegative ranks of associated matrices. Typically,
these matrices have no zeros, which renders it impossible to use nondeterministic commu-
nication complexity. We emphasize the fact that the results obtained within our framework
are unconditional. In particular, they do not rely on P 6= NP.

(ii) We extend Razborov’s rectangle corruption lemma to deal with shifts of the UDISJ matrix.
As a consequence, we prove that the nonnegative rank of any matrix obtained from the UDISJ
matrix by adding a constant offset to every entry is still 2Ω(n). Moreover, we show that the

nonnegative rank is still 2Ω(n2ǫ) when the offset is at most n1/2−ǫ. To our knowledge, these
are the first strong lower bounds on the nonnegative rank of matrices that contain no zeros.
Our extension of Razborov’s lemma allow us to recover known lower bounds for DISJ in the
high-error regime of Bar-Yossef et al. [2004].

(iii) We obtain a strong hardness result for CLIQUE w.r.t. a natural linear encoding of the problem.
From the results described above, we prove that the size of every O(n1/2−ǫ)-approximate EF

for CLIQUE is 2Ω(n2ǫ). Finally, we observe that the same bounds hold for approximations of
SDPs by LPs. This suggests that SDP-based approximation algorithms can be significantly
stronger than LP-based approximation algorithms. The inapproximability of SDPs by LPs
has some interesting consequences. In particular we cannot expect to convert SDP-based ap-
proximation algorithms into LP-based ones by approximating the PSD-cone via linear pro-
gramming.
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We point out that our framework readily generalizes to SDPs by replacing nonnegative rank
with PSD rank (see Gouveia et al. [2013a] for a definition of the PSD rank). However, no strong
bound on PSD rank seems to be currently in sight.

Finally, we report that the results of this paper have inspired further research.

• Braverman and Moitra [2013] improved our lower bound on the nonnegative rank of shifted
UDISJ matrices and obtain super-polynomial lower bounds for shifts up to O(n1−ǫ), hence
matching the algorithmic hardness of approximation for CLIQUE. This was achieved by pi-
oneering information-theoretic methods for proving lower bounds on the nonnegative rank.
An alternative information theoretic approach for lower bounding the nonnegative rank which
simplifies and slightly improves the results in Braverman and Moitra [2013] has been pre-
sented in Braun and Pokutta [2013]. This last paper also establishes that matrices obtained
from shifts of UDISJ by removing rows and columns, or flipping entries, still have high non-
negative rank.

• Chan et al. [2013] obtain lower bounds on the size of LPs approximating Max CSP. In partic-
ular, they prove that approximating Max CUT (with nonnegative weights) with a constant
factor less than 2 requires nΩ(log n/ log log n). This solves a conjecture we stated in an earlier
version of this text.

• Rothvoß [2014] proved a 2Ω(n) lower bound on the nonnegative rank of the slack matrix of the
perfect matching polytope by a significant modification of Razborov’s lemma. This exciting
result essentially proves that there are is no small LP that can solve all weighted instance of
the matching problem on a n-vertex complete graph.

1.3 Outline

We begin in Section 2 by setting up our framework for studying approximate extended formula-
tions of combinatorial optimization problems. Then we extend Razborov’s rectangle corruption
lemma in Section 3 and use this to prove strong lower bounds on the nonnegative rank of shifts of
the UDISJ matrix. Finally, we draw consequences for CLIQUE and approximations of SDPs by LPs
in Section 4.

2 Framework for Approximation Limits of LPs

In this section we establish our framework for studying approximation limits of LPs. First, we
define in details the concepts of linear encodings and approximate extended formulations. Second,
we prove a factorization theorem for pairs of nested polyhedra reducing existential questions on
approximate extended formulations to the computation of nonnegative ranks of corresponding
slack matrices.

2.1 Preliminaries

A (convex) polyhedron is a set P ⊆ Rd that is the intersection of a finite collection of closed halfs-
paces. In other words, P is a polyhedron if and only if P is the set of solutions of a finite system of
linear inequalities and possibly equalities. (Note that every equality can be represented by a pair
of inequalities.) Equivalently, a set P ⊆ Rd is a polyhedron if and only if P is the Minkowski sum
of the convex hull conv (V) of a finite set V of points and the conical hull cone (R) of a finite set R
of vectors, that is, P = conv (V) + cone (R).

Let P ⊆ Rd be a polyhedron. The dimension of P is the dimension of its affine hull aff(P). A
face of P is a subset F := {x ∈ P | w⊺x = δ} such that P satisfies the inequality w⊺x 6 δ. Note
that face F is again a polyhedron. A vertex is a face of dimension 0, i.e., a point. A facet is a face of
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dimension one less than P. The inequality w⊺x 6 δ is called facet-defining if the face F it defines is
a facet. The recession cone rec (P) of P is the set of directions v ∈ Rd such that, for a point p in P, all
points p + λv where λ > 0 belong to P. The recession cone of P does not depend on the base point
p, and is again a polyhedron (even more, it is a polyhedral cone). The elements of the recession
cone are sometimes called rays.

A (convex) polytope P ⊆ Rd is a bounded polyhedron. Equivalently, P is a polytope if and only
if P is the convex hull conv (V) of a finite set V of points. Let P ⊆ Rd be a polytope. Every (finite
or infinite) set V such that P = conv (V) contains all the vertices of P. Letting vert(P) denote the
vertex set of P, then we have P = conv (vert(P)). Every (finite) system describing P contains all the
facet-defining inequalities of P, up to scaling by positive numbers and adding equalities satisfied
by all points of P. Conversely, a linear description of P can be obtained by picking one defining
inequality per facet and adding a system of equalities describing aff(P). A 0/1-polytope in Rd is
simply the convex hull of a subset of {0, 1}d.

For more about convex polytopes and polyhedra, see the standard reference Ziegler [1995].

2.2 Linear Encodings of Problems and Approximate EFs

A linear encoding of a (combinatorial optimization) problem is a pair (L,O) where L ⊆ {0, 1}∗ is
the set of feasible solutions to the problem and O ⊆ R∗ is the set of admissible objective functions. An
instance of the linear encoding is a pair (d, w) where d is a positive integer and w ∈ O∩Rd. Solving
the instance (d, w) means finding x ∈ L ∩ {0, 1}d such that w⊺x is either maximum or minimum,
according to the type of problem under consideration.

Example 1 (Linear encoding of metric TSP). In the natural linear encoding of the metric traveling
salesman problem (metric TSP), the feasible solutions x ∈ L are the characteristic vectors (or inci-
dence vectors) of tours of the complete graph over [n] for some n > 3, and the admissible objective
functions w ∈ O are all nonnegative vectors w = (wij) such that wik 6 wij + wjk for all distinct i,

j and k in [n]. All vectors are encoded in Rd, where d = (n
2). By considering all possible n > 3,

we obtain the pair (L,O) corresponding to metric TSP. (Recall that metric TSP is a minimization
problem.)

For every fixed dimension d, a linear encoding (L,O) naturally defines a pair of nested convex
sets P ⊆ Q where

P := conv
(

{x ∈ {0, 1}d | x ∈ L}
)

, and

Q := {x ∈ R
d | ∀w ∈ O ∩ R

d : w⊺x 6 max{w⊺z | z ∈ P}}

if the goal is to maximize and Q := {x ∈ Rd | ∀w ∈ O ∩ Rd : w⊺x > min{w⊺z | z ∈ P}} if
the goal is to minimize. Intuitively, the vertices of P encode the feasible solutions of the problem
under consideration and the defining inequalities of Q encode the admissible objective functions.
Notice that P is always a 0/1-polytope but Q might be unbounded and, in some pathological cases,
nonpolyhedral. Below, we will mostly consider the case where Q is polyhedral, that is, defined by
a finite number of “interesting” inequalities.

Given a linear encoding (L,O) of a maximization problem, and ρ > 1, a ρ-approximate extended
formulation (EF) is an extended formulation Ex + Fy = g, y > 0 with (x, y) ∈ Rd+r such that

max{w⊺x | Ex + Fy = g, y > 0} > max{w⊺x | x ∈ P} for all w ∈ R
d and

max{w⊺x | Ex + Fy = g, y > 0} 6 ρ max{w⊺x | x ∈ P} for all w ∈ O ∩ R
d.
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Letting K := {x ∈ Rd | ∃y ∈ Rr : Ex + Fy = g, y > 0}, we see that this is equivalent to
P ⊆ K ⊆ ρQ. For a minimization problem, we require

min{w⊺x | Ex + Fy = g, y > 0} 6 min{w⊺x | x ∈ P} for all w ∈ R
d and

min{w⊺x | Ex + Fy = g, y > 0} > ρ−1 min{w⊺x | x ∈ P} for all w ∈ O ∩ R
d.

This is equivalent to P ⊆ K ⊆ ρ−1Q.

Example 2 (Approximate extended formulation of metric TSP). We return to Example 1. It is
known that the Held-Karp relaxation K of the metric TSP has integrality gap at most 3/2 (see
Held and Karp [1970], Wolsey [1980]). In geometric terms, this means that P ⊆ K ⊆ 2/3 · Q.
Although K is defined by an exponential number of inequalities, it is known that it can be refor-
mulated with a polynomial number of constraints by adding a polynomial number of variables,
see, e.g., Carr et al. [2009]. That is, the Held-Karp relaxation K has a polynomial-size extended
formulation. Thus, the pair (L,O) for the metric TSP has a polynomial-size 3/2-approximate EF.

We require the following faithfulness condition: every instance of the problem can be mapped to
an instance of the linear encoding in such a way that feasible solutions to an instance of the problem
can be converted in polynomial time to feasible solutions to the corresponding instance of the linear
encoding without deteriorating their objective function values, and vice-versa. Roughly speaking,
we ask that each instance of the problem can be encoded as an instance of the linear encoding.

For linear encoding of graph problems, such as the maximum clique problem (CLIQUE), the set
of feasible solutions is not allowed to depend on the input graph, which therefore must be encoded
solely in the objective function. The set of feasible solutions is only allowed to depend on the size
n of the ground set.

Example 3 (Max k-SAT). Consider the maximum k-SAT problem (Max k-SAT), where k is constant.
Letting u1, . . . , un denote the variables of a Max k-SAT instance, we encode the problem in di-
mension d = Θ(nk). For each nonempty clause C of size at most k, we introduce a variable xC.
Collectively, these variables define a point x ∈ Rd. Given a truth assignment, we set xC to 1 if C is
satisfied and otherwise we set xC to 0. Letting n vary, this defines a language L ⊆ {0, 1}∗ . We let
O := {0, 1}∗.

The pair (L,O) defines a linear encoding of Max k-SAT because each instance of Max k-SAT can
be encoded as an instance of (L,O). More precisely, to any given set of clauses over n variables,
we can associate a dimension d = Θ(nk) and weight vector w ∈ {0, 1}d such that maximizing

∑ wCxC for x ∈ L ∩ {0, 1}d corresponds to finding a truth assignment that maximizes the number
of satisfied clauses.

Finally, we remark that the EF defined by the inequalities 0 6 xC 6 1 and xC 6 ∑ui∈C x{ui} +
∑ūi∈C(1− x{ui}) for all clauses C is a polynomial-size 4/3-approximate EF for Max k-SAT, as follows
from Goemans and Williamson [1994].

2.3 Factorization Theorem for Pairs of Nested Polyhedra

Let P and Q be polyhedra with P ⊆ Q ⊆ Rd. An extended formulation (EF) of the pair P, Q is a
system Ex + Fy = g, y > 0 defining a polyhedron K := {x ∈ Rd | Ex + Fy = g, y > 0} such that
P ⊆ K ⊆ Q. We denote by xc(P, Q) the minimum size of an EF of the pair P, Q.

Now consider an inner description P := conv ({v1, . . . , vn}) + cone ({r1, . . . , rk}) of P and an
outer description Q := {x ∈ Rd | Ax 6 b} of Q, where the system Ax 6 b consists of m inequalities:
A1x 6 b1, . . . , Amx 6 bm. The slack matrix of the pair P, Q w.r.t. these inner and outer descriptions is
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the m × (n + k) matrix SP,Q = [ SP,Q
vertex SP,Q

ray ] given by block decomposition into a vertex and ray part:

SP,Q
vertex(i, j) := bi − Aivj, i ∈ [m], j ∈ [n],

SP,Q
ray (i, j) := −Airj, i ∈ [m], j ∈ [k].

A rank-r nonnegative factorization of an m × n matrix M is a decomposition of M as a product
M = TU of nonnegative matrices T and U of sizes m × r and r × n, respectively. The nonnegative
rank rank+(M) of M is the minimum rank r of nonnegative factorizations of M. In case M is zero,
we let rank+(M) = 0. It is quite useful to notice that the nonnegative rank of M is also the minimum
number of nonnegative rank-1 matrices whose sum is M. From this, we see immediately that the
nonnegative rank of M is at least the nonnegative rank of any of its submatrices.

Our first result gives an essentially exact characterization of xc(P, Q) in terms of the nonneg-
ative rank of the slack matrix of the pair P, Q. It states that the minimum extension complexity
xc(P, Q) of a polyhedron sandwiched between P and Q equals the nonnegative rank of SP,Q (minus
1, in some cases). The result readily generalizes Yannakakis’s factorization theorem [Yannakakis,
1991], which concerns the case P = Q. The idea of considering a pair P, Q as we do here first
appeared in Pashkovich [2012] and similar ideas appeared earlier in Gillis and Glineur [2012].

Theorem 1. With the above notations, we have rank+(SP,Q) − 1 6 xc(P, Q) 6 rank+(SP,Q) for every
slack matrix of the pair P, Q. If the affine hull of P is not contained in Q and rec (Q) is not full-dimensional,
we have xc(P, Q) = rank+(SP,Q). In particular, this holds when P and Q are polytopes of dimension at
least 1.

Proof. First, we deal with degenerate cases. Observe that xc(P, Q) = 0 if and only if there exists
an affine subspace containing P and contained in Q, that is, if and only if the affine hull of P is
contained in Q. In this case, we have rank+(SP,Q) ∈ {0, 1}, so the theorem holds.

Now assume that the affine hull of P is not contained in Q. Then, rank+(SP,Q) > 1 because
having rank+(SP,Q) = 0 means either that SP,Q is empty, that is, m = 0 or n + k = 0, or that
SP,Q is the zero matrix. In all cases, this contradicts our assumption that the affine hull of P is not
contained in Q.

Next, let SP,Q = TU be any rank-r nonnegative factorization of SP,Q with r = rank+(SP,Q) > 1.

This factorization decomposes into blocks: SP,Q
vertex = TUvertex and SP,Q

ray = TUray. Consider the
system

Ax + Ty = b, y > 0 (1)

and the corresponding polyhedron K := {x ∈ Rd | Ax + Ty = b, y > 0}.
We verify now that P ⊆ K ⊆ Q. The inclusion K ⊆ Q simply follows from Ty > 0. For the

inclusion P ⊆ K, pick a vertex vj of P and observe that (x, y) = (vj, U
j
vertex) satisfies (1), where

U
j
vertex denotes the jth column of Uvertex, because Avj + TU

j
vertex = Avj + b − Avj = b and U j > 0.

Similarly, for every ray rj we obtain a ray (rj, U
j
ray) of K as Arj + TU

j
ray = 0 and U

j
ray > 0.

Thus we obtain that (1) is a size-r EF of the pair P, Q. Therefore, xc(P, Q) 6 rank+(SP,Q).
Finally, suppose that the system

Ex + Fy = g, y > 0 (2)

defines a size-r EF of the pair P, Q. Let L ⊆ Rd+r denote the polyhedron defined by (2), and let
K ⊆ Rd denote the orthogonal projection of L into x-space.

Since P ⊆ K, for each point vj, there exists wj ∈ Rr
+ such that (vj, wj) ∈ L. Similarly, for each

ray rj there exists a zj ∈ Rr
+ with (rj, zj) a ray of L. Let W be the matrix with columns wj, and Z be

the matrix with columns zj.
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Since K ⊆ Q, by Farkas’s lemma, Ax 6 b can be derived from (2), i.e., there exists a matrix T

and a vector c > 0 with A = TE, b = Tg + c and TF > 0. This gives the factorizations SP,Q
vertex =

(TF)W + c1
⊺ and SP,Q

ray = (TF)Z, resulting in the rank-(r + 1) nonnegative factorization SP,Q =

[ TF c ] ·
[

W Z
1
⊺

0
⊺

]
. Taking r = xc(P, Q), we find rank+(SP,Q) 6 xc(P, Q) + 1.

Finally, when rec (Q) is not full-dimensional, then c above can be chosen to be 0. This simplifies
the factorization, and yields the sharper inequality rank+(SP,Q) 6 xc(P, Q).

Let P, Q be as above and ρ > 1. Then ρQ = {x ∈ Rd | Ax 6 ρb} and the slack matrix of the
pair P, ρQ is related to the slack matrix of the pair P, Q in the following way:

S
P,ρQ
vertex(i, j) = ρbi − Aivj = (ρ − 1)bi + bi − Aivj = SP,Q

ij + (ρ − 1)bi,

S
P,ρQ
ray (i, j) = SP,Q

ij .

Theorem 1 directly yields the following result.

Theorem 2. Consider a maximization problem with a linear encoding. Let P, Q ⊆ Rd be the pair of
polyhedra associated with the linear encoding, and let ρ > 1. Consider any slack matrix SP,Q for the pair
P, Q and the corresponding slack matrix SP,ρQ for the pair P, ρQ. Then the minimum size of a ρ-approximate
EF of the problem, w.r.t. the considered linear encoding, is rank+(SP,ρQ) + Θ(1), where the constant is 0 or

1. For a minimization problem, the minimum size of a ρ-approximate EF is rank+(SP,ρ−1Q) + Θ(1).

Fixing ρ > 1, Theorem 2 characterizes the minimum number of inequalities in any LP providing
a ρ-approximation for the problem under consideration. We point out that the theorem directly
generalizes to SDPs, by replacing nonnegative rank by PSD rank [Gouveia et al., 2013a]. Here, we
focus on LPs and nonnegative rank. As a matter of fact, strong lower bounds on the PSD rank seem
to be currently lacking.

2.4 A Problem with no Polynomial-Size Approximate EF

We conclude this section with an example showing the necessity to restrict the set of admissible
objective functions rather than allowing every w ∈ R∗ (that is P = Q).

Let Kn = (Vn, En) denote the n-vertex complete graph. For a set X of vertices of Kn, we let δ(X)
denote the set of edges of Kn with one endpoint in X and the other in its complement X̄. This set
δ(X) is known as the cut defined by X. For a subset F of edges of Kn, we let χF ∈ REn denote the
characteristic vector (or incidence vector) of F, with χF

e = 1 if e ∈ F and χF
e = 0 otherwise. The cut

polytope CUT(n) is defined as the convex hull of the characteristic vectors of all cuts in the complete
graph Kn = (Vn, En). That is,

CUT(n) := conv
(

{χδ(X) ∈ R
En | X ⊆ Vn}

)

.

A related object is the cut cone, defined as the cone generated by the cut-vectors χδ(X):

CUT-CONE(n) := cone
(

{χδ(X) ∈ R
En | X ⊆ Vn}

)

.

Consider the maximum cut problem (Max CUT) with arbitrary weights, and its usual linear
encoding. With this encoding we have P = Q = CUT(n). Our next result states that this problem
has no ρ-approximate EF, whatever ρ > 1 is. Intuitively, this phenomenon stems from the fact that,
because 0 is a vertex of the cut polytope, every approximate EF necessarily ‘captures’ all facets of
the cut polytope incident to 0 (see Figure 1). These facets define the cut cone, which turns out
to have high extension complexity. Although this follows rather easily from ideas of Fiorini et al.
[2012], we include a proof here for completeness.
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1.5 CUT(3)

00

CUT(3)

Figure 1: CUT(3) and a dilate ρ CUT(3) for ρ = 1.5.

Proposition 3. For every ρ > 1, every ρ-approximate EF of the Max CUT problem with arbitrary weights
has size 2Ω(n). More precisely, disregarding the value of ρ > 1, we have xc(CUT(n), ρ CUT(n)) = 2Ω(n).

Proof. Let Ex + Fy = g, y > 0 denote a minimum size ρ-approximate EF of CUT(n). We claim that

Ex + Fy − λg = 0, y > 0, λ > 0 (3)

is an EF of the cut cone. Let K be the polyhedron obtained by projecting the set of solutions of
(3) into x-space. Clearly, K is a cone containing all the cut-vectors χδ(X), from which we get that
CUT-CONE(n) ⊆ K. Now take any point (x, y, λ) satisfying (3). If λ = 0 then necessarily x = 0

because Ex + Fy = 0, y > 0 defines the recession cone of a polyhedron that projects into ρ CUT(n),
which is bounded. In this case we have x = 0 ∈ CUT-CONE(n). Assume that λ > 0. Then
Eλ−1x + Fλ−1y = g and λ−1y > 0 which implies that λ−1x is in ρ CUT(n). Thus ρ−1λ−1x is in
CUT(n) and x is thus a positive combination of cut-vectors, hence x ∈ CUT-CONE(n). This yields
K ⊆ CUT-CONE(n). In conclusion, K = CUT-CONE(n) and (3) is an EF of the cut cone. The size
of this EF is at most r + 1, where r denotes the size of the given ρ-approximate EF of CUT(n). Thus
xc(CUT-CONE(n)) 6 r + 1.

By using the correlation mapping (see [Laurent and Deza, 1997, p. 55]), the cut cone has the
same extension complexity as its corresponding correlation cone, defined as

COR-CONE(n − 1) := cone

({(
b0

b

)(
b0

b

)⊺ ∣∣
∣
∣

b0 ∈ {0, 1}, b ∈ {0, 1}n−2

})

.

We claim that the unique disjointness matrix on [n − 2] can be embedded in a slack matrix of
COR-CONE(n − 1). To prove this, consider the (n − 1) × (n − 1) rank-1 positive semidefinite
matrices

Ta :=

(−1

a

)(−1

a

)⊺

and Ub :=

(
1

b

)(
1

b

)⊺

(4)

where a, b ∈ {0, 1}n−2. The Frobenius inner product 〈Ta, z〉 > 0 of Ta with any correlation matrix

z = (b0
b )(

b0
b )

⊺
is nonnegative because both matrices are positive semidefinite. Thus 〈Ta, z〉 > 0 is

valid for all points z ∈ COR-CONE(n − 1), for all a ∈ {0, 1}n−2. Moreover, 〈Ta, Ub〉 = (1 − a⊺b)2

for all a, b ∈ {0, 1}n−2 and thus 〈Ta, Ub〉 = UDISJ(a, b) provided a⊺b ∈ {0, 1}.
From what precedes, the slack of correlation matrix Ub with respect to the valid inequality

〈Ta, z〉 > 0 is UDISJ(a, b) provided a⊺b ∈ {0, 1}. Therefore, COR-CONE(n − 1) has a slack matrix
that contains UDISJ on [n − 2]. Because the nonnegative rank of any matrix containing UDISJ is
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2Ω(n) (this follows from [Razborov, 1992], see [Fiorini et al., 2012, Theorem 1]), we conclude that
the nonnegative rank of some slack matrix of COR-CONE(n− 1) is 2Ω(n). From Theorem 1 applied
to P = Q = COR-CONE(n − 1), it follows that xc(COR-CONE(n − 1)) = 2Ω(n). Thus we get

r + 1 > xc(CUT-CONE(n)) = xc(COR-CONE(n − 1)) = 2Ω(n),

from which we obtain r = 2Ω(n). The result then follows immediately.

3 Extension of Razborov’s Lemma and Shifts of Unique Disjointness

In the first subsection we generalize Razborov’s famous lemma on the disjointness problem (see
Razborov [1992] or Kushilevitz and Nisan [1997, Lemma 4.49] for the original version). In the next
subsection we apply it to shift the UDISJ matrix without significantly decreasing its nonnegative
rank, which will be used in later sections to obtain lower bounds on approximate extended formu-
lations.

The main improvements to Razborov’s lemma are threefold: (i) the dependence on the error
parameter ǫ is made explicit; (ii) better analytical estimations are employed to improve overall
strength of the statement; (iii) probabilities are generalized to expected values to homogenize the
proof and yield a stronger lemma.

3.1 Extension of Razborov’s Rectangle Corruption Lemma

Suppose that n ≡ 3 (mod 4) and let

ℓ :=
n + 1

4
,

A := {(a, b) ∈ 2[n] × 2[n] | |a| = |b| = ℓ, |a ∩ b| = 0},

B := {(a, b) ∈ 2[n] × 2[n] | |a| = |b| = ℓ, |a ∩ b| = 1}.

Thus A is the set of disjoint pairs of ℓ-subsets and B is the set of barely intersecting pairs of ℓ-subsets.
Furthermore, let µ be any distribution on pairs (a, b) of subsets of [n] that is supported on A ∪ B
and uniform when conditioned to either A or B.

Lemma 4. Let n, ℓ, A, B and µ be as above. For every nonnegative functions f and g defined on 2[n] × 2[n]

we introduce a random variable X := f (a)g(b). Then for every 0 < ǫ < 1:

(1 − ǫ)E [X | A]− E [X | B] 6 ‖X ↾ (A ∪ B)‖∞ 2−
ǫ2

16 ln 2 ℓ+O(log ℓ), (5)

where the constant in the O(log ℓ) is absolute, and X ↾ (A ∪ B) denotes the restriction of X to A ∪ B.

Let us write IC for the indicator of an event C. In case f and g are both binary, X is the indicator
of a rectangle R, that is X = IR, and (5) becomes

(1 − ǫ)P [R | A]− P [R | B] 6 2−
ǫ2

16 ln 2 ℓ+O(log ℓ),

which is a strengthened version of Razborov’s original lemma.
For concreteness, the reader might find it helpful to imagine that X is the indicator of a rect-

angle in the proof below. Our proof is inspired by the version in Kushilevitz and Nisan [1997,
Lemma 4.49] and we adopt similar notations.
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Proof of Lemma 4. The proof is in four main steps.

Step 1: Expressing E [X | A] and E [X | B] in an alternative framework. The statement of the lemma
does not depend on the actual probabilities of A and B, hence for convenience, we fix them as

P [A] =
3

4
and P [B] =

1

4
.

This brings the advantage of the following alternative description of µ.
Let T = (T1, T2, {i}) be a uniformly chosen partition of [n] into two subsets T1, T2 with 2ℓ− 1

elements each and one singleton {i}. Given T we choose a as a uniform ℓ-subset of T1 ∪ {i} =
[n] \T2 and b as a uniform ℓ-subset of T2 ∪{i} = [n] \T1, independently. This defines a distribution
µ that is supported on A ∪ B, uniform when conditioned to either A or B and satisfies P [[] T]B =
P [[] T]i ∈ a, i ∈ b = P [[] T]i ∈ a P [[] T]i ∈ b = (1/2)2 = 1/4 and thus P [[] T]A = 1 − 1/4 = 3/4.
In particular, P [A] = 3/4 and P [B] = 1/4, as required.

We begin by rewriting E [X | B] and then E [X | A] in terms of the following functions of T:

Row0(T) := E [ f (a) | T, i /∈ a] , Row1(T) := E [ f (a) | T, i ∈ a] ,

Col0(T) := E [g(b) | T, i /∈ b] , Col1(T) := E [g(b) | T, i ∈ b] .

We note the following nice interpretation of Row0(T) + Row1(T) and Col0(T) + Col1(T), that
we will use at the end of the proof:

E [ f (a) | T] = E [ f (a) | T, i ∈ a]
︸ ︷︷ ︸

Row1(T)

·P [i ∈ a | T]
︸ ︷︷ ︸

1/2

+E [ f (a) | T, i /∈ a]
︸ ︷︷ ︸

Row0(T)

·P [i /∈ a | T]
︸ ︷︷ ︸

1/2

=
Row0(T) + Row1(T)

2
,

(6)

E [g(b) | T] =
Col0(T) + Col1(T)

2
.

Note that: (i) the distribution of (a, b) conditioned on a given T is a product distribution (this
local independence property is the main reason why we reinterpret the distribution µ); (ii) the
marginal distributions of a conditioned on (T, i ∈ a, i ∈ b) and (T, i ∈ a) are the same (and similarly
for b, we can remove the condition i ∈ a). From these facts, we get

E [X | B] = E [ f (a)g(b) | i ∈ a, i ∈ b]

= E [E [ f (a)g(b) | T, i ∈ a, i ∈ b]]

= E [E [ f (a) | T, i ∈ a, i ∈ b]E [g(b) | T, i ∈ a, i ∈ b]]

= E [E [ f (a) | T, i ∈ a] E [g(b) | T, i ∈ b]]

= E [Row1(T)Col1(T)] .

(7)

By similar arguments, we find

E [X | A] =
1

3
E [ f (a)g(b) | i /∈ a, i /∈ b] +

1

3
E [ f (a)g(b) | i ∈ a, i /∈ b] +

1

3
E [ f (a)g(b) | i /∈ a, i ∈ b]

=
1

3
E [Row0(T)Col0(T)] +

1

3
E [Row1(T)Col0(T)] +

1

3
E [Row0(T)Col1(T)] .

Pick a (2ℓ − 1)-subset T2 of [n], that we consider fixed for the time being. The marginal dis-
tributions of a conditioned on the events T2, (T2, i ∈ a) and (T2, i /∈ a) are the same, namely, the
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uniform distribution on the ℓ-subsets of [n] \ T2. (Note that fixing T2 does not fix i, which could be
any element of [n] \ T2.) Thus, we get

E [ f (a) | T2, i /∈ a] = E [ f (a) | T2, i ∈ a] = E [ f (a) | T2] . (8)

On the other hand, we have

E [Row0(T) | T2] = E [E [ f (a) | T, i /∈ a] | T2]

= E

[
E [ f (a)Ii/∈a | T]

P [i /∈ a | T]

∣
∣
∣
∣

T2

]

= 2 E [ f (a)Ii/∈a | T2]

= E [ f (a) | T2, i /∈ a]

(9)

and similarly
E [Row1(T) | T2] = E [ f (a) | T2, i ∈ a] .

From (8), we conclude
E [Row0(T) | T2] = E [Row1(T) | T2] .

Therefore (letting T2 vary),

E [Row1(T)Col0(T)] = E [E [Row1(T)Col0(T) | T2]]

= E [E [Row1(T) | T2]Col0(T)]

= E [E [Row0(T) | T2]Col0(T)]

= E [E [Row0(T)Col0(T) | T2]]

= E [Row0(T)Col0(T)] .

The second and fourth equalities above are due to the fact that Col0(T) is constant when T2 is fixed.
This is because Col0(T) = E [g(b) | T, i /∈ b] depends only on T2, as the marginal distribution of b
given (T, i /∈ b) is uniform on the ℓ-subsets of T2.

Exchanging the roles of rows and columns, we have

E [Row1(T)Col0(T)] = E [Row0(T)Col0(T)] .

In conclusion, we find the following simple expression for E [X | A]:

E [X | A] = E [Row0(T)Col0(T)] . (10)

Step 2: Estimation of E [X | A]− E [X | B]. Via obvious estimates:

Row0(T)Col0(T)− Row1(T)Col1(T)

6 Row0(T)Col0(T)− min{Row0(T), Row1(T)} · min{Col0(T), Col1(T)}
= Row0(T)(Col0(T)− min{Col0(t), Col1(T)})

+ (Row0(T)− min{Row0(t), Row1(T)})min{Col0(t), Col1(T)

6 Row0(T)|Col0(T)− Col1(T)|+ |Row0(T)− Row1(T)|Col0(T).

(11)

This argument is depicted on Figure 2.
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= 6 +

Col0(T)

Col1(T)

Row1(T)

Row0(T) +

−

Figure 2: The estimation of Row0(T)Col0(T)− Row1(T)Col1(T).

In Step 3 below, we will define two events, row-big(T) and column-big(T). The event small(T)
holds if and only if not both of row-big(T) and column-big(T) hold. Thus

1 = Irow-big(T)∩column-big(T) + Ismall(T). (12)

From (11),

(Row0(T)Col0(T)− Row1(T)Col1(T)) · Irow-big(T)∩column-big(T)

6 (Row0(T)|Col0(T)− Col1(T)|+ |Row0(T)− Row1(T)|Col0(T)) · Irow-big(T)∩column-big(T)

6 Row0(T)|Col0(T)− Col1(T)| · Icolumn-big(T) + |Row0(T)− Row1(T)|Col0(T) · Irow-big(T).

Moreover, we obviously have

(Row0(T)Col0(T)− Row1(T)Col1(T)) · Ismall(T) 6 Row0(T)Col0(T) · Ismall(T).

Below, we will prove

E

[

Row0(T)|Col0(T)− Col1(T)| · Icolumn-big(T)

]

6
ǫ

2
E [Row0(T)Col0(T)] , (13)

E

[

|Row0(T)− Row1(T)|Col0(T) · Irow-big(T)

]

6
ǫ

2
E [Row0(T)Col0(T)] , and (14)

E

[

Row0(T)Col0(T) · Ismall(T)

]

6 ‖X ↾ (A ∪ B)‖∞ 2−
ǫ2

16 ln 2−O(log ℓ) (15)

By (7), (10) and (12), these upper bounds imply

E [X | A]− E [X | B]

= E [Row0(T)Col0(T)− Row1(T)Col1(T)]

= E

[

(Row0(T)Col0(T)− Row1(T)Col1(T)) · (Irow-big(T)∩column-big(T) + Ismall(T))
]

6 2
ǫ

2
E [Row0(T)Col0(T)] + ‖X ↾ (A ∪ B)‖∞ 2−

ǫ2

16 ln 2 ℓ−O(log ℓ)

= ǫ E [X | A] + ‖X ↾ (A ∪ B)‖∞ 2−
ǫ2

16 ln 2 ℓ−O(log ℓ)

from which the result clearly follows, by rearranging.

Step 3. One-sided error estimation via entropy argument in the “big” case. Let δ > 0 be a constant to be
chosen later. Essentially, δ will be the coefficient of ℓ in the exponent. Let row-big(T) denote the
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event E [ f (a) | T2] > 2−δℓ−1
∥
∥
∥ f ↾ ([n]\T2

ℓ
)
∥
∥
∥

∞
where f ↾ ([n]\T2

ℓ
) denotes the restriction of f to ℓ-subsets

of [n] \ T2. The event column-big(T) is defined in a similar way. These events depend only on T2

and T1, respectively.
Let T2 be fixed and assume that row-big(T) holds. In particular E [ f (a) | T2] is positive. Because

(2ℓ−1
ℓ−1 ) = (2ℓ−1

ℓ
), the distribution of a given T2 is the same as the distribution of a given T, for every

fixed choice of i. Thus, we have

E [ f (a) | T] = E [ f (a) | T2] = ∑
x⊆[n]\T2

|x|=ℓ

1

(2ℓ
ℓ
)

f (x).

(This holds when f (a) is replaced by any function of a.)
We define s as a random ℓ-subset of [n] \ T2 with distribution

P [s = x | T2] =
f (x)

(2ℓ
ℓ
)E [ f (a) | T2]

=
f (x)

∑y⊆[n]\T2

|y|=ℓ

f (y)
6

2δℓ+1

(2ℓ
ℓ
)

.

Let us introduce the shorthand notation λ := P [i ∈ s | T2]. Then

λ =

∑ x⊆[n]\T2

|x|=ℓ, x∋i

f (x)

∑y⊆[n]\T2

|y|=ℓ

f (y)
=

1

(2ℓ
ℓ
)

∑ x⊆[n]\T2

|x|=ℓ, x∋i

f (x)

1

(2ℓ
ℓ
)

∑y⊆[n]\T2

|y|=ℓ

f (y)
=

E [ f (a)Ii∈a | T]

E [ f (a) | T2]
.

Hence,

Row1(T) = 2 E [ f (a)Ii∈a | T] = 2 E [ f (a) | T2] · P [i ∈ s | T2] = 2λ E [ f (a) | T2] , (16)

Row0(T) = 2 E [ f (a)Ii/∈a | T] = 2 E [ f (a) | T2] · P [i /∈ s | T2] = 2(1 − λ)E [ f (a) | T2] . (17)

We now estimate the entropy of s. On the one hand, by subadditivity of the entropy, we get the
following upperbound on H (s | T2):

H (s | T2) 6 ∑
j∈[n]\T2

H
(

Ij∈s

∣
∣ T2

)
= 2ℓE [H (λ) | T2] .

In this last equation, H (λ) denotes the binary entropy of λ. On the other hand, we get a lower
bound on H (s | T2) from our upper bound on the distribution of s (which induces “flatness” of the
distribution):

H (s | T2) = ∑
x

P [s = x | T2] log
1

P [s = x | T2]

> ∑
x

P [s = x | T2] log
(2ℓ
ℓ
)

2δℓ+1
= log

(2ℓ
ℓ
)

2δℓ+1
= 2ℓ

(

1 − δ

2
− O

(
log ℓ

ℓ

))

.

This implies
δ

2
+O

(
log ℓ

ℓ

)

> E [1 − H (λ) | T2] . (18)

To estimate this expression, we use the Taylor expansion of the binary entropy function at 1/2:

1 − H (x) >
(1 − 2x)2

2 ln 2
.
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Hence (18) yields

δ

2
+ O

(
log ℓ

ℓ

)

>
E

[

(1 − 2λ)2
∣
∣
∣ T2

]

2 ln 2
>

(E [|1 − 2λ| | T2])
2

2 ln 2
.

From (8), (9) we have E [ f (a) | T2] = E [Row0(T) | T2]. Using (17) and (16), we derive

E [|Row0(T)− Row1(T)| | T2] = E [|2(1 − λ)E [ f (a) | T2]− 2λ E [ f (a) | T2] | | T2]

= 2 E [|1 − 2λ| | T2]E [ f (a) | T2]

6 2
√

δ′ E [Row0(T) | T2] .

with

δ′ :=

(

δ +O

(
log ℓ

ℓ

))

ln 2. (19)

We now globalize to prove (14):

E

[

|Row0(T)− Row1(T)|Col0(T)Irow-big(T)

]

= E

[

E

[

|Row0(T)− Row1(T)|Col0(T)Irow-big(T)

∣
∣
∣ T2

]]

= E

[

E

[

|Row0(T)− Row1(T)|Irow-big(T)

∣
∣
∣ T2

]

Col0(T)
]

6 E

[

2
√

δ′ E [Row0(T) | T2]Col0(T)
]

= 2
√

δ′ E [Row0(T)Col0(T)]

We require ǫ
2 = 2

√
δ′, from which we express δ in terms of ǫ using (19):

δ =
δ′

ln 2
−O

(
log ℓ

ℓ

)

=
ǫ2

16 ln 2
− O

(
log ℓ

ℓ

)

This concludes the proof of (14). Equation (13) follows by exchanging rows and columns.

Step 4: Error estimation in the “small” case. Suppose that for some given T, small(T) holds because
row-big(T) does not hold (the argument is similar in case column-big(T) does not hold). Then,
using (6),

Row0(T) 6 Row0(T) + Row1(T) = 2 E [ f (a) | T] .

Thus

Row0(T)Col0(T) 6 2 E [ f (a) | T] · E [g(b) | T, i /∈ b]

6 2−δℓ

∥
∥
∥
∥

f (a) ↾

(
[n] \ T2

ℓ

)∥
∥
∥
∥

∞

·
∥
∥
∥
∥

g(b) ↾

(
T2

ℓ

)∥
∥
∥
∥

∞

6 2−δℓ ‖ f (a)g(b) ↾ (A ∪ B)‖∞

This is easily seen to imply (15).
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3.2 Lower Bounds for Shifts of Unique Disjointness

Now we apply Lemma 4 to show that the nonnegative rank (and hence the communication com-
plexity in expectation) of any shifted version of the unique disjointness matrix remains high. More
precisely, let M ∈ R

2n×2n

+ ; for convenience we index the rows and columns with elements in {0, 1}n .
We say that M is a ρ-extension of UDISJ, if Mab = ρ whenever |a ∩ b| = 0 and Mab = ρ − 1 when-
ever |a ∩ b| = 1 with a, b ∈ {0, 1}n . Note that for these pairs M has exclusively positive entries
whenever ρ > 1. For ρ = 1 a nonnegative rank of 2Ω(n) was already shown in Fiorini et al. [2012]
via nondeterministic communication complexity. We now extend this result for a wide range of ρ

using Lemma 4.

Theorem 5 (Nonnegative rank of UDISJ shifts). Let M ∈ R
2n×2n

+ be a ρ-extension of UDISJ as above.

(i) If ρ is a fixed constant, then rank+(M) = 2Ω(n).

(ii) If ρ = O(nβ) for some constant β < 1/2 then rank+(M) = 2Ω(n1−2β).

Proof. Without loss of generality, assume n ≡ 3 (mod 4). Let r = rank+(M). Regarding the
2n × 2n matrix M as a function from 2[n] × 2[n] to R, we can write M = ∑

r
i=1 Xi where Xi(a, b) =

fi(a)gi(b) for some nonnegative functions fi and gi defined over 2[n]. Then

E [M | A] = ρ and E [M | B] = ρ − 1.

On the other hand, by applying Lemma 4 to each i ∈ [r] and summing up all equations we find

(1 − ǫ)E [M | A]− E [M | B] 6
r

∑
i=1

‖Xi ↾ (A ∪ B)‖∞ 2−
ǫ2

16 ln 2 ℓ+O(log ℓ)

6 r ‖M ↾ (A ∪ B)‖∞ 2−
ǫ2

16 ln 2 ℓ+O(log ℓ)

where ℓ = n+1
4 as before. By plugging in the values of E [M | A], E [M | B] and ‖M ↾ (A ∪ B)‖∞,

we get

(1 − ǫ)ρ − ρ + 1 6 r · ρ · 2−
ǫ2

16 ln 2 ℓ+O(log ℓ),

which provides the lower bound

r >

(
1

ρ
− ǫ

)

2
ǫ2

16 ln 2 ℓ−O(log ℓ).

If ρ is constant, this last expression is 2Ω(n) provided ǫ is chosen sufficiently close to 0. This
proves part (i) of the theorem.

If ρ 6 Cnβ for some positive constant C, then we can take ǫ = 1
2Cnβ . Thus 1

ρ − ǫ > 1
2Cnβ =

Ω(n−β). This leads to the lower bound r > 2Ω(n1−2β) as claimed in part (ii).

4 Polyhedral Inapproximability of CLIQUE and SDPs

We will now use Theorem 5 in combination with Theorem 2 to lower bound the sizes of approx-
imate EFs for CLIQUE and some SDPs. First, we pinpoint a pair P, Q of nested polyhedra that
will be the source of our polyhedral inapproximability results. Second, we give a faithful linear
encoding of CLIQUE and prove strong lower bounds on the sizes of approximate EFs for CLIQUE
w.r.t. this encoding. Third, we focus on approximations of SDPs by LPs.
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4.1 A Hard Pair

Let n be a positive integer. The correlation polytope COR(n) is defined as the convex hull of all the
n × n rank-1 binary matrices of the form bb⊺ where b ∈ {0, 1}n . In other words,

COR(n) = conv ({bb⊺ | b ∈ {0, 1}n}) .

This will be our inner polytope P. Next, let

Q = Q(n) := {x ∈ R
n×n | 〈2 diag(a)− aa⊺, x〉 6 1, a ∈ {0, 1}n},

where 〈·, ·〉 denotes the Frobenius inner product. This will be our outer polyhedron Q.
Then the following is known, see [Fiorini et al., 2012]. First, P ⊆ Q. Second, denoting by SP,Q

the slack matrix of the pair P, Q, we have SP,Q
ab = (1 − a⊺b)2. Thus, for ρ > 1, we have S

P,ρQ
ab =

(1 − a⊺b)2 + ρ − 1. Observe that the matrix SP,ρQ is a ρ-extension of UDISJ and therefore has high
nonnegative rank via Theorem 5; moreover it has positive entries everywhere for ρ > 1. Together
with Theorem 1 this implies that every polyhedron sandwiched between P = COR(n) and ρQ has
large extension complexity. We obtain the following theorem.

Theorem 6 (Lower bounds for approximate EFs of the hard pair). Let ρ > 1, let n be a positive integer
and let P = COR(n), Q = Q(n) be as above. Then the following hold:

(i) If ρ is a fixed constant, then xc(P, ρQ) = 2Ω(n).

(ii) If ρ = O(nβ) for some constant β < 1/2, then xc(P, ρQ) = 2Ω(n1−2β).

4.2 Polyhedral Inapproximability of CLIQUE

We define a natural linear encoding for the maximum clique problem (CLIQUE) as follows. Let
n denote the number of vertices of the input graph. We define a d = n2 dimensional encoding.
The variables are denoted by xij for i, j ∈ [n]. Thus x ∈ Rn×n. The interpretation is that a set of
vertices X is encoded by xij = 1 if i, j ∈ X and xij = 0 otherwise. Note that X = {i : xii = 1} can be
recovered from only the diagonal variables. This defines the set L ⊆ {0, 1}∗ of feasible solutions.
Notice that x ∈ {0, 1}n×n is feasible if and only if it is of the form x = bb⊺ for some b ∈ {0, 1}n , the
characteristic vector of X. Thus we have P = COR(n) for the inner polytope.

The admissible objective functions are chosen as follows to encode the CLIQUE problem for
graphs G supported on [n]. Given a graph G such that V(G) ⊆ [n], we let wii := 1 for i ∈ V(G),
wii := 0 for i ∈ [n] \ V(G), wij = wji := −1 when ij is a non-edge of G (that is, i, j ∈ V(G), i 6= j

and ij /∈ E(G)), and wij = wji := 0 otherwise. We denote the resulting weight vector by wG. Notice

that for a graph G with V(G) = [n], we have wG = I − A(G) where I is the n × n identity matrix,
A(G) is the adjacency matrix of the complement of G.

A feasible solution x = bb⊺ ∈ {0, 1}n×n maximizes 〈wG, x〉 only if b is the characteristic vector
(or incidence vector) of a clique of G. Indeed, if b = χX and ij is a non-edge of G with i, j ∈ X then
removing i or j from X increases 〈wG, x〉. Moreover, the maximum of 〈wG, x〉 over x ∈ {0, 1}n×n

feasible is the clique number ω(G).
The admissible objective functions are the ones of the form wG, i.e., O = {wG : V(G) ⊆ [n]} is

the set of admissible functions. Therefore, (L,O) defines a valid linear encoding of CLIQUE. We
denote the outer convex set of this linear encoding by Qall. It is actually the polyhedron defined as
Qall = {x ∈ Rn×n | ∀ graphs G s.t. V(G) ⊆ [n] : 〈wG, x〉 6 ω(G), ∀i 6= j ∈ [n] : xij > 0}. We will

now show that Qall ⊆ Q.

Lemma 7. Let Qall, Q be as above, then Qall ⊆ Q.

17



Proof. Let x ∈ Qall. We want to prove that x satisfies all the constraints defining Q. We show this by
restricting to graphs G with ω(G) = 1. For a given a ∈ {0, 1}n , let G be the graph with χV(G) = a
and E(G) = ∅. Then,

〈2 diag(a)− aaT , x〉 = 〈wG, x〉 6 ω(G) = 1.

The lemma follows.

Because Qall is contained in the polyhedron Q defined above, every K satisfying P ⊆ K ⊆ ρQall

also satisfies P ⊆ K ⊆ ρQ. Hence, Theorem 6 yields the following result.

Theorem 8 (Polyhedral inapproximability of CLIQUE). W.r.t. the linear encoding defined above, CLIQUE

has an O(n2)-size n-approximate EF. Moreover, every n1/2−ǫ-approximate EF of CLIQUE has size 2Ω(n2ǫ),
for all 0 < ǫ < 1/2.

Proof. The n-approximate EF of CLIQUE is trivial: it is defined by the system 0 6 x 6 1, or in
slack form x − y = 0, x + z = 1, y > 0, z > 0. We claim that this defines a n-approximate EF of
CLIQUE of size 2n2. Indeed, letting K = [0, 1]n×n denote the polytope defined by this EF, we have
P ⊆ K. Moreover, max{〈w, x〉 | x ∈ K} 6 n 6 n · max{〈w, x〉 | x ∈ P} for all admissible objective
functions w of dimension n × n with a nonzero diagonal. In case an admissible w has wii = 0 for
all i ∈ [n], we have max{〈w, x〉 | x ∈ K} = 0 = max{〈w, x〉 | x ∈ P}. Our claim and the first part
of the theorem follows.

The second part of the theorem follows directly from Theorem 6 and the fact that Qall ⊆ Q.

4.3 Polyhedral Inapproximability of SDPs

In this section we show that there exists a spectrahedron with small semidefinite extension com-
plexity but high approximate extension complexity; i.e., any sufficiently fine polyhedral approxi-
mation is large. This indicates that in general it is not possible to approximate SDPs arbitrarily well
using small LPs, so that SDPs are indeed a much stronger class of optimization problems. (The situ-
ation looks quite different for SOCPs, see Ben-Tal and Nemirovski [2001].) The result follows from
Theorem 6 and Fiorini et al. [2012].

We denote the vector space of all r × r symmetric matrices by Sr and the cone of all r × r sym-
metric positive semidefinite matrices (shortly, the PSD cone) by Sr

+. A semidefinite EF of a convex
set S ⊆ Rd is a linear system 〈Ei, x〉 + 〈Fi, Y〉 = gi (i ∈ [k]), Y ∈ Sr

+ where Ei ∈ Rd and Fi ∈ Sr,
such that x ∈ S if and only if ∃Y ∈ Sr

+ with 〈Ei, x〉 + 〈Fi, Y〉 = gi for all i ∈ [m]. Thus a convex
set admits a semidefinite EF if and only if it is a spectrahedron. The size of the semidefinite EF
〈Ei, x〉 + 〈Fi, Y〉 = gi (i ∈ [k]), Y ∈ Sr

+ is simply r. The semidefinite extension complexity of a spec-
trahedron S ⊆ Rd is the minimum size of a semidefinite EF of S. This is denoted by xcSDP(S). A
rank-r PSD-factorization of a nonnegative matrix M ∈ Rm×n is given by matrices T1, . . . , Tm ∈ Sr

+

and U1, . . . , Un ∈ Sr
+, so that Mij = 〈Ti, U j〉; the PSD-rank of M is the smallest r such that there

exists such a factorization. Yannakakis’s factorization theorem can be generalized to the SDP-case
(see Gouveia et al. [2013a]), i.e., the semidefinite extension complexity of a pair of polyhedra P, Q
equals the PSD-rank of any associated slack matrix, in most cases (e.g., Gouveia et al. [2013b] prove
the equality under the hypothesis that Q does not contain any line).

Let P = COR(n) be the correlation polytope and Q = Q(n) ⊆ Rn×n be the polyhedron de-
fined above in Section 4.1. Although every polyhedron K sandwiched between P and Q has super-
polynomial extension complexity, and by Theorem 6 this even applies to polyhedra sandwiched
between P and ρQ for ρ = O(n1/2−ǫ), there exists a spectrahedron S sandwiched between P and
Q with small semidefinite extension complexity.
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Lemma 9 (Existence of spectrahedron). Let n be a positive integer and let P = COR(n), Q = Q(n) be
as above. Then there exists a spectrahedron S in Rn×n with P ⊆ S ⊆ Q and xcSDP(S) 6 n + 1.

Proof. For a, b ∈ {0, 1}n, the matrices Ta, Ub ∈ S
n+1
+ defined in (4) satisfy 〈Ta, Ub〉 = (1 − a⊺b)2. Let

M = M(n) ∈ R2n×2n
be the matrix defined as Mab = (1 − a⊺b)2. The matrix M is an O(n2)-rank

nonnegative matrix extending the UDISJ matrix, and also the slack matrix of the pair P, Q. Then
Mab = 〈Ta, Ub〉 is a rank-(n + 1) PSD-factorization of M.

Consider the system

〈2 diag(a)− aa⊺, x〉+ 〈Ta, Y〉 = 1 (a ∈ {0, 1}n), Y ∈ S
n+1
+ (20)

and S be the projection to Rn×n of the pairs (x, Y) ∈ Rn×n × Sn+1 satisfying (20).
First observe that S ⊆ Q: since Ta ∈ S

n+1
+ for all a ∈ {0, 1}n and Y ∈ S

n+1
+ we have 〈Ta, Y〉 > 0

and thus 〈2 diag(a)− aa⊺, x〉 6 1 holds for all x ∈ S.
In order to show that P ⊆ S recall that M is the slack matrix of the pair P, Q. Therefore, for each

vertex x := bb⊺ of P, we can pick Y := Ub from the factorization such that 〈2 diag(a) − aa⊺, x〉+
〈Ta, Y〉 = 1 and Y ∈ S

n+1
+ . It follows that P ⊆ S.

Our final result is the following inapproximability theorem for spectrahedra. Let us denote the
closed ε-neighbourhood of S in the ℓ1-norm by Sε := {x ∈ Rn×n | ∃x0 ∈ S : ‖x − x0‖1 6 ε}.

Theorem 10 (Polyhedral inapproximability of SDPs). Let ρ > 1, and let n be a positive integer. Then
there exists a spectrahedron S ⊆ Rn×n with xcSDP(S) 6 n + 1 such that for every polyhedron K with
S ⊆ K ⊆ Sρ−1 the following hold:

(i) If ρ is a fixed constant, then xc(K) = 2Ω(n).

(ii) If ρ = O(nβ) for some constant β < 1/2, then xc(K) = 2Ω(n1−2β).

Proof. By Lemma 9, there is a spectrahedron S with P ⊆ S ⊆ Q and xcSDP(S) 6 n + 1. We now
show Sρ−1 ⊆ ρQ. Let x ∈ Sρ−1, and let x0 ∈ S with ‖x − x0‖1 ≤ ρ − 1. As S ⊆ Q, we also have
x0 ∈ Q, hence for every a ∈ {0, 1}n we obtain

〈2 diag(a)− aa⊺, x〉 = 〈2 diag(a)− aa⊺, x − x0〉+ 〈2 diag(a)− aa⊺, x0〉
≤ ‖2 diag(a)− aa⊺‖∞

︸ ︷︷ ︸

≤1

· ‖x − x0‖1
︸ ︷︷ ︸

≤ρ−1

+1 ≤ ρ.

Therefore x ∈ ρQ. Therefore, Sρ−1 ⊆ ρQ for ρ > 1. If now K is a polyhedron such that S ⊆ K ⊆
Sρ−1 then also P ⊆ K ⊆ ρQ. The result thus follows from Theorem 6.

5 Concluding Remarks

We have introduced a general framework to study approximation limits of small LP relaxations.
Given a polyhedron Q encoding admissible objective functions and a polytope P encoding feasi-
ble solutions, we have proved that any LP relaxation sandwiched between P and a dilate ρQ has
extension complexity at least the nonnegative rank of the slack matrix of the pair P, ρQ.

This yields a lower bound depending only on the linear encoding of the problem at hand, and
applies independently of the structure of the actual relaxation. By doing so, we obtain unconditional
lower bounds on integrality gaps for small LP relaxations, which hold even in the unlikely event
that P = NP.
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We have proved that every polynomial-size LP relaxation for (a natural linear encoding of)
CLIQUE has essentially an Ω(

√
n) integrality gap. As mentioned above, this was recently im-

proved by Braverman and Moitra [2013] to a tight Ω(n1−ǫ) integrality gap, see Braun and Pokutta
[2013] for a short proof and many generalizations.

Finally, our work sheds more light on the inherent limitations of LPs in the context of com-
binatorial optimization and approximation algorithms, in particular, in comparison to SDPs. We
provide strong evidence that certain approximation guarantees can only be achieved via non-LP-
based techniques (e.g., SDP-based or combinatorial).

Actually, our work has inspired Chan et al. [2013] to prove lower bounds on the size of LPs for
approximating Max CUT, Max k-SAT and in fact any Max CSP. Among other results, they obtain
a nΩ(log n/ log log n) lower bound on the size of any (2 − ǫ)-approximate EF for Max CUT (of course,
with nonnegative weights). Chan et al. [2013] thus proving the following conjecture on Max CUT
that we stated in an earlier version of this text:

Theorem 11. Chan et al. [2013] It is not possible to approximate Max CUT with LPs of poly-size within a
factor better than 2.

This is in stark contrast with the ratio achieved by the SDP-based algorithm of Goemans and Williamson
[1995] which is known to be optimal, assuming the Unique Games Conjecture Khot [2002], Khot et al.
[2007], Mossel et al. [2005].

Next, about CLIQUE itself, here is an interesting question that this paper leaves open, as pointed
out by one of the referees: find an n-vertex graph G for which the clique polytope CLIQUE(G) :=

conv
(

{χK ∈ RV(G) | K ⊆ V(G) is a clique}
)

has no polynomial-size n1−ǫ-approximate EF. Note

that encoding CLIQUE through the clique polytope does not satisfy our faithfulness condition.
Finally, so far no strong lower bounding technique for semidefinite EFs are known. It is plau-

sible that in the near future we will see lower bounding techniques on the PSD rank that would be
suited for studying approximation limits of SDPs. (We remark however that such bounds should
not only argue on the zero/nonzero pattern of a slack matrix.)
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